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Abstract. Computing a small number of singular values is required in many practical appli-
cations and it is therefore desirable to have efficient and robust methods that can generate such
truncated singular value decompositions. A new method based on the Lanczos bidiagonalization
and the Krylov-Schur method is presented. It is shown how deflation strategies can be easily im-
plemented in this method and possible stopping criteria are discussed. Numerical experiments show
that existing methods can be outperformed on a number of real world examples.
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1. Introduction. In [9] Golub and Kahan show how to efficiently compute the
Singular Value Decomposition of a matrix A ∈ R

M×N (M > N) which is given by
A = UΣV T with U ∈ R

M×M and V ∈ R
N×N are orthogonal matrices. Σ ∈ R

M×N

has a diagonal N, N block containing the singular values

σ1 ≥ σ2 ≥ . . . σN .

The computation of the SVD is based on the bidiagonal factorization

AVm = UmBm

AT Um = VmBT
m + βm+1vm+1e

T
m

(1.1)

with

Bm =















α1 β2

α2 β3

. . .
. . .

αm−1 βm

αm















introduced by Golub and Kahan in [9]. This decomposition also plays an impor-
tant role when solving least squares systems as it is the basis for the lsqr method
proposed by Paige and Saunders in [23]. A more algorithmic form of (1.1) is given by

βj+1vj+1 = AT uj − αjvj

αj+1uj+1 = Avj+1 − βj+1uj
(1.2)

which can be straightforwardly used for an implementation.

The singular value decomposition is an important tool in many areas such as signal
processing. Some applications such as image analysis or model reduction only require
a small number of singular values and singular vectors. Therefore, the computation
of the truncated SVD

Ã = UlΣlV
T
l =

l
∑

i=1

σiuiv
T
i

∗Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD,
United Kingdom, (martin.stoll@comlab.ox.ac.uk)

1



with l ≤ r is important. The matrix Ã represents the best low-rank approximation
to A in the Frobenius and 2-norm, see [10, 32].

When one is interested in a small number of eigenvalues, restarted methods such as
the implicitly restarted Arnoldi process are the methods of choice, see [27, 28, 33, 3, 29]
for more details. Extending these techniques to the case when one is interested in a
small number of singular values seems natural and many examples of such techniques
can be found in the literature, see [2, 14, 15, 16, 25]. We describe the particular method
introduced by Baglama and Reichel (cf. [2]) in Section 2 and present a comparison of
numerical results in Section 7.

In this paper we show how the Golub-Kahan bidiagonalization procedure (1.1)
can be used to efficiently implement a method that computes the truncated SVD of A
as well as allowing an easy implementation of deflation techniques. In more detail, in
the case of unwanted but converged eigenvalues/singular values the deflation process
is called purging and in the case of converged but wanted eigenvalues/singular values
the deflation technique that has to be used is called locking.

Implementing these techniques for the restarted Arnoldi algorithm is far from
trivial, see [27, 26, 20]. A method that allows a relatively easy implementation of these
strategies is the so-called Krylov-Schur algorithm introduced by Stewart in 2001 (cf.
[29, 30]). The Krylov-Schur algorithm is based on the Krylov decomposition instead
of the Arnoldi decomposition. An adoption of this strategy for Hamiltonian and
skew-Hamiltonian matrices was already successfully demonstrated, see [4, 31, 19].
In this paper we illustrate how the Krylov-Schur strategy can be adopted for the
bidiagonal factorization of Golub and Kahan. We discuss purging and locking as well
as the implementation issues that might arise. Numerical experiments for real world
examples underline the competitiveness of our method.

2. The method of Baglama and Reichel. In this section we quickly review
the method introduced by Baglama and Reichel in [2] which uses a thick restart
technique [33]. Recently, Hernández et al. analyzed a parallel implementation of this
method, see [12].

The basic idea is very similar to that of restarted Lanczos or Arnoldi methods
where the full factorization of dimension m

AVm = UmBm

AT Um = VmBT
m + βm+1vm+1e

T
m

(2.1)

is reduced to a smaller factorization which contains the relevant desired (spectral)
information, in this case l singular values and singular vectors. Precisely, we reduce
to a factorization of size l + 1 with l < m

AV̆l+1 = Ŭl+1B̆l+1

AT Ŭl+1 = V̆l+1B̆
T
l+1

+ β̆l+1v̆l+2e
T
l

(2.2)

where the matrices Ŭl+1, V̆l+1 and B̆T
l+1

represent the information about the desired

singular values and vectors. In particular, V̆l+1 and Ŭl+1 represent approximations to
the right and left singular vectors respectively. Baglama and Reichel [2] proposed to
choose

V̆l+1 = [q1, q2, . . . , ql, vl+1]
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where qj = Vmyi are the Ritz vectors with yi a right singular vector of Bm. This
matrix is orthogonal by construction. Furthermore, we define

Ŭl+1 = [p1, p2, . . . , pl, ŭl+1]

where the pj = Umxi are Ritz vectors with xi left singular vector of Bm and is unit
vector ŭl+1 = ũl+1/ ‖ũl+1‖ where

ũl+1 = Avk+1 −
l

∑

i=1

ρipi

is a Gram-Schmidt orthogonalization of Avk+1 against the vectors pi. The matrix
B̆l+1 has no longer diagonal structure; instead an additional spike appears in the last
column, i.e.

B̆l+1 =















σ1 ρ1

σ2 ρ2

. . .
...

σl ρl

αl+1















where αl+1 = ‖ũl+1‖ and σi the singular values of Bm. To obtain a factorization of

the form (2.2) the parameters β̆l+1 and v̆l+2 have to be determined. This can be done

setting v̆l+2 = ṽl+2/ ‖ṽl+2‖ with ṽl+2 = AT ŭl+1 − αl+1vl+1 and β̆l+1 = ‖ṽl+2‖. This
setup now yields a factorization

AV̆l+1 = Ŭl+1B̆l+1

AT Ŭl+1 = V̆l+1B̆
T
l+1

+ β̆l+1v̆l+2e
T
l

(2.3)

which can be extended to a factorization of dimension m using the standard Golub-
Kahan bidiagonalization to give

AV̆m = ŬmB̆m

AT Ŭm = V̆mB̆T
m + β̆mv̆m+1e

T
l

(2.4)

with

B̆m =





























σ1 ρ1

σ2 ρ2

. . .
...

σl ρl

αl+1 βl+1

. . .
. . .

αm−1 βm−1

αm





























.

This is the basis for an iterative procedure and we compare this process to the method
we introduce in the next section. Here we only reviewed the approach of Baglama and
Reichel that uses Ritz values as a basis for the restart. In [2] another approach using
harmonic Ritz values is presented. This method is not discussed here but numerical
results are mentioned for comparison in Section 7.
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3. The Krylov-Schur approach. The implicitly restarted Arnoldi process pro-
posed by Sorensen in [28] is a very powerful tool to compute a few eigenvalues of a large
sparse matrix. There are some drawbacks to the method that are mainly concerned
with purging and locking eigenvalues during the iteration process. These deflation
issues are addressed in [20, 27, 26] where it is illustrated that incorporating these
techniques is non-trivial. Stewart was able to address these issues, see [29, 30], by
introducing a Krylov-Schur method based on a slightly more general decomposition
as the basis of the restarted process. This procedure was adopted in [31, 4] for the
case of the implicitly restarted Hamiltonian Lanczos process introduced by Benner
and Faßbender in [3]. Based on Stewart’s technique we introduce a new factorization
that will allow us to deflate certain singular values in the bidiagonalization process
proposed by Golub and Kahan (cf. [9].

Let us assume that we are looking for the l largest singular values of the matrix
A. We would then typically create a search space of roughly twice the size, ie. m ≈ 2l.
Hence, the starting point of our derivation is a m-dimensional bidiagonal factorization

AVm = UmBm

AT Um = VmBT
m + βm+1vm+1e

T
m.

(3.1)

We can now cheaply compute the Singular Value Decomposition of the small m × m
matrix Bm = PmΣmQT

m and substitute this into (3.1) which then gives

AVm = UmPmΣmQT
m

AT Um = VmQmΣmP T
m + βm+1vm+1e

T
m.

(3.2)

We now multiply the first Equation in (3.2) by Qm and the second equation by Pm.
The result is

AṼm = ŨmΣm

AT Ũm = ṼmΣm + βm+1vm+1p
T
m

(3.3)

where eT
mPm = pT

m, Ũm = UmPm and Ṽm = VmQm.

Definition 3.1. A factorization of the form

AVm = UmΣm

AT Um = VmΣm + βm+1vm+1p
T
m

with Vm, Um orthogonal and Σm a diagonal matrix coming from the SVD of the
bidiagonal matrix is called Krylov-Golub-Kahan (KGK) factorization.

Since Σm is a diagonal matrix, we can easily swap the diagonal elements by just
using permutation matrices. The swapping of diagonal elements represents the desired
deflation techniques, see Section 4 for details. Here, we assume that the l singular
values that represent approximation to the desired ones can be moved into the left
upper corner. In the next step the m − l elements in the south-east corner of the
permuted diagonal matrix can be neglected for further computations. The swapping
can be represented by applying the permutation Πm to (3.3) and get

AṼmΠm = ŨmΠmΠT
mΣmΠm

AT ŨmΠm = ṼmΠmΠT
mΣmΠm + βm+1vm+1p

T
mΠm.

(3.4)

After shrinking the factorization back to size l we get the following

AV̂l = ÛlΣ̂l

AT Ûl = V̂lΣ̂l + βl+1vl+1p̂
T
l

(3.5)
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with V̂l = (ṼmΠm)1:l, Ûl = (ŨmΠm)1:l and Σ̂l = (ΠT
mΣmΠm)1:l.

We have now established a factorization in which the swapping of particular
subspaces can be easily implemented. Furthermore, we show that this decomposition
can be reduced to the original bidiagonal factorization. Hence, we are able to increase
the dimension of the search space from l to m using the original method of Golub and
Kahan.

To realize the transformation of a KGK factorization to a bidiagonal factorization
as given in (3.1), we reduce the residual term in (3.5) using a Householder matrix Wl,

i.e. βl+1vl+1p̂
T
l Wl = β̂l+1vl+1e

T
l . Applying Wl to (3.5) yields

AV̂lWl = ÛlWlWlΣ̂lW
T
l

AT ÛlWl = V̂lWlWlΣ̂lW
T
l + βl+1vl+1p̂

T
l Wl

(3.6)

which can be further simplified using that W T
l = W−1

l = Wl, ie.

AV̆l = ŬlC̆l

AT Ŭl = V̆lC̆
T
l + β̆l+1vl+1e

T
l

(3.7)

with Ŭl = ÛlWl, V̆l = V̂lWl and C̆l = WlΣ̂lW
T
l . The factorization given in (3.7)

already looks quite similar to a valid bidiagonal factorization but unfortunately the
matrix C̆l is in general a dense matrix. Therefore, we need a transformation that
brings C̆l to bidiagonal form without destroying the residual term β̆l+1vl+1e

T
l . This

can be done in a similar way to the methods used in [29, 31, 4, 19] where a rowwise
reduction of the matrix C̆l is used in order to preserve the form of the residual term
β̆l+1vl+1e

T
l . Here, we propose a complete rowwise reduction to bidiagonal form, ie.

C̆l = PlBlQ
T
l with Ql and Pl being orthogonal matrices. This process is cheap since

the matrix C̆l is relatively small. Substituting this into (3.7) gives

AV̆l = ŬlPlBlQ
T
l

AT Ŭl = V̆lQlB
T
l P T

l + β̆l+1vl+1e
T
l .

(3.8)

In the last step, we multiply the first part of (3.8) by Ql and the second part by Pl

which gives

AV̆lQl = ŬlPlBl

AT ŬlPl = V̆lQlB
T
l + β̆l+1vl+1e

T
l

(3.9)

with eT
l Pl = eT

l due to the special structure of Pl from the rowwise algorithm. (3.9)
can easily be rewritten such that a valid bidiagonal factorization

AVl = UlBl

AT Ul = VlB
T
l + βl+1vl+1e

T
l

(3.10)

as given in (3.1) can be obtained, see (3.10) where Ũl = ŬlPl and Ṽl = V̆lQl. This
derivation results in the following Lemma.

Lemma 3.2. Every bidiagonal factorization of order k ∈ N

AVk = UkBk

AT Uk = VkBT
k + βk+1vk+1e

T
k
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with Uk, Vk orthogonal matrices and Bk as given in (1.1) can be transformed into a
KGK factorization of the form

AṼk = ŨkΣk

AT Ũk = ṼkΣk + βk+1vk+1p
T
k .

with Ũk,Ṽk orthogonal matrices and Σk a diagonal matrix as given in Definition 3.1.
The converse relation holds as well.

In order to perform the restart and therefore extend the search space via

βj+1vj+1 = AT uj − αjvj

αj+1uj+1 = Avj+1 − βj+1uj ,
(3.11)

we need a vector vl+1 which is given as the residual vector of (3.10) and a vector ul+1.
The vector ul+1 can be generated using the identity αl+1ul+1 = Avl+1 − βl+1ul and
hence enables the restart process. Note, that an expression of the form αl+1ul+1 =
Avl+1 − βl+1ul has to be evaluated at the end of each iteration in the method of
Baglama and Reichel as well and we therefore do not create extra cost compared to
their method. It has to be noticed that in comparison to the method presented in
[2], the step of reducing the matrix C̆l to bidiagonal form imposes extra cost. Since
we are only interested in a small number of singular values l and thus a small matrix
C̆l, the cost of the reduction to bidiagonal form does not have a significant effect
on the computation times. Furthermore, we ensure that the matrix Bm is always
in bidiagonal form and therefore its SVD can be computed cheaply compared to the
method of Baglama and Reichel.

Algorithm 1 gives a description of how the process presented in this section can
be implemented.

Algorithm 1 Krylov-Schur SVD algorithm (kssvd)

Create bidiagonal factorization of dimension l
for k = 1, 2, . . . do

Expand bidiagonal factorization from dimension l to m.
Compute SVD of Bm.
Transform bidiagonal to KGK factorization.
Sort the singular values according to desired properties.
Purge unwanted singular values.
Lock wanted singular values.
Shrink factorization to order l.
Transform residual term using a Householder reflection.
Bidiagonalize small matrix C̆l and obtain bidiagonal factorization of dimension
l.

end for

So far we only focused on how to compute the l largest singular values of A. The
standard technique to compute a number of the smallest eigenvalues or eigenvalues
around a certain value σ of a given matrix A is the shift-and-invert strategy where
the Arnoldi/Lanczos process is applied to the matrix

(A − σI)−1
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where σ ∈ R represents the area of interest. Note, that for the l smallest singular
values σ has to be zero. This technique cannot easily be adopted for the Golub-Kahan
bidiagonalization process since we would have to work with the matrix

(AT A − σI)−1

which cannot be implicitly done using the Golub-Kahan bidiagonalization. For the
case σ = 0 which is equivalent to computing the smallest singular values of A, a
strategy that was proposed in the literature, see [2, 18], is to use the standard Golub-
Kahan bidiagonalization as given in (1.1) and then use the smallest singular values
of the bidiagonal matrix Bm. This technique can be easily transferred to the method
proposed here where at an intermediate step the singular values are sorted using a
permutation matrix according to the desired properties. In more detail, we would use
a permutation Πm to move the smallest singular values to the north-west corner of
Bm and then shrink the factorization now only containing the information associated
with the smallest singular values.

4. Purging and locking. The process of deflation is crucial in achieving effi-
cient methods to compute eigenvalues or in our case singular values of the large and
sparse matrix A. Once an approximation to a singular value is computed with the
desired tolerance – see Section 5 for stopping criteria – we have to decide whether this
singular value is of interest to us and lock it for further computations or in the case
it is not of interest purge it.

To illustrate this, we assume that the following KGK decomposition is given after
a certain number of iterations

AVm = UmΣm

AT Um = VmΣm + βm+1vm+1p
T
m.

with

Σm =





















σ1

σ2

. . .

σl

. . .

σm





















.

Furthermore, we assume that the singular values σi and σj are converged and with
σi to be locked and σj to be purged during this iteration step. First, we introduce a
permutation Π such that

Σ̃m = ΠT ΣmΠ =



















σi

σj

σ1

σ2

. . .

σm



















and

AṼm = ŨmΣ̃m

AT Ũm = ṼmΣ̃m + βm+1vm+1p̃
T
m
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with Ũm = ΠUm and Ṽm = ΠVm. The permutation Π also moves the columns in Um

and Vm associated with the singular values σi and σj to the first columns of Ũm and

Ṽm. The side-effect of locking converged singular values is that the dimension of the
search space decreases which means a reduction of computing time since we can work
with smaller matrices. It is easy to see that this technique can be adapted to purge
and lock many converged singular values.

5. Stopping criteria. In this section we discuss possible stopping criteria that
can be embedded in Algorithm 1. In Section 3 the SVD of the m × m matrix Bm is
computed and we therefore know that

Bmqj = σjpj .

The singular value of Bm also represents an approximation to the singular values of
A in the sense that

∥

∥AT (Umpj) − σj(Vmqj)
∥

∥ = ‖βm+1pmjvm+1‖

= |βm+1pmj |

with pmj being the j-th component of the vector pT
m. This could be tested as a

stopping criteria.

Another way to obtain a stopping criterion is given in the paper by Kahan, Parlett
and Jiang [17] where the norm of the backward error is analyzed. We start with an
approximation to the eigenvalues and eigenvectors of AT A which are associated with
the singular values and vectors of A, ie.

AT AVm = VmΣ2
m + βm+1vm+1p̃

T
m (5.1)

with p̃T
m = pT

mΣm. When analyzing the backward error we compute the norm of a
matrix E where

(AT A − Eλ)x = λx

such that the eigenpair (λ, x) coming from (5.1) is an exact eigenpair of a perturbed
matrix. The formulae given in [17] depend on approximations to the left and right
eigenvectors of AT A. An approximation to a right eigenvector can be obtained from
(5.1) as follows

AT Avj − σ2
j vj = βm+1p̃mjvm+1. (5.2)

Since the matrix AT A is symmetric, (5.2) also represents an approximation to a left
eigenvector, ie.

vT
j AT A − σ2

j vT
j = βm+1p̃mjv

T
m+1. (5.3)

Theorem 2’ in [17] states that the norm of the backward error Eσ2

j
for each eigenvalue

σ2
j can be computed as

min
∥

∥

∥
Eσ2

j

∥

∥

∥
= max

{

‖βm+1p̃mjvm+1‖ ,
∥

∥βm+1p̃mjv
T
m+1

∥

∥

}

. (5.4)

(5.4) can be further simplified due to the nature of the left and right eigenvector
residual and the result is then given by

min
∥

∥

∥
Eσ2

j

∥

∥

∥
= |βm+1p̃mj | . (5.5)
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6. Implementation details. In this section we want to address certain issues
that occur when the method presented in Section 3 is implemented. An important
issue in all methods based on the Lanczos process is the orthogonality of the vectors
generated by this method. It is well known that a loss of orthogonality can occur
when the algorithm progresses, see [24, 22]. A remedy is the so-called reorthogonal-
ization where the current Lanczos vector has be orthogonalized against previously
created vectors, see [24]. One can choose between a selective reorthogonalization or
a full reorthogonalization against all vectors in the current Krylov subspace. In this
paper we only discuss the full reorthogonalization since the restarting character of
kssvd guarantees that the number of vectors is relatively small and therefore the
full reorthogonalization is not very expensive. The full reorthogonalization can be
done as a classical or modified Gram-Schmidt orthogonalization, see [24] for details.

In the context of the bidiagonal factorization there are different reorthogonal-
ization strategies due to the existence of two orthogonal sequences representing the
Lanczos method, see [2, 13]. One possibility is the full one-sided reorthogonaliza-
tion where only one of the sequences vj or uj is orthogonalized against the previous
Lanczos vectors Vj−1 or Uj−1 respectively. The computationally more expensive way
would be to do a full reorthogonalization in which both sequences vj and uj are or-
thogonalized against the previous vectors in the Krylov subspace, i.e. Vj−1 and Uj−1

respectively. The numerical experiments given in Section 7 only use the one-sided
reorthogonalization which is also the default setup of the method implemented by
Baglama and Reichel.

Reorthogonalization is also essential when using deflation techniques such as purg-
ing and locking. Due to roundoff error we have to do a reorthogonalization against all
the vectors associated with already converged and therefore either purged or locked
singular values because due to the finite precision arithmetic they might come into
the spectrum again.

In Section 3 a number of transformations are accumulated into the two sequences
uj and vj . For an efficient implementation of Algorithm 1 the number of updates of the
sequences has to be reduced to a minimum. One possibility would be to accumulate
all transformations of dimension m and apply these transformations just before the
shrinking of the factorization as described in (3.5) is done. Afterwards, we accumulate
all transformations of dimension l and apply the accumulated transform at the end
of each iteration. A second possibility to update Ul and Vl would be to regard all
transformations as transformations of dimensions m and accumulate them. With the
one accumulated transform we can update the matrices Um and Vm at the end of the
iteration and shrink the factorization then.

7. Numerical Experiments. In this section we want to compare the MATLAB
implementation of the method proposed in this paper with the method of Baglama
and Reichel (cf. Section 2) and their MATLAB implementation irlba.m1. We also
compare kssvd to MATLAB’s svds.m which applies routines from the ARPACK
[21] to the matrix

[

0 A
AT 0

]

.

1http://www.math.uri.edu/∼jbaglama/software/irlba.m
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Specification Interpretation Value
opts.k Number of desired singular values 10

opts.m b Dimension of matrix Bm or dimension of the search space 20

opts.adjust Adjusting the number of desired eigenvalues 3

opts.tol Tolerance for singular values 1e-10

opts.v0 Starting vector for the Lanczos bidiagonalization rand(M,1)

opts.AUG Augmentation via Ritz or Harmonic-Ritz vectors RITZ or HARM
Table 7.1

Setup for irlba.m

For a fair comparison we have to start all methods with the same or very similar
setup. The function irlba.m accepts a MATLAB structure typically called opts as
an input in which the setup for the method can be specified, see Table 7.1. We explain
some of the quantities specified in Table 7.1 in more detail now. The value of opts.k
corresponds to number l of desired singular values. Baglama and Reichel adjust
the number l using the value of opts.adjust which gives in the above described
case a new number of desired singular values l̂ = l + 3. Note, that the algorithm
stops whenever the original number l of singular values is computed to the desired
accuracy. The parameter opts.m b corresponds to the value we have denoted by
m, the dimension of the search space. Both kssvd and Baglama and Reichel’s
method use a one-sided reorthogonalization process. For MATLAB’s svds.m we set
all parameters according to Table 7.1 apart from the opts.v0 which is of different
dimension due to the formulation of the problem, opts.adjust which is a feature
not included in the svds.m as is the choice of whether to use Ritz or harmonic Ritz
values.

Harwell-Boeing Collection. The first example comes from the set LSQ of the
Harwell-Boeing Sparse Matrix Collection [8]. In particular we look at the set LSQ
which represents least squares problems in surveying. In more detail, we use the
examples WELL1850 which is of dimension 1850 × 712 and WELL1033 which is of
dimension 1033×320. We compute the 10 largest singular values of WELL1850 using
the setup described in Table 7.1 for kssvd and irlba.m with Ritz value augmen-
tation. The methods are applied 5 times to each problem and we give the best and
the worst number of iterations for each method with different starting vectors. The
resulting singular values are given in Table 7.2 where the digits all three methods have
in common are underlined. The iteration numbers for the three methods are given in
Table 7.3.

In the second part, we compute the 10 largest singular values of the matrix
WELL1033 with the same setup as for WELL1850. The results for the singular
values are given in Table 7.4 and the best-worst iteration numbers are given in Table
7.5.

Table 7.6 shows the results for kssvd and irlba when computing the 10 smallest
singular values of the matrix WELL1033 with the same setup as given above apart
from the Harmonic-Ritz augmentation in irlba. Iteration numbers are given in Table
7.7. Computing the smallest singular values is important, for example, when solving
total least squares problems, see [7].
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kssvd irbla svds

1.794327990361091 1.794327990361083 1.794327990361090
1.738837164541720 1.738837164541731 1.738837164541731
1.718917469131029 1.718917469131041 1.718917469131042
1.682844584236183 1.682844584236179 1.682844584236186
1.645105027226848 1.645105027226849 1.645105027226848
1.643439827229122 1.643439827229131 1.643439827229122
1.630866615714931 1.630866615714942 1.630866615714934
1.624746040616118 1.624746040616118 1.624746040616121
1.601354004551848 1.601354004551845 1.601354004551850
1.600911179480472 1.600911179480467 1.600911179480464

Table 7.2

Results for kssvd, irlba and svds for WELL1850

kssvd irbla svds

best 13 16 29
worst 14 18 32

Table 7.3

Iterations for kssvd, irlba and svds for WELL1850

Gene expression data. The next example is taken from [11] as part of the
genomwide analysis of the host response to Malaria. Microarray analysis plays an
important role in the study of understanding diseases. The amount of data associated
with the gene expression analysis poses a number of computational issues since the
corresponding matrices [5] can easily go up to tens or hundreds of thousand of data
in a single column representing the gene features. A typical example is shown in
Figure 7.1; the underlying matrix is of dimension 394 × 28 which means 394 gene
features for the 28 samples, see [11]. The SVD is an increasingly popular tool [6, 1]
when analyzing gene expression data. Here, we want to demonstrate that the method
introduced in this paper can be employed to calculate a Truncated SVD which can
then be used for filtering the noise in the matrix entries. Figure 7 shows rank-1 and
rank-2 approximations of the gene expression matrix. We again use kssvd, irlba and
svds to compute 10 singular values of the matrix (cf. Figure 7.8) and also the best
and worst iteration numbers, see Table 7.9.

8. Conclusions. We presented a method based on the Golub-Kahan bidiago-
nalization that allows the efficient computation of a small number of singular values.
By introducing a KGK factorization we were able to present a method that makes
the implementation of deflation techniques such as purging and locking an easy task,
i.e. by only using permutations on the KGK factorization.

We showed that the KGK factorization can always be converted to a Golub-Kahan
bidiagonal factorization and conversely the Golub-Kahan bidiagonalization can easily
be transformed into a KGK decomposition. The costs of the presented transformation
are minimal due to the small number of desired singular values. In contrast to the
method of Baglama and Reichel, we ensure that the bidiagonal structure is preserved.

Furthermore, we introduced stopping criteria for our method and discussed the
numerical issues, such as reorthogonalization, that arise when implementing the algo-
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kssvd irbla svds

1.806511020006566 1.806511020006559 1.806511020006566
1.767837161647911 1.767837161647911 1.767837161647911
1.728844276588977 1.728844276588977 1.728844276588989
1.586186613455318 1.586186613455318 1.586186613455318
1.567722886046058 1.567722886046059 1.567722886046066
1.538879314136535 1.538879314136525 1.538879314136536
1.474071370285059 1.474071370285055 1.474071370285058
1.443862613306116 1.443862613306119 1.443862613306125
1.432648751585027 1.432648751585035 1.432648751585031
1.430446172662784 1.430446172662785 1.430446172662780

Table 7.4

Results for kssvd and irlba for WELL1033

kssvd irbla svds

best 17 28 57
worst 18 31 68

Table 7.5

Iterations for kssvd, irlba and svds for WELL1033

rithm.

We presented numerical results for a variety of problems and show that the kssvd
method is able to outperform both svds and irbla on a number of examples.

Acknowledgment. The author would like to thank Peter Benner, Gene Golub,
Jose Román and Andy Wathen for their comments and support. He would also like
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