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1 Introduction

It is well known that an analytic function f of a square matrix A can be represented as
a contour integral,

f(A) =
1

2πi

∫

Γ

f(z) (zI−A)−1 dz, (1.1)

where Γ is a closed contour lying in the region of analyticity of f and winding once around
the spectrum σ(A) in the counterclockwise direction. However, this idea has not often
been exploited for numerical computation. Here we propose efficient ways to make use
of (1.1) in the case where A has eigenvalues on or near the positive real axis (0,∞) and
f(z) is a function such as zα or log z that is analytic apart from singularities or a branch
cut on or near the negative real axis (−∞, 0]. To be precise, it is not the matrix f(A)
that we usually compute but the vector f(A)b for a given vector b. The first method we
propose is to transplant the problem by a conformal map to an annulus and then apply
the trapezoid rule, which converges geometrically (§2). This procedure will be especially
effective in cases where A is what might be called a “backslash matrix”: a large sparse
matrix for which systems of equations (zI−A)x = b can be solved efficiently by sparse
direct methods but Krylov subspace iterations and Schur reduction to triangular form
are impractical. An example is the matrix corresponding to the standard 5-point finite
difference discretization of the Laplacian in two dimensions.

We then consider two modifications to this technique to take advantage of particular
structure of f : first, if f has a branch cut but no singularities on (−∞, 0) (§3); second, if
f(z) = z1/2 (§4). (Here and throughout this paper, the notations z1/2, zα, and log z refer
to the standard branches of these functions, and A1/2 and so on to the corresponding
principal branches of the matrix functions.) Significant improvements can be achieved
in such cases, including the avoidance of complex arithmetic.

All our methods based on quadrature formulas can be interpreted as making implicit
use of rational approximations f(z) ≈ r(z) in regions of the complex plane. In §5 we
examine how these implicitly constructed rational functions compare with those obtained
by solving a rational approximation problem directly. For the case f(z) = z1/2, we find
that the combination of our conformal map with the trapezoid rule reproduces a best
rational approximation discovered by Zolotarev in 1877.

In §6 we consider the effect of complex eigenvalues on the convergence of our methods,
and §7 examines three further numerical examples.

Before beginning, we shall slightly change the starting point. We have found that
for the problems considered here a better way to obtain f(A) is often by computing
A ·A−1f(A), replacing (1.1) with the formula

f(A) =
A

2πi

∫

Γ

z−1f(z) (zI−A)−1 dz. (1.2)

The reason is that the dz factor becomes large as Γ swings out into the complex plane,
and the factor z−1 counters this effect. For the first two methods derived in §§ 2 and 3,
the use of (1.2) instead of (1.1) typically improves accuracy by a digit or two. For the
method of §4, its use is essential since the contour passes through z = ∞.
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Figure 1: Depiction of the trapezoid rule applied directly to (1.2), with the contour Γ taken
as a circle. This method is highly inefficient if M À m.

For general information about the theory and computation of functions of matrices,
see [11].

2 Method 1: conformal map from an annulus

Let A be a real matrix whose eigenvalues lie in the interval (0,∞). In many applications
A will be symmetric, but we do not require this. The assumption that A is real will
save a factor of two by allowing trapezoid sums to exploit symmetry. The assumption
that the eigenvalues are real can be relaxed; our methods do not degrade very much if
the eigenvalues move slightly off the real axis, as is illustrated in §6.

Let m and M be the minimum and maximum eigenvalues of A, respectively. If A
is symmetric, or more generally normal, then M/m is its 2-norm condition number,
whereas for general A the condition number may be larger. We assume at the outset
that m and M are known, although in practice, it would often be necessary first to
estimate them. We also suppose that σ(A) more or less fills [m, M ] in the sense that
we do not attempt to exploit any gaps in the spectrum.

The assumption we make initially about f is that it is analytic in the slit complex
plane C\(−∞, 0]. This is true, for example, if f(z) = log z or f(z) = zα = eα log z (for
any α ∈ R) for the standard branches. It is also true of more complicated functions such
as f(z) = Γ(z) or f(z) = tanh(z1/2 ).

One numerical approach to (1.2) is to surround [m,M ] by a circle in the right half-
plane and apply the trapezoid rule on this circle to approximate the integral, as sketched
in Figure 1. However, this method will be terribly inefficient if A is ill-conditioned, re-
quiring O(M/m) or more linear system solves to get any accuracy at all [4], because Γ is
contained in only a very narrow annulus of analyticity. Our strategy will be to improve
the problem by a change of variables in the complex plane, which will bring the count
down to O(log(M/m)). The idea of combining the trapezoid rule with a change of vari-
ables was put forward for real integrals by Sag and Szekeres in 1964 [20] and Schwartz in
1969 [22] and developed more fully in the 1970s by Iri, Moriguti and Takasawa [12], Taka-
hasi and Mori [17, 28, 29], and Stenger [25, 26, 27], among others. For inverse Laplace
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Figure 2: Conformal map for Method 1. First, transplant the entire doubly connected region
of analyticity Ω conformally to an annulus A, with the line of singularities mapping to the outer
boundary circle and the interval containing the spectrum to the inner one. Then apply the
trapezoid rule over a circle in the annulus. This will correspond to a nonuniform distribution
of quadrature points in the z-plane. In this figure M/m = 8 and the annulus is quite thick.
As M/m increases, it becomes thinner only logarithmically. The dots show quadrature nodes
for N = 16.

transform contour integrals, such ideas were developed by Talbot in 1979 [30] and have
been exploited by a variety of authors [10, 16, 23, 31], and the parameters have recently
been optimized in various senses by Weideman and Trefethen [33, 34, 36, 37]. However,
we are not aware of previous papers on such methods for the matrix function problems
considered here.

Our aim is to transplant the region of analyticity of f and (zI −A)−1 conformally
to an annulus

A = {z ∈ C : r < |z| < R}.
According to results going back in part to Poisson in the 1820s and first fully worked
out by Davis in the 1950s [5], [6, §4.6.5], the trapezoid rule applied over a circle within
A will converge geometrically as N → ∞, where N is the number of sample points.
Moreover, this will be a thicker annulus than was available before the conformal map
(Figure 1), which will make the convergence constant quite favorable.

This strategy is sketched in Figure 2. The region in question is the doubly connected
set

Ω = C\( (−∞, 0] ∪ [m,M ]).

We thus face a conformal mapping problem: how to map this domain Ω onto an annulus
A? More precisely it is the map from A to Ω that we shall need to compute. The radii R
and r are not entirely at our disposal: the formulas below imply that R/r is determined
by M/m.

The map can be carried out in three steps, as shown in Figure 3. First, the function

t =
2Ki

π
log(−is/r)

carries the upper half of A to the rectangle with vertices ±K and ±K + iK ′. The
numbers K and K ′ are complete elliptic integrals whose values are fixed by the next
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Figure 3: The map of Figure 2, constructed in three steps s → t → u → z. Here m = 1,
M = 20. The boundaries are shown in various colors and line styles together with 500 random
interior points in the rectangle and a typical set of N = 16 quadrature points for the trapezoid
rule in the t-plane. Notice how the narrow gap between 0 and m in the z-plane broadens to a
comfortable ratio R/r ≈ 5.8 in the annulus.

step of the conformal map. In this second step the Jacobi elliptic function

u = sn(t) = sn(t|k2), k =

√
M/m− 1√
M/m + 1

(2.1)

maps the rectangle to the upper half-plane, with the ends mapping to [−k−1,−1] and
[1, k−1] (see [1, 9]). Finally, the Möbius transformation

z =
√

mM

(
k−1 + u

k−1 − u

)
(2.2)

carries the upper half-plane to itself in such a way that [−k−1,−1] and [1, k−1] are sent to
[0,m] and [M,∞], respectively. We have now mapped the upper half of A to the upper
half of Ω. Reflection across the interval (r, R) (using the Schwarz reflection principle)
extends this map to all of A and all of Ω.

Conceptually, this map from A to Ω shows the essence of our method most clearly.
To apply the trapezoid rule and derive corresponding theorems, however, we can bypass
A and work with the map from the K, K ′ rectangle in the t-plane to Ω. By composing
(2.2) and (2.1) we get

z =
√

mM

(
k−1 + sn(t)

k−1 − sn(t)

)
, k =

√
M/m− 1√
M/m + 1

. (2.3)
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The integral (1.2) can accordingly be written

f(A) =
−A

2πi

∫ 3K+iK′/2

−K+iK′/2

z−1f(z(t)) (z(t)−A)−1 dz

du

du

dt
dt;

the limits −K + iK ′/2 to K + iK ′/2 would correspond to the part of Γ in the upper
half-plane (the dots in the fourth panel of Figure 3), and extending this to 3K + iK ′/2
brings in the part in the lower half-plane. With the aid of the identities

dz

du
=

2k−1
√

mM

(k−1 − u)2
,

du

dt
= sn ′(t) =

√
1− k2u2

√
1− u2 = cn(t)dn(t),

where cn and dn are further Jacobi elliptic functions in standard notation [1], this
becomes

f(A) =
−A

√
mM

πik

∫ 3K+iK′/2

−K+iK′/2

z−1f(z(t)) (z(t)−A)−1 cn(t)dn(t)

(k−1 − u)2
dt. (2.4)

Now since A is real, the integrand is real-symmetric, i.e., the values it takes at two
points z and z̄ are complex conjugate. It follows that f(A) is twice the real part of the
value obtained by integrating over the first half of the contour, or if we cancel the i in
the denominator,

f(A) =
−2A

√
mM

πk
Im

∫ K+iK′/2

−K+iK′/2

z−1f(z(t)) (z(t)−A)−1 cn(t)dn(t)

(k−1 − u)2
dt, (2.5)

with z(t) given by (2.3).
We now apply the trapezoid rule with N equally spaced points in (−K + iK ′/2, K +

iK ′/2),

tj = −K +
iK ′

2
+ 2

(j − 1
2
)K

N
, 1 ≤ j ≤ N. (2.6)

(Actually this choice should more precisely be called a midpoint rule. One could make it
a true trapezoid rule by shifting the sample points to include the endpoints with weights
1/2.) The result becomes f(A) ≈ fN(A) with

fN(A) =
−4KA

√
mM

πNk
Im

N∑
j=1

f(z(tj)) (z(tj)I−A)−1 cn(tj)dn(tj)

z(tj) (k−1 − u(tj))2
. (2.7)

(If A is not real, extend the limits in (2.6) and (2.7) from N to 2N , and in (2.7), replace
4K by 2K and multiply by −i instead of extracting the imaginary part.)

The convergence of the method we have described is geometric, with the constant of
convergence worsening only logarithmically as M/m →∞.

Theorem 1 Let A be a real matrix with eigenvalues in [m,M ] and let f be a function
analytic in C\(−∞, 0]. Then the N-point conformally transplanted quadrature formula
(2.7) converges at the rate

‖f(A)− fN(A)‖ = O(eε−πK′N/(2K)) (2.8)



COMPUTING f(A)b BY CONTOUR INTEGRALS 7

for any ε > 0 as N →∞, and the constant in the exponent is asymptotically πK ′/(2K) ∼
π2/ log(M/m) as M/m →∞. For any M and m we have

‖f(A)− fN(A)‖ = O(e−π2N/(log(M/m)+3)). (2.9)

Proof The formula (2.7) for fN (A) comes from applying the trapezoid rule to a function in
the t-plane that is analytic in a strip of half-width a = K ′/2, with grid spacing ∆t = 2K/N .
Standard results on the trapezoid rule for periodic integrands imply convergence in such a
context at the rate O(eε−2πa/∆t) for any ε > 0 [5, 6], and combining these numbers gives (2.8).
The claim about asymptotics follows from the relationship K ′/K ∼ π/(log(16)− log(1−k2)) ∼
−π/ log(1 − k) as k → 1 for Jacobi elliptic functions [1, eq. (17.3.26)] together with the
relationship log(M/m) ∼ −2 log(1 − k) implied by (2.1). The bound π2/(log(M/m) + 3) <

(π/2)(K ′/K) needed to derive (2.9) from (2.8) was established numerically. ¥
We can illustrate Method 1 by the following MATLAB script. Standard MATLAB

includes functions to evaluate sn(z) for real arguments only. This program needs complex
arguments, and for this purpose it calls the functions ellipkkp and ellipjc from
Driscoll’s Schwarz–Christoffel Toolbox [7], [8], which is freely available online. The
mathematical basis of these codes is outlined in [9].

This test code method1, like method2 and method3 to follow, computes the whole
matrix function f(A) rather than just a vector f(A)b. Our purpose is to illustrate
convergence rates as a function of the number of sample points N , which we can do
just as well for a small matrix that can be fully inverted. The matrix illustrated here
is the 5 × 5 Pascal triangle matrix pascal(5), with M/m ≈ 104. The code begins by
computing the minimal and maximal eigenvalues m and M , although in practice, some
kind of estimation would normally be used.

% method1.m - evaluate f(A) by contour integral. The functions
% ellipkkp and ellipjc are from Driscoll’s SC Toolbox.

f = @sqrt; % change this for another function f
A = pascal(5); % change this for another matrix A
X = sqrtm(A); % change this if f is not sqrt
I = eye(size(A));
e = eig(A); m = min(e); M = max(e); % use only for toy problems!
k = (sqrt(M/m)-1)/(sqrt(M/m)+1);
L = -log(k)/pi;
[K,Kp] = ellipkkp(L);
for N = 5:5:40

t = .5i*Kp - K + (.5:N)*2*K/N;
[u cn dn] = ellipjc(t,L);
z = sqrt(m*M)*((1/k+u)./(1/k-u));
dzdt = cn.*dn./(1/k-u).^2;
S = zeros(size(A));
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for j = 1:N
S = S + (f(z(j))/z(j))*inv(z(j)*I-A)*dzdt(j);

end
S = -4*K*sqrt(m*M)*imag(S)*A/(k*pi*N);
error = norm(S-X)/norm(X);
fprintf(’%4d %10.2e\n’, N, error)

end

Here are the relative errors ‖f(A) − fN(A)‖/‖f(A)‖ printed by this program (‖ · ‖ is
the 2-norm), showing 15-digit precision for N ≈ 40. If M/m were only 102 (assuming A
is symmetric or more generally normal), N ≈ 20 would be enough to achieve the same
accuracy. If z1/2 is replaced by log z, the performance is about the same.

>> method1
5 3.03e-02

10 4.74e-04
15 7.29e-06
20 1.12e-07
25 1.73e-09
30 2.66e-11
35 4.11e-13
40 7.07e-15

In a sequence of computations like this, one could reuse certain data points. For
example, the resolvents evaluated for N = 10 are evaluated again for N = 30. We
have not attempted to exploit this redundancy, and if one were doing so, it would be
advantageous to switch from the midpoint to the true trapezoid formulation, as discussed
above, to make the overlaps occur at multiples of 2 rather than 3.

We conclude this section with an example involving a more challenging function
f , with singularities all along (−∞, 0], and a nonnormal matrix with eigenvalues at
(3±√5)/2:

A =

(
1 1

2

2 2

)
, f(z) = Γ(z).

The gamma function has poles at all the nonpositive integers, but that is no problem
for Method 1. Taking N = 42 is enough to give a result accurate to ten digits,

Γ(A) =

(
2.0835578979 −0.1960182234

−0.7840728935 1.6915214512

)
,

as is readily checked by a diagonalization of A. Of course the point of our method is
that it is applicable also in cases where the dimension of A is such that diagonalization
is impractical, or indeed, if A is not diagonalizable at all. Another approach to the
computation of Γ(A) based on a Hankel integral has been discussed in [21].
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3 Method 2: when (−∞, 0) is just a branch cut

The assumption of the last section was that f might have arbitrary singularities on
(−∞, 0]. In practice, many functions of interest, including zα and log z, have a singular-
ity at z = 0 but just a branch cut on (−∞, 0). This means that f(z) can be analytically
continued along any path that avoids z = 0; the difficulty for z 6= 0 is only that the value
of f(z) will change if the path winds around the origin. Thus we may regard f either
as a single-valued function on the slit plane C\(−∞, 0], or as a multivalued function on
a Riemann surface associated with the punctured plane C\{0}.

For functions of this kind, Method 1 is not as efficient as it might be, since it employs
a contour that avoids [m,M ] and all of (−∞, 0] rather than just [m,M ] and {0}. One
way to improve matters is sketched in Figure 4. If we introduce a new variable w = z1/2,
dz = 2wdw, then (1.2) becomes

f(A) =
A

πi

∫

Γw

w−1f(w2) (w2 −A)−1dw. (3.1)

Under the square root, the branch cut of f along (−∞, 0] in the z plane unfolds to the
imaginary axis in the w-plane. The assumption on f(z) then implies that f(w2) can be
analytically continued to an analytic function throughout the slit w-plane C\(−∞, 0].
Thus we have a new contour integral problem, where the contour should lie in the slit
plane and enclose [m1/2,M1/2 ]. The geometry is the same as in the last section, but
with [m,M ] improved to [m1/2,M1/2 ]. Accordingly we may use the same method as
before. The formula for the new method applied to a real matrix A is

fN(A) =
−8KA(mM)1/4

πNk
Im

N∑
j=1

f(w(tj)
2) (w(tj)

2I−A)−1 cn(tj)dn(tj)

w(tj) (k−1 − u(tj))2
, (3.2)

where the tj are again given by (2.6) but now (2.3) is modified to

w = (mM)1/4

(
k−1 + sn(t)

k−1 − sn(t)

)
, k =

(M/m)1/4 − 1

(M/m)1/4 + 1
(3.3)

and the values of K and K ′ are the complete elliptic integrals associated with this new
parameter k. For a complex matrix A the modifications are as for Method 1.

Here is a MATLAB code.

% method2.m - Variant of method1.m for evaluating f(A) by contour
% integration, assuming only a branch cut along (-inf,0).

f = @sqrt; % change this for another function f
A = pascal(5); % change this for another matrix A
X = sqrtm(A); % change this if f is not sqrt
I = eye(size(A));
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0 m1/2−m1/2 M1/2−M1/2

w−plane

0 m M

z−plane

Figure 4: In Method 2, for problems where f(z) has only a branch cut on (−∞, 0), we apply
the same quadrature points seen in the fourth panel of Figure 3 to the function f(w2) in the
w-plane (left). This square-roots the condition number and approximately doubles the rate of
convergence. In the z-plane, the new method corresponds to a quadrature rule with the nodes
shown on the right.

e = eig(A); m = min(e); M = max(e); % only for toy problems
k = ((M/m)^(1/4)-1)/((M/m)^(1/4)+1);
L = -log(k)/pi;
[K,Kp] = ellipkkp(L);
for N = 5:5:25

t = .5i*Kp - K + (.5:N)*2*K/N;
[u cn dn] = ellipjc(t,L);
w = (m*M)^(1/4)*((1/k+u)./(1/k-u));
dzdt = cn.*dn./(1/k-u).^2;
S = zeros(size(A));
for j = 1:N

S = S + (f(w(j)^2)/w(j))*inv(w(j)^2*I-A)*dzdt(j);
end
S = -8*K*(m*M)^(1/4)*imag(S)*A/(k*pi*N);
error = norm(S-X)/norm(X);
fprintf(’%4d %10.2e\n’, N, error)

end

The new code converges a good deal faster than the previous one, as expected, getting
close to full precision for N ≈ 25 for this matrix with M/m ≈ 104. Again the results
are similar if z1/2 is replaced by log z.

>> method2
5 2.97e-03
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10 5.51e-07
15 7.03e-10
20 4.88e-12
25 7.29e-15

The same arguments as before give us a convergence theorem. Asymptotically as
M/m →∞, Method 2 is twice as fast as Method 1, though the improvement is less than
a factor of 2 for finite M/m.

Theorem 2 Let A be a real matrix with eigenvalues in [m,M ] and let f be a function
analytic in C\(−∞, 0] that can be continued analytically across (−∞, 0) from the upper
half-plane to the lower half-plane. Then the N-point improved formula (3.2) converges
at the rate

‖f(A)− fN(A)‖ = O(eε−πK′N/(2K)) (3.4)

for any ε > 0, where K and K ′ are the complete elliptic integrals associated with the
parameter k of (3.3), and the constant in the exponent is asymptotically πK ′/(2K) ∼
2π2/ log(M/m) as M/m →∞. For any M and m we have

‖f(A)− fN(A)‖ = O(e−2π2N/(log(M/m)+6)). (3.5)

4 Method 3: special treatment for f(z) = z1/2

The function f(w2) in the w-plane in the last section, as sketched in Figure 4, has a
singularity in general at the origin, and that is why the quadrature points must pass
between 0 and m1/2. For the particular case f(z) = z1/2 = w, however, there is no
singularity, because the change of variables from z to w has eliminated it. Equation
(3.1) becomes simply

A1/2 =
A

πi

∫

Γw

(w2 −A)−1dw, (4.1)

where Γw is a closed contour surrounding [m1/2, M1/2 ] but not [−M1/2,−m1/2 ]. This
makes possible some further improvements. First of all, the quadrature points can now
safely approach or even pass through 0. Secondly, we can use the symmetry to put them
on the imaginary axis, corresponding to the negative real axis in the z-plane, thereby
eliminating the complex arithmetic in the linear algebra problems. Indeed, since the
integrand is of size O(w−2), (4.1) is equivalent to an integral over the imaginary axis
alone,

A1/2 =
iA

π

∫ i∞

−i∞
(w2 −A)−1dw. (4.2)



12 N. HALE, N. J. HIGHAM, AND L. N. TREFETHEN

m1/2−m1/2 M1/2
−M1/2

w−plane

0 m M

z−plane

Figure 5: Quadrature points for Method 3. With f(z) = z1/2, we can now fully exploit the
symmetry in the w-plane. The points in the z-plane lie in (−∞, 0], so all the matrix arithmetic
is real.

(Essentially the same formula appears as equation (6.1) in [11].) Thirdly, we can save a
factor of two in discretizing this integral since (w2 −A)−1 = ((−w)2 −A)−1, regardless
of the properties of A, so it will no longer matter whether or not A is real.

Figure 5 shows how Figure 4 changes in this special case. Figure 6 shows the con-
formal map we can use to compute this transformation, which is essentially the middle
step of Figure 3, in which a rectangle is mapped to the upper half-plane. The rectangle
in the t-plane is the same as before, and the function w = m1/2 sn(t | k2) with

k = m1/2/M1/2 (4.3)

maps it onto the upper half w-plane. This time, however, it is the vertical midline of
the rectangle, the imaginary interval [0, iK ′], where the trapezoid rule is applied. This
gives us the approximation

fN(A) =
−2K ′m1/2A

πN

N∑
j=1

(w(tj)
2I−A)−1 cn(tj) dn(tj) (4.4)

with
tj = i(j − 1

2
)K ′/N, 1 ≤ j ≤ N. (4.5)

Equation (4.4) works well, but like the algorithms of the past two sections, it has the
disadvantage of requiring evaluation of elliptic functions for complex arguments. In this
case, however, the arguments (4.5) are purely imaginary. This allows us to take advan-
tage of equations (16.20.1)–(16.20.3) of [1], and the code below implements (4.4) requir-
ing only MATLAB’s standard elliptic routines ellipke and ellipj. For M/m > 106,
however, this approach can be unstable, and better numerical stability is achieved by re-
turning to ellipkkp and ellipjc from the SC Toolbox. The code has been constructed
in such a way that this alteration can be carried out by replacing the line beginning
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K+iK’−K+iK’

w

−m1/2 m1/2 M1/2−M1/2

→

Figure 6: The conformal map for the quadrature points of Figure 5 is the scaled Jacobi sine
function w = m1/2 sn(t | k2) with k = m1/2/M1/2. Compare Figure 3.

Kp = ... by the two lines L = -.5*log(k2)/pi; [K,Kp] = ellipkkp(L); and the
two lines beginning [sn cn dn] = ... and cn = ... by the single line [sn cn dn] =

ellipjc(t,L); .

% method3.m - Variant of method1.m and method2.m for evaluating sqrt(A)

A = pascal(5); % change this for another matrix A
X = sqrtm(A); % this cannot be changed
I = eye(size(A)); e = eig(A);
m = min(e); M = max(e); % only for toy problems
k2 = m/M; % elliptic functions parameter k^2
Kp = ellipke(1-k2);
for N = 5:5:20

t = 1i*(.5:N)*Kp/N;
[sn cn dn] = ellipj(imag(t),1-k2);
cn = 1./cn; dn = dn.*cn; sn = 1i*sn.*cn;
w = sqrt(m)*sn;
dzdt = cn.*dn;
S = zeros(size(A));
for j = 1:N

S = S - inv(A-w(j)^2*I)*dzdt(j);
end
S = (-2*Kp*sqrt(m)/(pi*N))*A*S;
error(N) = norm(S-X)/norm(X);
fprintf(’%4d %10.2e\n’, N, error(N))

end

Method 3 converges very quickly. For our matrix with condition number M/m ≈ 104,
nearly full precision is achieved with N ≈ 20, and we get 6-digit precision with just 10
backslashes.
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>> method3
5 9.47e-04

10 2.24e-07
15 5.30e-11
20 1.10e-14

The map involved in Method 3 is essentially the same as that of Method 1, except
with z improved to w = z1/2. Accordingly the same arguments as before lead to the
following analogue of Theorem 1 with convergence rates twice as fast.

Theorem 3 Let A be a real or complex matrix with eigenvalues in [m,M ]. Then the
formulas (4.3)–(4.5) converge to A1/2 at the rate

‖A1/2 − fN(A)‖ = O(eε−2πKN/K′
) (4.6)

for any ε > 0 for the values of K and K ′ associated with the parameter (4.3), and the
constant in the exponent is asymptotically πK ′/(2K) ∼ 2π2/ log(M/m) as M/m →∞.
For any M and m we have

‖A1/2 − fN(A)‖ = O(e−2π2N/(log(M/m)+3)). (4.7)

For A = pascal(5), for example, the theorem guarantees convergence at the rate
O(5−N), and for a matrix with M/m = 10 this speeds up to O(41−N). Even with
M/m = 1010 the error is O(2.1−N).

Figure 7 compares Methods 1, 2, and 3 for the function for which they are all ap-
plicable, A1/2, for two matrices with M/m ≈ 62.0 and 2.06× 107. Method 3 converges
twice as fast as Method 1 in both cases, and it does not lose a factor of 2 if A is complex.
(Its difficulties with rounding errors for the ill-conditioned matrix can be fixed by the
use of the alternative formulation described above.) Method 2 has essentially the same
convergence rate for the ill-conditioned matrix but falls between the other two methods
for the well-conditioned one.

5 Connection with rational approximation

Since the time of Gauss it has been known that quadrature formulas are associated with
rational functions: the nodes are the poles, and the weights are the residues. Thus
the methods we have proposed can be interpreted as implicit descriptions of rational
approximations

f(x) ≈ r(x), x ∈ [m,M ]. (5.1)

One might ask, how close are these approximations to optimal? Conversely, if one con-
structs the optimal rational approximations, do they lead to good methods for evaluating
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Figure 7: Convergence of Methods 1, 2, and 3 for computing A1/2 with A = pascal(3) and
pascal(8). Methods 1 and 2 are also applicable to more general functions than the square
root. The loss of final accuracy in Method 3 can be fixed by the complex formulation described
just above the listing of method3.m.

f(A)? The same questions are considered in the context of Talbot contours for inverse
Laplace transforms in [34].

The link to rational functions goes as follows. Suppose that by some quadrature
procedure we derive an approximation

f(A) ≈ A
N∑

j=1

γj(zj −A)−1 (5.2)

as in (2.7), (3.2), or (4.4), where f is assumed to have spectrum in [m,M ]. This
approximation defines a rational function of type (N,N) (numerator and denominator
of degree ≤ N),

r(z) =
N∑

j=1

γjz

zj − z
. (5.3)

It is easily seen that if the difference of the two sides of (5.2) has matrix norm ε,
then |f(λ) − r(λ)| ≤ ε must hold for any λ which is an eigenvalue of A. Thus (5.1)
certainly holds for the eigenvalues λ, and presumably also for other x ∈ [m,M ] if the
approximation was derived without reference to particular eigenvalues of A.

Figure 8 examines our three approximations from this point of view for the special
case f(z) = z1/2, [m,M ] = [1, 100], N = 6. The error curves f(x) − r(x) are plotted
for Methods 1, 2, and 3, and the fourth panel of the figure shows the error curve for
the best supremum-norm approximation, which equioscillates 14 times. (Computing the
best approximation for such problems is not a trivial matter. We used the Carathéodory–
Fejér method [32], as outlined in [34].) An examination of the axis scales for these curves
reveals that the approximations are very good, with that of Method 3 in particular quite
close to optimal.

A deeper analysis of Figure 8 points to some interesting mathematics. The methods
we have put forward in this paper are general ones, combining conformal mapping and
trapezoid rule quadrature to handle general functions f(z). The third panel of the
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Figure 8: Errors z1/2−r(z) for various type (N,N) rational approximations to z1/2 on [1, 100]
with N = 6.

figure, however, reveals an unexpected optimality property of the Method 3 variant for
f(z) = z1/2. If one scales this error curve by z−1/2, it is found to perfectly equioscillate.
From this equioscillation one can infer that (5.3) is in this case the optimal type (N,N)
approximation to z1/2 on [m,M ] with respect to the maximum norm weighted by z−1/2.
Is this best rational approximation already known? Yes indeed, it was discovered by
Zolotarev in 1877, who showed that several approximation problems of this kind, though
not the unweighted problem of Figure 8, can be solved by the use of Jacobi elliptic
functions.1 The poles for these best approximations, he found, are evenly spaced with
respect to the variable we have called t [2, App. E]. For more on the connection of
Zolotarev’s work to matrix functions, see [13, 14, 35].

In other words, the trapezoid rule has rediscovered for us one of Zolotarev’s results
from 130 years ago! For computing A1/2 when A has a positive real spectrum, it follows
that there is probably no advantage in using the trapezoid rule rather than explicit ra-
tional approximations. Incidentally, the use of rational approximations to A1/2 becomes
particularly interesting when A is singular, with eigenvalues in an interval [0,M ]. It was
a celebrated discovery of D. J. Newman in 1964 that whereas polynomial approximations
to z1/2 on such an interval converge only algebraically, rational approximations converge
at a rate O(exp(−C

√
N )) [18]. (Newman’s paper deals with approximation of |z|, but

the result can be carried over to z1/2 by a change of variables.) It would be interesting
to see if this behavior can be recovered by a conformal map and the trapezoid rule, but
we do not pursue this idea here as it is tied to the special case f(z) = z1/2.

The advantage of the trapezoid rule technique is that it is general, applying to
arbitrary functions f and to matrices whose spectra may not be all real, yet still readily
yielding theorems about asymptotic rates of convergence. We now consider some of

1Egor Ivanovich Zolotarev was a student of Chebyshev, and he learned the theory of elliptic functions
from Weierstrass during a visit to Berlin in 1872. Zolotarev made significant contributions to number
theory as well as approximation theory before dying at age 31 as a result of being hit by a train at what
is now called the Pushkin station outside St. Petersburg [24].
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Figure 9: On the left, repetition of the right panel of Figure 4, now with curves shown inside
the quadrature points. If the eigenvalues of A are not confined to the real interval [m,M ] (solid
line) but lie within the innermost curve, for example, Method 2 will still converge exponentially
with a rate 90% as fast as before. The next curve corresponds to 80%, then 70%, and so on
down to 10%. On the right, a closeup of the same figure near the origin (marked by a cross).

these matters.

6 Complex eigenvalues and eigenvalue estimates

The methods we have described are flexible. Though we have assumed that the spectrum
of A lies in an interval [m,M ] and that m and M are known, the convergence rate
degrades only slowly as these conditions are relaxed.

Figure 9 gives an indication of the mathematical reason for this robustness. The
general explanation is that in an integral like (1.1), there is no need for the spectrum
to be real, provided it is enclosed by the contour Γ. For a quantitative analysis we note
that each of our Theorems 1, 2, 3 is proved by reducing the original problem in the
z-plane to a function analytic in a rectangle in the t-plane. The width of the rectangle
determines the convergence rate, and if the spectrum of A moves off the real axis, this
narrows the rectangle in a predictable way. For example, in the case of Theorem 1, the
rectangle has half-width K ′/2 and is shown in the second panel of Figure 3, where the
bottom edge is the portion of the boundary that maps conformally to [m,M ]. If the
spectrum lies in a region in the z-plane larger than [m,M ], this will narrow the rectangle
of analyticity. The curves in the figure accordingly correspond to images in the z-plane
of horizontal lines in the t-plane at distances 90%, 80%, . . . , 10% of the original distance
K ′/2 below the midline.

Perhaps it is instructive to focus on the middle of the nine curves in Figure 9. So long
as the spectrum of A lies within this quite generous region, the convergence of Method 2
will slow down by at most a factor of 2. Similarly ample regions govern the convergence
of Methods 1 and 3. In the case of Method 3, it can be shown that the 50% curve is
exactly the circle of radius M(1 −m/M)1/2 about the point z = M . For M À m this
is approximately the circle about z = M that passes through the point z = m/2. Thus
the loss if the spectrum widens from an interval to a disk, and a bigger disk at that, is
at worst a factor of 2.
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The arguments just made apply to our numerical methods with no adjustments of
parameters, but if the spectrum of A is complex, such adjustments may be advantageous.
For example, in the second panel of Figure 3, if the lower half of the rectangle must be
narrowed by an amount α because A has a complex spectrum, then one can halve the
impact on the convergence rate by moving the line of quadrature points upwards a
distance α/2.

Here is an example of the success of these methods for matrices with complex spec-
tra. In MATLAB, gallery(’parter’,32) constructs the 32×32 nonsymmetric Toeplitz
matrix with entries aij = (i − j + 1

2
)−1. The norm of A matches π to 15 digits, and

the eigenvalues are complex numbers of absolute value slightly less than π lying ap-
proximately on a semicircle in the right half-plane. If Method 2 is applied to compute
log(A) with parameters m = 0.25 and M = 8 (these parameters were obtained experi-
mentally, not on the basis of analysis of the problem), and with the imaginary part of
the quadrature points in (2.6) shifted from 0.5K ′ to 0.6K ′, here are the results:

5 1.31e-02
10 3.99e-05
15 3.53e-07
20 1.58e-09
25 2.76e-12
30 2.08e-14

We see that although the spectrum is complex, thanks to the better condition number,
the convergence is nearly as fast as for the example of §3. Figure 10 explains what
is going on. If the imaginary part is fixed at 0.5K ′, the convergence is about half as
fast, becoming about three-quarters as fast in that case if M is increased to 64. If it is
fixed at 0.7K ′, the convergence can be improved further, but in this case the quadrature
points in the z-plane cross the branch cut on the negative real axis, so for a successful
computation certain values must be negated in accordance with the nonstandard branch
of the square root.

This example illustrates that the methods we have put forward can be applied
broadly, but also that parameter choices are involved. If these methods are to become
the basis of general tools, it will be necessary to develop systematic ways to estimate
eigenvalues or related information from which to derive such parameters. For example,
our programs method1–method3 choose m and M by computing the eigenvalues of A and
then finding their minimum and maximum. In practice this would usually be imprac-
tical, and in any case the codes as written will give the wrong result if the eigenvalues
are complex.

7 Three more examples

We conclude with three more numerical examples illustrating a highly nonnormal matrix
of small dimension, a fractional matrix power of medium dimension, and the square root
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Figure 10: Example of the 32 × 32 Parter matrix. The plot on the left shows the rectangle
in the t-plane with 32 quadrature points at heights 0.5K ′ (plusses) and 0.6K ′ (crosses). The
plot on the right shows their images in the z-plane under the Method 2 map with parameters
m = 0.25, M = 8. The dashed curve on the right encloses the eigenvalues of A, which appear
fused in a semicircle, and corresponds to the line at height 0.4K ′ on the left. Above this line,
in the shaded strip, the integrand will be analytic, so convergence is guaranteed at a rate
corresponding to the lower half-width 0.1K ′ for the plusses and 0.2K ′ for the crosses, that is,
20% and 40% of the rate given by Theorem 2 for a matrix with eigenvalues in [0.25, 8].

of a sparse matrix of large dimension.

By a highly nonnormal matrix we mean a matrix whose eigenvectors, though a com-
plete set may exist, are far from orthogonal. For an example of this kind we take a Frank
matrix, an upper-Hessenberg matrix with integer entries aij = n + 1 − j on and above
the diagonal and aij = n + 1− i on the subdiagonal: MATLAB’s gallery(’frank’,n).
All the eigenvalues are real and positive, and it is well-known that the condition num-
bers of the smaller eigenvalues increase rapidly as n increases. Thus the matrix is highly
non-normal. For the 12×12 Frank matrix we computed the square root using a modified
version of method3.m, with parameters set to their true values m ≈ 0.031, M ≈ 32.2.
For the exact square root we took the matrix computed in 64-digit arithmetic via di-
agonalization using MATLAB’s Symbolic Math Toolbox. The convergence shown in
Figure 11 is rapid, the error reaching 1.7 × 10−10 at N = 12 and thereafter levelling
off due to the effects of rounding errors. Convergence need not be monotonic, as is
confirmed by the sharp increase in error at N = 9. It is interesting to note that the
error in the square root computed by sqrtm is 2× 10−9, so contour integration is giving
about one more digit of accuracy than the Schur method, which is the standard method
of choice if a Schur decomposition can be computed [11].

The dashed curve in Figure 11, corresponding to a diagonal matrix with the same
eigenvalues as the Frank matrix, shows that in this example the nonnormality has had
a modest effect on the convergence and a great effect on the final accuracy. The reason
for the latter is that Method 3 requires the computation of various matrix inverses
(w(tj)

2I−A)−1 (or solution of corresponding systems of equations, if computing A1/2b
instead of A1/2). The numbers w(tj)

2 are far from the spectrum, but not from the ε-
pseudospectra for ε ¿ 1, so these matrix problems are well-conditioned in the normal
case but highly ill-conditioned in the nonnormal case, causing great amplification of
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Figure 11: Convergence of Method 3 in computing A1/2 for A = gallery(’frank’,12) (solid
curve) and for a diagonal matrix with the same eigenvalues (dashed).

rounding errors. The right solution would be to employ an integration contour that
avoids the pseudospectra as well as the spectrum.

For a second example, we use Method 2 to compute A1/7b, where b is a random vector
and A is a 598× 598 real nonsymmetric matrix with positive eigenvalues and m ≈ 2.5,
M ≈ 6.1 × 109. To be precise, A is the Chebyshev spectral differentiation matrix
obtained by the MATLAB commands A = gallery(’chebspec’,600)^2 followed by
A = A(2:end-1,2:end-1). One way to compute A1/7b is by means of the identity
A1/7 = exp(log(A)/7), or expm(logm(A)/7) in MATLAB, and on a 2003 laptop, this
takes 32 seconds. Another approach is first to reduce A orthogonally to Hessenberg
form, then solve N Hessenberg systems of equations in the algorithm of Method 2.
With N = 40 this gets comparable accuracy in about 4 seconds. By increasing the
dimension, one could increase the disparity in timings.

Our final example (Table 1) applies Method 3 to compute A1/2b, where A is the
matrix generated by the MATLAB command gallery(’poisson’,n), an n2×n2 matrix
corresponding to a standard 5-point finite difference discretization of the Laplacian,
and b is the vector of dimension n2 of all ones. For m and M we take the estimates
2π2/(n + 1)2 and 8, respectively. This example shows that the methods described here
are capable of handling large sparse matrices. The final column of the table compares
against MATLAB’s built-in method of forming sqrtm(A) (the full matrix) and then
multiplying by b, a method that is impractical for larger dimensions.
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