
SPECTRAL GALERKIN APPROXIMATION OF FOKKER–PLANCK
EQUATIONS WITH UNBOUNDED DRIFT
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Abstract. The paper is concerned with the analysis and implementation of a spectral Galerkin method for a
class of Fokker–Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the
class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is
the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along
the boundary ∂D of the computational domain D. Using a symmetrization of the differential operator based on
the Maxwellian M corresponding to U , which vanishes along ∂D, we remove the unbounded drift coefficient at
the expense of introducing a degeneracy, through M , in the principal part of the operator. The class of admissible
potentials includes the FENE (finitely extendible nonlinear elastic) model. We show the existence of weak solutions to
the initial-boundary-value problem, and develop a fully discrete spectral Galerkin approximation of such degenerate
Fokker–Planck equations that exhibits optimal-order convergence in the Maxwellian-weighted H1 norm on D. The
theoretical results are illustrated by numerical experiments for the FENE model in two space dimensions.
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1. Introduction. This paper is concerned with the numerical approximation of the Fokker–
Planck equation

∂ψ

∂t
+∇∼ x · (u∼(x∼, t)ψ) +∇∼ q ·

(
(∇
≈ x u∼)q

∼
ψ
)

= ε∆xψ +
1

2λ
∇∼ q ·

(
∇∼ qψ + F∼ (q

∼
)ψ
)
, (1.1)

that arises from the kinetic theory of dilute polymers [6, 7]; see also [2, 3] and references therein.
Here, ε and λ are two positive parameters, referred to as center-of-mass diffusion coefficient and
relaxation time, respectively, Ω ⊂ Rd is the flow-domain of the polymer and D ⊂ Rd is the set of
admissible orientation vectors of polymer chains. Typically, D = B(0∼,

√
b ), where B(0∼, s) is the

open ball with radius s centered at the origin in Rd and b > 2 is a nondimensional parameter that
measures the maximum possible extension of polymer chains; henceforth, unless otherwise stated,
D will denote B(0∼,

√
b ). The equation governs the evolution, over a nonempty closed time interval

[0, T ], of the probability density function

ψ : (x∼, q∼, t) ∈ Ω×D × [0, T ] 7→ ψ(x∼, q∼, t)

of a 2d-component stochastic process, with d ∈ {2, 3}, which models random fluctuations of polymer
molecules in a solvent due to thermal agitation. The solvent is an incompressible Newtonian fluid,
with velocity u∼, whose motion is governed by the Navier–Stokes equation forced by the divergence
of the non-Newtonian extra stress tensor, defined as the second moment of the probability density
function ψ. In the simplest models of this kind, elastic effects in the polymer are captured by
modelling the polymer chains as pairs of massless beads connected with an elastic spring, with
spring force F∼ : D → Rd defined by a spring potential U : R≥0 → R through

F∼ (q
∼
) := U ′( 1

2 |q∼|
2) q
∼
, q

∼
∈ D, (1.2)

where U ∈ C∞(D) is an α-convex function on D, such that the (normalized) Maxwellian

q
∼
7→M(q

∼
) :=

1
C(b)

exp
(
−U( 1

2 |q∼|
2)
)
∈ L1(D), where C(b) :=

∫
D

exp
(
−U( 1

2 |q∼|
2)
)

dq
∼
.

Here, α-convexity of U is to be understood in the following sense: there exists c0 ∈ R>0 and α ∈ R
such that, for each q

∼
∈ D, the Hessian

H(q
∼
) :=

(
∂2

∂qi∂qj
U( 1

2 |q∼|
2)
)
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of U satisfies H(q) ≥ c0(1 − |q
∼
|2/b)α Id, where Id is the d × d identity matrix. With α < 0 this

hypothesis is in line with the physical requirement that, in order to faithfully model finite extension
of polymer chains, the function q

∼
7→ U ′( 1

2 |q∼|
2) must tend to +∞ as d(q

∼
) := dist(q

∼
, ∂D) → 0 (in

other words, an applied spring force F∼ (q
∼
) with finite intensity |F∼ (q

∼
)| can only stretch a polymer

chain to a length |q
∼
| <

√
b ).

We shall also assume that the Maxwellian M associated with U is a weight function of type 3
on D in the sense of Triebel [29], p.247, Definition 3.2.1.3c; i.e., there exist positive constants c1,
c2 and λ, and a positive monotonic increasing function τ defined on the interval (0, λ), such that
c1 τ(d(q

∼
)) ≤M(q

∼
) ≤ c2 τ(d(q

∼
)) for all q

∼
∈ D such that d(q

∼
) < λ.

Example 1.1. In the case of the FENE (finitely extendible nonlinear elastic) polymer model

U(s) := − b
2

ln
(

1− 2s
b

)
, U ′(s) =

1
1− 2s

b

, s ∈ [0, b
2 ), with b > 2.

It will be shown in Section 2 that the function q
∼
∈ B(0∼,

√
b ) 7→ U( 1

2 |q|
2) is α-convex with α = −1

(or, briefly, (−1)-convex) and c0 = 1.
Following Kolmogorov [20], the Fokker–Planck equation can be recast as follows:

∂ψ

∂t
+∇∼ x · (u∼(x∼, t)ψ) +∇∼ q ·

(
κ
≈
(x∼, t) q∼ψ

)
= ε∆xψ +

1
2λ

∇∼ q ·
(
M(q

∼
)∇∼ q

(
ψ

M

))
,

where κ
≈
(x∼, t) := (∇

≈ x u∼). The probability density ψ is a function of 2d + 1 independent variables:
x∼ ∈ Rd, q

∼
∈ Rd and t ∈ R≥0. Since the dependence of the coefficients in the equation on x∼

and q
∼

is separated/factorized, an efficient approach to the numerical solution of this equation in
2d + 1 variables is based on operator-splitting with respect to (q

∼
, t) and (x∼, t); see Lozinski et

al. [12, 13, 24]. Thereby, the resulting time-dependent transport-diffusion equation with respect to
(x∼, t) is completely standard, ψt + ∇x · (u∼(x∼, t)ψ) = ε∆xψ, while the transport-diffusion equation
with respect to (q

∼
, t) is

∂ψ

∂t
+∇∼ q · (κ≈ q∼ψ) =

1
2λ
∇∼ q ·

(
M(q

∼
)∇∼ q

(
ψ

M

))
, (q

∼
, t) ∈ D × (0, T ]. (1.3)

The equation (1.3) is supplemented with the following initial and boundary conditions:

ψ(q
∼
, 0) = ψ0(q

∼
), for all q

∼
∈ D, (1.4)

ψ(q
∼
, t) = o

(√
M(q

∼
)
)
, as d(q

∼
) → 0, for all t ∈ (0, T ]. (1.5)

Here, the initial datum ψ0 is such that ψ0 ≥ 0 and
∫

D
ψ0(q

∼
) dq
∼

= 1.
The central difficulty, from both the analytical and the computational point of view, is now the

presence in (1.3) of the degenerate Maxwellian M(q
∼
), with limd(q

∼
) → 0M(q

∼
) = 0.

Example 1.2. In the case of the FENE model,

M(q
∼
) =

1
C(b)

(
1−

|q
∼
|2

b

)b
2

, q
∼
∈ D = B(0∼,

√
b ), with b > 2.

Clearly, there exist positive constants c1 and c2 such that c1 ≤ M(q
∼
)/[d(q

∼
)]b/2 ≤ c2, q

∼
∈ D. Hence

M is a weight function of type 3 on D. For b� 1, M decays very rapidly to 0 as q
∼

approaches ∂D.
In numerical simulations typically b ∈ [10, 100].

Thus we shall ignore the coupling between the Fokker–Planck equation and the Navier–Stokes
system, suppress the dependence of the probability density function ψ on the variable x∼, assume
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that the d × d stress tensor κ
≈

= ∇
≈ x u∼ is independent of x∼, belongs to C[0, T ]d×d and is such that

tr(κ
≈
)(t) = 0 for all t ∈ [0, T ], and we focus our attention on the numerical solution of (1.3), (1.4),

(1.5). For theoretical results concerning the existence of weak solutions to coupled Navier–Stokes–
Fokker–Planck systems, and a detailed survey of related literature, we refer to [2–4] and [22].

The formulation (1.3) is different from that used by Lozinski et al. [12, 13, 24] in their work
on the deterministic simulation of polymeric fluids. From the theoretical viewpoint at least the
advantage of our approach is that on putting (1.3) into weak form the diffusion operator becomes
symmetric (see (1.6)) which facilitates the analysis of the Fokker–Planck equation (as was done
in [2–4]). Our objective here is to discretize the weak formulation of equation (1.3) using a spectral
Galerkin method in the spatial variable q

∼
coupled with a backward Euler time discretization, and

to develop the convergence analysis of this method. One can, of course, consider more accurate
time discretization schemes, such as an nth-order backward differentiation formula, BDFn, n ∈
{2, . . . , 6}, for example. High-order time discretization of the problem is, however, a secondary
consideration to the central theme of the paper, and we do not discuss it here.

Let

H :=

{
ϕ ∈ L2

loc(D) :
∫

D

(
ϕ√
M

)2

dq
∼
<∞

}
,

K :=

{
ϕ ∈ H :

∫
D

((
ϕ√
M

)2

+
∣∣∣√M ∇∼ q

( ϕ
M

)∣∣∣2)dq
∼
<∞,

ϕ√
M

∣∣∣∣
∂D

= 0

}
.

Taking our test functions as ϕ/M with ϕ ∈ K, we obtain the following weak formulation of the
initial-boundary-value problem (1.3).

Given ψ0 ∈ H, find ψ ∈ L∞(0, T ;H) ∩ L2(0, T ;K) such that

d
dt

∫
D

ψ ϕ

M
dq
∼
−
∫

D

(κ
≈
q
∼
)
ψ√
M
·
√
M ∇∼ q

( ϕ
M

)
dq
∼
+

1
2λ

∫
D

√
M ∇∼ q

(
ψ

M

)
·
√
M ∇∼ q

( ϕ
M

)
dq
∼

= 0 ∀ϕ ∈ K,

(1.6)
in the sense of distributions on (0, T ), and ψ(·, 0) = ψ0(·).

Now, by introducing the notation

ϕ̂ :=
ϕ√
M

and ∇∼ M ϕ̂ :=
√
M ∇∼ q

(
ϕ̂√
M

)
we can reformulate (1.6) by observing that from the definition of K we have

ϕ ∈ K ⇔ ϕ̂ ∈ H1
0(D;M) := {ζ ∈ H1(D;M) : ζ|∂D = 0},

where

H1(D;M) :=
{
ζ ∈ L2(D) : ‖ζ‖2H1(D;M) :=

∫
D

(
|ζ|2 + |∇∼ Mζ|2

)
dq
∼
<∞

}
.

When applied to an element of H1
0(D;M) the norm ‖ · ‖H1(D;M) will be written ‖ · ‖H1

0(D;M).
We note in passing that the substitution ϕ̂ = ϕ/

√
M also appears in the recent paper by Du,

Lu and Yu [16], though the operator ∇∼ M does not. With this notation, (1.6) has the following form.

Given ψ̂0 := ψ0/
√
M ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) such that

d
dt

∫
D

ψ̂ ϕ̂ dq
∼
−
∫

D

(κ
≈
q
∼
)ψ̂ · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

= 0 ∀ϕ̂ ∈ H1
0(D;M), (1.7)

in the sense of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).
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The function space H1(D;M) may seem exotic; we shall see, however, that this is not so: in
Section 2, we shall apply the Brascamp–Lieb inequality, with a probability measure based on the
Maxwellian, to show that, when U is (−1)-convex, H1(D;M) ∩ C1(D) = H1

0(D) ∩ C1(D); thus,
loosely speaking, from the viewpoint of C1(D), H1(D;M) and H1

0(D) are indistinguishable. This
may seem surprising since, unlike H1

0(D), the definition of the weighted space H1(D;M) does not
explicitly enforce a zero boundary condition on ∂D on members of the space; rather, this property
is implicit in the presence of the weight. The resulting connection between H1(D;M) and H1

0(D)
is helpful for the purpose of developing Galerkin methods for (1.7), since the construction of finite-
dimensional subspaces of H1

0(D) and the analysis of their approximation properties are, by now,
well-developed and well-understood.

In Section 3 we shall revisit the weak formulation (1.7) of the initial boundary value problem.
We shall formulate a backward Euler semidiscretization of the weak formulation and show that
this has a unique solution. We shall then use a compactness argument to establish the existence
of weak solutions to the initial-boundary-value problem in the case of a (−1)-convex U . We also
show the uniqueness of the weak solution. In the process, we shall prove the unconditional stability
of the temporal semidiscretization in the `∞(0, T ; L2(D)) and `2(0, T ; H1

0(D;M)) norms. Elliptic
and parabolic operators with unbounded drift coefficients, albeit in nonconservative form, have
been considered recently by Cerrai, Da Prato, Lunardi, Metafune and others (see, for example,
[11, 14, 15, 25, 26]); the technique herein, based on semidiscretization in time and passage to the
limit using a weak compactness argument, is different from the semigroup theoretic approach used in
those papers. Our arguments do not invoke compact embedding of (Maxwellian-)weighted Sobolev
spaces, and therefore no growth/decay conditions (such as a Muckenhaupt condition) need to be
imposed on the Maxwellian M . This is important from the point of view of the applications we
have in mind: as was noted in Example 1.2 above, in FENE type models for dilute polymers the
parameter b is typically much larger than 1, and therefore the Maxwellian, for such b, decays to 0
very rapidly at the boundary of the domain, – much more rapidly than could be accommodated by
the Muckenhaupt condition or related growth conditions (see, for example, Theorem 3 in [18]).

In Section 4 we develop the fully-discrete method and, using the stability results from Section 3,
we derive a bound on the global error in terms of the approximation error in a suitably defined
spectral projection operator.

In Section 5 we give the precise definition of our projection operator: its nonstandard form
stems from a decomposition lemma, Lemma 5.2, for elements of an anisotropic Sobolev space. The
result can be seen as a variant, in Sobolev spaces, of the Malgrange Preparation Theorem [19].

We complete our convergence analysis in Section 6 by showing that the method exhibits an
optimal convergence order with respect to the discretization parameters in the Maxwellian-weighted
norm ‖ · ‖`2(0,T ;H1

0(D;M)).
Section 7 is devoted to numerical experiments that illustrate the performance of the method.

Since the case of two space dimensions (d = 2) is sufficiently representative, for ease of presentation
in Sections 5, 6 and 7 we have confined ourselves to this case; all of our results in Sections 5
and 6 have obvious extensions to three space dimensions. The stability bounds and existence and
uniqueness results presented in Sections 3 and 4 are valid in any number of space dimensions.

2. The Brascamp–Lieb inequality. Suppose that D is a convex open set, D ⊂ Rd (e.g.
D = B(0∼,

√
b ), b > 2). Consider a probability measure µ supported on D with density exp(−V (q

∼
)),

q
∼
∈ D, with respect to the Lebesgue measure dq

∼
on Rd, where V is a convex function on D. In

particular,

µ(B) =
∫

B

dµ =
∫

B

exp(−V (q
∼
)) dq

∼
,

for any µ-measurable set B ⊂ D, with µ(D) = 1. The following geometric functional inequality
comes from the paper of Bobkov & Ledoux [8].
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Theorem 2.1 (Brascamp–Lieb inequality). Assume that V is a twice continuously differen-
tiable and strictly convex function on a convex open set D ⊂ Rd, i.e., for each q

∼
∈ D, the Hessian

H(q
∼
) :=

(
∂2V (q

∼
)

∂qi∂qj

)
is a (strictly) positive definite matrix. Then, for any sufficiently smooth function f ,

Varµ(f) := Eµ[(f − Eµ[f ])2] ≤
∫

D

〈H−1(q
∼
)∇∼ qf,∇∼ qf〉dµ, where Eµ[f ] =

∫
D

f dµ.

In terms of simpler notation, the Brascamp–Lieb inequality can be restated as follows∫
D

[
f(q
∼
)−

∫
D

f(p
∼
) e−V (p

∼
) dp
∼

]2
e−V (q

∼
) dq
∼
≤
∫

D

〈H−1(q
∼
)∇∼ qf,∇∼ qf〉 e

−V (q
∼

) dq
∼
,

for any sufficiently smooth function f .
Corollary 2.2. Assume that V is a twice continuously differentiable and α-convex function

on D = B(0∼,
√
b ), in the sense that there exists c0 > 0 and α ∈ R such that, for each q

∼
∈ D the

Hessian H(q
∼
) of V satisfies H(q) ≥ c0(1− |q

∼
|2/b)α Id, where Id is the d× d identity matrix. Then,

for any sufficiently smooth function f ,∫
D

[
f(q
∼
)−

∫
D

f(p
∼
) e−V (p

∼
) dp
∼

]2
e−V (q

∼
) dq
∼
≤ 1
c0

∫
D

(
1−

|q
∼
|2

b

)−α

e−V (q
∼

) |∇∼ qf(q
∼
)|2 dq

∼
.

Proof. Under the hypotheses of the corollary,

ξ
∼

TH(q
∼
)ξ
∼
≥ c0

(
1−

|q
∼
|2

b

)α

|ξ
∼
|2 ∀ξ

∼
∈ Rd, |q

∼
| <

√
b.

Since H(q
∼
) is a symmetric matrix, we deduce that

〈H(q
∼
)−1η

∼
, η
∼
〉 = η

∼

TH(q
∼
)−1η

∼
≤ 1
c0

(
1−

|q
∼
|2

b

)−α

|η
∼
|2 ∀η

∼
∈ Rd, |q

∼
| <

√
b.

In particular, taking η
∼

= ∇∼ qf , we obtain

〈H(q)−1∇∼ qf,∇∼ qf〉 ≤
1
c0

(
1−

|q
∼
|2

b

)−α

|∇∼ qf(q
∼
)|2.

The Brascamp–Lieb inequality then implies the stated result.

2.1. Application to the FENE potential. Let D = B(0∼,
√
b ) where b > 2, and define

Uβ(s) := −β
2

ln
(

1− 2s
b

)
,

where 0 ≤ s < b
2 , β = b− 2γ, 0 ≤ γ ≤ 1. The FENE potential corresponds to β = b (i.e., to γ = 0).

Further, let

C(β) :=
∫

D

e−Uβ( 1
2 |q∼|

2) dq
∼
, Mβ(q

∼
) :=

1
C(β)

(
1−

|q
∼
|2

b

)b
2

=
C(b)
C(β)

M(q
∼
),

V (q
∼
) := Uβ

(
1
2 |q∼|

2
)

+ lnC(β) = −β
2

ln

(
1−

|q
∼
|2

b

)
+ lnC(β).

5



Note that the exponent in Mβ is b/2, not β/2. Then,

µ(D) =
∫

D

e−V (q
∼

) dq
∼

= 1, e−V (q
∼

) =
1

C(β)

(
1−

|q
∼
|2

b

)β
2

,

and therefore,

∫
D

f(q
∼
)−

∫
D

f(p
∼
)

1
C(β)

(
1−

|p
∼
|2

b

)β
2

dp
∼

2

1
C(β)

(
1−

|q
∼
|2

b

)β
2

dq
∼

≤
∫

D

〈H−1(q
∼
)∇∼ qf,∇∼ qf〉

1
C(β)

(
1−

|q
∼
|2

b

)β
2

dq
∼
.

In order to further bound the right-hand side above, note that, for all ξ
∼
∈ Rd and all q

∼
∈ D,

d∑
i=1, j=1

ξiξj
∂2V (q

∼
)

∂qi∂qj
=

(
1−

|q
∼
|2

b

)−2{
β

b
|ξ
∼
|2
(

1−
|q
∼
|2

b

)
+

2β
b2
〈ξ
∼
, q
∼
〉2
}
≥ β

b

(
1−

|q
∼
|2

b

)−1

|ξ
∼
|2.

Thus, the assumptions of the above corollary are satisfied with c0 = β/b and α = −1. Hence,-
- D

f(q
∼
)−

∫
D

f(p
∼
)Mβ(p

∼
)

(
1−

|p
∼
|2

b

)−γ

dp
∼

2

Mβ(q
∼
)

(
1−

|q
∼
|2

b

)−γ

dq
∼

≤ b

β

-
- D

|∇∼ qf(q
∼
)|2Mβ(q

∼
)

(
1−

|q
∼
|2

b

)1−γ

dq
∼
,

where γ ∈ [0, 1]. We shall consider the two extreme cases: γ = 0 and γ = 1.

2.1.1. Case 1. Let γ = 0 (whereupon β = b). Then, by writing M(q
∼
) := Mb(q

∼
), taking

f = ψ̂/
√
M and bounding, for q

∼
∈ D, the factor 1− |q

∼
|2/b on the right-hand side by 1, we get∫

D

[
ψ̂ −

√
M(q

∼
)
∫

D

ψ̂(p
∼
)
√
M(p

∼
) dp
∼

]2
dq
∼
≤
∫

D

|∇∼ M ψ̂|2 dq
∼
.

This implies the following Friedrichs inequality, by noting that Ker(∇∼ M ) = {λ
√
M : λ ∈ R}:

inf
c∈Ker(∇∼M )

∫
D

|ψ̂ − c |2 dq
∼
≤
∫

D

|∇∼ M ψ̂|2 dq
∼
. (2.1)

2.1.2. Case 2. Let γ = 1, take f = ψ̂/
√
M and note that Mβ and M only differ by the

multiplicative factor C(b)/C(β), where β = b− 2 with b > 2. Then,-
- D

ψ̂(q
∼
)−

C(b)
√
M(q

∼
)

C(b− 2)

∫
D

ψ̂(p
∼
)Mβ(p

∼
)

(
1−

|p
∼
|2

b

)−1

dp
∼

2(
1−

|q
∼
|2

b

)−1

dq
∼
≤ b

b− 2

-
- D

|∇∼ M ψ̂|2 dq
∼
.

Hence, we obtain the following Hardy–Friedrichs inequality:

inf
c∈Ker(∇∼M )

-
- D

|ψ̂ − c |2

1−
|q
∼
|2

b

dq
∼
≤ b

b− 2

-
- D

|∇∼ M ψ̂|2 dq
∼
. (2.2)
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This can be seen as a refinement of the Friedrichs inequality (2.1) in the sense that the left-hand
side of (2.2) is an upper bound on the left-hand side of (2.1) (at the expense of increasing the
multiplicative constant on the right-hand side of (2.1) from 1 to b/(b− 2), b > 2).

The inequalities (2.1) and (2.2) hold, in particular, for any ψ̂ ∈
√
M C∞(D). Next, we shall

show by a density argument that they are also valid for all ψ̂ ∈ H1(D;M).
Recall from Example 1.2 that the FENE Maxwellian M is a weight function of type 3 on D.

According to [29], Theorem 3.2.2a, the weighted Sobolev space H1
M (D) = {v ∈ L2

M (D) : ∇∼ qv ∈
L2

M (D)d} is a Hilbert space with respect to the norm ‖ · ‖H1
M (D) defined by

‖v‖H1
M (D) :=

(
‖v‖2L2

M (D) + ‖∇∼ qv‖2L2
M (D)

) 1
2
,

and L2
M (D) = (1/

√
M ) L2(D) is a Hilbert space with respect to the norm ‖ · ‖L2

M (D) defined by
‖v‖L2

M (D) := ‖
√
Mv‖, where ‖ ·‖ denotes the L2(D) norm induced by the L2(D) inner product (·, ·).

By [29], Theorem 3.2.2c, C∞(D) is dense in both H1
M (D) and L2

M (D); see also Chapter I, §7, in
Kufner [21]. Thus,

√
M C∞(D) is dense in the Hilbert spaces H1(D;M) and L2(D), whereby it is

also dense in H1
0(D;M); therefore H1

0(D;M) is dense in L2(D). In any case, it follows that (2.1) and
(2.2) hold for all ψ̂ ∈ H1(D;M). In particular, we see from (2.2) that each ψ̂ ∈ H1(D;M) ∩ C(D)
must vanish on ∂D, and hence H1(D;M) ∩ C1(D) ⊂ H1

0(D) ∩ C1(D).
Conversely, it follows from Hardy’s inequality stated in Triebel [29] (see Section 3.2.6, Lemma

1, part (a), with p = 2, µ = 0, m = 1) and Poincaré’s inequality on H1
0(D) that-

- D

|ψ̂(q
∼
)|2∣∣∣∣1− |q
∼
|2

b

∣∣∣∣2
dq
∼
≤ C(b)‖∇∼ qψ̂‖2L2(D) ∀ψ̂ ∈ H1

0(D).

Since ∇∼ M ψ̂ = ∇∼ qψ̂ + 1
2q∼U

′
(

1
2 |q∼|

2
)
ψ̂, we have, by the triangle inequality, that

‖∇∼ M ψ̂‖ ≤ ‖∇∼ qψ̂‖+
1
2

√
b


-
- D

|ψ̂(q
∼
)|2∣∣∣∣1− |q
∼
|2

b

∣∣∣∣2
dq
∼


1
2

.

The last two inequalities give that H1
0(D) ⊂ H1(D;M); hence, H1

0(D)∩C1(D) ⊂ H1(D;M)∩C1(D).
Thus, for the FENE potential, H1(D;M)∩C1(D) = H1

0(D)∩C1(D) = H1
0(D;M)∩C1(D), H1

0(D) ⊂
H1

0(D;M), and H1
0(D;M) is continuously and densely imbedded into L2(D). The same statements

apply for any Maxwellian M that is a weight function of type 3 on D and stems from a potential
U ∈ C∞(D) that is α-convex on D with α = −1. These observations will be relevant in Section 3,
and in Section 5 for the choice of the Galerkin subspaces of H1

0(D;M) from which approximations
to ψ̂ ∈ H1

0(D;M) are sought. Thus we assume in what follows that U ∈ C∞(D) is (−1)-convex.

3. Backward Euler semidiscretization: existence and uniqueness of weak solutions.
As was noted in the Introduction, by setting ψ̂(·, t) := ψ(·, t)/

√
M for t ∈ [0, T ] and ϕ̂ := ϕ/

√
M

in (1.6) and writing ψ̂0 := ψ0/
√
M , we arrive at the following weak formulation of the initial-

boundary-value problem (1.3), (1.4), (1.5):

Given ψ̂0 ∈ L2(D), find ψ̂ ∈ L∞(0, T ; L2(D))∩L2(0, T ; H1
0(D;M)) such that (1.7) holds in the sense

of distributions on (0, T ), and ψ̂(·, 0) = ψ̂0(·).
The function ψ, representing a weak solution to the problem (1.6), is then recovered from ψ̂

through the substitution ψ :=
√
M ψ̂. Thus, instead of constructing a Galerkin approximation to
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ψ, our aim is to construct a Galerkin approximation to ψ̂ from a finite-dimensional subspace of
the function space H1

0(D;M); we shall then produce an approximation to ψ by multiplying the
approximation to ψ̂ by

√
M . First, however, we shall construct a time-semidiscretization of (1.7)

and use a compactness argument to show the existence of weak solutions; we shall then also show
the uniqueness of weak solutions.

Let NT ≥ 1 be an integer, ∆t = T/NT , and tn = n∆t, for n = 0, 1, . . . , NT . Discretizing (1.7)
in time using the backward Euler method yields the following semi-discrete numerical scheme.

Given ψ̂0 := ψ̂0 = ψ0/
√
M ∈ L2(D), find ψ̂n ∈ H1

0(D;M), n = 1, . . . , NT , such that∫
D

ψ̂n+1 − ψ̂n

∆t
ϕ̂ dq

∼
−
∫

D

(κ
≈

n+1 q
∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂n+1 · ∇∼ M ϕ̂ dq
∼

= 0

∀ϕ̂ ∈ H1
0(D;M), n = 0, . . . , NT − 1. (3.1)

Let us first show that for any ∆t, sufficiently small, this problem has a unique solution. To this
end, we consider the bilinear form B(·, ·) defined on H1

0(D;M)×H1
0(D;M) by

B(ψ̂, ϕ̂) :=
1

∆t

∫
D

ψ̂ ϕ̂ dq
∼
−
∫

D

(κ
≈

n+1 q
∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼
,

and, for ψ̂n ∈ L2(D) fixed, we define the linear functional `(ψ̂n; ·) on H1
0(D;M) by

`(ψ̂n; ϕ̂) :=
1

∆t

∫
D

ψ̂n ϕ̂ dq
∼
.

Clearly,

B(ψ̂, ψ̂) ≥ 1
∆t

(
1−∆tλb‖κ

≈
‖2L∞(0,T )

)∫
D

|ψ̂|2 dq
∼

+
1
4λ

∫
D

|∇∼ M ψ̂|2 dq
∼
,

and therefore, on assuming that ∆tλb‖κ
≈
‖2L∞(0,T ) < 1 and letting

c∆t :=
1

∆t

(
1−∆tλb‖κ

≈
‖2L∞(0,T )

)
(> 0) ,

we deduce that

B(ψ̂, ψ̂) ≥ min
(
c∆t,

1
4λ

)
‖ψ̂‖2H1

0(D;M). (3.2)

Also, by a simple application of the Cauchy–Schwarz inequality, B(·, ·) is a bounded bilinear func-
tional on H1

0(D;M)×H1
0(D;M) and, for any ψ̂n ∈ L2(D), `(ψ̂n; ·) is a bounded linear functional on

H1
0(D;M). Since H1

0(D;M) is a Hilbert space with norm ‖ · ‖H1
0(D;M), the Lax–Milgram Theorem

implies the existence of a unique solution ψ̂n+1 ∈ H1
0(D;M) such that

B(ψ̂n+1, ϕ̂) = `(ψ̂n; ϕ̂) ∀ϕ̂ ∈ H1
0(D;M), n = 0, 1, . . . , NT − 1. (3.3)

As ψ̂0 ∈ L2(D), we have thus shown that, for any ∆t = T/NT such that ∆tλb‖κ
≈
‖2L∞(0,T ) < 1, the

problem (3.1) has a unique solution {ψ̂n ∈ H1
0(D;M) : n = 1, . . . , NT }.

For the purposes of the convergence analysis which will be carried out below, we consider an
extended version of the scheme (3.1) with a non-zero right-hand side:∫

D

ψ̂n+1 − ψ̂n

∆t
ϕ̂ dq

∼
−
∫

D

(κ
≈

n+1 q
∼
ψ̂n+1) · ∇∼ M ϕ̂ dq

∼
+

1
2λ

∫
D

∇∼ M ψ̂n+1 · ∇∼ M ϕ̂ dq
∼

=
∫

D

µn+1ϕ̂ dq
∼

+
∫

D

ν∼
n+1 · ∇∼ M ϕ̂ dq

∼
∀ϕ̂ ∈ H1

0(D;M), n = 0, . . . , NT − 1, (3.4)
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where µn+1 ∈ L2(D) and ν∼
n+1 ∈ L2(D)d for all n ≥ 0. We have the following stability result for

the extended scheme (3.4).
Lemma 3.1 (The first stability inequality). Let ∆t = T/NT , NT ≥ 1, κ

≈
∈ C[0, T ]d×d, ψ̂0 ∈

L2(D), and define c0 := 1 + 4λb‖κ
≈
‖2L∞(0,T ). If ∆t is such that 0 < c0∆t ≤ 1/2, then we have, for

all m such that 1 ≤ m ≤ NT ,

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤ e2c0m∆t

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)}

. (3.5)

We shall denote the right-hand side of (3.5) by S(ψ̂0, µ, ν∼,m∆t).
Proof. Let 0 ≤ n ≤ NT − 1. Setting ϕ̂ = ψ̂n+1, we write the first term in (3.4) as∫

D

ψ̂n+1 − ψ̂n

∆t
ψ̂n+1 dq

∼
=

1
2∆t

(
‖ψ̂n+1‖2 − ‖ψ̂n‖2

)
+

1
2∆t

‖ψ̂n+1 − ψ̂n‖2

using the identity (a− b)a = 1
2 (a2 − b2) + 1

2 (a− b)2.
Applying the Cauchy–Schwarz inequality to the transport term in (3.4), we have∫

D

(κ
≈

n+1 q
∼
ψ̂n+1) · ∇∼ M ψ̂n+1 dq

∼
≤ ‖κ

≈
n+1q

∼
‖L∞(D)

∫
D

|ψ̂n+1| |∇∼ M ψ̂n+1|dq
∼

≤
√
b |κ
≈

n+1| ‖ψ̂n+1‖ ‖∇∼ M ψ̂n+1‖.

Combining these results and applying the Cauchy-Schwarz inequality to the right-hand side terms
in (3.4), we have

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t
λ
‖∇∼ M ψ̂n+1‖2

≤ ‖ψ̂n‖2 + 2∆t
√
b |κ
≈

n+1|‖ψ̂n+1‖‖∇∼ M ψ̂n+1‖

+ 2∆t‖µn+1‖‖ψ̂n+1‖+ 2∆t‖ν∼
n+1‖‖∇∼ M ψ̂n+1‖

=: ‖ψ̂n‖2 + T1 + T2 + T3.

Using the inequality 2ab ≤ εa2 + 1
ε b

2 on each of T1 and T3, we deduce that

T1 ≤ ε‖∇∼ M ψ̂n+1‖2 +
1
ε
∆t2b|κ

≈
n+1|2‖ψ̂n+1‖2,

T3 ≤ ε‖∇∼ M ψ̂n+1‖2 +
1
ε
∆t2‖ν∼

n+1‖2.

Choosing ε = ∆t/(4λ) then gives

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤ ‖ψ̂n‖2 + 4∆tλb|κ
≈

n+1|2‖ψ̂n+1‖2 + 4∆tλ‖ν∼
n+1‖2 + T2.

Similarly, we have

T2 ≤ ∆t‖ψ̂n+1‖2 + ∆t‖µn+1‖2,

and therefore, on defining c0 := 1 + 4λb‖κ
≈
‖2L∞(0,T ), we get that

(1− c0∆t)‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤ ‖ψ̂n‖2 + ∆t‖µn+1‖2 + 4∆tλ‖ν∼
n+1‖2.
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As c0∆t ≤ 1
2 , dividing through by (1− c0∆t) and using the fact that 1 ≤ 1

1−c0∆t ≤ 2, we have

‖ψ̂n+1‖2 + ‖ψ̂n+1 − ψ̂n‖2 +
∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤ 1
1− c0∆t

(
‖ψ̂n‖2 + ∆t‖µn+1‖2 + 4∆tλ‖ν∼

n+1‖2
)

(3.6)

≤ (1 + 2c0∆t)‖ψ̂n‖2 + 2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)
.

Summing over n = 0, . . . ,m− 1 in (3.6) we obtain

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)}

+ 2c0
m−1∑
n=0

∆t‖ψ̂n‖2, (3.7)

for all m ∈ {1, . . . , NT }. Inequality (3.7) has the form

αm +
m−1∑
n=0

∆t βn ≤ (α0 + γm) + 2c0
m−1∑
n=0

∆t αn, 1 ≤ m ≤ NT ,

where (αm)m≥0, (βm)m≥0 and (γm)m≥1 are three sequences of non-negative real numbers, and the
sequence (γm)m≥1 is nondecreasing. Hence, by induction (or by a discrete Gronwall Lemma),

αm +
m−1∑
n=0

∆t βn ≤ (1 + 2c0∆t)mα0 + (1 + 2c0∆t)m−1γm, 1 ≤ m ≤ NT .

On taking

αm := ‖ψ̂m‖2, βm :=

∥∥∥∥∥ ψ̂m+1 − ψ̂m

√
∆t

∥∥∥∥∥
2

+
1
2λ
‖∇∼ M ψ̂m+1‖2,

γm :=
m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)

and using that

(1 + 2c0∆t)m−1 ≤ (1 + 2c0∆t)m ≤ e2c0m∆t, m ≥ 1,

we then deduce that

‖ψ̂m‖2 +
m−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2

+
m−1∑
n=0

∆t
2λ
‖∇∼ M ψ̂n+1‖2

≤ e2c0m∆t

{
‖ψ̂0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)}

, 1 ≤ m ≤ NT .

That completes the proof.
We shall now use this stability result to show the existence of weak solutions via a weak

compactness argument. We shall also show the uniqueness of the weak solution.
Theorem 3.2. Suppose that ψ̂0 ∈ L2(D) and κ

≈
∈ C[0, T ]d×d. Then, there exists a unique

function ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)) such that ψ̂ ∈ Cweak([0, T ]; L2(D)),

(ψ̂(·, 0)− ψ̂0, ŵ) = 0 ∀ŵ ∈ L2(D),
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and

−(ψ̂0, ϕ̂(·, 0))−
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq
∼

dt−
∫ T

0

∫
D

(κ
≈
q
∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)), ϕ̂(·, T ) = 0. (3.8)

The function ψ =
√
Mψ̂ will be referred to as the weak solution of the initial-boundary-value problem

(1.3), (1.4), (1.5). Cweak([0, T ]; L2(D)) denotes the set of all weakly continuous functions from [0, T ]
into L2(D).

Proof. Step 1. Let us denote by ψ̂∆t ∈ C([0, T ]; L2(D)) ∩ L2(0, T ; H1
0(D;M)) the continuous

piecewise linear interpolant, with respect to t ∈ [0, T ], of the semidiscrete solution {ψ̂n : n =
0, . . . , NT } to (3.1), defined by

ψ̂∆t(·, t)|[tn,tn+1] :=
t− tn

∆t
ψ̂n+1 +

tn+1 − t

∆t
ψ̂n, t ∈ [tn, tn+1], n = 0, . . . , NT − 1,

and let

ψ̂∆t,+(·, t) := ψ̂n+1(·), ψ̂∆t,−(·, t) := ψ̂n(·), t ∈ [tn, tn+1], n = 0, . . . , NT − 1.

We shall denote by ψ̂∆t,(±) any one of the functions ψ̂∆t, ψ̂∆t,+, ψ̂∆t,− defined above.
Using analogous notation for κ

≈
, equation (3.1), with ϕ̂ ∈ H1

0(D;M) replaced by ϕ̂(t, ·) ∈
H1

0(D;M) for t ∈ (0, T ] where ϕ̂ ∈ L2(0, T ; H1
0(D;M)), and summed over n = 0, . . . , NT − 1,

yields ∫ T

0

∫
D

∂ψ̂∆t

∂t
ϕ̂ dq

∼
dt−

∫ T

0

∫
D

(κ
≈

∆t,+ q
∼
ψ̂∆t,+) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂∆t,+ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ L2(0, T ; H1
0(D;M)). (3.9)

It follows from (3.5) with µ = 0 and ν∼ = 0∼ in (3.5) that

(ψ̂∆t,(±))∆t is bounded in L∞(0, T ; L2(D)),

(ψ̂∆t,(±))∆t is bounded in L2(0, T ; H1
0(D;M)),{

ψ̂∆t,+ − ψ̂∆t,−
√

∆t

}
is bounded L2(0, T ; L2(D)).

The first two of these imply that we can extract a subsequence from (ψ̂∆t,(±))∆t, which for the
sake of notational simplicity we still denote by (ψ̂∆t,(±))∆t, such that, as ∆t→ 0+,

(ψ̂∆t,(±))∆t weak–∗ converges in L∞(0, T ; L2(D)), (3.10)

(ψ̂∆t,(±))∆t weakly converges in L2(0, T ; H1
0(D;M)). (3.11)

Now, (3.10) implies the existence of ψ̂ ∈ L∞(0, T ; L2(D)) such that∫ T

0

(ψ̂∆t(t)− ψ̂(t), ϕ̂(t)) dt→ 0 as ∆t→ 0+ ∀ϕ̂ ∈ L1(0, T ; L2(Ω)). (3.12)

On the other hand (3.11) implies the existence of ψ̂∗ such that∫ T

0

〈ψ̂∆t(t)− ψ̂∗(t), ϕ̂(t)〉dt→ 0 as ∆t→ 0+ ∀ϕ̂ ∈ L2(0, T ; H1
0(D;M)′), (3.13)
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where 〈·, ·〉 is the duality pairing between the Hilbert space H1
0(D;M) and its dual space H1

0(D;M)′.
Now, the function space H1

0(D;M) is continuously and densely imbedded into L2(D); i.e., the
imbedding operator i from H1

0(D;M) into L2(D) is a continuous linear operator. The dual operator
i′ from L2(D)′ into H1

0(D;M)′ (cf. Definition 1, Ch. VII, §1 of Yoshida [31]) satisfies

〈i(g), h′〉 = 〈g, i′(h′)〉 ∀g ∈ H1
0(D;M), ∀h′ ∈ L2(D)′. (3.14)

According to Theorem 2, Ch. VII, §1 of Yoshida [31], i′ is a continuous linear operator from L2(D)′

into H1
0(D;M)′. Since i(H1

0(D;M)) = H1
0(D;M) is dense in L2(D), it follows from (3.14) that i′ is

bijective from L2(D)′ onto its range in H1
0(D;M)′. Further, since i is bijective, it follows from (3.14)

(by reductio ad absurdum, for example,) that i′(L2(D)′) is dense in H1
0(D;M)′. Thus L2(D)′ can

be identified with a dense subspace, i′(L2(D)′) of H1
0(D;M)′. Finally, identifying, by means of the

Riesz representation theorem, L2(D) with L2(D)′, we deduce that H1
0(D;M) ⊂ L2(D) = L2(D)′ ⊂

H1
0(D;M)′, so that each space is dense in the next one in the chain, with continuous embedding.

Hence, 〈ψ̂, ϕ̂〉 = (ψ̂, ϕ̂) for all ψ̂ ∈ H1
0(D;M) and all ϕ̂ ∈ L2(D). Returning to (3.13), we then

deduce that∫ T

0

(ψ̂∆t(t)− ψ̂∗(t), ϕ̂(t)) dt =
∫ T

0

〈ψ̂∆t(t)− ψ̂∗(t), ϕ̂(t)〉dt→ 0 as ∆t→ 0+

∀ϕ̂ ∈ L2(0, T ; L2(D)).

Subtracting this from (3.12) yields∫ T

0

(ψ̂(t)− ψ̂∗(t), ϕ̂(t)) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)),

and therefore ψ̂ = ψ̂∗ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)).

It remains to show that the weak–∗ limits ψ̂± of the sequences (ψ̂∆t,(±))∆t in L∞(0, T ; L2(D))
are also equal to ψ̂. We shall show below that ψ̂+ = ψ̂−. Once we have done so, recalling from the
definitions of ψ̂∆t and ψ̂∆t,± that

ψ̂∆t(·, t)− ψ̂±(·, t) =
t− tn

∆t
(ψ̂∆t,+(·, t)− ψ̂+(·, t)) +

tn+1 − t

∆t
(ψ̂∆t,−(·, t)− ψ̂−(·, t))

for all t ∈ [tn, tn+1] and n = 0, . . . , NT − 1, and passing to the weak–∗ limit in L∞(0, T ; L2(D)) as
∆t→ 0+, will imply that ψ̂ = ψ̂±.

To show that ψ̂+ = ψ̂−, we proceed as follows. Observe that∫ T

0

(ψ̂∆t,+ − ψ̂∆t,−, ϕ̂) dt =
NT−1∑
n=0

(
ψ̂n+1 − ψ̂n,

∫ tn+1

tn

ϕ̂(·, t) dt

)

=
NT−1∑
n=0

√
∆t

(
ψ̂n+1 − ψ̂n

√
∆t

,

∫ tn+1

tn

ϕ̂(·, t) dt

)

≤
NT−1∑
n=0

√
∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
(∫ tn+1

tn

‖ϕ̂(·, t)‖dt

)

≤

NT−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2
 1

2
NT−1∑

n=0

(∫ tn+1

tn

‖ϕ̂(·, t)‖dt

)2
 1

2

≤

NT−1∑
n=0

∆t

∥∥∥∥∥ ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2
 1

2 (NT−1∑
n=0

∆t
∫ tn+1

tn

‖ϕ̂(·, t)‖2 dt

) 1
2

=

∥∥∥∥∥ ψ̂∆t,+ − ψ̂∆t,−
√

∆t

∥∥∥∥∥ √∆t ‖ϕ̂‖L2(0,T ;L2(D)),
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for any ϕ̂ ∈ L2(0, T ; L2(D)) ⊂ L1(0, T ; L2(D)). Since the first factor on the right-hand side is
bounded, independent of ∆t, on passing to the limit ∆t→ 0+, it follows that

lim
∆t→0+

∫ T

0

(ψ̂∆t,+ − ψ̂∆t,−, ϕ̂) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)).

Therefore, ∫ T

0

(ψ̂+ − ψ̂−, ϕ̂) dt = 0 ∀ϕ̂ ∈ L2(0, T ; L2(D)).

This, in turn, implies that ψ̂+ = ψ̂−. Thereby, as has been argued above, ψ̂ = ψ̂+ = ψ̂−.
Step 2. Next we pass to the limit ∆t→ 0+ in (3.9). Integrating by parts in the first term ap-

pearing on the left-hand side of equation (3.9), with ϕ̂ ∈ H1(0, T ; H1
0(D;M)) ↪→ C([0, T ]; H1

0(D;M)),
we deduce that

(ψ̂∆t(·, T ), ϕ̂(·, T ))− (ψ̂∆t(·, 0), ϕ̂(·, 0))

−
∫ T

0

∫
D

ψ̂∆t ∂ϕ̂

∂t
dq
∼

dt−
∫ T

0

∫
D

(κ
≈

∆t,+ q
∼
ψ̂∆t,+) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂∆t,+ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)). (3.15)

As ψ̂∆t(·, 0) := ψ̂0(·) and the sequence (κ
≈

∆t,+)∆t converges (strongly) in L∞(0, T ) to κ
≈
, passing to

the limit ∆t→ 0+ in (3.15) we deduce that the associated limiting function ψ̂ ∈ L∞(0, T ; L2(D))∩
L2(0, T ; H1

0(D;M)) satisfies (3.8). In particular, on choosing ϕ̂ = ζ̂ · ŵ ∈ C∞0 (0, T ) ⊗ H1
0(D;M) in

(3.8), where ζ̂ ∈ C∞0 (0, T ) and ŵ ∈ H1
0(D;M) are arbitrary, it follows from (3.8) that

d
dt

(ψ̂, ŵ)− ((κ
≈
q
∼
)ψ̂,∇∼ M ŵ) +

1
2λ

(∇∼ M ψ̂,∇∼ M ŵ) = 0 ∀ŵ ∈ H1
0(D;M), (3.16)

in the sense of distributions on (0, T ), with ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)). Hence, the

limiting function ψ̂ satisfies (1.7), as required.
Step 3. It remains to show that ψ̂ also satisfies the required initial condition. We proceed

as follows. Since, for ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)), the second and third term on

the left-hand side of (3.16) belong to L2(0, T ) for every ŵ ∈ H1
0(D;M), the same is true of the

first term on the left-hand side of (3.16). Therefore, t ∈ [0, T ] 7→ (ψ̂(·, t), ŵ) belongs to H1(0, T )
for all ŵ ∈ H1

0(D;M). By the Sobolev embedding H1(0, T ) ↪→ C[0, T ] we deduce that, for every
ŵ ∈ H1

0(D;M), t ∈ [0, T ] 7→ (ψ̂(·, t), ŵ) is a.e. equal to a function that is defined and continuous
on [0, T ]; i.e., ψ̂ ∈ Cweak([0, T ]; L2(D)). Thus it makes sense to multiply (3.16) by ζ̂ ∈ H1(0, T ),
such that ζ̂(T ) = 0, integrate over [0, T ] and integrate by parts with respect to t in the first term
to deduce, on writing ϕ̂ = ζ̂ · ŵ, that

−(ψ̂(·, 0), ϕ̂(·, 0))−
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq
∼

dt−
∫ T

0

∫
D

(κ
≈
q
∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ H1(0, T )⊗H1
0(D;M), ϕ̂(·, T ) = 0. (3.17)

Applying (3.8) with ϕ̂ ∈ H1(0, T )⊗ H1
0(D;M) ⊂ H1(0, T ; H1

0(D;M)) and comparing with (3.17) it
follows that

(ψ̂(·, 0)− ψ̂0, ϕ̂(·, 0)) = 0 ∀ϕ̂ ∈ H1(0, T )⊗H1
0(D;M), ϕ̂(·, T ) = 0,
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and therefore, since H1
0(D;M) is dense in L2(D), it follows that (ψ̂(·, 0) − ψ̂0, ŵ) = 0 for all ŵ ∈

L2(D), which shows that the limiting function ψ̂ satisfies the initial condition ψ̂(·, 0) = ψ̂0 (and
therefore ψ =

√
Mψ̂ satisfies the corresponding initial condition ψ(·, 0) = ψ0 (=

√
Mψ̂0)).

Step 4. Let us show that ψ =
√
Mψ̂, with ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) defined
by (3.8), is the unique weak solution to the initial-boundary-value problem. We begin by observing
that, for any ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)),∣∣∣∣∣
∫ T

0

{
((κ
≈
q
∼
)ψ̂,∇∼ M ϕ̂)− 1

2λ
(∇∼ M ψ̂,∇∼ M ϕ̂)

}
dt

∣∣∣∣∣ ≤ C‖ψ̂‖L2(0,T ;H1
0(D;M))|ϕ̂|L2(0,T ;H1

0(D;M))

for all ϕ̂ ∈ L2(0, T ; H1
0(D;M)), where C :=

(
b‖κ
≈
‖2L∞(0,T ) + 1/(4λ2)

) 1
2
. Thus, it follows from (3.8)

that there is G ∈ L2(0, T ; H1
0(D;M)′) such that

−(ψ̂0, ϕ̂(·, 0))−
∫ T

0

∫
D

ψ̂
∂ϕ̂

∂t
dq
∼

dt =
∫ T

0

〈G, ϕ̂〉dt ∀ϕ̂ ∈ H1(0, T ; H1
0(D;M)), ϕ̂(·, T ) = 0.

Hence,

−
∫ T

0

〈
ψ̂,
∂ϕ̂

∂t

〉
dt =

∫ T

0

〈G, ϕ̂〉dt ∀ϕ̂ ∈ C∞0 (0, T ; H1
0(D;M)).

By virtue of Lemma 1.1, §1.1 in Ch. 3 of Temam [28] with X = H1
0(D;M)′,

d
dt
〈ψ̂, ŵ〉 = 〈G, ŵ〉 ∀ŵ ∈ H1

0(D;M),

in the sense of distributions on (0, T ), and ψ̂ is almost everywhere equal to a continuous function
from [0, T ] into H1

0(D;M)′. In fact, since ψ̂ ∈ L2(0, T ; H1
0(D;M)) and

∂ψ̂

∂t
= G ∈ L2(0, T ; H1

0(D;M)′),

it follows from Lemma 1.2, §1.2 in Ch. 3 of Temam [28] (with V = H1
0(D;M), H = L2(D) and

V ′ = H1
0(D;M)′) that ψ̂ is a.e. equal to a continuous function from [0, T ] into L2(D) and the

following identity holds in the sense of distributions of (0, T ):

d
dt
‖ψ̂‖2 = 2

〈
∂ψ̂

∂t
, ψ̂

〉
.

Now, suppose that ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
0(D;M)) is a weak solution of the initial-

boundary-value problem, defined by (3.8). Then, for any s ∈ (0, T ],∫ s

0

1
2

d
dt
‖ψ̂‖2 dt =

∫ s

0

〈
∂ψ̂

∂t
, ψ̂

〉
dt =

∫ s

0

〈G, ψ̂〉dt

=
∫ s

0

{
((κ
≈
q
∼
)ψ̂,∇∼ M ψ̂)− 1

2λ
(∇∼ M ψ̂,∇∼ M ψ̂)

}
dt.

Therefore,

1
2

(
‖ψ̂(s)‖2 − ‖ψ̂0‖2

)
+

1
2λ
‖∇∼ M ψ̂‖2L2(0,s;L2(D)) =

∫ s

0

((κ
≈
q
∼
)ψ̂,∇∼ M ψ̂)dt

≤
√
b‖κ
≈
‖L∞(0,T )‖ψ̂‖L2(0,s;L2(D))‖∇∼ M ψ̂‖L2(0,s;L2(D)) for a.e. s ∈ (0, T ].
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This implies that

‖ψ̂(s)‖2 +
1
2λ
‖∇∼ M ψ̂‖2L2(0,s;L2(D))≤‖ψ̂0‖2 + 2λ b‖κ

≈
‖2L∞(0,T )‖ψ̂‖

2
L2(0,s;L2(D)) for a.e. s ∈ (0, T ].

Thus, by Gronwall’s Lemma, any weak solution ψ̂ to (3.8) satisfies the following energy inequality

‖ψ̂(s)‖2L∞(0,s;L2(D)) +
1
2λ
‖∇∼ M ψ̂‖2L2(0,s;L2(D)) ≤ ‖ψ̂0‖2 exp

(
2sλ b‖κ

≈
‖2L∞(0,T )

)
for a.e. s ∈ (0, T ].

Note, in particular, that if ψ̂0 = 0, then ψ̂(·, s) = 0 in L2(D) for a.e. s ∈ (0, T ], which in turn
implies the uniqueness of a weak solution.

We shall next show that ψ =
√
Mψ̂ has the usual properties of a probability density function:

if ψ0 is non-negative and has unit integral over D, then the same is true of ψ(·, t) for all t ∈ [0, T ].
Lemma 3.3. Let ψ0 ∈ H, and let ψ =

√
Mψ̂ where ψ̂ ∈ L∞(0, T ; L2(D))∩L2(0, T ; H1

0(D;M))∩
Cweak([0, T ]; L2(D)) is the weak solution to (3.8) subject to the initial condition ψ̂0 = ψ0/

√
M (i.e.,

the function ψ is the weak solution of the initial-boundary-value problem (1.3), (1.4), (1.5)). Then,∫
D

ψ(q
∼
, t) dq

∼
=
∫

D

ψ0(q
∼
) dq
∼

∀t ∈ [0, T ).

Furthermore if ψ0 ≥ 0 a.e. on D, then ψ(·, t) ≥ 0 a.e. on D for all t ∈ [0, T ].
Proof. Fix any t ∈ (0, T ), and let ε ∈ (0, T − t]. Consider the function ϕ̂ε defined by

ϕ̂ε(q
∼
, s) :=


√
M for s ∈ [0, t],√
M(t+ ε− s)/ε for s ∈ [t, t+ ε),

0 for s ∈ [t+ ε, T ].

Clearly, ϕ̂ε ∈ H1(0, T ; H1
0(D;M)) and ϕ̂ε(·, T ) = 0. Taking ϕ̂ε as test function in (3.8) we obtain

−(ψ̂0,
√
M ) +

1
ε

∫ t+ε

t

(ψ̂(·, s),
√
M ) ds = 0.

Passing to the limit ε→ 0+ yields

−(ψ̂0,
√
M ) + (ψ̂(·, t),

√
M ) = 0,

whereby (ψ(·, t), 1) = (ψ0, 1), as required, for all t ∈ (0, T ); for t = 0 the equality holds trivially.
Now, suppose that ψ0 ∈ H and ψ0 ≥ 0; then, ψ̂0 ∈ L2(D) and ψ̂0 ≥ 0. For ∆t as in Lemma

3.5, consider the sequence of functions (ψ̂n)NT
n=0 ⊂ H1

0(D;M) defined by (3.3). By Lemma 3.5 below
(with L = 0), we have that ([ψ̂n]−)NT

n=0 ⊂ H1
0(D;M). It follows from (3.3) that

B([ψ̂n+1]− , [ψ̂n+1]−) = B(ψ̂n+1 , [ψ̂n+1]−) = `(ψ̂n; [ψ̂n+1]−).

Suppose, for induction, that ψ̂n ≥ 0; this is certainly true for n = 0, since ψ̂0 = ψ̂0 ≥ 0. Hence,

`(ψ̂n; [ψ̂n+1]−) =
1

∆t

∫
D

ψ̂n(q
∼
)[ψ̂n+1(q

∼
)]− dq

∼
≤ 0.

Therefore, B([ψ̂n+1]− , [ψ̂n+1]−) ≤ 0; thus, (3.2) implies that ‖[ψ̂n+1]−‖H1
0(D;M) ≤ 0, whereby

[ψ̂n+1]− = 0 and hence ψ̂n+1 ≥ 0. By induction, ψ̂n ≥ 0 for all n = 0, 1, . . . , NT . Therefore, each of
the functions ψ̂∆t, ψ̂+ and ψ̂−, defined in the proof of Theorem 3.2, is non-negative on D × [0, T ].
Hence the limiting function ψ̂ of the sequence(s), as ∆t→ 0+, is also non-negative on D× [0, T ].
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Remark 3.4. We note in passing that if q
∼

Tκ
≈
(t) q

∼
≤ 0 for a.e. t ∈ [0, T ] then, by considering

the expression, B([ψ̂n+1 − L
√
M ]+ , [ψ̂n+1 − L

√
M ]+) one can show by induction, as in the proof

above, with

L = ess.supq
∼
∈Dψ̂0(q

∼
)/
√
M(q

∼
),

that B([ψ̂n+1−L
√
M ]+ , [ψ̂n+1−L

√
M ]+) = 0 for all n = 0, 1, . . . , NT −1. Consequently, by (3.2),

[ψ̂n+1−L
√
M ]+ = 0; i.e., ψ̂n+1 ≤ L

√
M . This then implies, on passage to the limit ∆t→ 0+, that

ess.sup(q
∼

,t)∈D×[0,T ]ψ̂(q
∼
, t)/

√
M(q

∼
) ≤ ess.supq

∼
∈Dψ̂0(q

∼
)/
√
M(q

∼
).

Hence,

ess.sup(q
∼

,t)∈D×[0,T ]ψ(q
∼
, t)/M(q

∼
) ≤ ess.supq

∼
∈Dψ0(q

∼
)/M(q

∼
),

which can be thought of as a maximum principle for the initial-boundary value problem.
Lemma 3.5. Suppose that ϕ̂ ∈ H1

0(D;M) and L ≥ 0. Then,

∇∼ M [ ϕ̂− L
√
M ]+ =

{
∇∼ M ( ϕ̂− L

√
M ) = ∇∼ M ϕ̂ if ϕ > L

√
M,

0 if ϕ ≤ L
√
M ;

(3.18)

and

∇∼ M [ ϕ̂+ L
√
M ]− =

{
∇∼ M ( ϕ̂+ L

√
M ) = ∇∼ M ϕ̂ if ϕ < L

√
M,

0 if ϕ ≥ L
√
M.

(3.19)

Furthermore, [ ϕ̂− L
√
M ]+ and [ ϕ̂+ L

√
M ]− belong to H1

0(D;M).
Proof. We shall prove (3.18); the proof of (3.19) is analogous, mutatis mutandis. We begin by

noting that since L ≥ 0 and
√
M > 0 on D,

|[ ϕ̂− L
√
M ]+| ≤ |ϕ̂|. (3.20)

Following [2], for any ε > 0, we define the following regularization of [ · ]+:

p+,ε(s) :=
{

(s2 + ε2)
1
2 − ε if s > 0,

0 if s ≤ 0.

Clearly, 0 ≤ p+,ε(s) ≤ [s]+ for all s ∈ R. Observe that

∇∼ M [ ϕ̂− L
√
M ]+ = ∇∼ q[ ϕ̂− L

√
M ]+ + 1

2q∼U
′( 1

2 |q∼|
2)[ ϕ̂− L

√
M ]+

in the sense of d-component distributions on D. Let η
∼
∈ C∞0 (D)d be fixed. Then, on recalling the

definition of the distributional derivative,

〈∇∼ M [ ϕ̂− L
√
M ]+ , η

∼
〉 = 〈∇∼ q[ ϕ̂− L

√
M ]+ + 1

2q∼U
′( 1

2 |q∼|
2)[ ϕ̂− L

√
M ]+ , η

∼
〉

= −〈[ ϕ̂− L
√
M ]+ , ∇∼ q · η

∼
〉+ 〈 1

2q∼U
′( 1

2 |q∼|
2)[ ϕ̂− L

√
M ]+ , η

∼
〉

= −
∫

D

[ ϕ̂− L
√
M ]+(∇∼ q · η

∼
) dq
∼

+
∫

D

1
2q∼U

′( 1
2 |q∼|

2)[ ϕ̂− L
√
M ]+ · η

∼
dq
∼
.
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Let χS denote the characteristic function of a set S ⊂ D. Since η
∼

has compact support in D, by
Lebesgue’s Dominated Convergence Theorem we deduce that

〈∇∼ M [ ϕ̂− L
√
M ]+ , η

∼
〉 = − lim

ε→0+

∫
D

p+,ε(ϕ̂− L
√
M )(∇∼ q · η

∼
) dq
∼

+ lim
ε→0+

∫
D

1
2q∼U

′( 1
2 |q∼|

2)p+,ε(ϕ̂− L
√
M ) · η

∼
dq
∼

= lim
ε→0+

∫
D

p′+,ε(ϕ̂− L
√
M )∇∼ q(ϕ̂− L

√
M ) · η dq

∼
+ lim

ε→0

∫
D

1
2q∼U

′( 1
2 |q∼|

2)p+,ε(ϕ̂− L
√
M ) · η

∼
dq
∼

=
∫

D

χϕ̂>L
√

M (q
∼
)∇∼ q(ϕ̂− L

√
M ) · η dq

∼
+
∫

D

χϕ̂>L
√

M (q
∼
) 1

2q∼U
′( 1

2 |q∼|
2)(ϕ̂− L

√
M ) · η

∼
dq
∼

=
∫

D

χϕ̂>L
√

M (q
∼
)
{
∇∼ q(ϕ̂− L

√
M ) + 1

2q∼U
′( 1

2 |q∼|
2)(ϕ̂− L

√
M )

}
· η
∼

dq
∼

=
∫

D

χϕ̂>L
√

M (q
∼
)∇∼ M (ϕ̂− L

√
M ) · η

∼
dq
∼

= 〈χϕ̂>L
√

M (q
∼
)∇∼ M (ϕ̂− L

√
M ) , η

∼
〉.

Since the above chain of equalities holds for all η
∼
∈ C∞0 (D)d, it follows that ∇∼ M [ ϕ̂ − L

√
M ]+ =

χϕ̂>L
√

M (q
∼
)∇∼ M (ϕ̂− L

√
M ). As

√
M ∈ Ker(∇∼ M ), we deduce that χϕ̂>L

√
M (q

∼
)∇∼ M (ϕ̂− L

√
M ) =

χϕ̂>L
√

M (q
∼
)∇∼ M ϕ̂, and that proves (3.18). Now, since ∇∼ M [ ϕ̂− L

√
M ]+ = χϕ̂>L

√
M (q

∼
)∇∼ M ϕ̂, and

the right-hand side in this equality belongs to L2(D) (recall that ϕ̂ ∈ H1
0(D;M) by hypothesis),

it follows that ∇∼ M [ ϕ̂ − L
√
M ]+ ∈ L2(D). Hence, and by (3.20), [ ϕ̂ − L

√
M ]+ ∈ H1

0(D;M), as
required.

Next we shall show that if κ
≈
∈ H1(0, T )d×d and ψ̂0 ∈ H1

0(D;M), then we have stability in
stronger norms, and that the weak solution ψ̂ ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1

0(D;M)) whose exis-
tence and uniqueness has just been established, is in fact more regular: it belongs to the function
space H1(0, T ; L2(D)) ∩ L∞(0, T ; H1

0(D;M)).
Lemma 3.6 (The second stability inequality). Let ∆t = T/NT , NT ≥ 1, κ

≈
∈ H1(0, T )d×d and

ψ̂0 ∈ H1
0(D;M), and define c0 := 1 + 4λb‖κ

≈
‖2L∞(0,T ). If ∆t is such that 0 < c0∆t ≤ 1/2, then, for

all m such that 1 ≤ m ≤ NT , we have

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1
4λ
‖∇∼ M ψ̂m‖2 +

1
2λ

m−1∑
n=0

∆t

∥∥∥∥∥∇∼ M
ψ̂n+1 − ψ̂n

√
∆t

∥∥∥∥∥
2

≤ e2c1m∆t

{
2∆t

m−1∑
n=0

‖µn+1‖2 + 12λ max
1≤n≤m

‖ν∼
n‖2 + ∆t

m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼
n

∆t

∥∥∥∥2

+
1
λ
‖∇∼ M ψ̂0‖2 +

(
b ‖κ
≈t‖2L2(0,T ) + 12λb ‖κ

≈
‖2L∞(0,T )

)
S(ψ̂0, µ, ν∼,m∆t)

}
, (3.21)

where S(ψ̂0, µ, ν∼,m∆t) is the expression on the right-hand side of the first stability inequality and
c1 = 4λ(1 + b ‖κ

≈
‖2L∞(0,T )).

Proof. The proof is similar to that of the previous lemma, except we now select as our test
function ϕ̂ = (ψ̂n+1− ψ̂n)/∆t, multiply the resulting identity by ∆t and sum over n = 0, . . . ,m−1,
where m ≥ 1. Thus,

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1
4λ

(
‖∇∼ M ψ̂m‖2 − ‖∇∼ M ψ̂0‖2

)
+

1
4λ

m−1∑
n=0

∥∥∥∇∼ M ψ̂n+1 −∇∼ M ψ̂n
∥∥∥2

= ∆t
m−1∑
n=0

(
µn+1,

ψ̂n+1 − ψ̂n

∆t

)
+ ∆t

m−1∑
n=0

(
ν∼

n+1 + (κ
≈

n+1q
∼
)ψ̂n+1,∇∼ M

ψ̂n+1 − ψ̂n

∆t

)
=: T1 + T2.
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Let us consider the term T2, and define the functions

A∼
n+1 = ν∼

n+1 + (κ
≈

n+1q
∼
)ψ̂n+1, n = 0, . . . ,m− 1.

After summation by parts, we have that

T2 = −(A∼
1,∇∼ M ψ̂0) + (A∼

m,∇∼ M ψ̂m)−∆t
m−1∑
n=1

(
A∼

n+1 −A∼
n

∆t
,∇∼ M ψ̂n

)

= −(A∼
1,∇∼ M ψ̂0) + (A∼

m,∇∼ M ψ̂m)−∆t
m−1∑
n=1

(
ν∼

n+1 − ν∼
n

∆t
,∇∼ M ψ̂n

)

−∆t
m−1∑
n=1

(
κ
≈

n+1 − κ
≈

n

∆t
q
∼
ψ̂n,∇∼ M ψ̂n

)
−∆t

m−1∑
n=1

(
(κ
≈

n+1q
∼
)
ψ̂n+1 − ψ̂n

∆t
,∇∼ M ψ̂n

)
.

Hence,

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1
4λ
‖∇∼ M ψ̂m‖2 +

1
4λ

m−1∑
n=0

∥∥∥∇∼ M ψ̂n+1 −∇∼ M ψ̂n
∥∥∥2

=
1
4λ
‖∇∼ M ψ̂0‖2 − (A∼

1,∇∼ M ψ̂0) + (A∼
m,∇∼ M ψ̂m) + ∆t

m−1∑
n=0

(
µn+1,

ψ̂n+1 − ψ̂n

∆t

)

−∆t
m−1∑
n=1

(
ν∼

n+1 − ν∼
n

∆t
,∇∼ M ψ̂n

)
−∆t

m−1∑
n=1

(
κ
≈

n+1 − κ
≈

n

∆t
q
∼
ψ̂n,∇∼ M ψ̂n

)

−∆t
m−1∑
n=1

(
(κ
≈

n+1q
∼
)
ψ̂n+1 − ψ̂n

∆t
,∇∼ M ψ̂n

)
=: S1 + · · ·+ S7.

Clearly,

S2 ≤ ‖A∼
1‖‖∇∼ M ψ̂0‖

≤
(
‖ν∼

1‖+
√
b |κ
≈

1| ‖ψ̂1‖
)
‖∇∼ M ψ̂0‖

≤ 1
4λ
‖∇∼ M ψ̂0‖2 + λ

(
‖ν∼

1‖+
√
b |κ
≈

1| ‖ψ̂1‖
)2

.

Similarly,

S3 ≤ ‖A∼
m‖‖∇∼ M ψ̂m‖

≤
(
‖ν∼

m‖+
√
b |κ
≈

m| ‖ψ̂m‖
)
‖∇∼ M ψ̂m‖

≤ 1
8λ
‖∇∼ M ψ̂m‖2 + 2λ

(
‖ν∼

m‖+
√
b |κ
≈

m| ‖ψ̂m‖
)2

.

Next, we have

S4 ≤

(
∆t

m−1∑
n=0

‖µn+1‖2
) 1

2
∆t

m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2
 1

2

≤ 1
4
∆t

m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+ ∆t
m−1∑
n=0

‖µn+1‖2.
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Similarly,

S5 ≤

(
∆t

m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼
n

∆t

∥∥∥∥2
) 1

2
(

∆t
m−1∑
n=1

‖∇∼ M ψ̂n‖2
) 1

2

and

S6 ≤
√
b

∆t
m−1∑
n=1

∣∣∣∣∣κ≈n+1 − κ
≈

n

∆t

∣∣∣∣∣
2

‖ψ̂n‖2
 1

2 (
∆t

m−1∑
n=1

‖∇∼ M ψ̂n‖2
) 1

2

≤
√
b ‖κ
≈t‖L2(t1,tm) max

1≤n≤m−1
‖ψ̂n‖

(
∆t

m−1∑
n=1

‖∇∼ M ψ̂n‖2
) 1

2

.

Finally,

S7 ≤
√
b

∆t
m−1∑
n=1

∣∣κ
≈

n+1
∣∣2 ∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2
 1

2 (
∆t

m−1∑
n=1

‖∇∼ M ψ̂n‖2
) 1

2

≤
√
b ‖κ
≈
‖L∞(t2,tm)

∆t
m−1∑
n=1

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2
 1

2 (
∆t

m−1∑
n=1

‖∇∼ M ψ̂n‖2
) 1

2

≤ 1
4
∆t

m−1∑
n=1

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+ b ‖κ
≈
‖2L∞(t2,tm)

(
∆t

m−1∑
n=1

‖∇∼ M ψ̂n‖2
)
.

Therefore,

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1
4λ
‖∇∼ M ψ̂m‖2 +

1
2λ

m−1∑
n=0

∥∥∥∇∼ M ψ̂n+1 −∇∼ M ψ̂n
∥∥∥2

≤ 2∆t
m−1∑
n=0

‖µn+1‖2 + 12λ max
1≤n≤m

‖ν∼
n‖2 + ∆t

m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼
n

∆t

∥∥∥∥2

+
(
b ‖κ
≈t‖2L2(t1,tm) + 12λb ‖κ

≈
‖2L∞(t1,tm)

)
max

1≤n≤m
‖ψ̂n‖2

+
1
λ
‖∇∼ M ψ̂0‖2 + 8λ(1 + b ‖κ

≈
‖2L∞(t2,tm))

(
∆t
4λ

m−1∑
n=1

‖∇∼ M ψ̂n‖2
)
.

By an analogous argument, based on the discrete Gronwall Lemma, as in the proof of the first
stability inequality, we then deduce that

∆t
m−1∑
n=0

∥∥∥∥∥ ψ̂n+1 − ψ̂n

∆t

∥∥∥∥∥
2

+
1
4λ
‖∇∼ M ψ̂m‖2 +

1
2λ

m−1∑
n=0

∥∥∥∇∼ M ψ̂n+1 −∇∼ M ψ̂n
∥∥∥2

≤ e2c1m∆t

{
2∆t

m−1∑
n=0

‖µn+1‖2 + 12λ max
1≤n≤m

‖ν∼
n‖2 + ∆t

m−1∑
n=1

∥∥∥∥ν∼n+1 − ν∼
n

∆t

∥∥∥∥2

+
1
λ
‖∇∼ M ψ̂0‖2 +

(
b ‖κ
≈t‖2L2(0,T ) + 12λb ‖κ

≈
‖2L∞(0,T )

)
max

1≤n≤m
‖ψ̂n‖2

}
,
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where c1 = 4λ(1 + b ‖κ
≈
‖2L∞(0,T )). Now, using the first stability inequality, the last term in the curly

bracket is bounded by (b ‖κ
≈t‖2L2(0,T ) + 12λb ‖κ

≈
‖2L∞(0,T )) S(ψ̂0, µ, ν∼,m∆t), and hence the required

bound.
Once again, we denote by ψ̂∆t ∈ H1(0, T ; L2(D))∩C([0, T ]; H1

0(D;M)) the continuous piecewise
linear interpolant, with respect to t ∈ [0, T ], of the solution {ψ̂n : n = 0, . . . , NT } to (3.1) defined
by

ψ̂∆t(·, t)|[tn,tn+1] :=
t− tn

∆t
ψ̂n+1 +

tn+1 − t

∆t
ψ̂n, t ∈ [tn, tn+1], n = 0, . . . , NT − 1,

and let

ψ̂∆t,+(·, t) := ψ̂n+1(·), ψ̂∆t,−(·, t) := ψ̂n(·), t ∈ [tn, tn+1], n = 0, . . . , NT − 1.

Using analogous notation for κ
≈
, (3.1) summed for n = 0, . . . , NT − 1 can be restated as:

∫ T

0

∫
D

∂ψ̂∆t

∂t
ϕ̂ dq

∼
dt−

∫ T

0

∫
D

(κ
≈

∆t,+ q
∼
ψ̂∆t,+) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂∆t,+ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ L2(0, T ; H1
0(D;M)). (3.22)

It follows from (3.21) with µ = 0 and ν∼ = 0∼ in (3.5) that

(ψ̂∆t)∆t is bounded in L∞(0, T ; H1
0(D;M)),

(ψ̂∆t)∆t is bounded in H1(0, T ; L2(D)) ↪→ C([0, T ]; L2(D)),{
ψ̂∆t,+ − ψ̂∆t,−

√
∆t

}
is bounded L2(0, T ; H1

0(D;M)).

Passing to the limit ∆t→ 0+ and denoting by ψ̂ the (common) weak(–(∗)) limit of (ψ̂∆t)∆t in the
function space L∞(0, T ; H1

0(D;M)) ∩ H1(0, T ; L2(D)), we deduce from (3.22) (in the same way as
before) that∫ T

0

∫
D

∂ψ̂

∂t
ϕ̂ dq

∼
dt−

∫ T

0

∫
D

(κ
≈
q
∼
ψ̂) · ∇∼ M ϕ̂ dq

∼
dt

+
1
2λ

∫ T

0

∫
D

∇∼ M ψ̂ · ∇∼ M ϕ̂ dq
∼

dt = 0 ∀ϕ̂ ∈ L2(0, T ; H1
0(D;M)), (3.23)

ψ̂(·, 0) = ψ̂0(·), and ψ̂ satisfies the energy inequality

‖ψ̂‖2H1(0,T ;L2(D)) + ‖∇∼ M ψ̂‖2L∞(0,T ;L2(D)) ≤ C(b, λ, κ
≈
, T )‖ψ̂0‖2H1

0(D;M).

By uniqueness of the weak solution, it follows that the function ψ̂ thus constructed coincides with
the weak solution of (3.8); in other words, the weak solution ψ̂ of (3.8) belongs to H1(0, T ; L2(D))∩
L∞(0, T ; H1

0(D;M)) provided that κ
≈
∈ H1(0, T )d×d and ψ̂0 ∈ H1

0(D;M).
The stability results (3.5) and (3.21) will be useful in Section 4, but for now we note that

setting µ = 0 and ν∼ = 0∼ in (3.5) and (3.21) demonstrates the unconditional stability of the time
semidiscretization in various norms. We also note that, evidently, any fully-discrete method based on
the semidiscrete scheme (3.1) and conforming Galerkin discretization in q

∼
using a finite-dimensional

subspace PN of H1
0(D;M) will be unconditionally stable in the norms appearing on the left-hand

sides of (3.5) and (3.21).

20



4. The fully-discrete method. Let PN (D) be a finite-dimensional subspace of H1
0(D;M)

that will be chosen below and let ψ̂n
N ∈ PN (D) be the solution at time level n of our fully-discrete

Galerkin method:∫
D

ψ̂n+1
N − ψ̂n

N

∆t
ϕ̂ dq

∼
−
∫

D

(κ
≈

n+1 q
∼
ψ̂n+1

N ) · ∇∼ M ϕ̂ dq
∼

+
1
2λ

∫
D

∇∼ M ψ̂n+1
N · ∇∼ M ϕ̂ dq

∼
= 0,

∀ϕ̂ ∈ PN (D), n = 0, . . . , NT − 1, (4.1)

ψ̂0
N (·) := the L2(D) orthogonal projection of ψ̂0(·) = ψ̂(·, 0) onto PN (D). (4.2)

Remark 4.1. If the linear space PN (D) is selected so that
√
M ∈ PN (D), then, since

√
M ∈

Ker(∇∼ M ), it follows on taking ϕ̂ =
√
M in (4.1) that∫

D

√
M(q

∼
) ψ̂n

N (q
∼
) dq
∼

=
∫

D

√
M(q

∼
) ψ̂0

N (q
∼
) dq
∼
, n = 1, . . . , NT ,

whereby, on letting ψn
N :=

√
Mψ̂n

N , we have that∫
D

ψn
N (q
∼
) dq
∼

=
∫

D

ψ0
N (q
∼
) dq
∼
, n = 1, . . . , NT .

The function ψn
N represents an approximation to the probability density function ψ =

√
Mψ̂ at

t = tn. Since, by Lemma 3.3,
∫

D
ψ(q
∼
, t) dq

∼
=
∫

D
ψ0(q

∼
) dq
∼

= 1 for all t ≥ 0, we deduce, by choosing
PN (D) so that

√
M ∈ PN (D), this integral identity is preserved under discretization.

Our objective is to derive a bound on the global error

en
N = ψ̂(·, tn)− ψ̂n

N

=
(
ψ̂(·, tn)− Π̂N ψ̂(·, tn)

)
+
(
Π̂N ψ̂(·, tn)− ψ̂n

N

)
=: ηn + ξn,

where Π̂N ψ̂(·, tn) ∈ PN (D) is a certain projection of ψ̂(·, tn) onto PN (D) that will be defined below.
For the moment, the specific choices of PN ⊂ H1

0(D;M) and Π̂N are irrelevant.
We begin by bounding norms of ξ in terms of suitable norms of η. Substituting ξ into (4.1),

setting ϕ̂ = ξn+1, and noting that ξn = ψ̂(·, tn)− ψ̂n
N − ηn, we have∫

D

ξn+1 − ξn

∆t
ξn+1 dq

∼
−
∫

D

(κ
≈

n+1 q
∼
ξn+1) · ∇∼ Mξn+1 dq

∼
+

1
2λ

∫
D

∇∼ Mξn+1 · ∇∼ Mξn+1 dq
∼

=
∫

D

µn+1 ξn+1 dq
∼

+
∫

D

ν∼
n+1 · ∇∼ Mξn+1 dq

∼
− 1

2λ

∫
D

∇∼ Mηn+1 · ∇∼ Mξn+1 dq
∼
, (4.3)

for n = 0, . . . , NT − 1, where

µn+1 :=

(
ψ̂(·, tn+1)− ψ̂(·, tn)

∆t
− ∂ψ̂

∂t
(·, tn+1)

)
− ηn+1 − ηn

∆t
, (4.4)

ν∼
n+1 := κ

≈
n+1q

∼
ηn+1 − 1

2λ
∇∼ Mηn+1. (4.5)

Since PN (D) ⊂ H1
0(D;M), (4.3) is in the form of (3.4); hence, applying Lemma 3.1, we obtain

‖ξm‖2 +
1
2λ

m−1∑
n=0

∆t‖∇∼ Mξn+1‖2

≤ e2c0m∆t

{
‖ξ0‖2 +

m−1∑
n=0

2∆t
(
‖µn+1‖2 + 4λ‖ν∼

n+1‖2
)}

, m = 1, . . . , NT . (4.6)
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Let us first consider the term ‖ξ0‖ on the right-hand side of (4.6). Since ψ̂0
N is the L2(D) orthogonal

projection of ψ̂(·, 0) = ψ̂0 onto PN (D), we have

(ξ0, ϕ̂N ) = (e0N , ϕ̂N )− (η0, ϕ̂N ) = −(η0, ϕ̂N ) ∀ϕ̂N ∈ PN (D).

Setting ϕ̂N = ξ0 here and applying the Cauchy–Schwarz inequality on the right-hand side yields

‖ξ0‖ ≤ ‖η0‖. (4.7)

By the triangle inequality we have the following bound on ‖ν∼n+1‖:

‖ν∼
n+1‖ ≤

√
b|κ
≈

n+1| ‖ηn+1‖+
1
2λ
‖∇∼ Mηn+1‖, n = 0, . . . , NT − 1.

Hence for the third term on the right-hand-side of (4.6), we have

m−1∑
n=0

8λ∆t‖ν∼
n+1‖2 ≤

m−1∑
n=0

∆t
(

16λb|κ
≈

n+1|2‖ηn+1‖2 +
4
λ
‖∇∼ Mηn+1‖2

)

≤ 4c2
m−1∑
n=0

∆t‖ηn+1‖2H1
0(D;M)

= 4c2‖η‖2`2(0,tm;H1
0(D;M)), m = 1, . . . , NT ,

where c2 := max
(
1/λ , 4λb‖κ

≈
‖2L∞(0,T )

)
.

It remains to bound ‖µm+1‖. We begin by observing that

‖µm+1‖ ≤

∥∥∥∥∥ ψ̂(·, tn+1)− ψ̂(·, tn)
∆t

− ∂ψ̂

∂t
(·, tn+1)

∥∥∥∥∥+
∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥
:= I + II.

For term I, applying Taylor’s Theorem with integral remainder yields

ψ̂(·, tn+1)− ψ̂(·, tn)
∆t

− ∂ψ̂

∂t
(·, tn+1) = − 1

∆t

∫ tn+1

tn

(tn+1 − t)
∂2ψ̂

∂t2
(·, t) dt,

and it follows that

I ≤
√

∆t

∫ tn+1

tn

∥∥∥∥∥∂2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt

 1
2

.

For term II we have the following bound:

II =
∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥ =


∫

D

(
1

∆t

∫ tn+1

tn

∂η

∂t
(q
∼
, t) dt

)2

dq
∼


1
2

≤

{∫
D

1
∆t

∫ tn+1

tn

∣∣∣∣∂η∂t (q∼, t)
∣∣∣∣2 dtdq

∼

} 1
2

=
1√
∆t

{∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥2

dt

} 1
2

.
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With the bounds derived on I and II we now have that

m−1∑
n=0

2∆t‖µn+1‖2 ≤ 4
m−1∑
n=0

∆t2
∫ tn+1

tn

∥∥∥∥∥∂2ψ̂

∂t2
(·, t)

∥∥∥∥∥
2

dt+ 4
m−1∑
n=0

∫ tn+1

tn

∥∥∥∥∂η∂t (·, t)
∥∥∥∥2

dt

= 4∆t2
∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

+ 4
∥∥∥∥∂η∂t

∥∥∥∥2

L2(0,tm;L2(D))

.

Combining the bounds on the three terms on the right-hand side of (4.6) we deduce that

‖ξm‖2 +
1
2λ

m−1∑
n=0

∆t‖∇∼ Mξn+1‖2

≤ e2c0m∆t

(
‖η0‖2 + 4c2‖η‖2`2(0,tm;H1

0(D;M)) + 4
∥∥∥∥∂η∂t

∥∥∥∥2

L2(0,tm;L2(D))

+ 4∆t2
∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
2

L2(0,tm;L2(D))

 . (4.8)

It remains to bound the first three terms in the bracket on the right-hand side of (4.8). To do so we
need to make a specific choice of the finite-dimensional space PN (D) from which approximations to
ψ̂ ∈ H1

0(D;M) are sought, and we also need to specify the projector Π̂N . These questions will be
discussed in the next section. We shall then return, in Section 6, to the bound (4.8) and complete
the convergence analysis of the numerical method.

5. Approximation results. Motivated by the behaviour of the FENE potential considered in
Section 2, we have assumed at the end of Section 2 that U is (−1)-convex. Then, H1

0(D) ⊂ H1
0(D;M).

Therefore, any finite-dimensional space PN (D) ⊂ H1
0(D) is, trivially, also contained in H1

0(D;M).
Further, H1(D;M) ∩ C1(D) = H1

0(D) ∩ C1(D); thus, from the viewpoint of C1(D) functions, the
function spaces H1(D;M) and H1

0(D) are indistinguishable.
Remark 5.1. We noted in Remark 4.1 that if, in addition,

√
M ∈ PN (D) then∫

D

ψn
N (q
∼
) dq
∼

=
∫

D

ψ0
N (q
∼
) dq
∼
.

Since
√
M ∈ H1

0(D), one can ensure that this integral identity holds by choosing PN (D) =
√
MSN (D),

where SN (D) is a finite-dimensional subspace of C1(D) such that 1 ∈ SN (D).
Our definition of PN (D) and the choice of the projector Π̂N : H1

0(D;M) → PN (D) depend
on the number d of space dimensions. Since the case of d = 2 is sufficiently representative, for the
sake of brevity and ease of presentation we shall confine ourselves to two space dimensions, that is,
when D is a disc of radius

√
b in R2.

Let D0 denote the slit disc

D0 := D \ {(q1, 0) : 0 ≤ q1 <
√
b }.

It is natural to transform D0 into the rectangle (r, θ) ∈ R := (0, 1)× (0, 2π) in a polar co-ordinate
system, using the (bijective) change of variables

q
∼

= (q1, q2) = (
√
b r cos θ,

√
b r sin θ) ∈ D0 (5.1)

where (r, θ) ∈ R. Given f ∈ H1(D), we define f̃ on R by

f̃(r, θ) = f(q1, q2), q
∼

= (q1, q2) ∈ D0, (r, θ) ∈ R, q1 =
√
b r cos θ, q2 =

√
b r sin θ.
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Thus,

‖f‖2H1(D) = ‖f‖2H1(D0)
=
∫ 1

0

r

∫ 2π

0

b|f̃ |2 + |Drf̃ |2 +

∣∣∣∣∣Dθf̃

r

∣∣∣∣∣
2
dθ dr.

Motivated by this identity and writing, here and henceforth, w̃(r) := r for our weight-function on
the interval (0, 1), we define the space

H̃1
w̃(R) := {f̃ ∈ L2

w̃(R) : Drf̃ ∈ L2
w̃(R) and

1
r
Dθf̃ ∈ L2

w̃(R)}, (5.2)

equipped with the norm ‖ · ‖H̃1
w̃(R) defined by

‖f̃‖2
H̃1

w̃(R)
:=
∫ 1

0

w̃(r)
∫ 2π

0

|f̃ |2 + |Drf̃ |2 +

∣∣∣∣∣Dθf̃

r

∣∣∣∣∣
2
dθ dr, (5.3)

where L2
w̃(R) is the w̃-weighted space of square-integrable functions on R, with the norm ‖ · ‖L2

w̃(R)

defined by

‖f̃‖2L2
w̃(R) :=

∫ 1

0

w̃(r)
∫ 2π

0

|f̃(r, θ)|2 dθ dr =
∫

R

|f̃(r, θ)|2 r dr dθ.

We denote by H̃1
w̃,0(R) the subspace of H̃1

w̃(R) consisting of all functions f̃ such that the trace
f̃(1, ·) = 0. For s, t ≥ 0 the space Hs,t(R) is defined as

Hs,t(R) := Hs(0, 1;Ht
p(0, 2π)), (5.4)

where the periodic Sobolev space Ht
p(0, 2π) is given by

Ht
p(0, 2π) := {f̃ ∈ Ht

loc(R) : f̃(θ + 2π) = f̃(θ) ∀θ ∈ R}.

Clearly, f̃ ∈ H̃1
w̃(R) implies that f ∈ H1(D0), and vice versa. We will also need weighted Sobolev

spaces of the following form:

Hs,t
w̃ (R) := Hs

w̃(0, 1;Ht
p(0, 2π)), (5.5)

equipped (for non-negative integers s and t) with the norm ‖ · ‖Hs,t
w̃ (R) defined by

‖f̃‖2
Hs,t

w̃ (R)
:=

∑
0≤i≤s, 0≤j≤t

∫ 1

0

w̃(r)
∫ 2π

0

|Di
rD

j
θ f̃(r, θ)|2 dθ dr.

Similarly, for s > 1
2 , we define

Hs,t
w̃,0(R) := Hs

w̃,0(0, 1;Ht
p(0, 2π)),

where Hs
w̃,0(0, 1) is the subspace of Hs

w̃(0, 1) consisting of all functions that vanish (in the sense of
the Trace Theorem) at r = 1. In particular, for s = 1, H1

w̃,0(0, 1) denotes the set of all ũ ∈ H1
w̃(0, 1)

such that ũ(1) = 0, endowed with the following inner product and norm:

(ũ, ṽ)H1
w̃,0(0,1) :=

∫ 1

0

w̃(r)DrũDrṽ dr and ‖ũ‖H1
w̃,0(0,1) := {(ũ, ṽ)H1

w̃,0(0,1)}
1
2 .

Note that w̃ is a Jacobi weight function (i.e., of the form (1−s)α(1+s)β , s ∈ (−1, 1) with α, β > −1)
when transformed to (−1, 1).
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We now introduce the projection operators that we will use. Due to the cartesian product
structure of the set R it is natural to define distinct projection operators in the r and θ co-ordinate
directions. In the θ-direction we use the orthogonal projection in the L2(0, 2π) inner product (i.e.,
truncation of the Fourier series) denoted, for N ≥ 1, by

PF
N : L2(0, 2π) → SN (0, 2π),

where SN (0, 2π) is the space of all trigonometric polynomials in θ ∈ [0, 2π] of degree N or less.
The appropriate choice of projector in the r-direction is less immediate. We define, for N ≥ 1,

P J
Ng : H1

w̃,0(0, 1) → PN,0(0, 1) (5.6)

as the orthogonal projection in the H1
w̃,0(0, 1) inner product, where PN,0(0, 1) is the space of all

algebraic polynomials in r ∈ [0, 1], of degree N or less, that vanish at r = 1.
It is tempting to define a two-dimensional projector onto SN (0, 2π) ⊗ PN,0(0, 1) as the tensor

product of the projectors PF
N and P J

N . Unfortunately, this choice is inadequate due to the presence
of the singular factor 1/r in the weighted Sobolev norm ‖ · ‖H̃1

w̃(R), and a different definition is
required. In order to motivate our choice of the two-dimensional projector below, we state the
following result that can be seen as a variant of the Malgrange Preparation Theorem [19].

Lemma 5.2. (Decomposition Lemma) Suppose that (a, b) and (c, d) are nonempty bounded
open intervals of R, with x ∈ (a, b) and y ∈ (c, d), and u ∈ W1,q((c, d);Ws,p(a, b)) where 1 ≤ q ≤ ∞,
1 < p ≤ ∞, and 1/p < s ≤ 1. Then,

(a) uy ∈ Lq((c, d); Cs−1/p[a, b]);
(b) If there exists x0 ∈ [a, b] such that uy(x0, y) = 0 for a.e. y ∈ (c, d), then

u(x, y) = A(x) + (x− x0)B(x, y),

where A ∈ Ws,p(a, b), B ∈ W1,q((c, d); Lt(a, b)), with 1 ≤ t < p and 1 + (1/p) < s+ (1/t),
and (x− x0)B ∈ W1,q((c, d);Ws,p(a, b)).

(c) If, in addition to x0 ∈ [a, b] as in part (b), there exists x1 ∈ [a, b] (which may, but need not,
differ from x0) such that u(x1, y) = 0 for a.e. y ∈ (c, d), then A(x1) = 0 and B(x1, y) = 0
for all y ∈ (c, d).

Proof. (a) Since u ∈ W1,q((c, d);Ws,p(a, b)), we have uy ∈ Lq((c, d);Ws,p(a, b)), and therefore,
by the Sobolev Embedding Theorem, also uy ∈ Lq((c, d); Cs−1/p[a, b]).

(b) It follows from (a) that

|uy(x1, y)− uy(x2, y)| ≤ C(y)|x1 − x2|s−1/p ∀x1, x2 ∈ [a, b] and for a.e. y ∈ (c, d),

where C ∈ Lq(c, d). Now, suppose that there exists x0 ∈ [a, b] such that uy(x0, y) = 0 for a.e.
y ∈ (c, d). Let

v(x, y) :=
{
uy(x, y)/(x− x0) when x ∈ [a, b] \ {x0}, y ∈ (c, d),
0 when x = x0, y ∈ (c, d).

Clearly, uy(x, y) = (x− x0) v(x, y). If q ∈ [1,∞), then∫ d

c

(∫ b

a

|v(x, y)|t dx

) q
t

dy

 1
q

=

∫ d

c

(∫ b

a

|uy(x, y)− uy(x0, y)|t

|x− x0|t
dx

) q
t

dy

 1
q

≤

(∫ b

a

dx
|x− x0|t(1−(s−1/p))

) 1
t
(∫ d

c

|C(y)|q dy

) 1
q

<∞,

since 0 < t(1− (s− 1/p)) < 1. If, on the other hand, q = ∞, then

ess.supy∈(c,d)

(∫ b

a

|v(x, y)|t dx

) 1
t

≤

(∫ b

a

dx
|x− x0|t(1−(s−1/p))

) 1
t

· ess.supy∈(c,d)|C(y)| <∞.
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Either way v ∈ Lq((c, d); Lt(a, b)), which then implies that the function y 7→
∫ y

c
v(x, η) dη is abso-

lutely continuous on [c, d] for a.e. x ∈ [a, b]; moreover, it belongs to W1,q(c, d) for a.e. x ∈ [a, b].
Further, the function B : (x, y) 7→ B(x, y) :=

∫ y

c
v(x, η) dη, defined on (a, b) × (c, d), belongs to

W1,q((c, d); Lt(a, b)). Now,

u(x, y) = u(x, c) + (x− x0)
∫ y

c

v(x, η) dη =: A(x) + (x− x0)B(x, y),

with A ∈ Ws,p(a, b), B ∈ W1,q((c, d); Lt(a, b)), and (x− x0)B ∈ W1,q((c, d);Ws,p(a, b)).
(c) Now, let x1 ∈ [a, b] and u(x1, y) = 0 for a.e. y ∈ (c, d). Since then uy(x1, y) = 0 for a.e.

y ∈ (c, d), it follows from the definition of the function v in part (b) that v(x1, y) = 0 for a.e.
y ∈ (c, d), irrespective of whether or not x1 6= x0. Hence, recalling the definition of B, we also have
that B(x1, y) = 0 for all y ∈ (c, d). Thus, A(x1) = u(x1, y)− (x1 − x0)B(x1, y) = 0.

Suppose that g̃ ∈ H̃1
w̃,0(R) ∩ H1,1(R). Then, necessarily, Dθ g̃(0, θ) = 0 for a.e. θ ∈ (0, 2π), as

otherwise ‖g̃‖H̃1
w̃(R) would not be finite.1 Furthermore, applying Lemma 5.2 with x = r, y = θ,

(a, b) = (0, 1), (c, d) = (0, 2π), s = 1, p = q = 2, x0 = 0 and x1 = 1, we deduce that g̃ has the
decomposition

g̃(r, θ) = g̃1(r) + rg̃2(r, θ), (5.7)

where g̃1 ∈ H1(0, 1), g̃2 ∈ H1
p((0, 2π); Lt(0, 1)) with 1 ≤ t < 2, and rg̃2 ∈ H1

p((0, 2π); H1(0, 1)),
g̃1(1) = 0 (and therefore g̃1 ∈ H1

w̃,0(0, 1)), and g̃2(1, θ) = 0 for all θ ∈ (0, 2π).
Assuming that g̃ ∈ H̃1

w̃,0(R)∩H1,1(R), and g̃2(·, θ) ∈ H1
w̃,0(0, 1) for all θ ∈ (0, 2π), we now define

P̃ J
N g̃(·, θ) := P J

N g̃1(·) + rP J
N−1g̃2(·, θ), θ ∈ (0, 2π),

where P J
N : H1

w̃,0(0, 1) → PN,0(0, 1) is the orthogonal projector defined in (5.6).
There are a number of approximation results available in the literature related to projectors in

Jacobi-weighted inner products (see for example [5] or [10]). Since the setting here is specific, we
need to establish the required approximation properties of the univariate projector P J

N from first
principles. The approximation properties of P̃ J

N and of our two-dimensional projector PF
N P̃

J
N will

then follow. The relevant results are stated in the next two lemmas.
Lemma 5.3. Suppose that g̃ ∈ Hk

w̃,0(0, 1) with k ≥ 1; then,

‖g̃ − P J
N g̃‖H1

w̃(0,1) ≤ cN1−k‖g̃‖Hk
w̃(0,1). (5.8)

If, in addition, there exists α ∈ (0, 1) such that r 7→ rαg̃(r) ∈ C[0, 1], then also

‖g̃ − P J
N g̃‖L2

w̃(0,1) ≤ cN−k‖g̃‖Hk
w̃(0,1). (5.9)

Proof. Let us first prove (5.8). Note that by Pythagoras’ Theorem,

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) =
(
‖g̃‖2H1

w̃,0(0,1) − ‖P
J
N g̃‖2H1

w̃,0(0,1)

) 1
2 ≤ ‖g̃‖H1

w̃,0(0,1) ≤ ‖g̃‖Hk
w̃(0,1).

If k = 1, the right-most term in this chain is equal to 1 · N1−k‖g̃‖Hk
w̃(0,1), while if k ≥ 2 and

1 ≤ N < k − 1, then it is bounded by (k − 1)k−1N1−k‖g̃‖Hk
w̃(0,1).

1Note that by part (a) of the Decomposition Lemma, if g̃ ∈ H1,1(R), thenDθ g̃ ∈ L2((0, 2π); C
1
2 [0, 1]). IfDθ g̃(0, θ)

were nonzero for θ ∈ S0 where S0 is a subset of (0, 2π) of Lebesgue measure L1(S0) > 0, then for each θ ∈ S0 there
would exist a nonempty interval [0, rθ] ⊂ [0, 1] over which |Dθ g̃(·, θ)| is continuous and strictly positive and has,

therefore, a positive lower bound (which may vary with θ). Now,
R 1
0 |Dθ g̃(r, θ)|2/r dr ≥

R rθ
0 |Dθ g̃(r, θ)|2/r dr and the

latter integral is divergent for each θ ∈ S0. As S0 has positive measure, also
R 2π
0

R 1
0 |Dθ g̃(r, θ)|2/r dr dθ = ∞, which

in turn contradicts g̃ ∈ H̃1
w̃,0(R). Thus L1(S0) = 0, or S0 is empty; in any case, Dθ g̃(0, θ) = 0 for a.e. θ ∈ (0, 2π).
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Finally, if k ≥ 2 and N ≥ max(2, k − 1), then we recall that, by the definition of P J
N ,

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) ≤ ‖g̃ − ṽ‖H1
w̃,0(0,1) ∀ṽ ∈ PN,0(0, 1).

Select, in particular,

ṽ(r) = −
∫ 1

r

QJ
N−1Dsg̃(s) ds, r ∈ [0, 1],

where QJ
N−1 is the orthogonal projector in L2

w̃(0, 1) onto PN−1(0, 1), the set of all algebraic poly-
nomials of degree N − 1 or less on the interval [0, 1]. Thus,

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) ≤ ‖Dr g̃ −Drṽ‖L2
w̃(0,1) = ‖Dr g̃ −QJ

N−1(Dr g̃)‖L2
w̃(0,1) ≤ c (N − 1)1−k‖g̃‖Hk

w̃(0,1),

where the last bound (scaled from the standard interval (−1, 1) to (0, 1)) comes from §5.7.1 of
Canuto et al. [10], and is valid for N ≥ max(2, k− 1), k ≥ 2. Hence, after bounding (N − 1)1−k by
2k−1N1−k (recall that N ≥ 2 by hypothesis), we deduce that

‖g̃ − P J
N g̃‖H1

w̃,0(0,1) ≤ c 2k−1N1−k‖g̃‖Hk
w̃(0,1).

Now choosing ĉ = max{(k − 1)k−1, c 2k−1}, with the convention that 00 := 1, we have that

‖g̃ − P J
N ṽ‖H1

w̃,0(0,1) ≤ ĉN1−k‖g̃‖Hk
w̃(0,1)

for all N ≥ 1 (regardless of whether or not N ≥ k − 1). Since by the Poincaré inequality

‖ṽ‖L2
w̃(0,1) ≤

1√
2
‖Drṽ‖L2

w̃(0,1) ∀ṽ ∈ H1
w̃,0(0, 1) (5.10)

‖ · ‖H1
w̃,0(0,1) and ‖ · ‖H1

w̃(0,1) are equivalent norms on H1
w̃,0(0, 1), we deduce (5.8) for any N ≥ 1.

The proof of (5.9) is based on a duality argument. Let e := g̃ − P J
N g̃. It follows from the

hypotheses on g̃ that e ∈ L2
w̃(0, 1), and r 7→ rαe(r) ∈ C[0, 1] with α ∈ (0, 1).

Given any e ∈ L2
w̃(0, 1), consider the mixed Neumann–Dirichlet boundary-value problem:

−Dr(rDr ze(r)) = r e(r), r ∈ (0, 1), lim
r→0+

rDrze(r) = 0, ze(1) = 0. (5.11)

By (5.10) and the Lax–Milgram Theorem, this has a unique weak solution ze ∈ H1
w̃,0(0, 1),

(ze, v)H1
w̃,0(0,1) = (e, v)L2

w̃(0,1) ∀v ∈ H1
w̃,0(0, 1), and ‖ze‖2H1

w̃(0,1) ≤
3
4
‖e‖2L2

w̃(0,1). (5.12)

We shall show that, in fact, ze ∈ H2
w̃,0(0, 1). To this end, note that

Drze(r) = −1
r

∫ r

0

s e(s) ds, r ∈ (0, 1]. (5.13)

Hence, Drze ∈ C(0, 1]; and since r 7→ rαe(r) ∈ C[0, 1] with α ∈ (0, 1), we have limr→0+ r e(r) = 0,
and therefore limr→0+ Drze(r) = 0. Now,∫ 1

0

1
r
|Drze(r)|2 dr ≤ 1

2

∫ 1

0

r | ln r|2 |e(r)|2 dr =
1
2

∫ 1

0

|rαe(r)|2 · | ln r|
r2α−1

dr

≤ max
x∈[0,1]

|rα e(r)|2
∫ 1

0

| ln r|
r2α−1

dr <∞,
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by using in the left-most integral in the chain the identity (5.13) with s =
√
s
√
s, applying the

Cauchy–Schwarz inequality in the inner integral, and exchanging the order of integration in the
resulting double integral. Thus, it follows from (5.11) that D2

rze = −(e + r−1Drze) ∈ L2
w̃(0, 1) ∩

C(0, 1] and, for any ε ∈ (0, 1),∫ 1

ε

r |D2
rze(r)|2 dr +

∫ 1

ε

Drze(r)D2
rze(r) dr = −

∫ 1

ε

r e(r)D2
rze(r) dr.

Hence, by computing explicitly the second integral on the left-hand side and applying Cauchy’s
inequality |ab| ≤ 1

2 (a2 + b2) on the right-hand side, we obtain∫ 1

ε

r |D2
rze(r)|2 dr + |Drze(1)|2 ≤

∫ 1

ε

r |e(r)|2 dr + |Drze(ε)|2.

Passing to the limit ε→ 0+, and omitting the second term on the left-hand side, we deduce that∫ 1

0

r |D2
rze(r)|2 dr ≤

∫ 1

0

r |e(r)|2 dr.

Combining this with our earlier bound from (5.12), we have that

‖ze‖2H2
w̃(0,1) ≤

7
4
‖e‖2L2

w̃(0,1). (5.14)

We are now ready to embark on the analysis of the projection error in the L2
w̃(0, 1) norm.

Recalling that e = g̃−P J
N g̃ ∈ H1

w̃,0(0, 1), we deduce from the weak formulation (5.12), the definition
of the orthogonal projector P J

N , the Cauchy–Schwarz inequality, (5.8) and (5.14) that

‖g̃ − P J
N g̃‖2L2

w̃(0,1) = (e, g̃ − P J
N g̃)L2

w̃(0,1) = (ze, g̃ − P J
N g̃)H1

w̃,0(0,1) = (g̃ − P J
N g̃, ze)H1

w̃,0(0,1)

= (g̃ − P J
N g̃, ze − P J

Nze)H1
w̃,0(0,1)

≤ ‖g̃ − P J
N g̃‖H1

w̃,0(0,1)‖ze − P J
Nze‖H1

w̃,0(0,1)

≤ cN1−k‖g̃‖Hk
w̃(0,1) ·N−1‖ze‖H2

w̃(0,1)

≤ cN−k‖g̃‖Hk
w̃(0,1)‖e‖L2

w̃(0,1)

= cN−k‖g̃‖Hk
w̃(0,1)‖g̃ − P J

N g̃‖L2
w̃(0,1), k ≥ 1.

Dividing the left-most and the right-most term in this chain by ‖g̃ − P J
N g̃‖L2

w̃(0,1) gives (5.9).

Remark 5.4. A sufficient condition for the existence of α ∈ (0, 1) such that the function
r 7→ rαg̃(r) ∈ C[0, 1] is that (by adopting the notation from Chapter 3 of Triebel [29])

g̃ ∈ W1
2((0, 1); rα+1; rα−1) := {f̃ ∈ L2

loc(0, 1) :
∫ 1

0

rα+1|Drf̃(r)|2 + rα−1|f̃(r)|2 dr <∞}.

As a matter of fact, if g̃ ∈ W1
2((0, 1); rα+1; rα−1) for some α ∈ (0, 1), then r 7→ rαg̃(r) ∈ C

α
2 [0, 1].

This follows from the following inequality: let G(r) = rαg̃(r); then,

|G(r1)−G(r2)| ≤ |r1 − r2|
α
2

(
α+

1
α

) 1
2
(∫ 1

0

r1+α|Dr g̃(r)|2 + rα−1|g̃(r)|2 dr
) 1

2

.

Lemma 5.5. Let g̃ ∈ H̃1
w̃,0(R) ∩ H1,1(R), with decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ), where

g̃1 ∈ H1
w̃,0(0, 1) and g̃2(·, θ) ∈ H1

w̃,0(0, 1) for all θ ∈ (0, 2π), and denote by Π̃N the two-dimensional
projector onto PNr (0, 1)⊗ SNθ

(0, 2π) defined, for positive integers Nθ and Nr, by

(Π̃N g̃)(r, θ) := (PF
Nθ
P̃ J

Nr
g̃)(r, θ) = (P̃ J

Nr
PF

Nθ
g̃)(r, θ).
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If g̃1 ∈ Hk+1
w̃ (0, 1) and g̃2 ∈ Hk+1,0

w̃ (R) ∩Hk,1
w̃ (R) ∩H0,l+1

w̃ (R) ∩H1,l
w̃ (R) for some k, l ≥ 1, and there

exists an α ∈ (0, 1) such that, for each θ ∈ (0, 2π), r 7→ rαg2(r, θ) ∈ C[0, 1], then

‖g̃ − Π̃N g̃‖H̃1
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2Hk+1

w̃ (0,1)
+ ‖g̃2‖2Hk+1,0

w̃ (R)
+ ‖g̃2‖2Hk,1

w̃ (R)

) 1
2

+C2N
−l
θ

(
‖g̃2‖2H0,l+1

w̃ (R)
+ ‖g̃2‖2H1,l

w̃ (R)

) 1
2
. (5.15)

If g̃1 ∈ Hk
w̃(0, 1) and g̃2 ∈ Hk,0

w̃ (R) ∩ H0,l
w̃ (R) for some k, l ≥ 1, and there exists an α ∈ (0, 1) such

that, for each θ ∈ (0, 2π), r 7→ rαg2(r, θ) ∈ C[0, 1], then

‖g̃ − Π̃N g̃‖L2
w̃(R) ≤ C1N

−k
r

(
‖g̃1‖2Hk

w̃(0,1) + ‖g̃2‖2Hk,0
w̃ (R)

) 1
2

+ C2N
−l
θ ‖g̃2‖H0,l

w̃ (R). (5.16)

Proof. The left-hand side in (5.15) is given by:

‖g̃ − Π̃N g̃‖2H̃1
w̃(R)

=
∫ 1

0

w̃(r)
∫ 2π

0

{
(g̃ − Π̃N g̃)2 + (Dr g̃ −Dr(Π̃N g̃))2

}
dθ dr

+
∫ 1

0

r−1

∫ 2π

0

(Dθ g̃ −Dθ(Π̃N g̃))2 dθ dr

=: I + II.

Let us first consider term I; we treat the two terms in the, inner, θ-integral in I separately. First, us-
ing the L2-error bound for Fourier projection, as well as the fact that ‖PF

Nθ
‖L(L2

p(0,2π),L2
p(0,2π)) ≤ 1,

we obtain

‖g̃(r, ·)− Π̃N g̃(r, ·)‖2L2(0,2π) ≤
(
‖g̃(r, ·)− PF

Nθ
g̃(r, ·)‖L2(0,2π) + ‖PF

Nθ
(g̃(r, ·)− P̃ J

Nr
g̃(r, ·))‖L2(0,2π)

)2

≤
(
C3N

−l
θ ‖Dl

θ g̃(r, ·)‖L2(0,2π) + ‖g̃(r, ·)− P̃ J
Nr
g̃(r, ·)‖L2(0,2π)

)2

≤ 2C2
3N

−2l
θ ‖Dl

θ g̃(r, ·)‖2L2(0,2π) + 2‖g̃(r, ·)− P̃ J
Nr
g̃(r, ·)‖2L2(0,2π)

≤ 2C2
3N

−2l
θ ‖Dl

θ g̃2(r, ·)‖2L2(0,2π) + 2‖g̃(r, ·)− P̃ J
Nr
g̃(r, ·)‖2L2(0,2π),

where Dl
θ g̃ = rDl

θ g̃2 and 0 ≤ r ≤ 1 have been used in the last line. Similarly,

‖Dr g̃(r, ·)−Dr(Π̃N g̃(r, ·))‖2L2(0,2π)

≤ 2C2
3N

−2l
θ ‖DrD

l
θ g̃(r, ·)‖2L2(0,2π) + 2‖Dr g̃(r, ·)−Dr(P̃ J

Nr
g̃(r, ·))‖2L2(0,2π)

≤ 4C2
3N

−2l
θ (‖Dl

θ g̃2(r, ·)‖2L2(0,2π) + ‖DrD
l
θ g̃2(r, ·)‖2L2(0,2π))

+2‖Dr g̃(r, ·)−Dr(P̃ J
Nr
g̃(r, ·))‖2L2(0,2π).

Therefore,

I≤ 6C2
3N

−2l
θ

∫ 2π

0

(
‖Dl

θ g̃2(·, θ)‖2L2
w̃(0,1)+ ‖DrD

l
θ g̃2(·, θ)‖2L2

w̃(0,1)

)
dθ+ 2

∫ 2π

0

‖g̃(·, θ)−P̃ J
Nr
g̃(·, θ)‖2H1

w̃(0,1)dθ.
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Now we bound the final term on the right-hand side of the last inequality:

‖g̃(·, θ)− P̃ J
Nr
g̃(·, θ)‖2H1

w̃(0,1) ≤ 2‖g̃1 − P J
Nr
g̃1‖2H1

w̃(0,1) + 2‖r(g̃2(·, θ)− P J
Nr−1g̃2(·, θ))‖2H1

w̃(0,1)

≤ C2N−2k
r ‖g̃1‖2Hk+1

w̃ (0,1)

+ 2
∫ 1

0

w̃(r)
{
[r(g̃2(r, θ)− P J

Nr−1g̃2(r, θ))]
2 + [Dr(r(g̃2(r, θ)− P J

Nr−1g̃2(r, θ)))]
2
}

dr

= C2N−2k
r ‖g̃1‖2Hk+1

w̃ (0,1)

+ 2
∫ 1

0

w̃(r)
{
(1 + r2)(g̃2(r, θ)− P J

Nr−1g̃2(r, θ))
2 + r2(Dr(g̃2(r, θ)− P J

Nr−1g̃2(r, θ)))
2
}

dr

≤ C2N−2k
r ‖g̃1‖2Hk+1

w̃ (0,1)
+ 4‖g̃2(·, θ)− P J

Nr−1g̃2(·, θ)‖2H1
w̃(0,1)

≤ C2
4N

−2k
r

(
‖g̃1‖2Hk+1

w̃ (0,1)
+ ‖g̃2(·, θ)‖2Hk+1

w̃ (0,1)

)
,

using the univariate ‖ · ‖H1
w̃

error bound (5.8). Therefore,

I ≤ 6C2
3N

−2l
θ

∫ 2π

0

(
‖Dl

θ g̃2(·, θ)‖2L2
w̃(0,1) + ‖DrD

l
θ g̃2(·, θ)‖2L2

w̃(0,1)

)
dθ

+ 2C2
4N

−2k
r

∫ 2π

0

(
‖g̃1‖2Hk+1

w̃ (0,1)
+ ‖g̃2(·, θ)‖2Hk+1

w̃ (0,1)

)
dθ, (5.17)

which is an optimal-order bound on I.
Next we consider II. Using the fact that θ-differentiation commutes with the projectors P J

Nr

and PF
Nθ

, we have

II =
∫ 1

0

r−1

∫ 2π

0

|Dθ(g̃(r, θ)− P̃ J
Nr
PF

Nθ
g̃(r, θ))|2dθ dr

≤ 2
∫ 1

0

r−1

∫ 2π

0

|Dθ g̃(r, θ)− PF
Nθ
Dθ g̃(r, θ)|2dθ dr

+ 2
∫ 1

0

r−1

∫ 2π

0

|PF
Nθ
Dθ g̃(r, θ)− P̃ J

Nr
(PF

Nθ
Dθ g̃(r, θ))|2dθ dr.

Therefore,

II ≤ 2
∫ 1

0

r−1

∫ 2π

0

∣∣rDθ g̃2(r, θ)− rPF
Nθ
Dθ g̃2(r, θ)

∣∣2 dθ dr

+ 2
∫ 2π

0

∫ 1

0

r−1|rPF
Nθ
Dθ g̃2(r, θ)− P̃ J

Nr
(rPF

Nθ
Dθ g̃2(r, θ))|2 dr dθ

≤ C2
5N

−2l
θ

∫ 1

0

w̃(r)
∫ 2π

0

|Dl+1
θ g̃2(r, θ)|2 dθ dr

+ 2
∫ 2π

0

∫ 1

0

w̃(r)|PF
Nθ
Dθ g̃2(r, θ)− P J

Nr−1(P
F
Nθ
Dθ g̃2(r, θ))|2 dr dθ

≤ C2
5N

−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2L2

w̃(0,1) dθ + C2
6N

−2k
r

∫ 2π

0

‖PF
Nθ
Dθ g̃2(r, θ)‖2Hk

w̃(0,1) dθ.

We have used the fact that P̃ J
Nr

(rf̃) = rP J
Nr−1(f̃) and the L2

w(0, 1) norm error bound for P J
Nr

stated
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in (5.9). For the integral in the last line in the bound on II we have

k∑
j=0

∫ 1

0

w̃(r)‖PF
Nθ
Dj

rDθ g̃2(·, r)‖2L2(0,2π)dr ≤
k∑

j=0

∫ 1

0

w̃(r)‖Dj
rDθ g̃2(·, r)‖2L2(0,2π)dr

=
∫ 2π

0

‖Dθ g̃2(·, θ)‖2Hk
w̃(0,1)dθ.

Therefore,

II ≤ C2
5N

−2l
θ

∫ 2π

0

‖Dl+1
θ g̃2(·, θ)‖2L2

w̃(0,1) dθ + C2
6N

−2k
r

∫ 2π

0

‖Dθ g̃2(·, θ)‖2Hk
w̃(0,1)dθ.

Combining the bounds for I and II obtain, with suitable constants C1 and C2,

‖g̃ − PF
Nθ
P̃ J

Nr
g̃‖H̃1

w̃(R) ≤ C1N
−k
r

{∫ 2π

0

(‖g̃1‖2Hk+1
w̃ (0,1)

+ ‖g̃2‖2Hk+1
w̃ (0,1)

+ ‖Dθ g̃2‖2Hk
w̃(0,1)) dθ

} 1
2

+ C2N
−l
θ

{∫ 2π

0

(‖Dl+1
θ g̃2‖2L2

w̃(0,1) + ‖Dl
θ g̃2‖2H1

w̃(0,1)) dθ
} 1

2

, (5.18)

which is (5.15). The proof of the L2
w̃(R) norm bound (5.16) is very similar: its main ingredients

are, in fact, contained in the argument above. For the sake of brevity we omit the details.
The bounds (5.15) and (5.16) can now be straightforwardly mapped from R to D0 using (5.1).

We define PN (D) as PNr,0(0, 1) ⊗ SNθ
(0, 2π) mapped from R to D0 using (5.1), and we suppose

that ψ̂ ∈ Hk+1,l+1(D), with k, l ≥ 1, where

Hk,l(D) := {g ∈ H1
0(D) : g̃ ∈ H̃1

w̃,0(R) ∩H1,1(R),with decomposition g̃(r, θ) = g̃1(r) + rg̃2(r, θ),

g̃1 ∈ H̃k
w̃,0(0, 1) and g̃2 ∈ Hk,0

w̃,0(R) ∩Hk−1,1
w̃ (R) ∩H0,l

w̃ (R) ∩H1,l−1
w̃ (R),

and there exists α ∈ (0, 1) such that, for each θ ∈ (0, 2π), r 7→ rαg2(r, θ) ∈ C[0, 1]},

equipped with the norm

‖g‖Hk,l(D) :=
(
‖g‖2Hk

r (D) + ‖g‖2Hl
θ(D)

) 1
2
,

where

‖g‖Hk
r (D) :=

(
‖g̃1‖2Hk

w̃(0,1) + ‖g̃2‖2Hk,0
w̃ (R)

+ ‖g̃2‖2Hk−1,1
w̃ (R)

) 1
2
,

‖g‖Hl
θ(D) :=

(
‖g̃2‖2H0,l

w̃ (R)
+ ‖g̃2‖2H1,l−1

w̃ (R)

) 1
2
.

We define

Π̂N : H1,1(D) → PN (D) by (Π̂Ng)(q1, q2) = (Π̃N g̃)(r, θ), g ∈ H1,1(D).

Thus, recalling that H1
0(D;M) = H1

0(D), we deduce from (5.15) that

‖ψ̂ − Π̂N ψ̂‖H1
0(D;M) ≤ C1N

−k
r ‖ψ̂‖Hk+1

r (D) + C2N
−l
θ ‖ψ̂‖Hl+1

θ (D) (5.19)

for all ψ̂ ∈ Hk+1,l+1(D), with k, l ≥ 1. Similarly, we obtain from (5.16) that

‖ψ̂ − Π̂N ψ̂‖L2(D) ≤ C1N
−k
r ‖ψ̂‖Hk

r (D) + C2N
−l
θ ‖ψ̂‖Hl

θ(D) (5.20)

for all ψ̂ ∈ Hk,l(D), with k, l ≥ 1.
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6. Convergence analysis of the numerical method. We see from (4.8) that in order to
obtain bounds on the norms of ξ appearing on the left-hand side of (4.8) we need to bound the
following terms:

‖η0‖ = ‖η0‖L2(D), ‖η‖`2(0,T ;H1
0(D;M)) and

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

.

It follows from (5.19), (5.20) and the definition of η := ψ̂ − Π̂N ψ̂ that

‖η0‖ ≤ ‖ψ̂0 − Π̂N ψ̂0‖ ≤ C1N
−k
r ‖ψ̂0‖Hk

r (D) + C2N
−l
θ ‖ψ̂0‖Hl

θ(D),

‖η‖`2(0,T ;H1
0(D;M)) ≤ C1N

−k
r ‖ψ̂‖`2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖`2(0,T ;Hl+1

θ (D)),

∥∥∥∥∂η∂t
∥∥∥∥

L2(0,T ;L2(D))

≤ C1N
−k
r

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))

+ C2N
−l
θ

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))

,

with k, l ≥ 1, provided that ψ̂ is such that the norms on the right-hand sides of these inequalities
are finite. Substituting these three bounds into the right-hand side of (4.8) we deduce that

‖ξ‖`∞(0,T ;L2(D)) + ‖∇∼ Mξ‖`2(0,T ;L2(D))

≤ C1N
−k
r

‖ψ̂0‖Hk
r (D) + ‖ψ̂‖`2(0,T ;Hk+1

r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))

 (6.1)

+ C2N
−l
θ

‖ψ̂0‖Hl
θ(D) + ‖ψ̂‖`2(0,T ;Hl+1

θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))

+ C3∆t

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

.

Note, also, that

‖η‖`∞(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖`∞(0,T ;Hk

r (D)) + C2N
−l
θ ‖ψ̂‖`∞(0,T ;Hl

θ(D)), (6.2)

‖∇∼ Mη‖`2(0,T ;L2(D)) ≤ C1N
−k
r ‖ψ̂‖`2(0,T ;Hk+1

r (D)) + C2N
−l
θ ‖ψ̂‖`2(0,T ;Hl+1

θ (D)). (6.3)

Thus, by the triangle inequality,

‖ψ̂ − ψ̂N‖`∞(0,T ;L2(D)) + ‖∇∼ M (ψ̂ − ψ̂N )‖`2(0,T ;L2(D))

≤ ‖ξ‖`∞(0,T ;L2(D)) + ‖∇∼ Mξ‖`2(0,T ;L2(D)) + ‖η‖`∞(0,T ;L2(D)) + ‖∇∼ Mη‖`2(0,T ;L2(D)),

whereby (6.1), (6.2) and (6.3) give

‖ψ̂ − ψ̂N‖`∞(0,T ;L2(D)) + ‖∇∼ M (ψ̂ − ψ̂N )‖`2(0,T ;L2(D))

≤ C1N
−k
r

‖ψ̂‖`∞(0,T ;Hk
r (D)) + ‖ψ̂‖`2(0,T ;Hk+1

r (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hk
r (D))


+ C2N

−l
θ

‖ψ̂‖`∞(0,T ;Hl
θ(D)) + ‖ψ̂‖`2(0,T ;Hl+1

θ (D)) +

∥∥∥∥∥∂ψ̂∂t
∥∥∥∥∥

L2(0,T ;Hl
θ(D))


+ C3∆t

∥∥∥∥∥∂2ψ̂

∂t2

∥∥∥∥∥
L2(0,T ;L2(D))

.
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We recall that ψ =
√
Mψ̂, and we define ψn

N :=
√
Mψ̂n

N . Consequently,

‖ψ − ψN‖`∞(0,T ;H) + ‖ψ − ψN‖`2(0,T ;K)

≤ C1N
−k
r

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;Hk

r (D))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;Hk+1

r (D))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hk

r (D))

)

+ C2N
−l
θ

(∥∥∥∥ ψ√
M

∥∥∥∥
`∞(0,T ;Hl

θ(D))

+
∥∥∥∥ ψ√

M

∥∥∥∥
`2(0,T ;Hl+1

θ (D))

+
∥∥∥∥ 1√

M

∂ψ

∂t

∥∥∥∥
L2(0,T ;Hl

θ(D))

)

+ C3∆t
∥∥∥∥ 1√

M

∂2ψ

∂t2

∥∥∥∥
L2(0,T ;L2(D))

,

with k, l ≥ 1, provided that ψ is such that the norms on the right-hand side are finite.
That completes the convergence analysis of the method in the case of d = 2. For d = 3 the

argument is identical, and rests on a three-dimensional analogue of Lemma 5.2. We omit the details.
Starting from the second stability inequality stated in Lemma 3.6 and proceeding in an identical

manner as above, one can derive analogous error bounds in the h1(0, T ;H) and `∞(0, T ;K) norms.
Remark 6.1. In the case of the FENE Maxwellian,

√
M ∈ PN if, and only if, there exists

a positive integer m such that b = 4m and Nr ≥ 2m. In order to ensure that, more generally,√
M ∈ PN (D) regardless of the choice of M and the value of Nr, one could have instead defined

the finite-dimensional space PN (D) as
√
MSN (D), where SN (D) is PNr

(0, 1)⊗ SNθ
(0, 2π) mapped

to D0 using (5.1). With only minor changes, the convergence analysis then still proceeds as above.

7. Implementation of the numerical method. Numerical methods for solving the Fokker–
Planck equation arising from the FENE dumbbell model for dilute polymeric fluids have been the
focus of some attention recently; Du et. al. [16] developed a finite difference scheme which preserved
unity and positivity of ψ, and Lozinski et. al. developed a spectral method for this problem. We
briefly discuss the work of Lozinski et. al. here because the spectral method they developed is
similar in spirit to the method we propose (see Lozinski’s Ph.D. thesis [23] for a detailed discussion
of their work, [13, 24] for the numerical method for 2D dumbbells and [12] for the 3D case). Their
spectral method is based on the ‘original’ version of the Fokker–Planck equation:

∂ψ

∂t
+∇∼ q ·

(
κ
≈
q
∼
ψ
)

=
1

2λ
∇∼ q ·

(
∇∼ qψ + F∼ (q

∼
)ψ
)
,

and does not involve any symmetrizing transformations using the Maxwellian. The method appears
to work well in practice: its accuracy is identical that of the numerical method we present below.
On the other hand, unlike the numerical method defined by (4.1) and (4.2) herein, the papers by
Lozinski et al. cited above provide no theoretical underpinning of their method from the point
of view of stability and accuracy. In this section we discuss the implementation of our spectral
Galerkin method and present some computational results to demonstrate its accuracy and efficacy.

As in Section 5 we restrict our attention to the case d = 2 and suppose that ψ̂ ∈ H1,1(D). It
is natural to map q

∼
= (q1, q2) ∈ D0 ⊂ R2 to (r, θ) ∈ R = (0, 1) × (0, 2π), and exploit the cartesian

product structure of R to seek an approximate solution

ψ̂N (q1, q2) = Ψ̂N (r, θ) ∈ PN (R) := PNr,0(0, 1)⊗ SNθ
(0, 2π) = span(B),

where B is a basis that will be defined below. As in Section 5, PN (D) is PN (R) mapped to D0.
A number of different bases in polar coordinates have been proposed in the literature to ensure

an efficient and robust implementation of spectral methods on the disc in R2. In particular, the
complication introduced by the change of variables (q1, q2) 7→ (r, θ) is the coordinate singularity at
r = 0. This singularity was the genesis of the decomposition (5.7) for functions in H̃1

w̃(R)∩H1,1(R).
On the other hand, we prefer to use a set of C∞ basis functions for PN (D). The constraints on
tensor-product basis functions in (r, θ)-coordinates to ensure that they are in fact also C∞(D) (often
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referred to as the pole condition) were characterized by Eisen et. al. (see Theorems 1 and 2 in [17]).
We can interpret the splitting (5.7) as a Sobolev space analogue of the pole condition. A number of
bases have been proposed which satisfy the pole condition; see, for example, Chapter 18 of Boyd [9]
for a discussion of many of the alternatives. Before introducing the basis we use in this work, we
make the following observation.

Remark 7.1. Let ψ̂ be the weak solution of (1.7), and define ψ̂∗(q
∼
, t) := ψ̂(−q

∼
, t). Supposing

that ψ̂0 is invariant under the change of variable q
∼
7→ −q

∼
, i.e., ψ̂0(q

∼
) ≡ ψ̂0(−q

∼
), on noting that the

weak formulation (1.7) is also invariant under this change of variables, it follows that ψ̂ and ψ̂∗ are
weak solutions to the same initial boundary-value problem. It follows by the uniqueness established
in Section 3 that ψ̂(q

∼
, t) ≡ ψ̂∗(q

∼
, t), i.e., ψ̂(q

∼
, t) = ψ̂(−q

∼
, t) for all q

∼
∈ D and all t ∈ [0, T ].

The above remark demonstrates that (1.7) captures an important symmetry property of the
dumbbell model of polymeric fluids: the configuration probability density function, ψ, is required
to be symmetric about the origin in D because the beads of a dumbbell are indistinguishable. With
this in mind, then, the basis we use is essentially the one proposed by Matsushima and Marcus [27]
and Verkley [30], except that we ensure that the basis functions are zero at r = 1 so as to be in
H1

0(D), and that they are π-periodic in θ:

B = {Xil
k ∈ C∞(R) : Xil

k (r, θ) = Wlk(r)Φil(θ), k = 0, . . . , Nr; i = 0, 1; l = 1, . . . , Nθ}, (7.1)

where Wlk(r) = r2l(1 − r2)P (0,2l)
k (2r2 − 1), P (α,β)

k (x) is the Jacobi polynomial of degree k with
respect to the weight (1 − x)α(1 + x)β , and Φil(θ) = (1 − i) cos(2lθ) + i sin(2lθ). PN (R) is then a
N := (2Nθ + 1)(Nr + 1)-dimensional space. Each element of B satisfies the pole condition. The
degree-of-freedom indexing scheme we use is given by u := (2l − i)(Nr + 1) + k + 1 for 1 ≤ u ≤ N .
This indexing scheme yields advantageous sparsity and band-matrix structure (cf. below).

It is now straightforward to determine the discretization matrices, which we label M, S and
C for mass, stiffness and convection respectively. We obtain the discretization matrices from the
integrals in (4.1),

M =
∫

D

ψ̂n+1
N ϕ̂ dq

∼
, (7.2)

S =
∫

D

∇∼ M ψ̂n+1
N · ∇∼ M ϕ̂ dq

∼
, (7.3)

Cn+1 =
∫

D

(κ
≈

n+1 q
∼
ψ̂n+1

N ) · ∇∼ M ϕ̂ dq
∼
, (7.4)

for test functions ϕ̂ ∈ PN (D). We transform these integrals to R, employ the ansatz Ψ̂n+1
N (r, θ) =∑N

v=0 Ψ̂n+1
v Xv(r, θ) ∈ PN (R) and set test functions to Xu ∈ B for 1 ≤ u ≤ N , yielding the following

discretized forms of (7.2), (7.3) and (7.4) in polar coordinates,

Muv =
∫ 1

0

b rWlk(r)Wnm(r) dr
∫ π

0

Φjn(θ)Φil(θ) dθ, (7.5)

Suv =
∫ 1

0

rW ′
lk(r)W ′

nm(r) dr
∫ π

0

Φjn(θ)Φil(θ) dθ

+
∫ 1

0

1
r
Wlk(r)Wnm(r) dr

∫
Φ′jn(θ)Φ′il(θ) dθ

+
∫ 1

0

b

2
r2

1− r2
(Wlk(r)W ′

nm(r) +W ′
lk(r)Wnm(r)) dr

∫ π

0

Φjn(θ)Φil(θ) dθ

+
∫ 1

0

b2

4
r3

(1− r2)2
Wlk(r)Wnm(r) dr

∫ π

0

Φjn(θ)Φil(θ) dθ, (7.6)
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Cn+1
uv =

∫ 1

0

b rWlk(r)Wnm(r) dr ×
∫ π

0

φ′il(θ)φjn(θ)(−κn+1
11 sin 2θ − κn+1

12 sin2 θ + κ21 cos2 θ) dθ

+
∫ 1

0

(
b r2W ′

lk(r)Wnm(r) +
b2

2
r3

1− r2
Wlk(r)Wnm(r)

)
dr

×
∫ π

0

φil(θ)φjn(θ)(κn+1
11 cos 2θ +

1
2
(κn+1

12 + κn+1
21 ) sin 2θ) dθ. (7.7)

With these definitions in hand, the numerical method is equivalent to solving the following linear
system for the coefficient vector Ψ̂n+1

N ∈ RN , n = 0, 1, . . . , NT − 1:(
M + ∆t

(
1
2λ

S−Cn+1

))
Ψ̂n+1

N = MΨ̂n
N , (7.8)

and then the numerical approximation to the probability density function itself is obtained as
ψn+1

N (q
∼
) = Ψn+1

N (r, θ) =
√
M(r) Ψ̂n+1

N (r, θ).
We note that the matrices defined by (7.5), (7.6) and (7.7) have convenient sparsity and band-

edness properties. Due to the orthogonality of the sinusoidal basis functions in the θ-direction, it
is easy to show that for the degree-of-freedom indexing scheme given above M and S are block-
diagonal matrices and C has non-zero blocks only for l = n ± α, α = 1, 2, 3 (where α depends on
κ
≈
). In addition, we can exploit some of the many recurrence relations satisfied by Jacobi polyno-

mials in the integrals with respect to r. For example, by twice applying 22.7.18 in [1] to (7.5), we
see that M is a pentadiagonal matrix. S and C share similar bandedness properties within their
non-zero blocks. We evaluate the θ-integrals exactly using trigonometric identities, and, noting
that the r-integrands are all polynomials, we use Gauss quadrature to evaluate the r-integrals to
machine precision. M and S are constant matrices which can be pre-computed and reused, but if
κ
≈

is time-varying, we must reassemble C at every time step. However, it is easy to factor out the
dependence of C on κ

≈
so that the integrals that determine C need not be evaluated more than once.

We now present some numerical results. For simplicity we always use the Maxwellian (which
satisfies the symmetry property required in Remark 7.1) as our initial condition, so that ψ̂0 =

√
M .

One case that has attracted much interest in the literature is that of an extensional flow, for which

κ
≈

=
[
δ 0
0 −δ

]
. (7.9)

The plots in Figure 7.1 show the computed steady-state solution for δ = 1 in (a), (b) and δ = 5
in (c), (d). Similar plots for extensional flows are presented in [13]. From the figure, it is clear that
Ψ̂ can have an extremely sharp profile as r → 1 and the sharpness depends strongly on δ. However,
on multiplying by

√
M to obtain ψ, we ameliorate this sharpness considerably.

(Nr, Nθ) ‖ψ̂ − ψ̂exact‖/‖ψ̂exact‖ ‖ψ̂ − ψ̂exact‖H1
0(D;M)/‖ψ̂exact‖H1

0(D;M)

(10,10) 1.9887× 10−3 3.2475× 10−3

(15,15) 4.3479× 10−6 9.3672× 10−6

(20,20) 4.1911× 10−9 1.1289× 10−8

(25,25) 1.7870× 10−12 5.6226× 10−12

Table 7.1
Relative errors in the L2(D) and H1

0(D;M) norms for an extensional flow (with b = 12, λ = 1 and δ = 1) at

steady-state. ψ̂ is the computed steady-state solution obtained by taking 2000 time steps with ∆t = 0.05, and ψ̂exact

is given in (7.10).
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(a) (b)

(c) (d)

Fig. 7.1. Steady state solution of the problem: (a) Ψ̂N on (0, 1) × (0, π) with b = 12, λ = 1, δ = 1
(extensional flow) and (Nr, Nθ) = (15, 8), and (b) the corresponding probability density function ψN , scaled
to the unit circle in the plane; (c) and (d) are analogous, except we have chosen δ = 5 and we now require

(Nr, Nθ) = (40, 20) to resolve the much sharper solution. Note that in both cases we have Ψ̂N (1, θ) = 0.

(Nr, Nθ) ‖ψ̂ − ψ̂exact‖/‖ψ̂exact‖ ‖ψ̂ − ψ̂exact‖H1
0(D;M)/‖ψ̂exact‖H1

0(D;M)

(10,10) 5.1683× 10−2 5.3525× 10−2

(20,20) 2.6450× 10−5 3.8198× 10−5

(30,30) 9.7029× 10−10 1.7190× 10−9

(40,40) 2.5862× 10−11 2.1422× 10−11

Table 7.2
Relative errors in the L2(D) and H1

0(D;M) norms for an extensional flow at steady-state. We have the same
values of b and λ as in Table 7.1, but this time we took δ = 2. The time-stepping strategy to compute the steady-state
solution was also the same as in Table 7.1.

To experimentally assess the spatial accuracy of our method we use the fact when κ
≈

is a
symmetric tensor the exact steady-state solution of the Fokker–Planck equation is given by (cf. [7])

ψexact(q
∼
) := CM(q

∼
) exp(λq

∼

Tκ
≈
q
∼
), (7.10)

where C is a normalization constant chosen so that
∫

D
ψexact(q

∼
)dq
∼

= 1. Tables 7.1 and 7.2 show the
relative error (in the L2(D) and H1

0(D;M) norms) between the exact and the computed steady-state
solution for two different extensional flows. We can see from the data in the tables that the method
converges rapidly in both cases. The case δ = 2 corresponds to a stronger extensional flow (and
concomitantly a sharper solution profile) than when δ = 1, so it is to be expected that more modes
are required in Table 7.2 to capture the solution to a given accuracy.
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8. Conclusions. The Fokker–Planck equation (1.1) has been the subject of active research
recently, as a component of the Navier–Stokes–Fokker–Planck model for dilute polymeric fluids. We
focused our attention on Fokker–Planck equations with unbounded drift that arise from modelling
polymer molecules as FENE dumbbells, which introduces the complication of a singularity in the
potential q

∼
7→ U(q

∼
) as d(q

∼
) → 0. The purpose of this paper was to develop a rigorous foundation

for the numerical approximation of such Fokker–Planck equations.
We symmetrized the principal part of the differential operator by introducing the Maxwellian,

M , and applied the transformation ψ̂ = ψ/
√
M . The resulting weak formulation (1.7) facilitated

the development of a number of analytical results in Sections 3 and 4, including existence and
uniqueness of weak solutions of the semi-discretized equation (3.1) and, on passing to the limit
∆t → 0+, of (1.7) also. Using approximation results derived in Section 5, an optimal convergence
rate for the fully discrete Galerkin spectral method (4.1), (4.2) was established for the case d = 2;
an analogous procedure could be carried out for d = 3. Finally, Section 7 addressed issues directly
related to the implementation of the numerical method, and computational results were presented
to demonstrate the spectral rate of convergence of the method with respect to the spatial variables.

The goal of future work is to apply the results developed here to the coupled Navier–Stokes–
Fokker–Planck model, building on the recent paper [4] where convergence to weak solutions of
coupled Navier–Stokes–Fokker–Planck systems has been shown for a general class of Galerkin
schemes (without convergence rates) in the special case when the velocity field u∼ is corotational
(i.e., q

∼

Tκ
≈
q
∼

= 0, with κ
≈

= ∇
≈ x u∼).
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