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Abstract

We provide a comparative study be-
tween neural word representations and
traditional vector spaces based on co-
occurrence counts, in a number of com-
positional tasks. We use three differ-
ent semantic spaces and implement seven
tensor-based compositional models, which
we then test (together with simpler ad-
ditive and multiplicative approaches) in
tasks involving verb disambiguation and
sentence similarity. To check their scala-
bility, we additionally evaluate the spaces
using simple compositional methods on
larger-scale tasks with less constrained
language: paraphrase detection and di-
alogue act tagging. In the more con-
strained tasks, co-occurrence vectors are
competitive, although choice of composi-
tional method is important; on the larger-
scale tasks, they are outperformed by neu-
ral word embeddings, which show robust,
stable performance across the tasks.

1 Introduction

Neural word embeddings (Bengio et al., 2006;
Collobert and Weston, 2008; Mikolov et al.,
2013a) have received much attention in the dis-
tributional semantics community, and have shown
state-of-the-art performance in many natural lan-
guage processing tasks. While they have been
compared with co-occurrence based models in
simple similarity tasks at the word level (Levy et
al., 2014; Baroni et al., 2014), we are aware of
only one work that attempts a comparison of the
two approaches in compositional settings (Blacoe
and Lapata, 2012), and this is limited to additive
and multiplicative composition, compared against
composition via a neural autoencoder.

The purpose of this paper is to provide a more
complete picture regarding the potential of neu-

ral word embeddings in compositional tasks, and
meaningfully compare them with the traditional
distributional approach based on co-occurrence
counts. We are especially interested in investi-
gating the performance of neural word vectors in
compositional models involving general mathe-
matical composition operators, rather than in the
more task- or domain-specific deep-learning com-
positional settings they have generally been used
with so far (for example, by Socher et al. (2012),
Kalchbrenner and Blunsom (2013) and many oth-
ers).

In particular, this is the first large-scale study
to date that applies neural word representations in
tensor-based compositional distributional models
of meaning similar to those formalized by Coecke
et al. (2010). We test a range of implementations
based on this framework, together with additive
and multiplicative approaches (Mitchell and Lap-
ata, 2008), in a variety of different tasks. Specif-
ically, we use the verb disambiguation task of
Grefenstette and Sadrzadeh (2011a) and the tran-
sitive sentence similarity task of Kartsaklis and
Sadrzadeh (2014) as small-scale focused experi-
ments on pre-defined sentence structures. Addi-
tionally, we evaluate our vector spaces on para-
phrase detection (using the Microsoft Research
Paraphrase Corpus of Dolan et al. (2005)) and di-
alogue act tagging using the Switchboard Corpus
(see e.g. (Stolcke et al., 2000)).

In all of the above tasks, we compare the neural
word embeddings of Mikolov et al. (2013a) with
two vector spaces both based on co-occurrence
counts and produced by standard distributional
techniques, as described in detail below. The gen-
eral picture we get from the results is that in almost
all cases the neural vectors are more effective than
the traditional approaches.

We proceed as follows: Section 2 provides a
concise introduction to distributional word repre-
sentations in natural language processing. Section



3 takes a closer look to the subject of composi-
tionality in vector space models of meaning and
describes the range of compositional operators ex-
amined here. In Section 4 we provide details about
the vector spaces used in the experiments. Our ex-
perimental work is described in detail in Section 5,
and the results are discussed in Section 6. Finally,
Section 7 provides conclusions.

2 Meaning representation

There are several approaches to the representation
of word, phrase and sentence meaning. As nat-
ural languages are highly creative and it is very
rare to see the same sentence twice, any practical
approach dealing with large text segments must
be compositional, constructing the meaning of
phrases and sentences from their constituent parts.
The ideal method would therefore express not
only the similarity in meaning between those con-
stituent parts, but also between the results of their
composition, and do this in ways which fit with
linguistic structure and generalisations thereof.

Formal semantics Formal approaches to the
semantics of natural language have long built
upon the classical idea of compositionality –
that the meaning of a sentence is a function
of the meanings of its parts (Frege, 1892). In
compositional type-logical approaches, predicate-
argument structures representing phrases and sen-
tences are built from their constituent parts by β-
reduction within the lambda calculus framework
(Montague, 1970): for example, given a represen-
tation of John as john ′ and sleeps as λx.sleep′(x),
the meaning of the sentence “John sleeps”
can be constructed as λx.sleep′(x)(john ′) =
sleep′(john ′). Given a suitable pairing between
words and semantic representations of them, this
method can produce structured sentential repre-
sentations with broad coverage and good gener-
alisability (see e.g. (Bos, 2008)). The above logi-
cal approach is extremely powerful because it can
capture complex aspects of meaning such as quan-
tifiers and their interaction (see e.g. (Copestake et
al., 2005)), and enables inference using well stud-
ied and developed logical methods (see e.g. (Bos
and Gabsdil, 2000)).

Distributional hypothesis However, such for-
mal approaches are less able to express similar-
ity in meaning. We would like to capture the
intuition that while John and Mary are distinct,

they are rather similar to each other (both of them
are humans) and dissimilar to words such as dog,
pavement or idea. The same applies at the phrase
and sentence level: “dogs chase cats” is similar in
meaning to “hounds pursue kittens”, but less so to
“cats chase dogs” (despite the lexical overlap).

Distributional methods provide a way to address
this problem. By representing words and phrases
as vectors or tensors in a (usually highly dimen-
sional) vector space, one can express similarity
in meaning via a suitable distance metric within
that space (usually cosine distance); furthermore,
composition can be modelled via suitable linear-
algebraic operations.

Co-occurrence-based word representations
One way to produce such vectorial representa-
tions is to directly exploit Harris (1954)’s intuition
that semantically similar words tend to appear in
similar contexts. We can construct a vector space
in which the dimensions correspond to contexts,
usually taken to be words as well. The word
vector components can then be calculated from
the frequency with which a word has o-occurred
with the corresponding contexts in a window of
words, with a predefined length.

Table 1 shows 5 3-dimensional vectors for the
words Mary, John, girl, boy and idea. The words
philosophy, book and school signify vector space
dimensions. As the vector for boy is closer to girl
than it is to idea in the vector space—a direct con-
sequence of the fact that boy’s contexts are simi-
lar to girl’s and dissimilar to idea’s—we can infer
that boy is semantically more similar to girl than
to idea.

Many variants of this approach exist: perfor-
mance on word similarity tasks has been shown
to be improved by replacing raw counts with
weighted values (e.g. mutual information)—see
(Turney et al., 2010) and below for discussion, and
(Kiela and Clark, 2014) for a detailed comparison.

philosophy book school

Mary 0 10 22
John 4 60 59
girl 0 19 93
boy 0 12 104
idea 10 47 39

Table 1: Word co-occurrence frequencies ex-
tracted from the BNC (Leech et al., 1994).



Neural word embeddings Deep learning tech-
niques exploit the distributional hypothesis dif-
ferently. Instead of relying on observed co-
occurrence frequencies, a neural language model
is trained to maximise some objective function re-
lated to e.g. the probability of observing the sur-
rounding words in some context (Mikolov et al.,
2013b):

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

Optimizing the above function, for example, pro-
duces vectors which maximise the conditional
probability of observing words in a context around
the target word wt, where c is the size of the
training window, and w1w2, · · ·wT a sequence of
words forming a training instance. Therefore, the
resulting vectors will capture the distributional in-
tuition and can express degrees of lexical similar-
ity.

This method has an obvious advantage com-
pared to co-occurrence method: since now the
context is predicted, the model in principle can
be much more robust in data sparsity prob-
lems, which is always an important issue for co-
occurrence word spaces. Additionally, neural vec-
tors have also proven successful in other tasks
(Mikolov et al., 2013c), since they seem to en-
code not only attributional similarity (the degree to
which similar words are close to each other), but
also relational similarity (Turney, 2006). For ex-
ample, it is possible to extract the singular:plural
relation (apple:apples, car:cars) using vector sub-
traction:

−−−→
apple −

−−−−→
apples ≈ −→car −−−→cars

Perhaps even more importantly, semantic relation-
ships are preserved in a very intuitive way:

−−→
king −−−→man ≈ −−−→queen −−−−−→woman

allowing the formation of analogy queries similar
to
−−→
king −−−→man+−−−−→woman = ?, obtaining−−−→queen as

the result.1

Both neural and co-occurrence-based ap-
proaches have advantages over classical formal
approaches in their ability to capture lexical se-
mantics and degrees of similarity; their success at

1Levy et al. (2014) improved Mikolov et al. (2013c)’s
method of retrieving relational similarities by changing the
underlying objective function.

extending this to the sentence level and to more
complex semantic phenomena, though, depends
on their applicability within compositional mod-
els, which is the subject of the next section.

3 Compositional models

Compositional distributional models represent
meaning of a sequence of words by a vector, ob-
tained by combining meaning vectors of the words
within the sequence using some vector composi-
tion operation. In a general classification of these
models, one can distinguish between three broad
cases: simplistic models which combine word
vectors irrespective of their order or relation to one
another, models which exploit linear word order,
and models which use grammatical structure.

The first approach combines word vectors
by vector addition or point-wise multiplication
(Mitchell and Lapata, 2008)—as this is indepen-
dent of word order, it cannot capture the differ-
ence between the two sentences “dogs chase cats”
and “cats chase dogs”. The second approach has
generally been implemented using some form of
deep learning, and captures word order, but not by
necessarily caring about the grammatical structure
of the sentence. Here, one works by recursively
building and combining vectors for subsequences
of words within the sentence using e.g. autoen-
coders (Socher et al., 2012) or convolutional fil-
ters (Kalchbrenner et al., 2014). We do not con-
sider this approach in this paper. This is because,
as mentioned in the introduction, their vectors
and composition operators are task-specific, be-
ing trained directly to achieve specific objectives
in certain pre-determined tasks. Here, we are in-
terested in vector and composition operators that
work for any compositional task, and which can
be combined with results in linguistics and formal
semantics to provide generalisable models that can
extend to complex semantic phenomena. The third
(i.e. the grammatical) approach promises a way to
achieve this, and has been instantiated in various
ways in the work of (Baroni and Zamparelli, 2010;
Grefenstette and Sadrzadeh, 2011a; Kartsaklis et
al., 2012).

General framework Formally, we can spec-
ify the vector representation of a word sequence
w1w2 · · ·wn as the vector−→s = −→w1 ?

−→w2 ? · · ·?−→wn,
where ? is a vector operator, such as addition +,
point-wise multiplication �, tensor product ⊗, or
matrix multiplication ×.



In the simplest compositional models (the first
approach described above), ? is + or �, e.g. see
(Mitchell and Lapata, 2008). Grammar-based
compositional models (the third approach) are
based on a generalisation of the notion of vectors,
known as tensors. Whereas a vector −→v is an ele-
ment of an atomic vector space V , a tensor z is an
element of a tensor space V ⊗W ⊗ · · · ⊗ Z. The
number of tensored spaces is referred to by the or-
der of the space. Using a general duality theorem
from multi-linear algebra (Bourbaki, 1989), it fol-
lows that tensors are in one-one correspondence
with multi-linear maps, that is we have:

z ∈ V ⊗W⊗· · ·⊗Z ∼= fz : V →W → · · · → Z

In such a tensor-based formalism, meanings of
nouns are vectors and meanings of predicates such
as adjectives and verbs are tensors. Meaning of a
string of words is obtained by applying the compo-
sitions of multi-linear map duals of the tensors to
the vectors. For the sake of demonstration, take
the case of an intransitive sentence “Sbj Verb”;
the meaning of the subject is a vector

−→
Sbj ∈ V

and the meaning of the intransitive verb is a tensor
Verb ∈ V ⊗W . The meaning of the sentence is
obtained by applying fV erb to

−→
Sbj, as follows:

−−−−−→
Sbj Verb = fV erb(

−→
Sbj)

By tensor-map duality, the above becomes
equivalent to the following, where composition
has become the familiar notion of matrix multi-
plication, that is ? is ×:

Verb×−→Sbj

In general and for words with tensors of order
higher than two, ? becomes a generalisation of ×,
referred to by tensor contraction, see e.g. (Kart-
saklis and Sadrzadeh, 2013). Since the creation
and manipulation of tensors of order higher than 2
is difficult, one can work with simplified versions
of tensors, faithful to their underlying mathemat-
ical basis; these have found intuitive interpreta-
tions, e.g. see (Grefenstette and Sadrzadeh, 2011a;
Kartsaklis and Sadrzadeh, 2014). In such cases, ?
becomes a combination of a range of operations
such as ×, ⊗, � or +.

Specific models In the current paper we will ex-
periment with a variety of models. In Table 2, we
present these models in terms of their composi-
tion operators and a reference to the main paper in

which each model was introduced. For the sim-
ple compositional models the sentence is a string
of any number of words; for the grammar-based
models, we consider simple transitive sentences
“Sbj Verb Obj” and introduce the following abbre-
viations for the concrete method used to build a
tensor for the verb:

1. Verb is a verb matrix computed using the for-
mula

∑
i

−−→
Sbji⊗

−−→
Obji, where

−−→
Sbji and

−−→
Obji are

the subjects and objects of the verb across the
corpus. These models are referred to by rela-
tional (Grefenstette and Sadrzadeh, 2011a);
they are generalisations of predicate seman-
tics of transitive verbs, from pairs of individ-
uals to pairs of vectors. The models reduce
the order 3 tensor of a transitive verb to an
order 2 tensor (i.e. a matrix).

2. Ṽerb is a verb matrix computed using the for-
mula

−−→
Verb ⊗ −−→Verb, where

−−→
Verb is the distri-

butional vector of the verb. These models are
referred to by Kronecker, which is the term
sometimes used to denote the outer prod-
uct of tensors (Grefenstette and Sadrzadeh,
2011b). The models also reduce the order 3
tensor of a transitive verb to an order 2 tensor
(i.e. a matrix).

3. The models of the last five lines of the table
use the so-called Frobenius operators from
categorical compositional distributional se-
mantics (Kartsaklis et al., 2012) to expand
the relational matrices of verbs from order 2
to order 3. The expansion is obtained by ei-
ther copying the dimension of the subject into
the space provided by the third tensor, hence
referred to by Copy-Sbj, or copying the di-
mension of the object in that space, hence re-
ferred to by Copy-Obj; furthermore, we can
take addition, multiplication, or outer product
of these, which are referred to by Frobenius-
Add, Frobenius-Mult, and Frobenius-Outer
(Kartsaklis and Sadrzadeh, 2014).

4 Semantic word spaces

Co-occurrence-based vector space instantiations
have received a lot of attention from the scientific
community (refer to (Kiela and Clark, 2014; Po-
lajnar and Clark, 2014) for recent studies). There-
fore we instantiate two co-occurrence-based vec-
tors spaces with different underlying corpora and
weighting schemes.



Method Sentence Linear algebraic formula Reference

Addition w1w2 · · ·wn
−→w1 +

−→w2 + · · ·+−→wn Mitchell and Lapata (2008)
Multiplication w1w2 · · ·wn

−→w1 �−→w2 � · · · � −→wn Mitchell and Lapata (2008)

Relational Sbj Verb Obj Verb� (
−→
Sbj⊗−→Obj) Grefenstette and Sadrzadeh (2011a)

Kronecker Sbj Verb Obj Ṽerb� (
−→
Sbj⊗−→Obj) Grefenstette and Sadrzadeh (2011b)

Copy object Sbj Verb Obj
−→
Sbj� (Verb×−→Obj) Kartsaklis et al. (2012)

Copy subject Sbj Verb Obj
−→
Obj� (Verb

T ×−→Sbj) Kartsaklis et al. (2012)
Frob. add. Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj)) + (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. mult. Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj))� (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)
Frob. outer Sbj Verb Obj (

−→
Sbj� (Verb×−→Obj))⊗ (

−→
Obj� (Verb

T ×−→Sbj)) Kartsaklis and Sadrzadeh (2014)

Table 2: Compositional methods.

GS11 Our first word space is based on a typ-
ical configuration that has been used in the past
extensively for compositional distributional mod-
els (see below for details), so it will serve as a
useful baseline for the current work. In this vec-
tor space, the co-occurrence counts are extracted
from the British National Corpus (BNC) (Leech et
al., 1994). As basis words, we use the most fre-
quent nouns, verbs, adjectives and adverbs (POS
tags SUBST, VERB, ADJ and ADV in the BNC
XML distribution2). The vector space is lemma-
tized, that is, it contains only “canonical” forms of
words.

In order to weight the raw co-occurrence counts,
we use positive point-wise mutual information
(PPMI). The component value for a target word
t and a context word c is given by:

PPMI(t, c) = max

(
0, log

p(c|t)
p(c)

)
where p(c|t) is the probability of word c given t
in a symmetric window of length 5 and p(c) is the
probability of c overall.

Vector spaces based on point-wise mutual in-
formation (or variants thereof) have been suc-
cessfully applied in various distributional and
compositional tasks; see e.g. (Grefenstette and
Sadrzadeh, 2011a; Mitchell and Lapata, 2008;
Levy et al., 2014) for details. PPMI has been
shown to achieve state-of-the-art results (Levy et
al., 2014) and is suggested by the review of Kiela
and Clark (2014). Our use here of the BNC as a
corpus and the window length of 5 is based on pre-
vious use and better performance of these param-
eters in a number of compositional experiments
(Grefenstette and Sadrzadeh, 2011a; Grefenstette

2http://www.natcorp.ox.ac.uk/

and Sadrzadeh, 2011b; Mitchell and Lapata, 2008;
Kartsaklis et al., 2012).

KS14 In this variation, we train a vector space
from the ukWaC corpus3 (Ferraresi et al., 2008),
originally using as a basis the 2,000 content words
with the highest frequency (but excluding a list of
stop words as well as the 50 most frequent content
words since they exhibit low information content).
The vector space is again lemmatized. As context
we consider a 5-word window from either side of
the target word, while as our weighting scheme we
use local mutual information (i.e. point-wise mu-
tual information multiplied by raw counts). In a
further step, the vector space was normalized and
projected onto a 300-dimensional space using sin-
gular value decomposition (SVD).

In general, dimensionality reduction produces
more compact word representations that are robust
against potential noise in the corpus (Landauer and
Dumais, 1997; Schütze, 1997). SVD has been
shown to perform well on a variety of tasks similar
to ours (Baroni and Zamparelli, 2010; Kartsaklis
and Sadrzadeh, 2014).

Neural word embeddings (NWE) For our neu-
ral setting, we used the skip-gram model of
(Mikolov et al., 2013b) trained with negative sam-
pling. The specific implementation that was tested
in our experiments was a 300-dimensional vec-
tor space learned from the Google News corpus
and provided by the word2vec4 toolkit. Fur-
thermore, the gensim library (Řehůřek and So-
jka, 2010) was used for accessing the vectors.
On the contrary with the previously described co-

3http://wacky.sslmit.unibo.it/
4https://code.google.com/p/word2vec/



occurrence vector spaces, this version is not lem-
matized.

The negative sampling method improves the ob-
jective function of Equation 1 by introducing neg-
ative examples to the training algorithm. Assume
that the probability of a specific (c, t) pair of words
(where t is a target word and c another word in
the same context with t), coming from the training
data, is denoted as p(D = 1|c, t). The objective
function is then expressed as follows:∏

(c,t)∈D

p(D = 1|c, t) (2)

That is, the goal is to set the model parameters in
a way that maximizes the probability of all obser-
vations coming from the training data. Assume
now that D′ is a set of randomly selected incorrect
(c′, t′) pairs that do not occur in D, then Equation
2 above can be recasted in the following way:∏

(c,t)∈D

p(D = 1|c, t)
∏

(c′,t′)∈D′

p(D = 0|c′, t′)

(3)
In other words, the model tries to distinguish a tar-
get word t from random draws that come from a
noise distribution. In the implementation we used
for our experiments, c is always selected from
a 5-word window around t. More details about
the negative sampling approach can be found in
(Mikolov et al., 2013b); the note of Goldberg and
Levy (2014) also provides an intuitive explanation
of the underlying setting.

5 Experiments

Our experiments explore the use of the vector
spaces above, together with the compositional op-
erators described in Section 3, to a range of tasks
all of which require semantic composition: verb
sense disambiguation; sentence similarity; para-
phrasing; and dialogue act tagging.

5.1 Disambiguation
We use the transitive verb disambiguation dataset5

described in (Grefenstette and Sadrzadeh, 2011a).
The dataset consists of ambiguous transitive verbs
together with their arguments, landmark verbs
that identify one of the verb senses, and human
judgements that specify how similar is the disam-
biguated sense of the verb in the given context to

5This and the sentence similarity dataset are avail-
able at http://www.cs.ox.ac.uk/activities/
compdistmeaning/

one of the landmarks. This is similar to the in-
transitive dataset described in (Mitchell and Lap-
ata, 2008). Consider the sentence “system meets
specification”; here, meets is the ambiguous tran-
sitive verb, and system and specification are its ar-
guments in this context. Possible landmarks for
meet are satisfy and visit; for this sentence, the
human judgements show that the disambiguated
meaning of the verb is more similar to the land-
mark satisfy and less similar to visit.

The task is to estimate the similarity of the sense
of a verb in a context with a given landmark. To
get our similarity measures, we compose the verb
with its arguments using one of our compositional
models; we do the same for the landmark and then
compute the cosine similarity of the two vectors.
We evaluate the performance by averaging the hu-
man judgements for the same verb, argument and
landmark entries, and calculating the Spearman’s
correlation between the average values and the co-
sine scores. As a baseline, we compare this with
the correlation produced by using only the verb
vector, without composing it with its arguments.

Table 3 shows the results of the experiment.
NWE copy-object composition yields the best cor-
relation with the human judgements, and top per-
formance across all vector spaces and models with
a Spearman ρ of 0.456. For the KS14 space, the
best result comes from Frobenius outer (0.350),

Method GS11 KS14 NWE

Verb only 0.212 0.325 0.107

Addition 0.103 0.275 0.149
Multiplication 0.348 0.041 0.095

Kronecker 0.304 0.176 0.117
Relational 0.285 0.341 0.362
Copy subject 0.089 0.317 0.131
Copy object 0.334 0.331 0.456
Frobenius add. 0.261 0.344 0.359
Frobenius mult. 0.233 0.341 0.239
Frobenius outer 0.284 0.350 0.375

Table 3: Spearman ρ correlations of models with
human judgements for the word sense disam-
biguation task. The best result (NWE Copy ob-
ject) outperforms the nearest co-occurrence-based
competitor (KS14 Frobenius outer) with a statisti-
cally significant difference (p < 0.05, t-test).



while the best operator for the GS11 space is
point-wise multiplication (0.348).

For simple point-wise composition, only mul-
tiplicative GS11 and additive NWE improve over
their corresponding verb-only baselines (but both
perform worse than the KS14 baseline). With
tensor-based composition in co-occurrence based
spaces, copy subject yields lower results than
the corresponding baselines. Other composition
methods, except Kronecker for KS14, improve
over the verb-only baselines. Finally we should
note that, despite the small training corpus, the
GS11 vector space performs comparatively well;
for example, Kronecker model improves the pre-
viously reported score of 0.28 (Grefenstette and
Sadrzadeh, 2011b).

5.2 Sentence similarity
In this experiment we use the transitive sentence
similarity dataset described in (Kartsaklis and
Sadrzadeh, 2014). The dataset consists of transi-
tive sentence pairs and a human similarity judge-
ment 6. The task is to estimate similarity between
two sentences. As in the disambiguation task,
we first compose word vectors to obtain sentence
vectors, then compute cosine similarity of them.
We average the human judgements for identical
sentence pairs to compute correlation with cosine
scores.

Table 4 shows the results. Again, the best
performing vector space is KS14, but this time
with addition: the Spearman ρ correlation score
with averaged human judgements is 0.732. Addi-
tion was the means for the other vector spaces to
achieve top performance as well: GS11 and NWE
got 0.682 and 0.689 respectively.

None of the models in tensor-based composi-
tion outperformed addition. KS14 performs worse
with tensor-based methods here than in the other
vector spaces. However, GS11 and NWE, except
copy subject for both of them and Frobenius multi-
plication for NWE, improved over their verb-only
baselines.

5.3 Paraphrasing
In this experiment we evaluate our vector spaces
on a mainstream paraphrase detection task.

6The textual content of this dataset is the same as that of
(Kartsaklis and Sadrzadeh, 2013), the difference is that the
dataset of (Kartsaklis and Sadrzadeh, 2014) has updated hu-
man judgements whereas the previous dataset used the orig-
inal annotations of the intransitive dataset of (Mitchell and
Lapata, 2008).

Method GS11 KS14 NWE

Verb only 0.491 0.602 0.561

Addition 0.682 0.732 0.689
Multiplication 0.597 0.321 0.341

Kronecker 0.581 0.408 0.561
Relational 0.558 0.437 0.618
Copy subject 0.370 0.448 0.405
Copy object 0.571 0.306 0.655
Frobenius add. 0.566 0.460 0.585
Frobenius mult. 0.525 0.226 0.387
Frobenius outer 0.560 0.439 0.622

Table 4: Results for sentence similarity. There
is no statistically significant difference between
KS14 addition and NWE addition (the second best
result).

Specifically, we get classification results on the
Microsoft Research Paraphrase Corpus paraphrase
corpus (Dolan et al., 2005) working in the fol-
lowing way: we construct vectors for the sen-
tences of each pair; if the cosine similarity be-
tween the two sentence vectors exceeds a certain
threshold, the pair is classified as a paraphrase,
otherwise as not a paraphrase. For this experi-
ment and that of Section 5.4 below, we investigate
only the element-wise addition and multiplication
compositional models, since at their current stage
of development tensor-based models can only effi-
ciently handle sentences of fixed structure. Never-
theless, the simple point-wise compositional mod-
els still allow for a direct comparison of the vector
spaces, which is the main goal of this paper.

For each vector space and model, a number of
different thresholds were tested on the first 2000
pairs of the training set, which we used as a de-
velopment set; in each case, the best-performed
threshold was selected for a single run of our
“classifier” on the test set (1726 pairs). Addition-
ally, we evaluate the NWE model with a lemma-
tized version of the corpus, so that the experimen-
tal setup is maximally similar for all vector spaces.
The results are shown in the first part of Table 5.

Additive NWE gives the highest performance,
with both lemmatized and un-lemmatized versions
outperforming the GS11 and KS14 spaces. In
the un-lemmatized case, the accuracy of our sim-
ple “classifier” (0.73) is close to state-of-the-art
range. The state-of-the art result (0.77 accuracy



Co-occurrence Neural word embeddings

Baseline GS11 KS14 Unlemmatized Lemmatized

Model Accuracy F-Score Accuracy F-Score Accuracy F-Score Accuracy F-Score Accuracy F-Score

MSR addition 0.65 0.75 0.62 0.79 0.70 0.80 0.73 0.82 0.72 0.81
MSR multiplication 0.52 0.58 0.66 0.80 0.42 0.34 0.41 0.36

SWDA addition 0.60 0.58 0.35 0.35 0.40 0.35 0.63 0.60 0.44 0.40
SWDA multiplication 0.32 0.16 0.39 0.33 0.58 0.53 0.43 0.38

Table 5: Results for paraphrase detection (MSR) and dialog act tagging (SWDA) tasks. All top results
significantly outperform corresponding nearest competitors (for accuracy): p < 0.05, χ2 test.

and 0.84 F-score7) by the time of this writing has
been obtained using 8 machine translation metrics
and three constituent classifiers (Madnani et al.,
2012).

The multiplicative model gives lower results
than the additive model across all vector spaces.
The KS14 vector space shows the steadiest per-
formance, with a drop in accuracy of only 0.04
and no drop in F-score, while for the GS11 and
NWE spaces both accuracy and F-score experi-
enced drops by more than 0.20.

5.4 Dialogue act tagging

As our last experiment, we evaluate the word
spaces on a dialogue act tagging task (Stolcke et
al., 2000) over the Switchboard corpus (Godfrey
et al., 1992). Switchboard is a collection of ap-
proximately 2500 dialogs over a telephone line by
500 speakers from the U.S. on predefined topics.8

The experiment pipeline follows (Milajevs and
Purver, 2014). The input utterances are prepro-
cessed so that the parts of interrupted utterances
are concatenated (Webb et al., 2005). Disfluency
markers and commas are removed from the utter-
ance raw texts. For GS11 and KS14 the utterance
tokens are POS-tagged and lemmatized; for NWE,
we test the vectors in both a lemmatized and an
un-lemmatized version of the corpus.9 We split
the training and testing utterances as suggested by
Stolcke et al. (2000). Utterance vectors are then
obtained as in the previous experiments; they are
reduced to 50 dimensions using SVD and a k-
nearest-neighbour classifier is trained on these re-
duced utterance vectors (the 5 closest neighbours
by Euclidean distance are retrieved to make a clas-

7F-scores use the standard definition F = 2(precision ∗
recall)/(precision + recall).

8The dataset and a Python interface to it are available
at http://compprag.christopherpotts.net/
swda.html

9We use WordNetLemmatizer of the NLTK library
(Bird, 2006).

sification decision). The results are shown in the
second part of Table 5.

Un-lemmatized NWE addition gave the best ac-
curacy (0.63) and F-score (0.60) (averaged over
tag classes), i.e. similar results to (Milajevs and
Purver, 2014)—although note that the dimension-
ality of our NWE vectors is 10 times lower than
theirs. Multiplicative NWE outperformed the cor-
responding model in (Milajevs and Purver, 2014).
In general, addition consistently outperforms mul-
tiplication for all the models. Lemmatization
dramatically lowers tagging accuracy: the lem-
matized GS11, KS14 and NWE models perform
much worse than un-lemmatized NWE, suggest-
ing that morphological features are important for
this task.

6 Discussion

Previous comparisons of co-occurrence-based and
neural word vector representations vary widely
in their conclusions. While Baroni et al. (2014)
conclude that “context-predicting models obtain
a thorough and resounding victory against their
count-based counterparts”, this seems to contra-
dict, at least at the first consideration, the more
conservative conclusion of Levy et al. (2014) that
“analogy recovery is not restricted to neural word
embeddings [. . . ] a similar amount of relational
similarities can be recovered from traditional dis-
tributional word representations” and the findings
of Blacoe and Lapata (2012) that “shallow ap-
proaches are as good as more computationally in-
tensive alternatives” on phrase similarity and para-
phrase detection tasks.

It seems clear that neural word embeddings
have an advantage when used in tasks for which
they have been trained; our main questions here
are whether they outperform co-occurrence based
alternatives across the board; and which ap-
proach lends itself better to composition using
general mathematical operators. To partially an-



swer this question, we can compare model be-
haviour against the baselines in isolation.

For the disambiguation and sentence similarity
tasks the baseline is the similarity between verbs
only, ignoring the context—see above. For the
paraphrase task, we take the global vector-based
similarity reported in (Mihalcea et al., 2006): 0.65
accuracy and 0.75 F-score. For the dialogue act
tagging task the baseline is the accuracy of the
bag-of-unigrams model in (Milajevs and Purver,
2014): 0.60.

Sections 5.1 and 5.2 show that although the best
choice of vector representation might vary, for
small-scale tasks all methods give fairly compet-
itive results. The choice of compositional oper-
ator seems to be more important and more task-
specific: while a tensor-based operation (Frobe-
nius copy-object) performs best for verb disam-
biguation, the best result for sentence similarity
is achieved by a simple additive model, with all
other compositional methods behaving worse than
the verb-only baseline in the KS14 case. GS11 and
NWE, on the other hand, outperform their base-
lines with a number of compositional methods, al-
though both of them achieve lower performance
than KS14 overall.

Based on only small-scale experiment results,
one could conclude that there is little significant
difference between the two ways of obtaining vec-
tors. GS11 and NWE show similar behaviour in
comparison to their baselines, while it is possible
to tune a co-occurrence based vector space (KS14)
and obtain the best result. Large scale tasks reveal
another pattern: the GS11 vector space, which be-
haves stably on the small scale, drags behind the
KS14 and NWE spaces in the paraphrase detec-
tion task. In addition, NWE consistently yields
best results. Finally, only the NWE space was able
to provide adequate results on the dialogue act tag-
ging task. Table 6 summarizes model performance
with regard to baselines.

7 Conclusion

In this work we compared the performance of two
co-occurrence-based semantic spaces with vectors
learned by a neural network in compositional set-
tings. We carried out two small-scale tasks (word
sense disambiguation and sentence similarity) and
two large-scale tasks (paraphrase detection and di-
alogue act tagging).

Task GS11 KS14 NWE

Disambiguation + + +
Sentence similarity + – +

Paraphrase − + +
Dialog act tagging − − +

Table 6: Summary of vector space performance
against baselines. General improvement (cases
where more than a half of the models perform bet-
ter) and decrease with regard to a corresponding
baseline is respectively marked by + and −. A
bold value means that the model gave the best re-
sult in the task.

On small-scale tasks, where the sentence struc-
tures are predefined and relatively constrained,
NWE gives better or similar results to count-based
vectors. Tensor-based composition does not al-
ways outperform simple compositional operators,
but for most of the cases gives results within the
same range.

On large-scale tasks, neural vectors are more
successful than the co-occurrence based alterna-
tives. However, this study does not reveal whether
this is because of their neural nature, or just be-
cause they are trained on a larger amount of data.

The question of whether neural vectors outper-
form co-occurrence vectors therefore requires fur-
ther detailed comparison to be entirely resolved;
our experiments suggest that this is indeed the case
in large-scale tasks, but the difference in size and
nature of the original corpora may be a confound-
ing factor. In any case, it is clear that the neural
vectors of word2vec package perform steadily
off-the-shelf across a large variety of tasks. The
size of the vector space (3 million words) and the
available code-base that simplifies the access to
the vectors, makes this set a good and safe choice
for experiments in the future. Of course, even bet-
ter performances can be achieved by training neu-
ral language models specifically for a given task
(see e.g. Kalchbrenner et al. (2014)).

The choice of compositional operator (tensor-
based or a simple point-wise operation) depends
strongly on the task and dataset: tensor-based
composition performed best with the verb dis-
ambiguation task, where the verb senses depend
strongly on the arguments of the verb. However, it
seems to depend less on the nature of the vectors
itself: in the disambiguation task, tensor-based



composition proved best for both co-occurrence-
based and neural vectors; in the sentence similar-
ity task, where point-wise operators proved best,
this was again true across vector spaces.
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