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Linear Instability of asymmetric Poiseuille flows
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We compute solutions for the Orr-Sommerfeld equations for the case of
an asymmetric Poiseuille-like parallel flow. The calculations show that very
small asymmetry has little effect on the prediction for linear instability of
Poiseuille-like flow but that moderate asymmetry, such as found in channel
flow near an elongated wall vortex, has a large effect and that instability
can occur at much lower (less than 100) Reynolds numbers. We give some
characterisation of the instability.
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1 Introduction

Computation of fast moving waves in a laminar channel flow (Kachuma (2007)) have
shown the growth of what appears to be a Kelvin-Helmholtz instability in the flow.
In this paper we examine solutions of the Orr-Sommerfeld equation for a parallel flow
that is a model for the more complicated channel flow. We show that linear instablities
should occur at relatively low Reynolds number and examine the characteristics of the
developing disturbances.

Linear stability theory played a key role in the development of fluid mechanics dur-
ing much of the twentieth century. However, towards the end of the century it became
apparent that core information about the evolution of fluid flows needed more compli-
cated ideas. There were a number of important reasons for this. One was the ability
to compute solutions of the laminar Navier–Stokes equations, making linearised models,
usually in highly idealised geometries, seem irrelevant to complex flows in complex ge-
ometries. Another reason was that growing realisation of the importance of non-linear
effects and the development and understanding of bifurcation theory meant that the
limitations of what could be described by linearised models were better appreciated
(Stewartson & Stuart (1971); Stuart (1971)). A further, and perhaps theoretically most
important factor was the realisation that the predictions of linearised theory when ap-
plied to channel and pipe flows seemed to be not in accord with observed flows (Davies
& White (1928); Patel & Head (1969); Carlson et al. (1982); Lundbladh & Johansson
(1991); Tillmark & Alfredsson (1992); Klebanoff et al. (1962); Orszag & Patera (1983);
Bayly et al. (1988)). Recent ideas (Trefethen et al. (1993)) predict that non-normality of
the Navier–Stokes operator can lead to enormous transient amplification of disturbances
regardless of whether the flow is stable or unstable to linearised disturbances. In this pa-
per we show that the symmetric Poiseuille flow is in a sense a special situation and that
if the flow has a moderate asymmetric disturbance then solutions of the Orr-Sommerfeld
equation predict instablity and growth rates that may be in accord with transient growth
calculations from the full Navier–Stokes equations at quite low Reynolds numbers.

Linear stability theory has been applied to a number of parallel flows, particularly
Couette and Poiseuille flow that are physically realisable flows. The theory has also
been applied to model nearly parallel flows such as a shear layer where there is a smooth
transition between two uniform velocities. Such flow is not physically realisable (since
the pressure should vary across the flow in a way that cannot be achieved in a parallel
flow) but is a reasonable model for nearly parallel flow where the length scale for changes
in the flow direction is much larger than the width of the shear layer. In this paper we
show that in a channel flow, there is a region near a wall vortex, particularly the second
vortex, where the flow is almost parallel over a length that is sufficiently large compared
to the channel width for a parallel flow model to be applied.

In computing solutions to two-dimensional flow through a channel with an asym-
metric step expansion, it is well known that in addition to the primary vortex behind
the step, as the Reynolds number increases, a secondary vortex forms on the oppo-
site wall, see for example Sobey (1985); Tutty & Pedley (1993). In Figure 1 we show
an example flow from a finite difference solution of the Navier–Stokes equations at a
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Figure 1: Example computed two-dimensional flow past a step showing in the upper two
diagrams greyscale contours for the streamfunction and in the lowest diagram contours
of the vorticity and in particular an unstable flow developing from the vorticity layers
around the secondary vortex. The flow is from a computed solution of Navier–Sto-
kes equations at a Reynolds number of 400 with 50880 uniformly distributed mesh
points in a longitudinally periodic configuration. The region of interest in this paper is
for longitudinal values in the range 40 to 60.

Reynolds number 400 (based on average velocity and half minimum channel width) in
a periodic geometry where an instablity emerges from the secondary vortex. The figure
shows shaded contour plots for the stream-function (upper two diagrams, note that the
vertical axis of the lower figures are stretched for clarity) and the vorticity. Our interest
here is in regions where the base flow is essentially parallel but with a reverse velocity
on one wall. In the figure there is a very apparent instability which develops in the flow
around the secondary vortex, leading to a train of vortices further downstream. The
lower diagram shows a deformation of two vorticity layers that is extremely suggestive
of a Kelvin-Helmholz instability mechanism.

In the next scetion we formulate a standard Orr-Sommerfeld equation for the model
situation, giving a little more detail to justify a local paralllel flow approximation. We
then present the main results and give a few summary comments.

2 Formulation

We start by considering the governing equations for small disturbances in parallel flow.
We define a base velocity field U = (U(y), 0)T as a parallel flow in a plane channel. The
channel walls are considered flat located at y = ±1 in non-dimensional units.

If the underlying flow is steady or very slowly varying then then normal mode analysis
can be done by considering disturbance to the stream function of the form

ψ(x, y, t) = φ(y)ei(kx−ωt), (2.1)

which results in the classical Orr-Sommerfeld equation (Drazin (2002))

(U − c)
(

φ′′ − k2φ
)

− U ′′φ =
1

ikRe

(

φ(4) − 2k2φ′′ + k4φ
)

, (2.2)
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where c = ω/k is the speed of propagation and φ has the boundary conditions

φ(±1) = φ′(±1) = 0. (2.3)

The flow U is unstable if disturbances at a particular wave number grow in amplitude
with time. That is to say if the imaginary part of c, ci is positive for a positive wave
number k. The eigenvalues c are dependent on the underlying flow U(y), the wave
number k and the Reynolds number Re.

The Orr-Sommerfeld equation for plane Poiseuille flow has been extensively studied
(for example Orszag (1971)). He reports a critical Reynolds number of Rec = 5772
and critical wave number kc = 1.0255 for plane Poiseuille flow, U(y) = 1 − y2. Such
symmetric flows are very stable and in the unstable regimes, have very slow growth
rates. For example Poiseuille flow U(y) = 1 − y2 at Re = 104 has a maximum growth
parameter ci = 1.310 × 10−2 which would require almost 10 cycles to grow by an order
of magnitude.

However, we consider the effect of asymmetry of the underlying flow. The underlying
flow is modelled as

U(y) =
15

2

1

5 − σ2

(1 − y2)(1 − σ1y − σ2y
2), (2.4)

where σ1 and σ2 are model parameters. For σ1 = σ2 = 0 the flow is plane Poiseuille and
the multiplicative factor is to ensure that the flux is maintained at

∫ 1

−1

U(y) dy = 2. (2.5)

Thus the base flow U is still considered parallel but is no longer symmetric as Poi-
seuille flow. By varying the model parameters σ1 and σ2, the characteristics of the base
flow and consequently its stability should vary. The effect of the parameter σ1 is simply
to change the skewness of the profile. The second order parameter σ2 on the other hand
affects the maximum value of U(y). It should also be pointed out that for certain choices
of σ1 and σ2 the flow develops backward flow near the channel walls. In particular for
σ1 = 1.5 and σ2 = 0 the flow has a minimum velocity U(y) = −0.11482 at y = 0.84088.
Typical profiles are illustrated in Figure 2 for a range of values for σ1 and σ2.

That such a velocity profile might be reasonable comes from observations of computed
flows in asymmetric channels. As shown in Figure 3 (a) the steady flow through a channel
with a sudden asymmetric step exhibits regions in which the flow is not symmetric
but nonetheless nearly parallel. To determine how well the model flow approximates
the numerically computed flow, a least squares fit is performed to determine σ1 and
σ2 that correspond to the computed Navier–Stokes solution. Thus given a flow field
(u(x, y), v(x, y))T computed from solving the Navier–Stokes equations values σ1(x) and
σ2(x) are computed for each streamwise point x such that

e(x) =

∫ 1

−1

|u(x, y) − U(y)|2 dy, (2.6)
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Figure 2: Example underlying velocity profiles: (a) Fixed σ2 = 0: (—) σ1 = 0 [Poiseuille
flow], (- - -) σ1 = −0.5, (- · -) σ1 = −1.0, (· · · ) σ1 = −1.5, (b) Fixed σ1 = −1.5: (—)
σ2 = 0. (- - -) σ2 = 0.5, (- · -) σ2 = −0.5.

is minimised, where U is defined by (2.4). The minimum value of e(x) measures how
good the model fits the flow field. To assess how accurately the parallel flow assumption
is satisfied we use the function d(x) defined by

d(x) =
||v(x, ·)||

||u(x, ·)||
, (2.7)

where the norm is the discrete maximum norm. Smaller values of d(x) indicate that
at that streamwise location, vertical velocities are negligible as compared to streamwise
velocities and hence, locally, the flow is nearly parallel.

The model is compared to a numerically computed flow in Figure 3.
Figure 3 (a) shows a contour plot of the stream function ψ for a steady flow with

Re = 200. The streamlines indicate regions in the flow field near x = 13 shaded in gray
where the flow is nearly parallel. It should be noted that the vertical scale is exaggerated
and thus the regions of nearly parallel flow are quite long.

Figure 3 (b) shows a slow variation of both σ1 and σ2 with x and that both approach
zero further downstream showing the development of Poiseuille flow downstream. For
small values of x, typically x < 5, σ1 and σ2 are large. In this region, near the channel
expansion, the flow does not match the model, as can be seen from the large values of
e(x) in Figure 3 (c). Further downstream, e(x) is decreasing indicating an improved fit
in the model. In this region the values of σ1 and σ2 vary smoothly in the interval [−2, 2],
and further study is limited to this interval.

Figure 3 (d) shows the degree of parallelism in the flow measured by d(x) as defined
in (2.7). This shows small values indicating strong parallelism especially further down-
stream of the expansion where the flow switches to Poiseuille flow. There is also a sharp
decrease in d(x) in the vicinity of the centre of the secondary vortex (the shaded region)
and it is here that the model is most applicable.

We have solved the steady Orr-Sommerfeld eigenvalue problem (2.2)-(2.3) using the
spectral collocation method of Schmid & Henningson (2001). This involves discretis-
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Figure 3: Solution for Navier–Stokes equation at Re = 200 and least squares fit of
parameters for (2.4). (a) streamlines of numerically computed solution for steady flow,
(b) variation of parameters σ1 and σ2 along the channel, (c) measure of goodness of fit
of model equation (2.4) to actual longitudinal velocity, (d) measure of non-paralleism in
flow. The shaded region shows areas near the secondary vortex where the flow is nearly
parallel.
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ing the spatial operators using Chebyshev polynomials and casting the problem as a
generalised matrix eigenvalue problem. This has then been solved using Matlab’s gen-
eralised eigenvalue solver which uses generalised Schur decomposition to compute the
eigenvalues (Anderson et al. (1999)). Pseudospectra are computed using eigtool (see
Wright & L.N.Trefethen (2002)).

3 Stability results

Figure 4 shows the stability diagrams for the model flow (2.4) for different values of σ1

and σ2. The diagram has the Reynolds number on the horizontal axis and the the wave
number on the vertical axis. The shaded region in each figure is the unstable region
and this is separated from the stable region by the dotted neutral stability curve. In
the unstable region, modes at the particular wave number grow in time for a flow at the
prescribed Reynolds number.

The general trend in Figure 4 is that both σ1 and σ2 alter the stability characteristics
of the model flow. The way in which this change is performed is however different. Since
σ1 simply changes the symmetry of the flow, positive and negative values of σ1 have the
same effect on stability so it suffices to consider only positive values of σ1. Large values
of σ1 can be seen to be destabilising with the unstable region growing in extent as
σ1 increases. For σ2 however the situation is different. Whereas positive values are
destabilising, negative values generally stabilise the flow.

The solid curves in Figure 4 indicate the dominant wave number for each Reynolds
number. In certain cases especially for σ1 = 0.5 and σ2 = −0.1 there is a sudden shift
in the dominant wave number indicated by a unsmooth solid curve. This indicates a
switch between two Airy modes as labelled by Mack (1976).

The critical Reynolds number also depends on the model parameters σ1 and σ2. For
steady Poiseuille flow U(y) = 1 − y2, Orszag (1971) computed the historical critical
Reynolds number Rec = 5772.22 which corresponds to Rec = 3848.15 for our scaling
U(y) = 3

2
(1− y2). Such values for the critical Reynolds number give the impression that

the plane channel flows at Reynolds numbers less than 103 should be linearly stable with
all wave components being damped. Furthermore the growth rates predicted by Poi-
seuille flow analysis in the unstable region are very small so that growth of instabilities
is unobservable at short time scales.

However, due to lack of symmetry evidenced by nonzero values of σ1 and σ2, the
Reynolds numbers at which the flow becomes linearly unstable are reduced. This is
shown in Figure 5 which shows the critical Reynolds number Rec and the critical wave
number kc for the model flow (2.4) with different values of σ1 and σ2. As noted before
negative values of σ2 are stabilising, increasing Rec while positive values reduce Rec. The
general trend in the diagrams is that the critical Reynolds number initially increases with
σ1 but there is a critical value of σ1 around σ1 ≈ 0.5 when there is a sharp decrease
in the critical Reynolds number with σ1. This decreasing trend in Rec continues with
increasing σ1 so that for large values of σ1, the critical Reynolds number is well under
Rec = 100.
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Figure 4: Stability curves for model flow (2.4) for different values of model parameters
σ1 and σ2. The diagrams have Reynolds number Re on the horizontal axis and wave
number k on the vertical axis. The gray area indicates the linearly unstable region while
the white region is the stable region. The solid curve in each diagram indicates the most
dominant wave number at each Reynolds number. Note that the location of the least
stable eigenvalue appears to jump between values when σ1 = 0.5. The critical Reynolds
number for instability is graphed in Figure 5.
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Figure 6: Characteristics of the dominant mode for flow with Re = 600. The lowest
diagram shows the growth per cycle of the instability which when σ1 = 1.5 is an order
of magnitude larger than for plane Poiseuille flow. σ2 = −0.1 (· · · ), σ2 = 0 (− − −),
σ2 = 0.2 (−−−).

For predictions of the growth rates, we observe that the disturbance is essentially
like

ψ1 ∼ ekciteik(x−crt) (3.1)

so that the wavelength of a disturbance is λ = 2π/k, the temporal frequency of a
disturbance is ω = kcr and the amplification per cycle, which we denote by ζ , is

ζ = e2πci/cr . (3.2)

These values are shown in Figure 6 which has the curves of the wavelength λ, the
temporal frequency ω and the growth rate per cycle ζ of the most dominant mode for a
flow with Re = 600 for different values of σ1 and σ2.

The growth per cycle ζ is large for σ1 > 1 even for σ2 = 0. The maximum rate for
σ1 = 1 is ζ = 1.2864 and for σ1 = 1.5 is ζ = 3.4215. This indicates that the disturbances
grow in amplitude by an order of magnitude in just three cycles. For larger values of
σ1, say σ1 = 2 such a growth can be achieved in just one cycle. If the parameter σ2 is
increased, the growth rates are even more excessive with the flow becoming unstable for
all values of σ1 at σ2 = 0.5. For σ1 = 2 and σ2 = 0.5 the disturbance will grow by two
orders of magnitude in just one cycle.

This should be compared to Poiseuille flow U = 3
2
(1 − y2) at Re = 6666.67 (which

corresponds to Re = 104 for U = 1− y2) has a maximum growth rate ζ = 1.1266. Even
at such large Reynolds numbers such a disturbance would require at least eight cycles to
grow by an order of magnitude. Furthermore at the low Reynolds numbers considered
in this work the flows are linearly stable.

4 Eigenvalues and Pseudospectra

We have computed the eigenvalue spectra and pseudospectrum for the Orr-Sommerfeld op-
erator with the asymmetric velocity profile. The eigenvalue spectra are very similar to
those computed by Reddy et al. (1993); Dongarra et al. (1996) for Poiseuille flow and in-
deed while Reddy et al. (1993) considered the effect of small disturbances on the structure
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Figure 7: Eigenvalues and pseudospectra for Re = 200, k = 1, σ2 = 0: (a) σ1 = 0
(Poiseuille flow), (b) σ1 = −0.5, (c) σ1 = −1.5

of the pattern of eigenvalues, here even with much larger deviations from the symmetric
flow situation, the pattern of eigenvalues retains much of the original structure.

In Figure 7 we show the location of eigenvalues in the complex plane when Re = 200
and for the asymmetry parameter varying between σ1 = 0 [Poiseuille flow] and σ1 =
−1.5, as well as pseudospectra (the outer contour is for ǫ = 10−1 and then towards
the eigenvalues, ǫ = 10−1.5, 10−2, . . .. The main feature of these plots is that a single
eigenvalue crosses the line Im(c) = 0 leading to instability with a single well defined
eigenmode. Before instablity occurs (as σ1 varies) the pseudospectra show only a little
non-normality (as ǫ is relatively large, order 0.1) so the transition from stable to unstalbe
should be well indicated by the sign on the imaginary part of the eigenvalue changing
sign. In figure 8, plots are drawn for the same variation of σ1 but for amuch larger
Reynolds number, Re = 1000. Here there is a similar picture for variation of the eigen-
values, a single eignevalue crosses the line Im(c) = 0 as σ1 changes. The pseudospectra
contours show that non-normality is becoming more important although still relatively
weak at this Reynolds number.

5 Conclusion

We have examined a parallel flow model for flow in an elongated vortex in a channel flow
using the Orr-Sommerfeld formulation. The results show that while small asymmetry
has, if anything, a stabilising effect, larger asymmetry results in linear instablity at a
much reduced Reynolds number. Even more important for practical purposes, as the
asymmetry increases, the growth rate of disturbances becomes large enough for this
instablity mechanism to be seen as the source of the train of eddies that can develop
in channel flow. This analysis shows that linear stability analysis may be a basis for
understanding development of these disturbances in two-dimensional channel flows.
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Figure 8: Eigenvalues and pseudospectra for Re = 1000, k = 1, σ2 = 0: (a) σ1 = 0
(Poiseuille flow), (b) σ1 = −0.5, (c) σ1 = −1.5
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