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1 Introduction

Many applications require the solution of a linear system

Ax = b,

see [7]. This can be done using different solvers depending on the properties of the
underlying matrix. A direct method based on the LU factorization is typically the
method of choice for smaller problems. With increasing matrix dimensions the need for
iterative methods arises, see [24,36] for more details. The most popular of these methods
are the so-called Krylov subspace solvers which use the space

Kk(A, r0) = span(r0, Ar0, A
2r0, . . . , A

k−1r0)

to find an appropriate approximation to the solution of the linear system. In the case
of a symmetric matrix we would use cg [25] or minres [30] which also guarantee
some optimality conditions for the current iterate in the existing Krylov subspace. For
a nonsymmetric matrix A it is much harder to choose the best-suited method. gmres

is the most stable Krylov subspace solver for this problem but has the drawback of
being very expensive due to large storage requirements and the amount of work per
iteration step is increasing. There are alternative short-term recurrence approaches such
as bicg [8], bicgstab [5] , qmr [10], ... mostly based on the nonsymmetric Lanczos
process. These methods are less reliable than the ones used for symmetric systems but
can nevertheless give very good results.

In many cases we are not only interested in the solution of the forward linear system

Ax = b (1.1)

but also of the adjoint system
AT y = g (1.2)

simultaneously. In [13] Giles and Süli provide an overview of the latest developments
regarding adjoint methods with an excellent list of references. The applications given
in [13] are widespread, ie. optimal control and design optimization in the context of
fluid dynamics, aeronautical applications, weather prediction and data assimilation and
many more. They also mention a more theoretical use of adjoint equations regarding a
posteriori error estimation for partial differential equations.

In the world of signal processing the scattering amplitude gTx connects the adjoint
right hand side and the forward solution and can be viewed as the signal received by an
antenna. In [38, 39] Smolarski and Saylor relate the scattering amplitude to Gaussian
quadrature in the complex plane. We will discuss the methods introduced by Smolarski
and Saylor in the course of this paper. Another paper concerned with the computation
of the scattering amplitude is [21].

The scattering amplitude is also known in the context of optimization as the primal
linear output of a functional

Jpr(x) = gT x (1.3)
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where x is the solution of Equation 1.1. The equivalent formulation of the dual problem
results in the output

Jdu(y) = yT b (1.4)

with y being the solution of the adjoint equation (1.2). In some applications the solution
to the linear systems (1.1) and (1.2) is not required explicitly but a good approximation
to the primal and dual output are of utmost importance. In [27] Darmofal and Lu intro-
duce a QMR technique that simultaneously approximates the solutions to the forward
and the adjoint system at the same time and also gives good estimates for the values of
the primal and dual functional output described in (1.3) and (1.4).

The scattering amplitude also arises in nuclear physics [1], quantum mechanics [26]
and CFD [12].

In the first part of this paper we will describe the qmr algorithm followed by al-
ternative approaches to compute the solutions to the linear systems (1.1) and (1.2)
simultaneously based on the lsqr and glsqr methods. We will further introduce
preconditioning for these methods and will discuss different preconditioners. The sec-
ond part of this paper deals with the approximation of the outputs of the the primal
and the dual functional as given in (1.3) and (1.4). We will conclude the paper by
showing numerical experiments for the solution of the linear systems as well as for the
approximation of the scattering amplitude in a direct way.

2 Solving the linear system

2.1 The qmr approach

In [27], Lu and Darmofal presented a technique using the standard qmr method to
obtain an algorithm that would approximate the solution of the forward and the adjoint
problem at the same time. The basis of qmr is the nonsymmetric Lanczos process,
see [40],

AVk = Vk+1Hk+1,k

AT Wk = Wk+1Ĥk+1,k.

With the choice of v1 = r0/ ‖r0‖ and w1 = s0/ ‖s0‖ we can express the norm of forward
and backward quasi-residual as

‖rk‖ = ‖‖r0‖ e1 − Hk+1,kyk‖ and ‖sk‖ =
∥∥∥‖s0‖ e1 − Ĥk+1,kwk

∥∥∥ .

It is also possible to introduce weights to improve the convergence behaviour, see [10].

2.2 The bidiagonalization or lsqr approach

Solving

Ax = b, AT y = g
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simultaneously can be reformulated as

[
0 A

AT 0

] [
y
x

]
=

[
b
g

]
. (2.1)

The system matrix of (2.1) [
0 A

AT 0

]

is heavily used when computing singular values of the matrix A and is also very important
in the context of linear least squares problems. The main tool used for either purpose is
the Golub-Kahan bidiagonalization(cf. [14]) which is also the basis for the well-known
lsqr method introduced by Paige and Saunders in [31].

In more detail, we assume that the bidiagonal factorization

A = UBV T (2.2)

is given, where U and V are orthogonal and B is bidiagonal. Hence, we can express
(2.1) as [

0 U
V 0

] [
0 BT

B 0

] [
0 V T

UT 0

] [
y
x

]
=

[
b
g

]
. (2.3)

From (2.3) we get for the solutions x and y that

UBV T x = b

and

V BT UT y = g.

By using the orthogonality of U and V we can express the forward residual r and the
adjoint residual s as

‖r‖2 =
∥∥UBV T x − b

∥∥
2

=
∥∥U(BV T x − UT b)

∥∥
2

=
∥∥BV T x − UT b

∥∥
2

(2.4)

and

‖s‖2 =
∥∥V BT UT y − g

∥∥
2

=
∥∥V (BT UT y − V T g)

∥∥
2

=
∥∥BT UT y − V T g

∥∥
2
. (2.5)

(2.4) and (2.5) show that for the solutions x and y we have to solve one system with B
and one system with BT as well as the application of orthogonal matrices.

So far we have assumed that an explicit bidiagonal factorization is given (Equation
2.2) which is a rather unrealistic assumption for large sparse matrices. In practice we
need an iterative procedure that represents instances of the bidiagonalization process
(cf. [14, 22, 31]). Therefore, we use the following matrix structures

AVk = Uk+1Bk

AT Uk+1 = VkB
T
k + αk+1vk+1e

T
k+1

(2.6)
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where Vk = [v1, . . . , vk] and Uk = [u1, . . . , uk] are orthogonal matrices and

Bk =




α1

β2 α2

β3
. . .
. . . αk

βk+1




.

The initial vectors of both sequences are linked by the relationship

AT u1 = α1v1. (2.7)

We now use the iterative process described in (2.6) to obtain approximations to the
solutions of the forward and the adjoint problem. The residuals at step k can be defined
as

rk = b − Axk (2.8)

and
sk = g − AT yk (2.9)

with
xk = x0 + Vkzk

and
yk = y0 + Uk+1wk.

A typical choice for u1 would be the normalized initial residual u1 = r0/ ‖r0‖ which then
gives for the residual norms

‖rk‖2 = ‖b − Axk‖2

= ‖b − A(x0 + Vkzk)‖2

= ‖r0 − AVkzk‖2

= ‖r0 − Uk+1Bkzk‖2

= ‖‖r0‖ e1 − Bkzk‖2

(2.10)

using (2.6) and the orthogonality of Uk+1. The adjoint residual can now be expressed as

‖sk‖2 =
∥∥g − AT yk

∥∥
2

=
∥∥g − AT (y0 + Uk+1wk)

∥∥
2

=
∥∥g − AT y0 − AT Uk+1wk

∥∥
2

=
∥∥s0 − VkB

T
k wk − αk+1vk+1e

T
k+1wk

∥∥
2
.

(2.11)

Notice, that (2.11) cannot be simplified to ‖s0‖ e1 −BT
k wk since s0 is not in the span of

the current and all the following vj-s. This represents the classical lsqr [31] approach
where the focus is on obtaining an approximation that minimizes ‖rk‖2 = ‖b − Axk‖2.
The method is very successful and widely used in practice but is limited due to the
restriction given by (2.7) in the case of simultaneous iteration for the adjoint problem.
Figure 2.2 illustrates the behaviour we could observe for all our examples with the lsqr

method. In particular the stagnation of the adjoint solution due to the coupling of the
starting vectors. In the next section we will present a new approach that overcomes this
drawback.
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Figure 1: Solving a linear system with the lsqr approach

2.3 Generalized lsqr (glsqr )

The simultaneous computation of forward and adjoint solutions based on the classical
lsqr method is not very successful since the starting vectors u1 and v1 depend on each
other through (2.7). In [37] Saunders et al. introduced a more general lsqr method
that was also recently analyzed by Reichel and Ye, see [34]. Saunders and coauthors also
hint in their paper that the method presented can be used to solve forward and adjoint
problem at the same time. We will discuss this here in more detail and will also present
a further analysis of the method described in [34, 37]. The method of interest makes it
possible to choose the starting vectors u1 and v1 independently, e.g. u1 = r0/ ‖r0‖ and
v1 = s0/ ‖s0‖. The algorithm stated in [34, 37] is based on the following factorization

AVk = Uk+1Tk+1,k = UkTk,k + βk+1uk+1e
T
k

AT Uk = Vk+1Sk+1,k = VkSk,k + ηk+1vk+1e
T
k

(2.12)

where

Vk = [v1, . . . , vk]

and

Uk = [u1, . . . , uk]
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are orthogonal matrices and

Tk+1,k =




α1 γ1

β2 α2
. . .

. . .
. . . γk−1

βk αk

βk+1




as well as

Sk+1,k =




δ1 θ1

η2 δ2
. . .

. . .
. . . θk−1

ηk δk

ηk+1




.

In the case of no breakdown1, the following relation holds

ST
k,k = Tk,k.

The matrix factorization given in (2.12) can be used to produce simple algorithmic
statements of how to obtain new iterates for uj and vj:

βk+1uk+1 = Avk − αkuk − γk−1uk−1

ηk+1vk+1 = AT uk − δkvk − θk−1vk−1
. (2.13)

The parameters αj, γj−1, δj, vj−1 could be determined via the Gram-Schmidt orthogo-
nalization process in the classical or the modified version. However, since it is well
understood that the classical Lanczos bidiagonalization process introduced in [14] can
be viewed as the Lanczos algorithm applied to the matrix AT A, we want to analyze
whether a similar connection can be made for the method given in [34, 37].

The generalized lsqr method given in Equation 2.13 looks very similar to the
Lanczos process applied to the matrix

[
0 A

AT 0

]
.

To see this we use the Lanczos iteration for this matrix and get

νk+1

[
uk+1

vk+1

]
=

[
0 A

AT 0

] [
uk

vk

]
− ξk

[
uk

vk

]
− %k−1

[
uk−1

vk−1

]
(2.14)

and the resulting recursions are then

νk+1uk+1 = Avk − ξkuk − %k−1uk−1

νk+1vk+1 = AT uk − ξkvk − %k−1vk−1.
(2.15)

1We will discuss breakdowns later in this section.
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The parameters %k−1, ξk and νk+1 are related to the parameters from the glsqr process
via

ξk = uT
k Avk + vT

k AT uk = αk + δk

%k−1 = uT
k−1Avk + vT

k−1A
T uk = γk−1 + ηk−1

and since the Lanczos process generates a symmetric tridiagonal matrix we also get

νk+1 = %k = γk + ηk.

The orthogonality condition imposed by the symmetric Lanczos process ensures that

[
uT

k+1 vT
k+1

] [
uk

vk

]
= 0

which reduces to uT
k+1uk + vT

k+1vk = 0. This criteria would be fulfilled by the vectors
coming from the glsqr method because it creates two sequences of orthonormal vec-
tors. In general the vectors coming from the symmetric Lanczos process do not satisfy
uT

k+1uk = 0 and vT
k+1vk = 0. This shows that the the glsqr method cannot be repre-

sented by just applying the symmetric Lanczos process.
In the following, we are going to study the similarity of the glsqr and a special

Block-Lanczos method. In [37] a connection to a Block-Lanczos for the matrix AT A was
made. Here we will discuss a method based on[

0 A
AT A

]
.

Hence, we assume the complete matrix decompositions

AV = UT and AT U = V T T

with S = T T . Using this we can rewrite the linear system 2.1 as
[

U 0
0 V

] [
0 T

T T 0

] [
UT 0
0 V T

] [
y
x

]
=

[
b
g

]
. (2.16)

We now introduce the perfect shuffle permutation

Π = [e1, e3, . . . , e2, e4, . . .]

and use Π to modify (2.16) which gives
[

U
V

]
ΠT Π

[
0 T

T T 0

]
ΠT Π

[
UT 0
0 V T

] [
y
x

]
=

[
b
g

]
. (2.17)

We now further analyze the matrices given in (2.17). The first two matrices can also be
written as




| | | | | |

u1 u2
... 0 0 0

| | | | | |
| | | | | |

0 0 0 v1 v2
...

| | | | | |




ΠT =




| | | | | |

u1 0 u2 0
...

...
| | | | | |
| | | | | |

0 v1 0 v2
...

...
| | | | | |




= U .
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Next, we are going to study the similarity transformation on

[
0 T

T T 0

]

using Π which results in

T = Π

[
0 T

T T 0

]
ΠT =




M1 BT
1

B1 M2 BT
2

B2
. . .

. . .
. . .

. . .




with

Mi =

[
0 αi

αi 0

]
and Bi =

[
0 βi+1

γi 0

]
.

It is easy to see using the properties of the Reichel and Ye lsqr method that the matrix
U is an orthogonal matrix and furthermore that if we write U = [U1,U2, · · ·] where

Ui =




| |
ui 0
| |
| |
0 vi

| |




that UT
i Ui = I for all i. Thus, one particular instance at step k of the reformulated

method reduces to

Uk+1Bk+1 =

[
0 A

AT 0

]
Uk − UkMk − Uk−1B

T
k−1

which can be further expressed as

Uk+1

[
0 βk+1

γk 0

]
=

[
0 Avk − αkuk − γk−1uk−1

AT uk − αkvk − γk−1vk−1 0

]
.

The parameters βk+1 and γk as well as Uk+1 have to be determined which can simply
be done by normalizing the vectors on the right hand side and using the fact that the
underlying process is a classical or modified Gram-Schmidt orthogonalization. Hence, we
have shown that the glsqr method can be viewed as a special Block-Lanczos method
with stepsize 2, see [22, 28] for more details on the Block-Lanczos method.
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2.4 glsqr and linear systems

The glsqr process analyzed above can be used to obtain approximate solutions to the
linear system and the adjoint problem. We are now able to set u1 and v1 independently
and choose for initial guesses x0,y0 and residuals r0 = b − Ax0, s0 = g − AT y0

u1 =
r0

‖r0‖

and

v1 =
s0

‖s0‖
.

Hence, our approximations for the solution at each step are given by

xk = x0 + Vkzk (2.18)

for the forward problem and

yk = y0 + Ukwk (2.19)

for the linear system involving the adjoint. Using this and (2.12) we can express the
residual at step k as follows; for the forward problem

‖rk‖2 = ‖b − Axk‖2

= ‖b − A(x0 + Vkzk)‖2

= ‖r0 − AVkzk‖2

= ‖r0 − Uk+1Tk+1,kzk‖2

=
∥∥UT

k+1r0 − Tk+1,kzk

∥∥
2

= ‖‖r0‖ e1 − Tk+1,kzk‖2 (2.20)

and in complete analogy

‖sk‖2 =
∥∥g − AT yk

∥∥
2

=
∥∥V T

k+1s0 − Sk+1,kwk

∥∥
2

= ‖‖s0‖ e1 − Sk+1,kwk‖2 . (2.21)

The solutions zk and wk can be obtained by solving the least squares systems (2.20)
and (2.21) respectively. The QR factorization is a well known tool to solve least squares
systems of the above form. We therefore have to compute the QR factorization of Tk+1,k

and Sk+1,k. The factorization can be updated at each step using just one Givens rotation.
In more detail, we assume that the QR factorization of Tk,k−1 = Qk−1Rk−1 is given with

Rk−1 =

[
R̂k−1

0

]
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and R̂k−1 an upper triangular matrix. To obtain the QR factorization of Tk+1,k we
eliminate the element βk+1 from

[
QT

k−1 0
0 1

]
Tk+1,k =

[
QT

k−1 0
0 1

] [
Tk,k−1 αkek + γk−1ek−1

0 βk+1

]

=

[
Rk−1 QT

k−1(αkek + γk−1ek−1)
0 βk+1

] (2.22)

by using one Givens rotation. The same argument holds for the QR decomposition of
the matrix Sk+1,k. Thus we have to compute two Givens rotations at every step to solve
the systems (2.20) and (2.21) efficiently. There is no need to store the whole basis Vk

or Uk in order to update the solution as described in (2.18) and (2.19), see also [24].
The matrix Rk of the QR decomposition of the tridiagonal matrix Tk+1,k has only three

non-zero diagonals. Let us define Ck = [c0, c1, . . . , ck−1] = VkR̂
−1
k . Note that c0 is a

multiple of v1 and we can compute successive columns using that CkR̂k = Vk, ie.

ck−1 = (vk − r̂k−1,kck−2 − r̂k−2,kck−3)/r̂k,k (2.23)

where the r̂i,j are elements of R̂k. Therefore, we can update the solution

xk = x0 + ‖r0‖Ck

(
QT

k e1

)
k×1

= xk−1 + ak−1ck−1 (2.24)

where ak−1 is the kth entry of ‖r0‖QT
k e1.

The storage requirements for the glsqr method are similar to the storage require-
ments for a method based on the nonsymmetric Lanczos process as proposed by Lu and
Darmofal in [27]. We need to store the vectors uj, vj, uj−1 and vj−1 to generate the basis
vectors for the next Krylov space. Furthermore, we need to store the sparse matrices
Tk+1,k and Sk+1,k and their corresponding upper triangular factors. Note, that these
triangular matrices have only three nonzero diagonals and can be stored in Tk+1,k and
Sk+1,k respectively. According to (2.23) the solutions xk and yk can be updated with
only storing two vectors ck−2 and ck−3 for the forward problem and another two vectors
for the adjoint solution. This shows that the solutions can be obtained by storing only
a minimal amount of data.

In [34] Reichel and Ye solve the forward problem and introduce the term breakdown
in the case that the matrix Sk+1,k associated with the adjoint problem has a zero entry
on the subdiagonal. We will discuss these breakdowns and show that they are indeed
lucky breakdowns which means that the solution can be found in the current space. We
assume that the parameter βk+1 = 0 whereas ηk+1 6= 0 in which case Reichel and Ye
proved in Theorem 2.2 that the solution xk for the forward problem can be obtained via
xk = x0 + ‖r0‖VkT

−1
k,ke1. The same holds if βk+1 6= 0 whereas ηk+1 = 0 in which case the

solution yk can be obtained via yk = y0 + ‖s0‖UkS
−1
k,ke1.

In both cases, we have to continue the algorithm since only the solution to one of
the two problems is found. Without loss of generality, we assume that βk+1 = 0 whereas
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ηk+1 6= 0 which means that the forward problem has already been solved. A strategy
implicitly proposed by Reichel and Ye is to compute a new uk using

βk+1uk+1 = 0 = Avk − αkuk − γk−1uk−1

which gives

αkuk = Avk − γk−1uk−1.

In terms of matrices this would result in a upper bidiagonal part of Tk+1,k from the
iteration where the breakdown occurred. There is no need to update the solution xk in
further steps of the method. The vectors uk+1 generated by this two-term recurrence
are used to update the solution for the adjoint problem in a way we will now describe.
First, we obtain a new basis vector

ηj+1vj+1 = AT uj − δjvj − θj−1vj−1

and then update the QR factorization of Sk+1,k to get a new iterate yk. If the parameter
ηj+1 = 0, the solution for the adjoint problem is found and the method can be terminated.
In the case of the parameter αk+1 becoming zero the solution for the adjoint problem can
be obtained using the following Theorem which stands in complete analogy to Theorem
2.3 in [34].

Theorem 2.1 We assume that a first breakdown with βk+1 = 0 occurred and the proce-
dure is continued with an update

αk+1uk+1 = Avk+1 − γkuk.

If the algorithm breaks down with αk = 0 at some step without the parameter ηl = 0
for some l < k then the solution for the adjoint problem can be recovered using yk =
y0 + Ukwk.

Proof The solution wk to the least squares problem

min
w∈Rk

(‖r0‖ e1 − Sk+1,kw)

satisfies the following relation

ST
k+1,k (‖r0‖ e1 − Sk+1,kwk) = 0. (2.25)

We will show this by using the QR decomposition of Sk+1,k = Qk+1Rk with

Rk =

[
R̂k

0

]
.

(2.25) can be reformulated now resulting in

(Qk+1Rk)
T (‖r0‖ e1 − Qk+1Rkwk) = 0 (2.26)
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which can be further rearranged using that wk = ‖r0‖ R̂−1
k QT

k+1e1 as

‖r0‖RT
k QT

k+1e1 − ‖r0‖RT
k RkR̂

−1
k QT

k+1e1 = 0. (2.27)

Using (2.27) it is now easy to see that (2.25) holds. The breakdown with αk+1 = 0 results in

αk+1uk+1 = 0 = Avk+1 − γkuk

which means that no new uk+1 is generated in this step. In matrix terms we get

AVk+1 = UkTk,k+1

and
AT Uk = Vk+1Sk+1,k.

This results in,

A(g − AT y) = A(s0 − AT Ukwk)
= A(s0 − Vk+1Sk+1,kwk)
= As0 − AVk+1Sk+1,kwk

= ‖s0‖AVk+1e1 − AVk+1Sk+1,kwk

= ‖s0‖UkTk,k+1e1 − UkTk,k+1Sk+1,kwk

= UkTk,k+1 (‖s0‖ e1 − Sk+1,kwk)
= UkS

T
k+1,k (‖s0‖ e1 − Sk+1,kwk)

= 0

using the fact that ST
k+1,k = Tk,k+1, see Theorem 2.1 in [34]. Due to the assumption that A is

nonsingular the solution for the adjoint problem is given by yk = y0 + Ukwk.

�

This shows that the glsqr method is a well-suited process to find the solution
of forward and adjoint problem at the same time. The breakdowns that occur in the
process of the algorithm are all benign breakdowns which underlines the difference to
methods based on the nonsymmetric Lanczos process. In order to give better reliability
of the methods based on the nonsymmetric Lanczos process look-ahead strategies have
to be implemented (cf. [9, 33]).

2.5 Preconditioned glsqr

In practice the lsqr method can show slow convergence and therefore has to be en-
hanced using preconditioning techniques. We assume the the preconditioner M = M1M2

is given. Note that in general M1 6= M2. The preconditioned matrix

Â = M−1
1 AM−1

2

and its corresponding transpose by

ÂT = M−T
2 AT M−T

1 .
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Since we do not want to compute the matrix Â we have to rewrite the glsqr method

βj+1uj+1 = M−1
1 AM−1

2 vj − αjuj − γj−1uj−1

ηj+1vj+1 = M−T
2 AT M−T

1 uj − δjvj − θj−1vj−1
(2.28)

to obtain an efficient implementation of the preconditioned procedure, ie.

βj+1M1uj+1 = AM−1
2 vj − αjM1uj − γj−1M1uj−1

ηj+1M
T
2 vj+1 = AT M−T

1 uj − δjM
T
2 vj − θj−1M

T
2 vj−1.

(2.29)

If we set pj = M1uj, M2q̂j = vj, qj = MT
2 vj and MT

1 p̂j = uj we get

βj+1pj+1 = Aq̂j − αjpj − γj−1pj−1

ηj+1qj+1 = AT p̂j − δjqj − θj−1qj−1

.
(2.30)

with the following updates

q̂j = M−1
2 vj = M−1

2 M−T
2 qj (2.31)

and
p̂j = M−T

1 uj = M−T
1 M−1

1 pj. (2.32)

We also want to compute the parameters αj, γj−1, δj and θj1 The parameters αj, γj−1,
δj and θj1 can also be expressed in terms of the vectors p̂j, q̂j, pj and qj. Namely, we get

αj = (Âvj, uj) = (Aq̂j, p̂j)

γj−1 = (Âvj, uj−1) = (Aq̂j, p̂j−1)

δj = (ÂT uj, vj) = (AT p̂j, q̂j)

θj−1 = (ÂT uj, vj−1) = (AT p̂j, q̂j−1)

which can be computed cheaply. Note, that we need to evaluate AT p̂j and Aq̂j once in
every iteration step. The parameters βj+1 and ηj+1 can be computed using Equations
2.31 and 2.32. This enables us to compute the matrices Tk+1,k and Sk+1,k efficiently.
Hence, we can update the QR factorizations in every step using one Givens rotation for
the forward problem and one Givens rotation for the adjoint problem. The solutions xk

and yk can then be updated without storing the whole Krylov space but with a recursion
similar to Equation 2.24. The norm of the preconditioned residual can be computed via
the well known recursion

‖rk‖ = |sin(θk)| ‖rk−1‖

where sin(θk) is associated with the Givens rotatation at step k. There are different pre-
conditioning strategies for enhancing the spectral properties of A to make the glsqr

method converge faster. One possibility would be to use an Incomplete LU factorization
and then set M1 = L and M2 = U. This is a very common approach when precondition-
ing for solving a linear system. The second method we present here will use the fact
that the glsqr method is a Block-Lanczos method for the normal equations, ie. the
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system matrix that has to be preconditioned is now AT A. But rather then computing
a Incomplete Cholesky factorization of this matrix we turn to a very interesting class of
preconditioners; the Incomplete Orthogonal factorizations as described in [2, 32]. The
main idea is to obtain a decomposition A = QR + E with Q being orthogonal and E
being the error term of this incomplete factorization. The matrix R now has different
properties depending on the particular method that was chosen. In the most simple
case, the so-called cIGO method, we restrict R to have the same sparsity pattern as the
original matrix A. More methods and implementations can be found in [32]. We now
use Q and R from the incomplete factorization and set M1 = Q and M2 = R which
gives Â = QT AR−1 for the normal equations ÂT Â = R−T AT QQT AR−1 = R−T AT AR−1.
Hence, we can use R as a preconditioner for the normal equations and therefore for the
glsqr method.

3 Approximating the scattering amplitude

In Section 2 we gave a detailed overview of how to compute the solution to the forward
and adjoint linear system simultaneously. In the following we present methods that
allow the approximation of the scattering amplitude or primal output functional directly
without computing approximate solutions to the linear systems.

3.1 Moments, Matrices and Quadrature: An Introduction

In [16,17] Golub and Meurant show how Gauss quadrature can be used to approximate

uT f(W )v

where W is a symmetric matrix and f is some function, not necessarily a polynomial.
We will give a quick review of the process. Assume that the eigendecomposition of

W is given by

W = QΛQT

with orthogonal Q. Let us further assume that the eigenvalues are ordered as follows

λ1 ≤ λ2 ≤ · · · ≤ λn.

As a result we get

f(W ) = Qf(Λ)QT

which gives

uTf(W )v = uT Qf(Λ)QT v. (3.1)

By introducing α = QT u and β = QT v we can rewrite (3.1) as

uT f(W )v = αT f(Λ)β =

n∑

i=1

f(λi)αiβi. (3.2)
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(3.2) can be viewed as a Riemann-Stieltes integral

I [f ] = uT f(W )v =

∫ b

a

f(λ)dα(λ) (3.3)

where the measure α is defined as follows

α(λ) =





0 if λ < a = λ1∑i

j=1 αjβj if λi < λ < λi+1∑n

j=1 αjβj if b = λn < λ

We can now express (3.3) as

∫ b

a

f(λ)dα(λ) =
N∑

j=1

ωjf(tj) +
M∑

k=1

vkf(zk) + R [f ] , (3.4)

where the weights ωj, vk and the nodes tj are unknowns and the nodes zk are prescribed.
The residual can be expressed as

R [f ] =
f (2N+M)(η)

(2N + M)!

∫ b

a

M∏

k=1

(λ − zk)

[
N∏

j=1

(λ − tj)

]2

dα(λ), a < η < b. (3.5)

Following the analysis presented in [17] R [f ] can be rewritten for Gauss (M = 0),
Gauss-Radau (M = 1, z1 = a or z1 = b) or Gauss-Lobatto (M = 2, z1 = a and z2 = b)
quadrature formulas. A more detailed description can be found in [3, 4, 11, 18–20,23].

In the case of u = v, we can compute the weights and nodes of the quadrature rule
by simply applying the Lanczos process to the symmetric matrix W , see [23]. Then,
the eigenvalues of the tridiagonal matrix will represent the nodes of the quadrature rule
and the first component of the corresponding eigenvector can be used to compute the
weights.

3.2 The Golub-Kahan bidiagonalization

The scattering amplitude or primal output Jpr(x) = gTx can now be approximated using
the connection between Gauss-quadrature and the Lanczos process. To be able to apply
the theory of Golub and Meurant, we need the system matrix to be symmetric which
can be achieved by

Jpr(x) = gT (AT A)−1AT b = gT (AT A)−1p = gTf(AT A)p (3.6)

using the fact that x = A−1b and p = AT b. In order to use the Lanczos process to obtain
nodes and weights of the quadrature formula we need a symmetrized version of (3.6)

Jpr(x) =
1

4

[
(p + g)T (AT A)−1(p + g) − (g − p)T (AT A)−1(g − p)

]
. (3.7)
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Good approximations to (p+ g)T (AT A)−1(p+ g) and (p− g)T (AT A)−1(p− g) will result
in a good approximation to the scattering amplitude. Here, we present the analysis for
the Gauss rule (ie. M = 0) where we apply the Lanczos process to AT A and get

AT AVN = VNTN + rNeT
N (3.8)

with orthogonal VN and

TN =




α1 β2

β2 α2
. . .

. . .
. . . βN

βN αN


 .

The eigenvalues of of TN determine the nodes of

∫ b

a

f(λ)dα(λ) =

N∑

j=1

ωjf(tj) + RG [f ] , (3.9)

with

RG [f ] =
f (2N)(η)

(2N)!

∫ b

a

[
N∏

j=1

(λ − tj)

]2

dα(λ)

which for the function f(x) = 1
x

reduces to

RG [f ] =
1

η2N+1

∫ b

a

[
N∏

j=1

(λ − tj)

]2

dα(λ).

due to the fact that f (2N)(η) = (2N)! η−(2N+1). Notice, that since the matrix AT A has
only positive eigenvalues the residual RG [f ] will always be positive and therefore the
Gauss rule will always give an underestimation of the scattering amplitude. In contrast,
the residual for Gauss-Lobatto (M = 2, z1 = a and z2 = b)

RGL [f ] =
1

η2N+1

∫ b

a

(λ − b)(λ − a)

[
N∏

j=1

(λ − tj)

]2

dα(λ)

will always be negative and therefore gives an overestimation whereas the Gauss-Radau(M =
1, z1 = a or z1 = b) residual is either

R
(1)
GR [f ] =

1

η2N+1

∫ b

a

(λ − b)

[
N∏

j=1

(λ − tj)

]2

dα(λ)

or

R
(2)
GR [f ] =

1

η2N+1

∫ b

a

(λ − a)

[
N∏

j=1

(λ − tj)

]2

dα(λ)
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and therefore negative and positive respectively which gives estimates on both sides.

The weights for the Gauss rule are given by the squares of the first elements of the
normalized eigenvectors of TN . Instead of applying the Lanczos process to AT A we can
simply use the Lanczos bidiagonalization procedure presented in Section 2.2. Trivially,
the matrix TN can be obtained from Equation 2.6 via TN = BT

NBN . Since the matrix
TN is tridiagonal and similar to a symmetric matrix, it is relatively cheap to compute
its eigenvalues and eigenvectors.

In [15] Golub and Meurant further show that the evaluation of the expression

N∑

j=1

ωjf(tj)

can be simplified to
N∑

j=1

ωjf(tj) = eT
1 f(TN)e1 (3.10)

which for f(x) = 1/x reduces to eT
1 T−1

N e1. The last expression simply states that we
have to find a good approximation for the (1, 1) element of the inverse of TN . If we
can find such a good approximation for (T−1

N )(1,1) the computation becomes much more
efficient since no eigenvalues or eigenvectors have to be computed to determine the Gauss
quadrature rule. Another possibility is to solve the system TNz = e1 which is relatively
cheap for the tridiagonal matrix Tn.

Golub and Meurant [16,17] give bounds on the elements of the inverse using Gauss,
Gauss-Radau, Gauss-Lobatto rules depending on the Lanczos process. In more detail,
the bound for the Gauss rule is

∑
k 6=i

∑
l 6=i tk,itk,ltl,i

tl,l
∑

k 6=i

∑
l 6=i tk,itk,ltl,i −

(∑
k 6=i t

2
k,i

)2 ≤ (T−1
N )1,1

with ti,j elements of TN , a lower and an upper bound for Gauss-Radau

t1,1 − b +
s2

1

b

t21,1 − t1,1b + s2
1

≤ (T−1
N )1,1 ≤

t1,1 − a +
s2

1

a

t21,1 − t1,1a + s2
1

with s2
1 =

∑
j 6=1 a2

j1 and for the Gauss-Lobatto

(T−1
N )1,1 ≤

a + b − ti,i
ab

as an upper bound. These bounds are not sharp since they will improve with the
number of Lanczos steps. It is also possible to obtain the given bounds using variational
principles, see [35].
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3.3 Approximation using glsqr (the block case)

As shown in Section 2.3 the glsqr represents a Block-Lanczos method. In [17] Golub
and Meurant show how a block method can be used to generate quadrature formulas.

The integral
∫ b

a
f(λ)dα(λ) is now a 2 × 2 symmetric matrix and the most general

quadrature formula is of the form

∫ b

a

f(λ)dα(λ) =

N∑

i=1

Wjf(Tj)Wj + R[f ] (3.11)

with Tj and Wj being symmetric 2 × 2 matrices. Equation 3.11 can be simplified using

Tj = QjΛjQ
T
j

where Qj is the eigenvector matrix and Λj the 2 × 2 diagonal matrix containing the
eigenvalues. Hence,

N∑

i=1

WjQ
T
j f(Λj)QjWj

and if we write WjQ
T
j f(Λj)QjWj as

f(λ1)z1z
T
1 + f(λ2)z2z

T
2

we get for the quadrature rule
2N∑

i=1

f(tj)wjw
T
j

where tj is a scalar and wj is a vector with two components. In [17] it is shown that
there exist orthogonal matrix polynomials such that

λpj−1(λ) = pj(λ)Bj + pj−1(λ)Mj + pj−2(λ)BT
j−1

with p0(λ) = I2 and p−1(λ) = 0.
We can write the last Equation as

λ [p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]TN + [0, . . . , 0, pN(λ)BN ]T

with

TN =




M1 BT
1

B1 M2 BT
2

. . .
. . .

. . .

BN−2 MN−1 BT
N−1

BN−1 MN




which is a block-tridiagonal matrix. Therefore, we can define the quadrature rule as

∫ b

a

f(λ)dα(λ) =

2N∑

i=1

f(θi)uiu
T
i + R[f ] (3.12)
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where 2N is the order of the matrix TN , θi eigenvalues of TN and ui is the vector
consisting of the first two elements of the corresponding normalized eigenvector. The
remainder R[f ] can be approximated using a Lagrange polynomial and we get

R[f ] =
f (2N)(η)

(2N)!

∫ b

a

s(λ)dα(λ)

where s(x) = (x − θ1)(x − θ2) . . . (x − θ2N ). The sign of the function s is not constant
over the interval [a, b]. Therefore, we cannot expect that the Block-Gauss rule always
underestimates the scattering amplitude. This might result in a rather oscillatory be-
haviour.

This block method can now be used to estimate the scattering amplitude using
glsqr . The 2 × 2 matrix integral we are interested in is now

∫ b

a

f(λ)dα(λ) =

[
0 gT

bT 0

] [
0 A−T

A−1 0

] [
0 b
g 0

]
=

[
0 gTA−1b

bT A−T g 0

]
.

In order to use the approximation (3.12) we need a Block-Lanczos for the matrix

[
0 AT

A 0

]
.

The glsqr algorithm represents an implementation of a Block-Lanczos method for
this matrix and can therefore be used to create the desired block-tridiagonal matrix TN .
Thus, in every iteration step glsqr gives an approximation to the scattering amplitude
via

2N∑

i=1

f(λi)uiu
T
i =

[
0 gT xN

gT xN 0

]

without computing the approximate solution xN directly.

3.4 Preconditioned glsqr

In Section 2.5 the preconditioned glsqr method was introduced and we will now show
that we can use this method to approximate the scattering amplitude directly. In the
above we showed that glsqr gives an approximation to scattering amplitude using
that [

0 gT A−1b
bT A−T g 0

]
.

Reformulating this in terms of the preconditioned method gives,

ĝT x̂ = ĝT Â−1b̂
= (M−T

2 g)T (M−1
1 AM−1

2 )−1(M−1
1 b)

= gT M−1
2 M2A

−1M1M
−1
1 b

= gT A−1b
= gT x
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which shows that the scattering amplitude for the preconditioned system Âx̂ = b̂ with
Â = M−1

1 AM−1
2 , x̂ = M2x and b̂ = M−1

1 b and with initial residuals r0 = M−1
1 b and

r̃0 = M−T
2 g. The scattering amplitude can therefore be approximated via

[
0 gT x̂

x̂T g 0

]
.

3.5 Complex Gaussian quadrature and bicg

The methods we presented so far are based on Lanczos methods for AT A. The algorithm
introduced in this Section connects bicg a method based on the nonsymmetric Lanc-
zos process and Gaussian quadrature in the complex plane. We follow the derivation
of Saylor and Smolarski in [38, 39] in which the scattering amplitude is approximated
employing this connection.

Saylor and Smolarski use formally orthogonal polynomials, ie. a set of polynomials
{φi}i=0,... such that (φi, φj)w = 0 if i 6= j with (·, ·)w a bilinear form. They further
show that the bicg polynomials are formally orthogonal and link them to Gaussian
quadrature. More details can be found in [39]. Again the nodes and weights can be
determined from a certain version of the Jacobi matrix which can be generated from the
parameters of the bicg iteration. We want to emphasize again that the nonsymmetric
Lanczos process and therefore bicg can break down and look-ahead strategies have to
be implemented.

We allow that all quantities are complex and use A∗ for matrices and λ̄ for the
conjugate transpose and complex conjugate respectively. In more detail, if x0 = x̃0 = 0
where x0 is the initial guess for the forward problem and x̃0 the initial guess for the
adjoint problem we can expand the residuals

r0 =
N∑

i=1

θiλigi and r̃0 =
N∑

i=1

θ̃iλ̄ig̃i

where λi,λ̄i and gi, g̃i are the eigenvalues and eigenvectors of A and A∗ respectively. For
any two vectors v and ṽ with

v ∈ Vk = span
{
r0, Ar0, . . . , A

k−1r0

}
and ṽ ∈ Ṽk = span

{
r̃0, A

∗r̃0 . . . , (A∗)k−1r̃0

}

we have polynomials pk and p̃k such that

v = pk(A)r0 = pk(A)

N∑

i=1

θiλigi =

N∑

i=1

θiλipk(λi)gi

and

ṽ = p̃k(A
∗)r0 = p̃k(A

∗)

N∑

i=1

θ̃iλ̄ig̃i =

N∑

i=1

θ̃iλ̄ip̃k(λ̄i)g̃i.
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Now proceeding formally we insist that g̃∗
i gi which results in

ṽ∗v =
N∑

i=1

¯̃θiθiλ
2
i p̃k(λ̄i)pk(λi).

Therefore, by introducing the discrete measure

w(λ) =

{
θi

¯̃θiλ
2
i for λ = λi, i = 1, . . . , N

0 for λ 6= λi, i = 1, . . . , N

we obtain

ṽ∗v =

N∑

i=1

¯̃
θiθiλ

2
i p̃k(λ̄i)pk(λi) =

∫

γ

p̃k(λ̄i)pk(λi)w(λ) |dλ|

where γ is any arc connecting the eigenvalues of A. For p0 and p̃0 as so-called residual
polynomials, ie. p0(0) = p̃0(0) = 1, we get

r0 = b and r̃0 = g.

and thus

g∗b =

∫
w(λ) |dλ| .

More usefully, for every function f , Gaussian quadrature gives

∫

γ

f(λ)w(λ) |dλ| ≈

k∑

i=1

ωif(ζi),

where ωi and ζi can be determined from the eigensystem of the tridiagonal matrix
associated with the appropriate form of bicg (cf. [39]). On the other hand, we know

∫

γ

f(λ) · 1 · w(λ) |dλ| =
∑ ¯̃θiθiλ

2
i f(λi) · 1 = (f(A)b)∗g.

For f(A) = A−1, the result is

∫

γ

f(λ)w(λ) |dλ| =

∫

γ

1

λ
w(λ) |dλ| = (A−1b)∗g = g∗A−1b

and

g∗A−1b ≈

k∑

i=1

ωi

ζi

which gives an approximation to the desired scattering amplitude. Note, that no bounds
on the quality of the approximation are given in the case of the bicg based approxi-
mation in contrast to the bounds based on the symmetric Lanczos process, see Section
3.2.
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Figure 2: qmr and glsqr for a matrix of dimension 100

We also mention that preconditioning is possible when working with the above
method based on the following observation

ĝT x̂ = ĝT Â−1b̂
= (M−T

2 g)T (M−1
1 AM−1

2 )−1(M−1
1 b)

= gT M−1
2 M2A

−1M1M
−1
1 b

= gT A−1b
= gT x

with initial residuals r0 = M−1
1 b and r̃0 = M−T

2 g for bicg .

4 Numerical Experiments

4.1 Solving the linear system

In this Section we want to show numerical experiments for the methods introduce in
Section 2.

Example 4.1 In the first example, we apply the qmr method and the glsqr to a
random sparse matrix of dimension 100, eg. A=sprandn(n,n,0.2)+speye(n);. Figure
2 indicates that glsqr outperforms qmr for this example.
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Figure 3: glsqr and qmr for the matrix: orsirr 1.mtx

Example 4.2 The second example is a matrix from the Matrix Market2 collection, in
particular the matrix ORSIRR 1 which represents a linear system used in oil reservoir
modelling. The matrix size is 1030. The results without preconditioning are shown in
Figure 3. Results using the Incomplete LU (ILU) factorization as a preconditioner for
glsqr and qmr are given Figure 4. Clearly, qmr outperforms glsqr in both.

Example 4.3 Figure 5 shows the comparison of ILU preconditioner and cIGO precon-
ditioner for an academic example of a 50× 50 matrix. It shows that the cIGO precondi-
tioner seems to be of rather theoretical use for large square matrices and the results are
not necessarily better than the ones coming from the application of an Incomplete LU
decomposition.

Example 4.4 The next example is motivated by [29] where Nachtigal et al. introduce
examples that show that different solvers for nonsymmetric systems can outperform oth-
ers by a large factor. The original example in [29] is given by the matrix

J =




0 1

0
. . .
. . . 1

1 0


 .

2http://math.nist.gov/MatrixMarket/
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Figure 4: ILU preconditioned glsqr and qmr for the matrix: orsirr 1.mtx
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Figure 5: cIGO and ILU results for a 50 × 50 example.
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Figure 6: An almost orthogonal matrix

The results shown in Figure 6 are for a sparse permutation of the matrix J , ie. in Matlab
notation A=1e-3*sprandn(n,n,0.2)+J;. The matrix J is orthogonal which explains the
rapid convergence of glsqr as a method for AT A.

4.2 Approximating the functional

In this section we want to present results for the methods that approximate the scattering
amplitude directly avoiding the computation of approximate solutions for the linear
systems with A and AT .

Example 4.5 In this example we compute the scattering using the Preconditioned glsqr

approach for the oil reservoir example ORSIRR 1. The matrix size is 1030. We use
the Incomplete LU (ILU) factorization as a preconditioner. The absolute values of
the approximation from glsqr are shown in the top part of Figure 7 and the bot-
tom part shows the norm of the error against the number of iterations. Note that the
non-monotonicity of the remainder term can be observed for the application of glsqr

.

Example 4.6 In this example we compute the scattering using the Preconditioned bicg

approach for the oil reservoir example ORSIRR 1. The matrix size is 1030. We use
the Incomplete LU (ILU) factorization as a preconditioner. The absolute values of the
approximation from bicg are shown in the top part of Figure 8 and the bottom part
shows the norm of the error against the number of iterations.
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Figure 7: Approximations to the scattering amplitude and error
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Figure 8: Approximations to the scattering amplitude and error
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Figure 9: Approximations to the scattering amplitude and error

Example 4.7 In this example we compute the scattering amplitude by using the lsqr

approach presented in Section 2.2. The test matrix is of size 187× 187 and represents a
Navier-Stokes problem generated by the IFISS package [6]. The result is shown in Figure
9 again with approximations in the top part and the error in the bottom part.

5 Conclusions

We studied the possibility of using lsqr for the simultaneous solution of forward and
adjoint problems. Due to the link between the starting vectors of the two sequences
this method did not show much potential for a practical solver. As a remedy we pro-
posed to use the glsqr method which we carefully analyzed showing its relation to
a Block-Lanczos method. Due to its special structure we are able to choose the two
starting vectors independently and can therefore approximate the solutions for forward
and adjoint system at the same time. Furthermore, we introduced preconditioning for
the glsqr method and proposed different preconditioners.

The approximation of the scattering amplitude without first computing solutions
to the linear systems was introduced based on the Golub-Kahan bidiagonalisation and
its connection to Gauss quadrature. In addition, we showed how the interpretation of
glsqr as a Block-Lanczos procedure can be used to allow approximations of the scat-
tering amplitude directly by using the connection to Block-Gauss quadrature. Further-
more, we introduced preconditioning for the Block-Gauss quadrature. We implemented
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a nonsymmetric Lanczos method proposed by Saylor and Smolarski and showed how in
that situation preconditioners can also be incorporated.

We showed that for some examples the linear systems approach using glsqr can
outperform qmr which is based on the nonsymmetric Lanczos process and others were
qmr performed better. We also showed how lsqr and glsqr can be used to ap-
proximate the scattering amplitude on real world examples.
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tional Conference on Padé Approximants, Continued Fractions and Related Topics
(Univ. Colorado, Boulder, Colo., 1972; dedicated to the memory of H. S. Wall),
Volume 4, pages 207–211.

[20] Gene H. Golub, 1974. Bounds for matrix moments. In Proceedings of the Interna-
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[29] Noël M. Nachtigal, Satish C. Reddy and Lloyd N. Trefethen, 1992. How fast are
nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl., 13(3): 778–795.
Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990).

[30] C. C. Paige and M. A. Saunders, 1975. Solutions of sparse indefinite systems of
linear equations. SIAM J. Numer. Anal., 12(4): 617–629.

[31] Christopher C. Paige and Michael A. Saunders, 1982. LSQR: an algorithm for
sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8(1):
43–71.

[32] A. T. Papadopoulos, I. S. Duff and A. J. Wathen, 2005. A class of incomplete
orthogonal factorization methods. II. Implementation and results. BIT, 45(1): 159–
179.

[33] B. N. Parlett, D. R. Taylor and Z. S. Liu, 1984. The look ahead Lánczos algorithm
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