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1 Introduction

Information integration is widely considered a key (and costly) challenge of our knowledge society [3,
4]. The challenge is complex and includes many interrelated sub-challenges, like identifying which data
sources to use when answering a query, creating a common representation for the heterogeneous data sources
identified as relevant, extracting data from the sources, cleaning the extracted data, eliminating duplicates
by identifying the same objects in different data sources, and transforming the extracted and cleaned data
into a unified format.

In the simpler setting of relational information integration, the sources are databases where information
is structured with (different) relational database schemas; the sources correspond to so-called source or
local schemas. The unified format is the rarget or global schema. Heterogeneity is less challenging, as
it is restricted to different kinds of schemas. Unrestricted heterogeneity involves databases hidden behind
applications, document repositories, and other kinds of unstructured information. In the Semantic Web, with
description logics (DLs) being the underlying knowledge representation formalism, information is structured
via ontological schemas. Hence, ontologies replace databases — source databases are replaced by source (or
local) ontologies, and the target database is replaced by a farget (or global) ontology. In the following, we
use guarded Datalog+/— as the language for representing the sources, the target, and the mappings — one of
the advantages of this language is that it is capable of representing ontological knowledge, but it keeps the
notation used in databases for greater readability.

Information integration is usually achieved via mappings between logical formalizations of data sources
(cf. [5, 6, 7] for an overview). There are mainly three ways in which information from different sources can
be integrated:

e Data exchange: Data structured under a source schema S (or different source schemas S, ..., 5S%)
is transformed into data structured under a different target schema 7', and materialized (merged and
acquired) there through the mapping.

e Data integration: Heterogeneous data in different sources S, . . ., S is queried via a virtual global
schema T, i.e., no actual exchange of data is needed.

e Peer-to-peer data integration: There is no global schema given. All peers Si,..., Sy are au-
tonomous and independent from each other, and each peer can hold data and be queried. The peers
can be viewed as nodes in a network that are linked to other nodes by means of so-called peer-to-peer
(P2P) mappings. That is, each source can also be a target for another source.

In this paper, we investigate probabilistic data exchange, which has been proposed for integrating proba-
bilistic databases with either deterministic or probabilistic mappings [8, 9]. We use guarded Datalog+/—[10]
as the underlying relational information integration language, which is an ontology language extending plain
Datalog by negative constraints and the possibility of rules with existential quantification and equality in rule
heads, while restricting the rule syntax by so-called guards in rule bodies to gain decidability and tractability.
Essentially, it extends Datalog to negative constraints, tuple-generating dependencies (TGDs), and equality-
generating dependencies (EGDs), but suitably restricted to gain decidability and data tractability. In this
way, it is possible to capture the DL-Lite family of DLs and also the DL ££. As such, guarded Datalog+/— is
a very expressive and convenient language for ontology-based database access, which makes it particularly
attractive for data exchange on the Semantic Web. For simplicity, from now on, we often refer to “guarded
Datalog+/-" simply as “Datalog+/-". Though general data exchange and probabilistic data exchange frame-
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works often use standard or weakly acyclic sets of TGDs and EGDs for the target, in this work, we adopt
linear and guarded TGDs and non-conflicting keys, as proposed in Datalog+/—.

We also sketch how provenance information can be added to Datalog+/— as a mapping language, to
be able to track the origin of a mapping for trust assessment and debugging. Capturing the provenance of
mappings allows to resolve inconsistencies of mappings by considering the history of their creation. It also
helps to detect whether and how to perform mapping updates if the information sources have changed or
evolved. Finally, it allows to capture mapping cycles, debug mappings, and to perform meta-reasoning with
mappings and the knowledge bases themselves.

This paper extends [1], where we proposed the use of probabilistic Datalog+/— as a language for in-
formation integration. Here, we study a theoretical framework for probabilistic data exchange based on
Datalog+/— and provide complexity results for deciding the existence of a solution in linear and guarded
Datalog+/— for both the deterministic variant and its probabilistic extension. Another difference with re-
spect to [1] is that here, we study data exchange in the presence of a probabilistic source and consider a
very general probabilistic model involving unrestricted probability distributions (in [1], we considered a
probabilistic extension of Datalog+/— with Markov logic networks).

The rest of this paper is organized as follows. In Section 2, we recall the basics of guarded Datalog+/—.
Sections 3 and 4 define our approach to deterministic data exchange on top of Datalog+/— and illustrate
the type of ontology mappings that can be expressed in this framework, respectively. In Sections 5 and 6,
we generalize to probabilistic data exchange on top of Datalog+/— and the types of probabilistic ontology
mappings that it can express, respectively. Section 7 provides complexity results, and Section 8 deals with
provenance in our approach. In Sections 9 and 10, we discuss related work, summarize the main results, and
give an outlook on future research.

2 Guarded Datalog+/-

We now describe guarded Datalog+/— [10], which here includes negative constraints and (separable) equality-
generating dependencies (EGDs). We first describe some preliminaries on databases and queries, and then
tuple-generating dependencies (TGDs) and the concept of chase. We finally recall negative constraints and
(separable) EGDs, which are other important ingredients of guarded Datalog+/— ontologies.

Databases and Queries. The elementary ingredients are constants, nulls, and variables, which serve as
arguments in atomic formulas in databases, queries, and dependencies: (i) a fixed countably infinite universe
of (data) constants A (which constitute the “normal” domain of a database), (ii) a fixed countably infinite
set of (labeled) nulls A (used as “fresh” Skolem terms, which are placeholders for unknown values, and
can thus be seen as variables), and (iii) a fixed countably infinite set of variables X’ (used in queries and
dependencies). Different constants represent different values (unique name assumption), while different
nulls may represent the same value. We assume a lexicographic order on A U Ay, with every symbol in
Ay following all symbols in A. We denote by X sequences of variables X1, ..., X; with k > 0.

We next define atomic formulas, which occur in databases, queries, and dependencies, and which are
constructed from relation names and terms, as usual. We assume a relational schema 'R, which is a finite set
of relation names (or predicate symbols, or simply predicates). A position P[i] identifies the i-th argument
of a predicate P. A ferm t is a data constant, null, or variable. An afomic formula (or atom) a has the
form P(t1,...,t,), where P is an n-ary predicate, and ¢4, ...,t, are terms. We denote by pred(a) and
dom(a) its predicate and the set of all its arguments, respectively. The latter two notations are naturally
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extended to sets of atoms and conjunctions of atoms. A conjunction of atoms is often identified with the set
of all its atoms.

We are now ready to define the notion of a database relative to a relational schema, as well as conjunctive
and Boolean conjunctive queries to databases. A database (instance) D for a relational schema R is a (possi-
bly infinite) set of atoms with predicates from R and arguments from A. Such D is ground iff it contains only
atoms with arguments from A. A conjunctive query (CQ) over R has the form Q(X) = 3Y ¢(X,Y,C),
where ®(X,Y, C) is a conjunction of atoms with the variables X and Y, and eventually constants C, but
without nulls. Note that (X, Y') may also contain equalities but no inequalities. A Boolean CQ (BCQ) over
R is a CQ of the form Q(). We often write a BCQ as the set of all its atoms, having constants and variables
as arguments, and omitting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms,
which are mappings p: AUAN UX — AU AN U X such that (i) ¢ € A implies u(c) = ¢, (ii) ¢ € An
implies p(c) € AUAN, and (iii) p is naturally extended to atoms, sets of atoms, and conjunctions of atoms.
The set of all answers to a CQ Q(X)=3Y ®(X,Y) over a database D, denoted Q(D), is the set of all
tuples t over A for which there exists a homomorphism p: XUY — A U Ay such that u(®(X,Y))C D
and p(X) =t. The answer to a BCQ Q() over a database D is Yes, denoted D = Q, iff Q(D) # 0.

Tuple-Generating Dependencies (TGDs). Tuple-generating dependencies (TGDs) describe constraints
on databases in the form of generalized Datalog rules with existentially quantified conjunctions of atoms
in rule heads; their syntax and semantics are as follows. Given a relational schema R, a tuple-generating
dependency (TGD) o is a first-order formula of the form VXVY ®(X,Y) — 3Z ¥ (X, Z), where &(X,Y)
and ¥(X, Z) are conjunctions of atoms over R called the body and the head of o, denoted body(c) and
head(o), respectively. A TGD is guarded iff it contains an atom in its body that involves all variables
appearing in the body. The leftmost such atom is the guard atom (or guard) of o. The non-guard atoms in
the body of o are the side atoms of . We usually omit the universal quantifiers in TGDs. Such o is satisfied
in a database D for R iff, whenever there exists a homomorphism % that maps the atoms of ®(X,Y) to
atoms of D, there exists an extension i’ of h that maps the atoms of W(X, Z) to atoms of D. All sets of
TGDs are finite here.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs is
defined as follows. For a database D for R, and a set of TGDs X on R, the set of models of D and ¥, denoted
mods(D, ), is the set of all (possibly infinite) databases B such that (i) D C B (ii) every o € X is satisfied
in B. The set of answers for a CQ @ to D and X, denoted ans(Q, D, Y.), is the set of all tuples a such
that a € Q(B) for all B € mods(D,X). The answer for a BCQ @ to D and ¥ is Yes, denoted D U ¥ |= Q,
iff ans(Q, D,X.) # (). We recall that query answering under TGDs is equivalent to query answering under
TGDs with only single atoms in their heads. We thus often assume w.l.0.g. that every TGD has a single
atom in its head.

The Chase. The chase was introduced to enable checking implication of dependencies [11] and later
also for checking query containment [12]. It is a procedure for repairing a database relative to a set of
dependencies, so that the result of the chase satisfies the dependencies. By “chase”, we refer both to the
chase procedure and to its output. The TGD chase works on a database through so-called TGD chase rules
(an extended chase with also equality-generating dependencies is discussed below). The TGD chase rule
comes in two flavors: restricted and oblivious, where the restricted one applies TGDs only when they are
not satisfied (to repair them), while the oblivious one always applies TGDs (if they produce a new result).
We focus on the oblivious one here; the (oblivious) TGD chase rule defined below is the building block of
the chase.
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TGD CHASE RULE. Consider a database D for a relational schema R, and a TGD ¢ on R of the form
®(X,Y) — JZY(X, Z). Then, o is applicable to D if there exists a homomorphism h that maps the
atoms of ®(X,Y) to atoms of D. Let o be applicable to D, and h; be a homomorphism that extends h as
follows: for each X; € X, h1(X;) = h(X;); foreach Z; € Z, hi(Z;) = z;, where z; is a “fresh” null, i.e.,
zj € Ap, z; does not occur in D, and z; lexicographically follows all other nulls already introduced. The
application of o on D adds to D the atom h; (¥ (X, Z)) if not already in D. m

The chase algorithm for a database D and a set of TGDs X consists of an exhaustive application of
the TGD chase rule in a breadth-first (Ievel-saturating) fashion, which leads as result to a (possibly infinite)
chase for D and Y. Formally, the chase of level up to 0 of D relative to X, denoted chaseO(D, ), is defined
as D, assigning to every atom in D the (derivation) level 0. For every k > 1, the chase of level up to k
of D relative to Y, denoted chasek(D, Y)), is constructed as follows: let Iy, ..., I, be all possible images
of bodies of TGDs in ¥ relative to some homomorphism such that (i) I,...,I, C chasekil(D, Y)) and
(ii) the highest level of an atom in every I; is k — 1; then, perform every corresponding TGD application
on chase* (D, %), choosing the applied TGDs and homomorphisms in a (fixed) linear and lexicographic
order, respectively, and assigning to every new atom the (derivation) level k. The chase of D relative to X,
denoted chase(D, ), is then defined as the limit of chase® (D, X) for k — oo.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists a homomorphism
from chase(D, ¥) onto every B € mods(D, ¥) [13, 14]. This result implies that BCQs ) over D and ¥ can
be evaluated on the chase for D and ¥, i.e., DUY |= @ is equivalent to chase(D, ) = Q. In the case of
guarded TGDs 3, such BCQs () can be evaluated on an initial fragment of chase(D,X) = @ of constant
depth k - |@Q|, and thus be done in polynomial time in the data complexity.

Note that sets of guarded TGDs (with single-atom heads) are theories in the guarded fragment of first-
order logic [15]. Note also that guardedness is a truly fundamental class ensuring decidability as adding a
single unguarded Datalog rule to a guarded Datalog+/— program may destroy decidability as shown in [13].

Negative Constraints. Another crucial ingredient of Datalog+/— for ontological modeling are negative
constraints (NCs, or simply constraints), which are first-order formulas of the form VX ®(X) — L, where
®(X) is a conjunction of atoms (not necessarily guarded). We usually omit the universal quantifiers, and
we implicitly assume that all sets of constraints are finite here. Adding negative constraints to answering
BCQs @ over databases and guarded TGDs is computationally easy, as for each constraint VX ®(X) — L,
we only have to check that the BCQ ®(X) evaluates to false; if one of these checks fails, then the answer
to the original BCQ Q) is true, otherwise the negative constraints can be simply ignored when answering the
original BCQ Q.

Equality-Generating Dependencies (EGDs). A further important ingredient of Datalog+/— for modeling
ontologies are equality-generating dependencies (or EGDs) o, which are first-order formulas VX &(X) —
X; = X, where ®(X), called the body of o, denoted body (o), is a (not necessarily guarded) conjunction
of atoms, and X; and X; are variables from X. We call X; = X the head of o, denoted head(c). Such o is
satisfied in a database D for R iff, whenever there exists a homomorphism A such that h(®(X,Y)) C D,
it holds that h(X;) =h(X;). We usually omit the universal quantifiers in EGDs, and all sets of EGDs are
finite here.

An EGD ¢ on R of the form ®(X) — X; = X is applicable to a database D for R iff there exists a
homomorphism 7: ®(X) — D such that n(X;) and n(X;) are different and not both constants. If 7(X;)
and 7)(X;) are different constants in A, then there is a hard violation of o (and, as we will see below, the
chase fails). Otherwise, the result of the application of ¢ to D is the database h(D) obtained from D by
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replacing every occurrence of a non-constant element e € {1(X;),n(X;)} in D by the other element ¢’ (if
e and €’ are both nulls, then e precedes €’ in the lexicographic order). The chase of a database D, in the
presence of two sets X7 and X g of TGDs and EGDs, respectively, denoted chase(D, XpUXg), is computed
by iteratively applying (1) a single TGD once, according to the standard order and (2) the EGDs, as long
as they are applicable (i.e., until a fixpoint is reached). To assure that adding EGDs to answering BCQs
@ over databases and guarded TGDs along with negative constraints does not increase the complexity of
query answering, all EGDs are assumed to be separable [10] (one such class of separable EGDs are non-
conflicting keys [10]). Intuitively, separability holds whenever: (i) if there is a hard violation of an EGD in
the chase, then there is also one on the database w.r.t. the set of EGDs alone (i.e., without considering the
TGDs); and (ii) if there is no chase failure, then the answers to a BCQ w.r.t. the entire set of dependencies
equals those w.r.t. the TGDs alone (i.e., without the EGDs).

Guarded Datalog+/~ Ontologies. We define (guarded) Datalog+/— ontologies as follows. A (guarded)
Datalog+/- ontology consists of a database D, a (finite) set of guarded TGDs X7, a (finite) set of negative
constraints ¢, and a (finite) set of EGDs X that are separable from >7.

3 Deterministic Data Exchange

In this section, we recall the classical logical framework of data exchange and data integration [6, 9] in the
context of both deterministic and probabilistic databases, and tailor the framework to suit data exchange and
data integration between Datalog+/— ontologies. The syntax of a schema mapping in Datalog+/— is defined
as follows.

Definition 1 (Schema Mapping). A schema mapping M = (S, T,X) consists of a source schema S =
{S1,...,S,}, atarget schema T = {71, ..., T}, } disjoint from S, and a set ¥ = X4, U X; of TGDs, negative
constraints, and non-conflicting keys, where 3.4 are source-to-target TGDs, negative constraints, and non-
conflicting keys over SU T, and >3, are target TGDs, negative constraints, and non-conflicting keys over T.

The semantics of schema mappings is defined by relating source and target databases in a semanti-
cally meaningful and consistent way. More specifically, in the case of data exchange between deterministic
databases, a target database J over A is considered to be a solution of the source database I over A for the
data exchange problem specified via the schema mapping M = (S, T, X) iff TU J = 3.

Definition 2 (Solution). A target database .JJ over A is a solution for a source database I over A relative to
a schema mapping M = (S, T, X) iff /U J = X. We denote by Sol, the set of all pairs (I, .J) of source
databases [ and target databases J with [ UJ = X.

There are many possible solutions J to a source database I relative to M in Solx(. Among all such
solutions, the preferred solutions are the ones that carry only the necessary information for data exchange;
i.e., all the constants of the source database that can be transferred via the mapping are included in the target
database. Such solutions are called universal solutions. Similar to universal models in the context of the
chase derivation of Datalog+/— (see Section 2), a universal solution can be homomorphically mapped to all
other solutions leaving the constants unchanged.

Definition 3 (Universal Solution). A target database J over A is a universal solution for a source database
I over A relative to a schema mapping M = (S, T, X) iff (i) J is a solution, and (ii) for each solution
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J' for I relative to M, there is a homomorphism h: J — J'. We denote by USolrs (C Solyy) the set
of all pairs (I, J) of source databases / and target databases .J such that .J is a universal solution for /
relative to M.

For defining the data exchange problem over probabilistic databases, we first need to define probabilistic
databases, as they serve as source and target databases in the probabilistic data exchange setting.

Definition 4 (Probabilistic Database). A probabilistic database over R is a probability space Pr = (Z, )
such that Z is the set of all (possibly infinitely many) standard databases over R, and pi: Z — [0, 1] is a
function that satisfies Y ;7 u(f) = 1.

In this paper, we adopt a compact encoding of probabilistic databases by annotating database atoms with
Boolean combinations of elementary events, where every annotation describes when the atom is true and is
associated with a probability. We first define annotations and annotated atoms.

Definition 5 (Annotations and Annotated Atoms). Let ey, ..., e, be n>1 elementary events. A world w
is a conjunction ¢1 A - -+ A £y, where each ¢;, i € {1,...,n}, is either the elementary event e; or its nega-
tion —e;. An annotation X is any Boolean combination of elementary events (i.e., all elementary events
are annotations, and if A\; and Ao are annotations, then also —A; and A1 A \9); as usual, A\; V Ay abbrevi-
ates =(=A1 A =A2). An annotated atom has the form a: A, where a is an atom, and A is an annotation.

Based on this definition, we can now define the compact encoding of probabilistic databases that we will
be using.

Definition 6 (Compact Encoding of Probabilistic Databases). A set D of annotated atoms over A along
with a probability p(w) € [0, 1] for every world w compactly encodes a probabilistic database by defining:

1. the probability of every annotation A as the sum of the probabilities of all worlds in which A is true,
and

2. the probability of every database {ay, ..., an} suchthat {a1: A1,...,am: Ay} € D for some anno-
tations Ap, ..., Ay, as the probability of Ay A --- A A, (and the probability of every other database as
0).

While the syntax of a deterministic schema mapping over probabilistic databases does not change, its se-
mantics needs to be adapted. Exchanging data between probabilistic databases means that a properly defined
joint probability space Pr over the solution relation Solx, and the universal solution relation USol, must
exist. Note that Soly and USolp, exist in probabilistic data exchange as well, because joint events (1, .J)
that can be constructed for pairs of probabilistic source instances Prs = (Z, j15) and probabilistic target in-
stances Pry = (J, ju¢) need also to satisfy the condition I U J = X to be considered as semantic components
of probabilistic solutions.

As stated more formally below, a properly defined joint probability distribution Pr over the solution
relation Solp4 or the universal solution relation USolp, requires to match each of the given marginal dis-
tributions Prs and Pr,. These constraints over the marginal distributions of Pr are called Sol,(-match and
USolp-match [9], as they are defined over Solx and USol 4, respectively.
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Definition 7 (Probabilistic (Universal) Solution). A probabilistic target database Pry = (J, u¢) is a prob-
abilistic solution (resp., probabilistic universal solution) for a probabilistic source database Prs = (Z, 15)
relative to a schema mapping M = (S, T, X) iff there exists a probabilistic space Pr = (Z x J, u) that
satisfies the following two conditions:

1. The left and right marginals of Pr are Prs and Pr;, respectively. That is,

@ > jeq(u(I,J)) = ps(I) forall I € Z and
() > rez(pl, J)) = p(J) forall J € T,

2. u(I,J)=0forall (I,J) & Solr (resp., (I,J) & USolp).

For mapping M = (S, T, ) and query Q(X)=3Y ®(X,Y, C) (as introduced in Section 2), query
answering within the data exchange setting of a source database [ is defined as deriving the certain answers,
i.e., the tuples consisting of constants that belong to QQ(J) for all solutions J for [ relative to M. In the
probabilistic generalization, each probabilistic target database defines a probability with which a tuple of
constants belongs to Q(.J) (which is the sum of the probabilities of all standard target databases in which the
query evaluates to true), and the probability that this tuple belongs to the answer of the query is the infimum
of all such probabilities. In the following definition, we also generalize queries to unions of conjunctive
queries (UCQs).

Definition 8 (UCQs). A union of conjunctive queries (or UCQ) has the form Q(X) = \/f:1 JY; (X, Y,
C,), where each 3Y; ®;(X,Y;, C;) withi € {1,...,k} is a CQ with exactly the variables X and Y, and
the constants C;. Given a schema mapping M = (S, T, X), a probabilistic source database Prs = (Z, s),
aUCQ Q(X) = \/f:1 3Y,; (X, Y;,C;), and a tuple A (being a ground instance of X in @) over A, the
confidence of A relative to (, denoted conf (A), in Pr; relative to M is the infimum of Pry(Q(A)) subject
to all probabilistic solutions Pr; for Prs relative to M. Here, Pri(Q(A)) for Pry = (7, pt) is the sum of
all i (J) such that Q(A) evaluates to true in the database J € J (i.e., some BCQ 3Y; ®;(A,Y;, C;) with
i€{1,...,k} evaluates to true in .J).

The following are the main computational tasks that we consider in this paper.

Existence of a solution (resp., universal solution): Given a schema mapping M and a probabilistic source
database Prs, decide whether there exists a probabilistic (resp., probabilistic universal) solution for
Pr relative to M.

Materialization of a solution (resp., universal solution): Given a schema mapping M and a probabilis-
tic source database Prg, compute a probabilistic solution (resp., probabilistic universal) solution for
Prg relative to M, if it exists.

Answering UCQs: Given a schema mapping M, a probabilistic source database Prs, a UCQ Q(X), and a
tuple A over A, compute conf o(A) in Pry relative to M.

4 Ontology Mappings with Datalog+/—

Mapping languages are formal knowledge representation languages that are chosen according to specific
criteria. The two most important criteria are the expressive power needed for specifying desired data inter-
operability tasks on the one hand and the tractability of dealing with that language, i.e., query answering,
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checking for solutions, materializing solutions, etc., on the other. It is well known that there is a tradeoff
between expressivity and tractability [16] — the latter is often attained via algorithmic properties that imply
certain structural properties, such as the existence of universal solutions after performing a bounded number
of computations.

In the following, we examine Datalog+/— as a mapping language. As a language lying in the intersection
of the DL and the logic programming paradigms, Datalog+/— allows to integrate the information available
in ontologies and, hence, nicely ties together the results on data exchange and integration in databases and
the work on ontology mediation in the Semantic Web.

When integrating ontologies with Datalog+/— via source-to-target TGDs (for short, we often refer to
them as s-t TGDs), such TGDs correspond to GLAV (global-local-as-view) dependencies and are used as
mappings. In their most general form, TGDs are (as mentioned above) first-order formulas VX ¢(X) —
Yy (X, Y) with X and Y being tuples of variables, ¢(X) and (X, Y) being a conjunction of atomic
formulas.

The following two types of dependencies are important special cases of source-to-target TGDs: LAV
(local as view) and GAV (global as view):

e A LAV (local as view) dependency is a source-to-target TGD with a single atom in the body, i.e., of
the form VX Ag(X) — IY¢ (X, Y), where Ag is an atom over the source schema, and ¥(X, Y) is a
conjunction of atoms over the target schema.

o A GAY (global as view) dependency is a source-to-target TGD with a single atom in the head, i.e.,
of the form VX ¢(X) — Ar(X’), where ¢(X) is a conjunction of atoms over the source schema, and
Ap(X') is an atom over the target schema with X’ C X.

The following mappings that are mentioned in [17] as “essential” can also be represented in Datalog+/—
(all examples below stem from a consideration of the OAEI benchmark set; more specifically, ontologies 101
and 301-303):

e Copy (Nicknaming): Copy a source relation (or concept or role) (of arbitrary arity n) into a target
relation (or concept or role) (of the same arity n like the source relation (or concept or role)) and
rename it. Note that this kind of mapping is a LAV and a GAV mapping at the same time. For
example:

Va,y S :location(x,y) — T :address(z,y).

e Projection (Column Deletion): Create a target relation (or concept or role) by deleting one or more
columns of a source relation (or concept or role) (of arbitrary arity n > 2). Note that this kind of
mapping is a LAV and GAV mapping at the same time. For instance:

Va,y S :author(x,y) — T :person(z).

¢ Augmentation (Column Addition): Create a target relation (or concept or role) (of arbitrary arity
n > 2) by adding one or more columns to the source relation (or concept or role). Note that this is a
LAV dependency. A simple example follows:

Va S :editor(z) — 3z T : hasEditor(z,x).
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e Decomposition: Decompose a source relation (or concept or role) (of arbitrary arity n) into two or
more target relations (or concepts or roles). Note that this is a LAV dependency. For instance, we can
have:

Va,y S :publisher(x,y) — T : organization(x), T : proceedings(y).

Only one mapping construct mentioned in [17] as essential — the join — cannot be represented by guarded
Datalog+/-. As each TGD has to be guarded, there must be an atom in the body that contains all non-
existentially quantified variables and, hence, a join like Vz,y S : book(y), S : person(x) — T :
author(z,y) cannot be represented in guarded Datalog+/—. This, however, can also be considered as a
benefit, as joins usually need more computing resources, because they require a large number of operations.
Note that the join is introduced for query answering by means of conjunctive queries that we are using to
query the target database. This is equivalent to the join in databases.

In ontology mediation, a mapping or alignment is based on correspondences between so-called match-
able entities of two ontologies. The following definition is based on [18]; let S and 7" be two ontolo-
gies (the source and the target) that are to be mapped onto each other, and let ¢ be a function that de-
fines the sets of matchable entities ¢(S) and ¢(7"). Then, a correspondence between S and T is a triple
(e1,e2,7) with e; € ¢(S5), ea € ¢(T'), and r being an alignment relation between the two matchable el-
ements (note that equivalence and implication are examples of such an alignment relation if the chosen
mapping language supports them). A mapping or alignment between S and T is then a set of correspon-
dences C' = U; j p{(ei, e;, )} between S and T'. This is a very general definition, which allows to describe
many types of mappings.

Definition 9 (Ontology Mapping [18]). Let S be a source ontology, and 7" be a target ontology. Let ¢ be a
function that defines the sets of matchable entities ¢(.S) and ¢(T"). Then, a correspondence between S and T
is a triple (e1, e, r), where e; € ¢(5), ea € ¢(T'), and 7 is an alignment relation between the two matchable
elements e; and ea. An ontology mapping between S and T’ is a set of correspondences C' = U; j 1{(e;, e;,
)} between S and T'.

Semantic Web and ontology mapping languages usually contain a subset of the aforementioned map-
ping expressions, plus additional mapping expressions in the form of constraints, which usually are used to
specify class disjointness (see, e.g., [7, 19]). However, note that both the data exchange and the ontology me-
diation communities have also proposed mapping languages that are more expressive than source-to-target
TGDs, consisting of full general Datalog expressions and also containing existentially quantified variables in
the head — e.g., second-order mappings as described in the requirements of [20] or second-order TGDs [21].
Of course, such mapping languages have less desirable tractability properties. In [19], a probabilistic map-
ping language is presented that is based on Markov logic networks, built by mappings of basic DL axioms
onto predicates with the desired semantics. A closer look reveals that the deterministic mapping constructs
that are used are renaming, decomposition, and class disjointness constraints, as well as their combinations.
Such disjointness constraints can be modeled with Datalog+/—, using negative constraints (NCs), such as:

¢ Disjointness of ontology entities with the same arity: A source relation (or concept or role) with
arity n is disjoint from another relation (or concept or role) with the same arity n. The NC below
corresponds to class disjointness that specifies that persons cannot be addresses:

VxS : Person(x), T :Address(z) — L.
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¢ Disjointness of ontology entities with different arity: A source relation (or concept or role) with
arity n > 2 is disjoint from another relation (or concept or role) with the arity n > m > 1. The
example below specifies that persons cannot be bought and, hence, do not have prices.

Va,y S: Person(x), T : hasPrice(x,y) — L.

EGDs are also part of some mapping languages, especially in the database area, and can be represented
by Datalog+/— as long as they are separable from the TGDs. Such kinds of dependencies allow to create
mappings like the following one specifying that publishers of the same book or journal, in both the source
and target schema (or ontology), have to be the same:

Va,y,z S :publisher(z,y), T : publishes(y,z) — x = z.

5 Probabilistic Data Exchange

Probabilistic data exchange extends classical data exchange by the demand of two database instances [
and J not only meeting the deterministic constraints of solutions, but also the probabilities specified by a
probability distribution over a set of deterministic schema mappings, which is expressed in the following
definition of probabilistic schema mappings.

Definition 10 (Probabilistic Schema Mapping). A probabilistic schema mapping is a tuple of the form
M = (S, T, %, u), consisting of a source schema S = {S1,...,S5,}, a target schema T = {T1,...,T},}
disjoint from S, a set =3¢ U 3 of TGDs, negative constraints, and non-conflicting keys, where >
are source-to-target TGDs, negative constraints, and non-conflicting keys over SUT, and X, are target
TGDs, negative constraints, and non-conflicting keys over T, and a function z: 23 — [0, 1] such that

Zzlgzst M(Z/) = 1.

Probabilistic schema mappings are compactly encoded in the same way as probabilistic databases by
annotating TGDs, negative constraints, and non-conflicting keys with Boolean combinations of elementary
events. If such mappings are given along with probabilistic databases, then both are compactly encoded
via two (not necessarily disjoint) sets of elementary events, assuming that the probabilities of common
elementary events are the same in both compact encodings. Note that in probabilistic Datalog+/—[22], which
we used for the probabilistic mappings in [1], both sets of elementary events coincide, the annotations are
conjunctions of elementary events, and the probability of every world is defined via a Markov logic network.

The next definition lifts the notion of probabilistic (universal) solution from probabilistic source databases
under deterministic schema mappings to probabilistic source databases under probabilistic schema map-

pings.

Definition 11  (Probabilistic =~ (Universal) = Solution). A  probabilistic ~ target  database
Pry = (J, ut) is a probabilistic solution (resp., probabilistic universal solution) for a probabilistic source
database Pr; = (Z, us) relative to a probabilistic schema mapping M = (S, T, %, ) iff there exists a
probabilistic space Pr = (T x J x 2%, p) that satisfies the following two conditions:

1. The three marginals of u are s, ft¢, and i, such that:

@ > jeq e, J,E) = ps(I) forall I € Z,
®) Drersres (I, J,E) = pe(J) forall J € 7, and
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(© EleI, geg I, J, X)) = pp () for all X' C ¥

2. u(I,J,%") = 0forall (I,J) & Solg s (resp., (I,J) & USol(s 1 sr)).

Using the above probabilistic and probabilistic universal solutions for probabilistic source databases
under probabilistic schema mappings, the semantics of UCQs can easily be lifted from deterministic to
probabilistic schema mappings as follows.

Definition 12 (UCQs). A union of conjunctive queries (or UCQ) has the form Q(X) = \/f:1 IY; ¢;(X,
Y;, C;), where each 3Y,; ®;(X,Y;,C;) withi e {1,...,k} is a CQ with exactly the variables X and Y},
and the constants C;. Given a probabilistic schema mapping M = (S, T, X, i1,,,), a probabilistic source
database Prs = (Z, us), a UCQ Q(X) = \/f:1 Y, ¢;(X,Y;,C;), and a tuple A over A, the confidence
of A relative to @, denoted conf(A), in Pr; relative to M is the infimum of Pry(Q(A)) subject to all
probabilistic solutions Pr; for Prs relative to M. Here, Pri(Q(A)) for Pry=(J, u) is the sum of all
ut(J) such that Q(A) evaluates to true in the database J € J (i.e., some BCQ 3Y; ®;(A,Y;, C;) with
i€{1,...,k} evaluates to true in .J).

Similarly, the main computational tasks of this paper can easily be generalized from deterministic to
probabilistic schema mappings as follows.

Existence of a solution (resp., universal solution): Given a probabilistic schema mapping M and a prob-
abilistic source database Pr,, decide whether there exists a probabilistic (resp., probabilistic universal)
solution for Pr, relative to M.

Materialization of a solution (resp., universal solution): Given a probabilistic schema mapping M and
a probabilistic source database Prs, compute a probabilistic solution (resp., probabilistic universal)
solution for Pr, relative to M, if it exists.

Answering UCQs: Given a probabilistic schema mapping M, a probabilistic source database Pr,, a UCQ
Q(X), and a tuple A over A, compute confg,(A) in Pr; relative to M.

6 Ontology Mappings with Probabilistic Datalog+/—

In general, probabilistic mappings M = (S, T, X, 1) in probabilistic Datalog+/— have a similar expressivity
as deterministic mappings M = (S, T, X) in Datalog+/—; that is, they can encode LAV and GAV mappings
and also the mappings mentioned in Section 4 as being essential like Copy (Nicknaming), Projection (Col-
umn Deletion), Augmentation (Column Addition), Decomposition, and Disjointness constraints of entities
with same or different arity (see Section 4 for details).

In addition, in probabilistic Datalog+/—, the above-mentioned kinds of deterministic mappings M = (S,
T, ¥) are extended with uncertainty by defining a probability space (2%, 11,,,) over the dependencies ¥
in Datalog+/— such that each mapping m; holds with a probability ji,,(m;). The mappings together with
the probability space defined over them is represented by the compact encoding defined in Section 3 for
probabilistic databases and used in Section 5 for probabilistic mappings as well. This compact encoding of
probabilistic databases and mappings considers conditions or events under which the mappings are true or
not. These events are not part of the databases, but can represent databases or other relevant events. As such,
the two tasks of database and mapping dependencies modeling are separated from the task of modeling the
uncertainty around the axioms of the ontology. Note that the set of events used to encode the probabilistic
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mappings can overlap with the set of events used to encode the probabilistic databases, and their probability
can depend completely or in part on the same events.

As an example, consider a tuple-independent (see Section 7) database and a mapping consisting of a
single rule. Without loss of generality, let X, consist of only one mapping dependency — e.g., the first one
mentioned in Section 4 (Copy/Nicknaming):

Vz,y S :location(x,y) — T :address(z,y).

The probabilistic version of this mapping for a probabilistic source database with only two possible proba-
bilistic tuples (location(CS Department, Wolfson Building Oxford), 0.8), (location(Maths Department, An-
drew Wiles Building Oxford), 0.9), which are independent, has probability 0.98 of being true. In this case,
clearly, the probability of the mapping is dependent on the probabilistic source database.

Another, more expressive, possibility to encode the probabilistic events under which the mappings hold
is to use Markov logic networks (MLNs) as done in [22] — in [1], we suggested the use of the probabilistic
extension of Datalog+/— presented in [22] for mappings. With annotations referring to MLNSs, a probabilistic
mapping has the form M = (S, T, 3, M), where M is the MLN encoding the probabilistic worlds in which
the dependencies can either hold or not hold.

As described in [22], the TGDs, negative constraints, and non-conflicting keys are annotated with prob-
abilistic scenarios A that correspond to the worlds that they are valid in. The complex probabilistic depen-
dencies that the annotations are involved in are represented by the MLN. In the probabilistic extension of
Datalog+/— in [22], annotations cannot refer to elements of the databases or the mappings; hence, again,
there is a modeling advantage in separating the two tasks of database and mapping dependencies modeling
when modeling the uncertainty around the databases and dependencies.

Note that due to the disconnected representation between the probabilistic dependencies and the ontol-
ogy, we can encode a part of mapping formulas as predicates encoding a specific semantics like disjointness,
renaming, or decomposition, in a similar way as in [19]. With these predicates, an MLN can be created, and
the actual mappings can be enriched by ground predicates that add the probabilistic interpretation. How-
ever, another more interesting encoding involves using a second ontology describing additional features of
the generation of the mappings, and in this way eventually even meta reasoning about the mapping gen-
eration is possible. A rather general example of such an additional MLN describing the generation of a
mapping is shown in Fig. 1. Here, the MLN describes the generation of a mapping via the matcher that
it generates and a set of (possibly dependent) applicability conditions, as well as additional conditions that
influence the probability of the mapping besides the result of the matcher.

With such kind of an MLN describing the dependency of different kinds of conditions (also dependen-
cies between matchers are conceivable to combine the results of several different matchers), probabilistic
reasoning over data integration settings can be done in much more precise settings. Hence, such an annota-
tion is clearly much more expressive than the one corresponding to the two cases considered in Section 7.

7 Computational Complexity

In this section, we explore the computational complexity of deciding the existence of (universal) solutions
for deterministic and probabilistic data exchange problems in our framework with mappings encoded in
different variants of Datalog+/—.

We assume that all annotations are in disjunctive normal form (DNF), i.e., disjunctions of conjunctions
of literals, and we consider the following two cases: (i) that elementary events and their negations are
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applicability
preconditionO(u)

applicability applicability
precondition1(v)  precondition2(w)

matcher(x) condition(y)
mappingRule(z)

Figure 1: Example of a Markov logic network describing the generation of mappings by means of applica-
bility conditions and an additional condition that influences the probability of the mapping besides the result
of the matcher.

pairwise probabilistically independent (i.e., the probability of worlds ¢; A --- A £, of elementary events
(¢; = e;) and their negations (¢; = —e;) is defined as IT}" ,v(¢;), where v(¢;) = p(e;) and v(4;) = 1—pu(e;),
respectively), called elementary-event-independence; and (ii) that all annotations are also elementary and
that all worlds have a positive probability, called tuple-independence.

7.1 Deterministic Data Exchange

In the following, we show that deciding the existence of probabilistic (or probabilistic universal) solutions
for deterministic data exchange problems relative to probabilistic source databases is co-NP-complete (resp.,
in PTIME) in the elementary-event-independent (resp., tuple-independent) case in the data complexity.

Theorem 1. Given a schema mapping M = (S, T, ¥5; UX,), where X5 and ¥y are guarded TGDs, negative
constraints, and non-conflicting keys over SUT and T, respectively, and a probabilistic source database
Pr, deciding whether there exists a probabilistic (or probabilistic universal) solution for Prg relative to
M is co-NP-complete in the elementary-event-independent case in the data complexity.

Proof. From Proposition 4.3 in [9] it follows that a probabilistic solution Pr; = (J, i) for a probabilistic
source database Prs = (Z, us) relative to a schema mapping M = (S, T, ¥) exists iff a deterministic
solution exists for all worlds of the probabilistic source database relative to the schema mapping. In addition,
it also follows that a probabilistic universal solution exists iff a universal solution exists.

To prove the upper bound for the elementary-event-independent case, we decide the complementary
problem by guessing a world and checking that it is not a deterministic solution relative to its database,
which is in NP.

The lower bound for the elementary-event-independent case follows from a polynomial reduction from
the co-NP-complete problem of deciding whether a CNF formula ¢ = ¢; A- - - Ac,, is unsatisfiable. In a CNF
formula ¢ = ¢; A -+ A cp, every ¢; is a disjunction of literals over m propositional variables x1, ..., Zpm.
In the following, we construct a fixed schema mapping that is independent of ¢ while ¢ defines the source
instance with the propositional variables being the elementary events.
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The source database in this reduction has a binary relation symbol Fg and a unary relation symbol Ps.
The source database consists of the atoms Eg(i—1,4) foralli € {1,...,n}, annotated with ¢;, and the atom
Ps(0), annotated with the true event T, while the probabilities of the variables z; are defined as 0.5.

Similarly to the source schema S, the target schema T consists of a binary relation symbol E7 and
a unary relation symbol Pr. The set X in the deterministic mapping in Datalog+/— is defined as m; :
Es(X,Y) — ET(X, Y), mo PS(X) — PT(X), ms : PT(n) — 1, and my : PT(X) VAN ET(X, Y) —
Pr(Y).

Next, we will show that the above probabilistic database and deterministic mapping have a probabilistic
solution iff ¢ is unsatisfiable.

Given a truth assignment 7 for ¢, we denote by G the directed graph with the node set {0, 1, ..., n}
and the edge (¢ — 1, 7) for each conjunct ¢; of ¢ that is satisfied by the truth assignment 7. Note that the Eg
relation of the source instance contains exactly the edges of G.-. Observe also that G- contains a path from
0 to n iff all the conjuncts of ¢ are satisfied. So, it is enough to prove that there exists a solution for the
probabilistic source database iff G, does not contain a path from 0 to m, for all .

A solution for the probabilistic database (when it exists) is a directed graph G’, where the edges are
given by Ep. Pr can be considered a labeling of nodes. m; implies that the solution G’ must contain all the
edges of G; mo and m, imply that starting from a labeling of node 0 which is transferred to G’ via ms, all
nodes involved in a path from node 0 are labelled via m4. m3, however, prohibits node n to be labeled.

Obviously, the labeling with Pr is propagated through paths in G by means of the mapping. Hence, if
G, contains a path from 0 to n, we get a contradiction to the fact that they are not both labeled in G’. On
the other hand, if G; does not contain a path from 0 to n, then we can obtain G’ from G, by labeling with
Py all the nodes that are reachable from 0 with E7. It follows that G exists iff no path of G leads from 0
to m, for all 7. dJ

Observe that by the construction presented in the proof of Theorem 1, hardness for co-NP also holds for
the special case where the constructed mapping is formulated without existentially quantified variables.

Next we prove that deciding whether there exists a probabilistic (or probabilistic universal) solution for
a tuple-independent probabilistic source database relative to a mapping is tractable.

Theorem 2. Given a schema mapping M = (S, T, ¥4 U X,), where ¥4, and ¥, are guarded TGDs, negative
constraints, and non-conflicting keys over SUT and T, respectively, and a probabilistic source database
Pry, deciding whether there exists a probabilistic (or probabilistic universal) solution for Prg relative to
M is in PTIME in the tuple-independent case in the data complexity.

Proof. From Proposition 4.3 in [9] it follows that a probabilistic solution Pr; = (7, y)) for a probabilistic
source database Prs = (Z, us) relative to a schema mapping M = (S, T, ¥) exists iff a deterministic
solution exists for all worlds of the probabilistic source database relative to the schema mapping. In addition,
it also follows that a probabilistic universal solution exists iff a universal solution exists.

In the tuple-independent case, the tractability follows from the fact that a deterministic solution exists
relative to the maximal possible deterministic source database, which can be decided in polynomial time in
the size of the database. O

The next result shows that deciding the existence of probabilistic (or probabilistic universal) solutions
for deterministic data exchange problems relative to probabilistic source databases is also in PTIME in
the elementary-event-independent case in the data complexity, if we restrict the TGDs in the mapping to
linear rather than guarded TGDs. The main idea behind this result is that, in the linear case, all the target
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inconsistencies can be traced back to a polynomial number of potential source inconsistencies, which must
be associated with annotations that are either inconsistent or have probability zero, which can be checked in
polynomial time in the data complexity.

Theorem 3. Given a schema mapping M = (S, T, X5 U %), where ¥g and 3 are linear TGDs, negative
constraints, and non-conflicting keys over SUT and T, respectively, and a probabilistic source database
Pry, deciding whether there exists a probabilistic (or probabilistic universal) solution for Prg relative to
M is in PTIME in the elementary-event-independent case in the data complexity.

Proof. We base the proof on the observation that without inconsistencies, we yield a solution with the
chase and, consequently, also a probabilistic (universal) solution. Observe also that the equality generating
dependencies are not involved in any inconsistencies because we require them to be non-conflicting, cf.
section 2, which means that their validity can be checked on the database. Hence, inconsistencies can only
arise through negative constraints in g and in ;.

The maximum numbers of inconsistencies occur when all negative constraints are involved. In the
inconsistency caught by a negative constraint all atoms in its body are involved. These atoms can be traced
backwards via a chain of target TGDs and finally source-to-target TGDs to a polynomial number of potential
source inconsistencies in the source database. Due to the linearity of the tuple generating dependencies, an
atom in a negative constraint is only swapped by another atom which is the body atom b6 of a tgd whose
head has a most general unifyer 6 with the original atom in the negative constraint. Hence, an exponential
blow up during the backtrace is impossible.

Let [ be the number of negative constraints in 3¢ U>2;. Let k be the maximum number of atoms occuring
in a negative constraint in the set X5 U >;. Let m be the maximum number of arguments in a predicate
occuring in the [ negative constraints. Let p be the number of predicates occuring in the database and in
the sets ¥ U X;. Let ¢ be the number of constants occuring in the database and ¢, Tgps the constants
occuring in the negative constraints and the TGDs in ¥4 U 3. Then, the upper bound on the number
of possible atoms generated by tracing back from negative constraints to the database through TGDs is
d =Y, P cneraps + lm)™.

The constant d is providing an upper bound for the generation of atoms through the backtrace. During
the final unification with database atoms, in the worst case polynomial many database atoms can be unified
with the atoms in the negative constraints. The polynomial number of atoms is then bounded by the constant
d in the following way: ¢"*d with }c‘ < Hdb} !

The annotations \; associated with the atoms a; being traced back must either have probability zero or
be inconsistent in order to yield a (probabilistic (universal)) solution. We first check whether the probability
of the annotation of an inconsistency is zero. If it is not zero, we then check whether it is inconsistent.

In order to check the annotation of an inconsistency, we first have to construct it via collecting all source
database atoms involved in a possible inconsistency with the negative constraint nc; with i € {1,...,1}.
After having collected the atoms, we join their annotations \; with j € {1,...,k} via conjunction. Note
that the annotations of the source database atoms are in DNF format and, hence, we have a conjunction
of formulas in DNF. When we transform this conjunction of formulas in DNF to the disjunctive normal
form (DNF), we yield a disjunction of n* conjuncts with n being the maximum number of conjuncts in
the annotations of the k atoms of the current negative constraint. Hence, this transformation is done in
polynomial time in the length of the annotations. We need to do such a transformation for each negative
constraint yielding ¢; formulas with ¢ € {1,...,[} and obviously remain in PTIME.

After we made sure that each ¢; with i € {1,...,} is in DNF, we first check for each ¢; whether its
probability is O; i.e. whether the probability of each of the conjuncts is 0. This can be done in linear time
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in the length of the formula as for each of the conjuncts, we just need to multiply the probability of each
involved event literal and at least one of them needs to be zero. In case the probability of a ¢; is not 0, we
then check whether ¢; is inconsistent which can be done in linear time (in the length of the formula) as well
because it is represented in DNF format and, hence, we just have to check whether each conjunct contains e
and —e with e being an arbitrary event (possibly a different e in each conjunct). All checks obviously remain
in PTIME.

It follows that in case all ¢; have either probability O or are inconsistent, we have a solution and, conse-
quently, also a probabilistic (universal) solution. Otherwise, we neither have a deterministic solution nor a
probabilistic (universal) solution. Deciding whether there is a solution is in PTIME as shown above. O

7.2 Probabilistic Data Exchange

Before we discuss complexity results for probabilistic data exchange, note that in probabilistic data ex-
change, in addition to the probabilistic source database, we also have a probability distribution p over the
set of subsets of deterministic mappings >5; U 33;. This means that Definitions 5 and 6 are carried over in
a straightforward way to probabilistic mappings. More specifically, each of the probabilistic TGDs, prob-
abilistic negative constraints and probabilistic non-conflicting keys is annotated with an annotation A as
defined in Definition 5. The compact encoding of a probabilistic database carries over directly to probabilis-
tic mappings as well in the spirit of Definition 6 with the probability of each annotation A being the sum of
the probabilities of all worlds in which A is true and the probability of every mapping world {41, ...,6,}
such that {01 : As,,...,0n : As, } with §; € 3. This means that the compact encoding of a probabilis-
tic data exchange problem consists of both a compact encoding of a probabilistic database and a compact
encoding of the probabilistic mapping dependencies as well as probabilistic negative constraints and prob-
abilistic EGDs. Hence, we have the same kind of encoding here like in the deterministic data exchange
setting only with the difference that the annotations \ are extended with more events which are used solely
for encoding mapping worlds.

The next result shows that deciding the existence of probabilistic (or probabilistic universal) solutions for
probabilistic data exchange problems with probabilistic mappings is also co-NP-complete (resp., in PTIME)
in the elementary-event-independent case in the data complexity.

The upper bound follows from the fact that relative to a probabilistic source database, a probabilistic
universal solution exists iff a probabilistic solution exists, which is in turn equivalent to the existence of a
deterministic solution relative to the deterministic database and deterministic mapping for every world. The
co-NP-hardness in the probabilistic case follows from the co-NP-hardness in the less general deterministic
case.

Theorem 4. Given a probabilistic schema mapping M = (S, T, X5 UXy, ), where X5 and Xy are guarded
TGDs, negative constraints, and non-conflicting keys over S UT and T, respectively, and p : 2%t — [0, 1]
and a probabilistic source database Prg, deciding whether there exists a probabilistic (or probabilistic
universal) solution for Prg relative to M is co-NP-complete in the elementary-event-independent case in
the data complexity.

Proof. Note again that from Proposition 4.3 in [9] it follows that a probabilistic solution Pry = (7, 1i¢)
for a probabilistic source database Pry = (Z, us) relative to a deterministic schema mapping M = (8,
T, ) exists iff a deterministic solution exists for all worlds of the probabilistic source database relative to
the schema mapping. In addition, it also follows that a probabilistic universal solution exists iff a universal
solution exists.
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To prove the upper bound for the elementary-event-independent case, we decide the complementary
problem by guessing a world and checking that it is not a deterministic solution relative to its database,
which is in NP.

The lower bound for the elementary-event-independent case follows from a reduction of the determinis-
tic data exchange problem. The probability distribution p over the set of subsets of deterministic mappings
Yg¢ 1s assumed to be 1 for the world containing all mappings and O for all subsets thereof. Hence, determin-
istic data exchange corresponds to a special case of probabilistic data exchange which proves hardness in
co-NP. O

The next result shows that deciding the existence of probabilistic (or probabilistic universal) solutions
for probabilistic data exchange problems with probabilistic source databases is in PTIME in the tuple-
independent case in the data complexity. The tractability follows from the fact that a probabilistic solution
exists relative to a probabilistic source database iff a deterministic solution exists relative to the maximal
possible deterministic source database and mapping, which can be decided in polynomial time.

Theorem 5. Given a probabilistic schema mapping M = (S, T, X5 U Xy, ), where Y5 and Xy are guarded
TGDs, negative constraints, and non-conflicting keys over SUT and T, respectively, and j : 2%t — [0,1]
and a probabilistic source database Pr, deciding whether there exists a probabilistic (or probabilistic
universal) solution for Pr relative to M is in PTIME in the tuple-independent case in the data complexity.

Proof. Remember that from Proposition 4.3 in [9] it follows that a probabilistic solution Pr; = (T, 1it)
for a probabilistic source database Pry = (Z, us) relative to a deterministic schema mapping M = (S,
T, 3) exists iff a deterministic solution exists for all worlds of the probabilistic source database relative to
the schema mapping. In addition, it also follows that a probabilistic universal solution exists iff a universal
solution exists.

As we are only concerned with data complexity, we assume that (X, Uy, 1) is fixed, yielding 2%st
many probabilistic worlds to be considered which is a constant when the mapping is fixed. Hence, tractabil-
ity follows from the fact that the probabilistic source database is tuple-independent and that a deterministic
solution exists relative to the maximal possible deterministic source database which can be decided in poly-
nomial time in the size of the database. O

Like in the deterministic case, deciding the existence of probabilistic (or probabilistic universal) solu-
tions for probabilistic data exchange problems relative to probabilistic source databases is also in PTIME
in the elementary-event-independent case in the data complexity, if we restrict the TGDs in the mapping
to linear rather than guarded TGDs. This is because we essentially have to consider one deterministic data
exchange problem for every subset of the mapping, which is fixed in the data complexity case.

Theorem 6. Given a probabilistic schema mapping M = (S, T, X5 U Xy, 1), where gy and ¥y are prob-
abilistic linear TGDs, probabilistic negative constraints, and probabilistic non-conflicting keys over SUT
and T, respectively, and ;i : 2%t — [0,1] and a probabilistic source database Pr,, deciding whether
there exists a probabilistic (or probabilistic universal) solution for Prg relative to M is in PTIME in the
elementary-event-independent case in the data complexity.

Proof. Remember that from Proposition 4.3 in [9] it follows that a probabilistic solution Pry = (T, i)
for a probabilistic source database Prs = (Z, us) relative to a schema mapping M = (S, T, X) exists
iff a deterministic solution exists for all worlds of the probabilistic source database relative to the schema
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mapping. In addition, it also follows that a probabilistic universal solution exists iff a universal solution
exists.

As we are only concerned with data complexity, we assume that (X4 U Yy, ) is fixed, yielding 2%st
many probabilistic worlds to be considered which is a constant when the mapping is fixed. Hence, tractabil-
ity follows from the proof of Theorem 3 where we showed that in the case of deterministic mappings, the
number of source database atoms responsible for a possible inconsistency is bounded by a constant and that
their annotations need to be either inconsistent or have probability zero in order to yield a solution. As
shown in the proof of Theorem 3, we are able to do all this in polynomial time for the case of deterministic
mappings. When we have to deal with probabilistic mappings, we have to repeat the procedure proposed in
the proof of Theorem 3 for each of the 2>t possible worlds of the mappings of which there is a constant
number when we are considering solely data complexity. O

8 Provenance

With the compact encoding of probabilistic databases via annotated atoms with events representing the
worlds in which they are valid, we are essentially using a data provenance formalism for tracing the proba-
bilistic worlds that an atom belongs to.

Provenance information adds value to data by explaining how it was obtained, thus allowing to validate
its correctness, truthfulness, trustworthiness, and compliance. In information integration, when pieces of
data from distributed databases or ontologies are integrated, provenance information allows to check the
trustworthiness and correctness of the results of queries and debug them as well as trace the errors back to
where they were created. Hence, an information integration framework should be equipped with some form
of provenance information.

Provenance research distinguishes between workflow and data provenance. The former is about captur-
ing the processes (i.e., flows and transformations) that a piece of data has gone through before arriving at
its current destination or its current version [23]. Some of these processes cannot be accessed and remain a
black box in workflow provenance. Contrary to workflow provenance, data provenance is much more fine-
grained and focuses on the lineage of data for a query — i.e., the whereabouts of its derivation in a database
itself. While we are mainly interested in data provenance, workflow provenance certainly is also of much
relevance for data exchange. Hence, the recent W3C recommendation PROV [24], which is a language
for specifying workflow provenance in the Web, is relevant to our work as well. However, as we have a
fine-grained logical formalization of the data exchange process, we focus on data provenance.

In data provenance, there is a principal distinction made among where-, why- and how-provenance [25].
How-provenance [26] is the most expressive one and the most appropriate for annotating mappings and
tracing back the origin of query results. How-provenance can be modeled via an algebraic structure, called a
semiring, and it is possible to construct different kinds of semirings, depending on what kind of information
is to be captured, and which operations on that information are to be allowed. Besides formalizing different
kinds of provenance annotations with certain kinds of semirings (called K -relations) based on the positive
relational algebra, [26] provides a formalization of plain Datalog without negation with K -relations, used
within the collaborative data sharing system ORCHESTRA [27] also for modeling TGDs without existen-
tial quantifiers. To capture applications of mappings in ORCHESTRA, [28] proposes to use a so-called
M-semiring, which allows to annotate the mappings with names my, ..., my (unary functions), one for
each mapping. This can be combined with the formalization of negation-free Datalog (with a procedural
semantics based on the least fixpoint operator to construct the model) with positive K -relations as presented
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in [26].

Clearly, such a formalization for the probabilistic Datalog+/— information integration framework in this
paper allows to capture provenance and annotate the mappings with an id such that the integration paths
can be traced back to their origin. In this way, routes that can be used to debug mappings like in [29]
can be captured. In addition, as shown in [26], when the mappings are the only probabilistic or uncertain
elements, the probabilities can also be computed more efficiently, as the captured provenance also carries
the information where the probabilities are propagated from. In addition, cycles can be detected, and the
trustworthiness of query results can also be estimated, as it can be detected where the data that is involved
in the query result has been integrated from. For this purpose, the trustworthiness of data sets and possibly
also peers who provide access to data sets need to be assessed beforehand.

A similar approach to the aforementioned ORCHESTRA system for the application of the chase within
probabilistic Datalog+/— with a semiring formalization can be constructed and is currently under develop-
ment. In probabilistic data integration with Datalog+/—, lineage is restricted by the guards, which help to
direct the chase towards the answer of a query through the annotated guarded chase forest. In [30, 22], a
similar kind of tuple annotation as proposed here was used in combination with the chase to speed up the
reasoning process.

9 Related Work

Probabilistic data exchange with different combinations of source-to-target TGDs with and without existen-
tial quantified variables in the head, target equality constraints, and weakly-acyclic target TGDs with and
without existential quantified variables in the head have been studied in [9]. In contrast, Datalog+/— allows
to deal with ontologies on the Semantic Web and as such allows to integrate information residing in ontolo-
gies. One work on integrating information in ontologies is [31], which tackles the problem of knowledge
base data exchange; however, they assume that ontologies in DL-Lite are used to exchange data — guarded
Datalog+/- strictly subsumes DL-Lite and goes well beyond its expressive power.

Other articles that are closely related to our work and that of [9] are [32, 33]. There, the source data
is deterministic and the mappings are probabilistic. By-table and by-tuple solutions are defined; while
the former correspond to a restriction of general probabilistic mappings, by-tuple solutions correspond to
mappings that translate only single facts and hence correspond to inclusion dependencies.

In the Semantic Web, the integration of information in ontologies has also been addressed in [19]. There,
predicates are defined encoding specific semantics like disjointness, renaming, or decomposition, and an
MLN is built from them. Very much related is also our prior work in [34] and [35]. There, ontologies are
mapped with Bayesian description logic programs, which correspond to a subset of probabilistic Datalog+/—
and tightly coupled description logics programs with negation under different semantics like the answer set
semantics and the well-founded semantics.

Provenance for information integration is used in ORCHESTRA [27] for integrating XML data. In
contrast, we exchange data between databases, and we also deal with uncertain and incomplete databases.

10 Summary and Outlook

In this paper, we have studied probabilistic data exchange via probabilistic Datalog+/— and used annotations
encoding probabilistic data provenance of atoms. We have also considered using provenance for tracking
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the origin of integrated information and using provenance for tracking the origin of mappings themselves,
including the conditions for their applicability for trust assessment and debugging.

By means of Datalog+/— [10], which can represent DL-Lite and £L, we use a tractable language with
dependencies that allows to nicely tie together the theoretical results on information integration in databases
and the work on ontology mediation in the Semantic Web. The separation between the ontology and the
probabilistic dependencies allows us to either model the mappings with specific newly-invented predicates
like disjointness, renaming, or decomposition, etc. or — more interestingly — with a probabilistic meta ontol-
ogy describing the matching process.

Our work shows how classical and probabilistic (guarded and linear) Datalog+/— can be used to model
information integration settings, and sketches a deterministic mapping language based on Datalog+/— and a
probabilistic generalization based on the rather loosely coupled probabilistic extension of Datalog+/— with
worlds represented by propositional events. We also justify why data provenance needs to be captured and
represented within such a probabilistic information integration framework, and propose to use an adaptation
of K-relations as proposed by [26]. Such an extension with provenance allows to track how results of
queries to the framework have been created, and also debug mappings, since errors can be traced back to
their origin.

An interesting topic for future research is to develop the proposed framework for provenance capture
and, among others, investigate how to use the chase for reasoning with probabilistic Datalog+/— within a
semiring-framework.
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