
Report no. 07/12

Monte Carlo evaluation of sensitivities

in computational finance

Michael Giles
Oxford University Computing Laboratory, Parks Road, Oxford, U.K.

In computational finance, Monte Carlo simulation is used to compute the
correct prices for financial options. More important, however, is the ability
to compute the so-called “Greeks”, the first and second order derivatives of
the prices with respect to input parameters such as the current asset price,
interest rate and level of volatility.

This paper discusses the three main approaches to computing Greeks:
finite difference, likelihood ratio method (LRM) and pathwise sensitivity
calculation. The last of these has an adjoint implementation with a compu-
tational cost which is independent of the number of first derivatives to be
calculated. We explain how the practical development of adjoint codes is
greatly assisted by using Algorithmic Differentiation, and in particular dis-
cuss the performance achieved by the FADBAD++ software package which
is based on templates and operator overloading within C++.

The pathwise approach is not applicable when the financial payoff func-
tion is not differentiable, and even when the payoff is differentiable, the use
of scripting in real-world implementations means it can be very difficult in
practice to evaluate the derivative of very complex financial products. A
new idea is presented to address these limitations by combining the adjoint
pathwise approach for the stochastic path evolution with LRM for the payoff
evaluation.

Key words and phrases: computational finance, Monte Carlo, algorithmic
differentiation

Oxford University Computing Laboratory
Numerical Analysis Group
Wolfson Building
Parks Road
Oxford, England OX1 3QD June, 2007

2

1 Introduction

Monte Carlo simulation is the most popular approach in computational finance for deter-
mining the prices of financial options. This is partly due to its computational efficiency
for “high-dimensional” problems involving multiple assets, interest rates or exchange
rates, and partly due to its relative simplicity and the ease with which it can be paral-
lelised across large compute clusters.

The accurate calculation of prices is only one objective of Monte Carlo simulation.
Indeed, because the mathematical models are calibrated to actual prices observed in the
marketplace, it can be argued that prices are largely determined by the market prices of
a large range of frequently traded products. Where the Monte Carlo simulation plays a
crucial role is in the calculation of the sensitivity of the prices to changes in various input
parameters, such as the current asset price, interest rate and level of volatility. Both first
and second order derivatives are essential for hedging and risk analysis, and even higher
order derivatives are sometimes used They are known collectively as the “Greeks”, as
many of them have associated Greek letters; for example, Delta and Gamma are the
first and second order derivatives with respect to the current asset price.

This paper discusses mathematical and computer science aspects of computing Greeks
through Monte Carlo simulation. After a brief introduction to Monte Carlo simulation
and the approximation of stochastic differential equations, the three main approaches
to computing Greeks are presented: finite difference, likelihood ratio method (LRM)
and pathwise sensitivity calculation. For further details on all three approaches, the
interested reader is referred to the excellent book of Glasserman [14] which gives a com-
prehensive introduction to Monte Carlo methods for computational finance.

The last of the three methods, the pathwise sensitivity approach, leads very naturally
to an adjoint implementation which makes it possible to compute the sensitivity to
a large number of input parameters at a very low cost, little more than the cost of
evaluating the price itself. The paper by Giles and Glasserman [12] which first introduced
this technique for Monte Carlo simulations, generated considerable interest in the finance
industry which faces the need to compute large numbers of sensitivities on a daily basis.
This current paper is motivated by some of the feedback from the first paper, and in
particular by comments on the difficulties involved in the development of adjoint codes,
and the inherent limitations of the pathwise sensitivity approach.

The practical development of adjoint codes is based on ideas of Algorithmic Differen-
tiation (AD) [16], and greatly assisted by using automated AD tools. After the first third
of the paper has set the scene by introducing the Monte Carlo method and adjoint cal-
culation of Greeks, the second third of the paper reviews the ideas of AD, and discusses
how it can be used to create adjoint code which may be used either to validate hand-
written adjoint code, or directly in parts of the process which are not computationally
expensive. Results are presented for the performance using the FADBAD++ software
package, which is based on templates and operator overloading within C++, and the
TAC++ package, which uses the alternative approach of source code transformation.

The pathwise approach is not applicable when the financial payoff function is not
differentiable. Even when the payoff is differentiable, the use of scripting in real-world

3

implementations means it can be very difficult in practice to evaluate the derivative of
very complex financial products. The final third of the paper addresses these limitations
by presenting a new idea which combines the adjoint pathwise approach for the stochastic
path evolution with LRM for the payoff evaluation.

2 An overview of Monte Carlo simulation

2.1 Stochastic differential equations

A stochastic differential equation (SDE) with general drift and volatility terms has the
form

dS(t) = a(S, t) dt + b(S, t) dW (t), (2.1)

which is simply a shorthand for the more formal integral equation

S(t) = S(0) +

∫ t

0

a(S(t′), t′) dt′ +

∫ t

0

b(S(t′), t′) dW (t′). (2.2)

Here S(t) ∈ Rd1 , and W (t) ∈ Rd2 is a random Wiener variable with the defining prop-
erties that for any q<r<s<t, each component of W (t)−W (s) is Normally distributed
with mean 0 and variance t−s, independent of W (r)−W (q) and the other components
of W (t)−W (s). Because of the special nature of W (t), the rightmost integral in (2.2)
is not a standard Riemann or Lebesgue integral, but is instead an Itô integral, defined
through a certain limiting procedure [19]. In many applications, S(t) and W (t) have the
same dimensions, but in some cases d1 > d2.

The stochastic term b(S, t) dW models the uncertain, unpredictable events which
influence asset prices, interest rates, exchange rates and other financial variables. Fi-
nancial modelling aims to compute the expected value of quantities which depend on
S(t), averaging over the different possible paths the future may take. Monte Carlo sim-
ulation estimates this expectation by simulating a finite number of future paths, and
averaging over that finite set.

In simple cases, the SDE may be explicitly integrated. For example, the scalar SDE
which underlies the famous Black-Scholes model [3] is geometric Brownian motion

dS(t) = r S dt + σ S dW (t),

where r is the constant risk-free interest rate and σ is a constant volatility. Using Itô
calculus [19], the corresponding SDE for X ≡ log S is

dX(t) = (r− 1
2
σ2) dt + σ dW (t),

which may be integrated subject to initial conditions X(0)=X0 =log S0 to give

X(T) = X0 + (r− 1
2
σ2) T + σ W (T),

and hence
S(T) = S0 exp

(
(r− 1

2
σ2) T + σ W (T)

)
.

4

In this case, the expected value of some financial payoff P = f(S(T)) can be expressed
as

V ≡ E [f(S(T))] =

∫
f(S(T)) pW (W) dW, (2.3)

where

pW (W) =
1√
2π T

exp

(
−W 2

2T

)
is the probability density function for W (T). Performing a change of variables, the
expectation can also be expressed as

V ≡ E [f(S(T))] =

∫
f(S) pS(S) dS, (2.4)

where

pS(S) =

(
∂S

∂W

)−1

pW =
1

Sσ
√

2π T
exp

(
−1

2

(
log(S/S0)− (r − 1

2
σ2)T

σ
√

T

)2
)

is the log-normal probability density function for S(T).
The important distinction between these two forms for the expectation is that in the

first the parameters S0, r and σ enter the integral through the definition of S(T), whereas
in the second they enter through the definition of the probability density function pS.

2.2 Monte Carlo sampling and numerical solution of SDEs

The Monte Carlo estimate for the same case of geometric Brownian motion is

V̂ = M−1
∑
m

f(S(m)),

where
S(m) = S0 exp

(
(r− 1

2
σ2) T + σ W (m)

)
,

with the M values W (m) being independent samples from the probability distribution
for W (T). The expected value for the Monte Carlo estimate V̂ is equal to the true
expected value V . Because the samples are independent, the variance of the estimate
is equal to M−1V[f(S)], where V[f(S)] is the variance of a single sample. Thus the
root-mean-square sampling error is proportional to M−1/2.

In the general case in which the SDE can not be explicitly integrated, the time interval
[0, T] is split into N timesteps of size h=T/N , and S(j) is replaced by the approximation

Ŝ
(j)
N , the value at the end of the N th timestep in a numerical approximation of the SDE.

The simplest approximation is the Euler discretisation,

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn (2.5)

in which the Brownian increments ∆Wn are all independent Normal variables with zero
mean and variance h. Thus, each path involves N random inputs Wn, to produce the
one random output ŜN .

5

For more information on Monte Carlo methods, the accuracy of the Euler discretisa-
tion, other more accurate discretisations, and various techniques for reducing the vari-
ance of the estimator, see Glasserman [14].

2.3 Evaluating sensitivities

If V (θ) represents the expected value of the payoff f(S(T)) for a particular value of one
of the input parameters (e.g. S0, r or σ in the case of geometric Brownian motion) then
for the purposes of hedging and risk analysis one often wants to evaluate ∂V/∂θ and
∂2V/∂2θ.

The simplest approach is to use a finite difference approximation,

∂V

∂θ
≈ V (θ+∆θ)− V (θ−∆θ)

2 ∆θ
,

∂2V

∂θ2
≈ V (θ+∆θ)− 2 V (θ) + V (θ−∆θ)

(∆θ)2
.

The drawbacks of this approach are that it is computationally expensive, requiring two
extra sets of Monte Carlo simulation for each input parameter θ, and care must be
taken in the choice of ∆θ. If it is too large, the finite difference approximation error
becomes significant, while if it is too small the variance can become very large if the
payoff function f(S) is not differentiable [14].

In the case of a scalar SDE for which one can compute a terminal probability distri-
bution, the second approach, the Likelihood Ratio Method (LRM), differentiates (2.4)
to obtain

∂V

∂θ
=

∫
f

∂pS

∂θ
dS =

∫
f

∂(log pS)

∂θ
pS dS = E

[
f

∂(log pS)

∂θ

]
.

The great advantage of this method is that it does not require the differentiation of
f(S). This makes it applicable to cases in which the payoff is discontinuous, and it
also simplifies the practical implementation because banks usually have complicated
flexible procedures through which traders specify payoffs. Second derivatives can also
be computed using the LRM approach. Differentiating twice leads to

∂2V

∂θ2
=

∫
f

∂2pS

∂θ2
dS = E [f g] ,

where the so-called “score” g is defined as

g = p−1
S

∂2pS

∂θ2
=

∂2 log pS

∂θ2
+

(
∂ log pS

∂θ

)2

.

One drawback of LRM is that it requires that ∂S/∂W is non-zero, and in multi-
dimensional cases that it is an invertible matrix. This condition, known as absolute
continuity [14], is not satisfied in a few important applications such as the LIBOR mar-
ket model which is discussed later. The bigger drawback of LRM is that it does not

6

generalise well to path calculations with multiple small timesteps; in most cases it leads
to an estimator with a variance which is O(h−1), becoming infinite as h→ 0 [14].

In the same case of a scalar SDE with a terminal probability distribution, the third
approach of pathwise sensitivity differentiates (2.3) to give

∂V

∂θ
=

∫
∂f

∂S

∂S(T)

∂θ
pW dW = E

[
∂f

∂S

∂S(T)

∂θ

]
,

with the partial derivative ∂S(T)/∂θ being evaluated at fixed W . Unlike LRM, this
approach generalises very naturally to path calculations, with the Euler discretisation
being differentiated, timestep by timestep with fixed Wiener path increments, to com-
pute the sensitivity of the path to changes in the input parameter θ. Differentiating
(2.5) yields

∂Ŝn+1

∂θ
=

(
1 +

∂a

∂S
h +

∂b

∂S
∆Wn

)
∂Ŝn

∂θ
+

∂a

∂θ
h +

∂b

∂θ
∆Wn. (2.6)

Solving this in conjunction with (2.5) gives ∂ŜN/∂θ from which we get the Monte Carlo
estimate for the first order sensitivity as the average of the sensitivity of M independent
paths,

∂V̂

∂θ
= M−1

∑
m

∂f

∂S
(Ŝ

(m)
N)

∂Ŝ
(m)
N

∂θ
.

The second order sensitivity is easily obtained by differentiating a second time.
The key limitation of the pathwise sensitivity approach is the differentiability re-

quired of the drift and volatility functions, and the payoff function f(S). The drift
and volatility functions are usually twice differentiable, which is sufficient, but financial
payoff functions are often discontinuous, and therefore do not satisfy the minimum re-
quirements for first order sensitivities of being continuous and piecewise differentiable
with a locally bounded derivative.

However, if the payoff function is suitable, then the pathwise sensitivity estimator has
a much lower variance than the LRM estimator, and so it is computationally much more
efficient. The efficiency can be further improved when multiple first order sensitivities are
required through the use of the adjoint technique introduced by Giles and Glasserman
[12] and described in the next section.

3 Adjoint implementation of pathwise sensitivities

3.1 Mathematical overview

Suppose we have a single Monte Carlo path calculation for a multi-dimensional SDE
in which a set of input parameters α (this may include starting prices, forward rates,
volatilities, etc.) leads to a final state vector S, which in turn is used to compute a
payoff P :

α −→ S −→ P.

7

This separation of the calculation into two phases, the path simulation and the payoff
evaluation, accurately represents a clear distinction in real-world implementations. The
path simulation is the computationally demanding phase and is usually implemented
very efficiently in C/C++. The payoff evaluation is often implemented less efficiently,
sometimes through the use of a scripting language. The reason for this is that the
emphasis is on flexibility, making it easy for traders to specify a new financial payoff.
The financial products change much more frequently than the SDE models.

We want to compute the derivative of P with respect to each of the elements of
α, holding fixed the randomly generated Brownian path increments for this particular
path calculation. Adopting the notation used in the Algorithmic Differentiation (AD)
research community, let α̇, Ṡ, Ṗ denote the derivative with respect to one particular
component of α. Straightforward differentiation gives

Ṡ =
∂S

∂α
α̇, Ṗ =

∂P

∂S
Ṡ,

and hence

Ṗ =
∂P

∂S

∂S

∂α
α̇.

Again following the notation used in the AD community the adjoint quantities α, S, P
denote the derivatives of P with respect to α, S, P , respectively, with P =1 by definition.
Differentiating again, with a superscript T denoting a matrix or vector transpose, one
obtains

α
def
=

(
∂P

∂α

)T

=

(
∂P

∂S

∂S

∂α

)T

=

(
∂S

∂α

)T

S,

and similarly

S =

(
∂P

∂S

)T

P ,

giving

α =

(
∂S

∂α

)T (
∂P

∂S

)T

P .

Note that whereas the standard pathwise sensitivity analysis proceeds forwards
through the process (this is referred to as “forward mode” in AD terminology)

α̇ −→ Ṡ −→ Ṗ

the adjoint analysis proceeds backwards (“reverse mode” in AD terminology),

α ←− S ←− P .

The forward and reverse modes compute exactly the same payoff sensitivities since
Ṗ = α. The only difference is in the computational efficiency. A separate forward mode
calculation is required for each sensitivity that is required. On the other hand, there
is only one payoff function (which may correspond to a portfolio consisting of multiple

8

financial products) and so there is always only one reverse mode adjoint calculation to be
performed, regardless of the number of sensitivities to be computed. Hence the adjoint
calculation is much more efficient when one wants multiple sensitivities.

This is the key characteristic of adjoint calculations. Whenever one is interested in
the derivative of one output quantity with respect to many input parameters, the adjoint
approach is computationally much more efficient than the forward mode sensitivity cal-
culation. This has resulted in adjoint calculations being used extensively in many areas
of computational science such as data assimilation in weather prediction [5, 4, 5, 24] and
engineering design optimisation [13, 21].

In the LIBOR testcase considered by Giles and Glasserman [12], up to 240 sensi-
tivities were needed (120 with respect to initial forward rates, and 120 with respect to
initial volatilities) and the adjoint approach was up to 50 times more efficient than the
standard pathwise sensitivity calculation, while yielding identical results.

3.2 Algorithmic differentiation

The previous section outlined the mathematics of the discrete adjoint approach. We now
look at how the adjoint computer program can be created through applying the ideas
of Algorithmic Differentiation. To do this, we look at the mathematics of pathwise and
adjoint sensitivity calculation at the lowest possible level to understand how AD works.

Consider a computer program which starts with a number of input variables ui which
can be represented collectively as an input vector u0. Each step in the execution of the
computer program computes a new value as a function of two previous values; unitary
functions such as exp(x) can be viewed as a binary function with no dependence on the
second parameter. Appending this new value to the vector of active variables, the nth

execution step can be expressed as

un = fn(un−1) ≡

(
un−1

fn(un−1)

)
, (3.1)

where fn is a scalar function of two of the elements of un−1. The result of the complete
N steps of the computer program can then be expressed as the composition of these
individual functions to give

uN = fN ◦ fN−1 ◦ . . . ◦ f2 ◦ f1(u0). (3.2)

Defining u̇n to be the derivative of the vector un with respect to one particular
element of u0, differentiating (3.1) gives

u̇n = Dn u̇n−1, Dn ≡

(
In−1

∂fn/∂un−1

)
, (3.3)

with In−1 being the identity matrix with dimension equal to the length of the vector
un−1. The derivative of (3.2) then gives

u̇N = DN DN−1 . . . D2 D1 u̇0, (3.4)

9

which gives the sensitivity of the entire output vector to the change in one particular
element of the input vector. The elements of the initial vector u̇0 are all zero except for a
unit value for the particular element of interest. If one is interested in the sensitivity to
NI different input elements, then (3.4) must be evaluated for each one, at a cost which
is proportional to NI .

The above description is of the forward mode of AD sensitivity calculation [26], which
is intuitively quite natural. The reverse, or adjoint, mode is computationally much more
efficient when one is interested in the sensitivity of a small number of output quantities
with respect to a large number of input parameters [15]. Defining the column vector un

to be the derivative of a particular element of the output vector uN
i with respect to the

elements of un, then through the chain rule of differentiation we obtain

(
un−1

)T
=

∂uN
i

∂un−1
=

∂uN
i

∂un

∂un

∂un−1
=
(
un
)T

Dn,

=⇒ un−1 =
(
Dn
)T

un. (3.5)

Hence, the sensitivity of the particular output element to all of the elements of the input
vector is given by

u0 =
(
D1
)T (

D2
)T

. . .
(
DN−1

)T (
DN
)T

uN . (3.6)

Note that the reverse mode calculation proceeds backwards from n=N to n=1. There-
fore, it is necessary to first perform the original calculation forwards from n=1 to n=N ,
storing all of the partial derivatives needed for Dn (or sufficient information to be able
to re-compute them efficiently; in practice there is often a tradeoff between the storage
and computational requirements) before then doing the reverse mode calculation.

If one is interested in the sensitivity of NO different output elements, then (3.6) must
be evaluated for each one, at a cost which is proportional to NO. Thus the reverse mode
is computationally much more efficient than the forward mode when NO � NI .

Looking in more detail at what is involved in (3.3) and (3.5), suppose that the nth

step of the original program involves the computation

c = f(a, b).

The corresponding forward mode step will be

ċ =
∂f

∂a
ȧ +

∂f

∂b
ḃ,

at a computational cost which is no more than a factor 3 greater than the original
nonlinear calculation. In matrix form, this equation can be written as ȧ

ḃ
ċ

n

=

 1 0
0 1
∂f
∂a

∂f
∂b

(ȧ

ḃ

)n−1

.

10

Transposing the matrix gives

(
a

b

)n−1

=

(
1 0 ∂f

∂a

0 1 ∂f
∂b

) a

b
c

n

,

and hence the corresponding reverse mode step consists of two calculations:

a := a +
∂f

∂a
c

b := b +
∂f

∂b
c.

At worst, this has a theoretical cost which is a factor 4 greater than the original nonlinear
calculation [16]. In practice, as we will see later, the ratio of the execution times can be
even smaller than this.

3.3 AD tools

Algorithmic Differentiation gives a clear prescriptive process by which a reverse mode
adjoint code may be written. However, a manual programming implementation can be
tedious and error-prone, even for an expert. This has led to the development of AD
tools which automate this process.

AD tools can be divided into two categories [16]. Source transformation tools take
as an input an existing code (usually written in FORTRAN) and generate a new code
(in the same language) to perform either forward mode or reverse mode sensitivity
calculations. In previous work in the field of Computational Fluid Dynamics [11], we
have obtained excellent results using the Tapenade package developed by Hascoët and
Pascual at INRIA [6, 18]. Other notable source transformation packages are TAMC/TAF
[8, 9, 22] and ADIFOR [2]. However, all three of these packages currently treat only
FORTRAN codes; work is in progress to extend them to C/C++ but there are technical
challenges because of structures, pointers, operator overloading, classes and templates.
Preliminary results are presented later for TAC++ which is the C/C++ version of TAF
[9].

The alternative approach which is popular for C++ uses operator overloading. ADOL-
C [17, 25] is one popular package, but in this paper we have used FADBAD++ [1, 23]
which is particularly easy to use. Operator overloading for forward mode sensitivity cal-
culation is fairly easy to understand. “Active” variables, those whose value will change
when the input parameters of interest are varied, have their type changed from double

to F<double>. The F<double> type for a variable x holds both the value of the variable,
and one or more sensitivities ẋ. Operations involving either one or two F<double> vari-
ables are then defined in the natural way through operator overloading specifications in

11

a C++ header file:

addition: x +

(
y
ẏ

)
=

(
x + y

ẏ

) (
x
ẋ

)
+

(
y
ẏ

)
=

(
x + y
ẋ + ẏ

)
multiplication: x ∗

(
y
ẏ

)
=

(
x ∗ y
x ∗ ẏ

) (
x
ẋ

)
∗
(

y
ẏ

)
=

(
x ∗ y

ẋ ∗ y + x ∗ ẏ

)
division: x/

(
y
ẏ

)
=

(
x/y

−(x/y2) ∗ ẏ

) (
x
ẋ

)
/

(
y
ẏ

)
=

(
x/y

ẋ/y − (x/y2) ∗ ẏ

)
exponentiation: exp

(
y
ẏ

)
=

(
exp(y)

exp(y) ∗ ẏ

)
Operator overloading for reverse mode computations is very much harder to under-

stand. In essence, it stores the history of all operations performed in the forward pass,
during which it computes the partial derivatives of each arithmetic operation. Then,
when the adjoint sensitivities are desired, it goes backwards through this stored history,
computing the required adjoint values [16, 17]. In using FADBAD++, this is accom-
plished by defining the active variables to have type B<double>, and defining the output
variable of interest by assigning it a unit adjoint sensitivity.

Further information about AD tools and publications is available from the AD re-
search community website http://www.autodiff.org which includes links to the major
groups working in this field.

3.4 Test application

The test problem is the same LIBOR market model example which was used in the
previous paper by Giles and Glasserman [12]. Letting Ln

i denote the forward LIBOR rate
for the time interval [i δ, (i+1) δ) at time n δ ≤ i δ, then taking the timestep to be equal
to the LIBOR interval δ, the evolution of the forward rates Ln

i for n = 0, . . . , Nmat − 1
is approximated by the discrete equations

Ln+1
i = Ln

i exp
(
(σi−n−1Si − 1

2
σ2

i−n−1) δ + σi−n−1Z
n
√

δ
)

, i > n,

where Zn is the unit Normal random variable for the nth timestep, and

Sn
i =

i∑
j=n+1

σj−n−1 δ Ln
j

1 + δ Ln
j

, i > n.

The model treats the volatility as being a function of time to maturity. Once a rate
reaches its maturity it remains fixed, so we set Ln+1

i = Ln
i if i ≤ n. A portfolio of Nopt

different swaptions with swap rates swapn and maturity matn has payoff

P =

{
Nmat−1∏

i=0

1

1 + δ Li

}{
Nopt∑
n=1

100 (1−Bmatn − swapnCmatn)+

}
,

12

/* Monte Carlo LIBOR path calculation */

/* template enables use of AD through operator overloading */

template <typename ADdouble>

void path_calc(const int N, const int Nmat, const double delta,

ADdouble L[], const double lambda[], const double z[])

{

int i, n;

double sqez, lam, con1;

ADdouble v, vrat;

for(n=0; n<Nmat; n++) {

sqez = sqrt(delta)*z[n];

v = 0.0;

for (i=n+1; i<N; i++) {

lam = lambda[i-n-1];

con1 = delta*lam;

v += (con1*L[i])/(1.0+delta*L[i]);

vrat = exp(con1*v + lam*(sqez-0.5*con1));

L[i] = L[i]*vrat;

}

}

}

Table 1: Templated C++ code to perform LIBOR path calculation

where

Bm =
m∏

i=1

1

1 + δ LNmat+i−1

, Cm =
m∑

i=1

δ Bi.

The C++ implementation [10] requires about 10 lines of code for the path calculation,
plus approximately 20 lines of code for the payoff evaluation. The hand-coded forward
mode sensitivity calculation adds almost twice as much code, and the hand-coded reverse
mode calculation adds about three times as much code. The forward mode programming
was very straightforward, taking just a day or so, comparable to the time taken in writing
the original code. The reverse mode programming was significantly more difficult, taking
two or three days, despite the fact that I consider myself to be quite expert at writing
reverse mode adjoint codes based on AD principles. A non-expert should expect to take
at least twice as long, and it probably takes at least a year of developing adjoint codes
to become an expert.

The FADBAD++ programming was very straightforward. Because I am still a novice
C++ programmer, having used FORTRAN for most of my career it took one day for

13

milliseconds/path Gnu g++ Intel icc
original 0.37 0.10
hand-coded forward 0.97 0.52
hand-coded reverse 0.47 0.19
FADBAD++ forward 4.30 5.00
FADBAD++ reverse 6.20 4.86
hybrid forward 1.02 0.63
hybrid reverse 0.65 0.35
TAC++ forward 1.36 0.85
TAC++ reverse 1.28 0.45

Table 2: Timings for LIBOR calculation in milliseconds per path

the forward mode, and another day for the reverse mode. However, with the benefit of
that experience, the same task could be carried out in the future for a new application
in an hour or two. The use of C++ templates is central to this ease-of-use. Table 1
presents the code for the path calculation. Three different “instances” of this routine
are called by the main application code. In the first, the input variable L has type
double; this is used for the original code. In the second and third versions, L has
type F<double> and B<double>, respectively; these are used for the forward mode and
reverse mode FADBAD++ calculations. Based on the calling sequences in each case,
looking at the type of the input parameters, the compiler automatically generates each
of these instances as needed. Thus the type ADdouble in the source code is a dummy
type to be replaced by the actual type of the input variable L. This leads to very simple
programming with a single copy of each key routine.

Table 2 gives execution times in milliseconds per path calculation. The timings are
for a computation with 40 timesteps, and sensitivities with respect to each one of the
80 initial forward rates. There are two sets of timings, one for the Gnu compiler g++

and the other for the Intel compiler icc; for each the compiler flags were set to achieve
the highest possible level of code optimisation, and the tests were run on a machine
with a single Intel Pentium 4 CPU. The results shows times for the original code and
different versions of forward and reverse mode sensitivity codes. The hybrid versions use
the hand-coded routine for the path calculation together with the FADBAD++ routine
for the payoff evaluation, and the TAC++ results are obtained from code generated
automatically by the source transformation tool TAC++ being developed by FastOpt
[9].

The first point to make is that all of the sensitivity calculations produce identical val-
ues, to machine precision. As one might expect, the most efficient code is the hand-coded
reverse mode; the timings are similar to those reported in [12] with the valuation plus 80
sensitivities being obtained at a cost which is less than twice the cost of calculating the
valuation on its own. The FADBAD++ implementations are significantly less efficient
than the hand-coded routines, suggesting that the best use of FADBAD++ might be
as a validation tool to check the correctness of the hand-coded routines. However, the

14

hybrid results show that one gets almost as much efficiency when combining the hand-
coded path calculation with the FADBAD++ payoff evaluation. This is because most
of the computational effort is in the path calculation, and it could be very attractive in
real-world applications because most of the programming effort is usually in the payoff
evaluation.

The code generated by TAC++ is very efficient in both forward and reverse modes.
The efficiency of the forward mode code relies heavily on compiler optimisation to elim-
inate a large number of repeated sub-expressions in the code produced by TAC++.
Older versions of the Gnu compiler failed to make these optimisations and produced
executable code which was much slower.

The interested reader is encouraged to download the source code for this testcase [10],
investigate the performance with their preferred compiler, study the use of FADBAD++
and try to understand the hand-coded forward and reverse mode routines.

4 “Vibrato” Monte Carlo and hybrid Greeks

4.1 Conditional expectation

The paper which introduced the adjoint approach to Monte Carlo sensitivity calculations
[12] was well received by the finance community. They were excited by the computa-
tional savings it offered, but nevertheless had some reservations. The previous section
has addressed some concerns over the practical implementation, but a more fundamental
issue is that pathwise sensitivity is inapplicable in cases in which the payoff function is
discontinuous. Also, even when the payoff function is continuous and piecewise differen-
tiable, calculating the derivative can pose significant practical difficulties because of the
flexible software framework which is often used to make it possible for traders to easily
specify new financial products. This section addresses these concerns by developing a
mathematical approach which only require payoff values, not their derivatives, through
combining the best features of pathwise and LRM sensitivity calculations.

The Oxford English Dictionary describes “vibrato” as “a rapid slight variation in
pitch in singing or playing some musical instruments”. The analogy to Monte Carlo
methods is the following; whereas a path simulation in a standard Monte Carlo cal-
culation produces a precise value for the output values from the underlying stochastic
process, in the vibrato Monte Carlo approach the output values have a narrow proba-
bility distribution.

This is a generalisation of the technique of conditional expectation discussed by
Glasserman in section 7.2.3 of his book [14] as a solution to the problem of discontinuous
payoffs. In his example, a path simulation is performed in the usual way for the first
N − 1 timesteps, at each timestep taking a value for the Wiener increment ∆W n which
is a sample from the appropriate Gaussian distribution, and then using (2.5) to update
the solution. On the final timestep, one instead considers the full distribution of possible

15

values for ∆WN . This gives a Gaussian distribution for ŜN at time T ,

pS(ŜN) =
1√

2π σW

exp

(
− (ŜN − µW)2

2 σ2
W

)
(4.1)

where
µW = ŜN−1 + a(ŜN−1, T−h) h, σW = b(ŜN−1, T−h)

√
h,

with a(S, t) and b(S, t) being the drift and volatility of the SDE described in (2.1).
Hence, the conditional expectation for the value of a digital payoff with strike K,

f(S(T)) = H(S(T)−K) ≡
{

1, S(T) > K
0, S(T) ≤ K

is

E[f(ŜN) | ŜN−1] =

∫ ∞

−∞
H(ŜN−K) pS(ŜN) dŜN = Φ

(
µW −K

σW

)
where Φ(·) is the cumulative Normal distribution function.

The Monte Carlo estimator for the option value is now

V̂ = M−1
∑
m

E[f(ŜN) | Ŝ(m)
N−1],

and because the conditional expectation E[f(ŜN) | ŜN−1] is a differentiable function of
the input parameters (provided σ(S) is twice differentiable) the pathwise sensitivity
approach can now be used.

There are two difficulties in using this form of conditional expectation in real-world
applications. This first is that the integral arising from the conditional expectation
will often become a multi-dimensional integral without an obvious closed-form value
(e.g. consider a digital option based on the median of a basket of 20 stocks), and the
second is that it again requires a change to the complex software framework used to
specify payoffs.

The solution is to use a Monte Carlo estimate of the conditional expectation, and use
LRM to obtain its sensitivity. Thus, the technique which is proposed combines pathwise
sensitivity for the path calculation with LRM sensitivity of the payoff calculation. offer-
ing the computational efficiency of the pathwise approach, together with the generality
and ease-of-implementation of LRM.

4.2 Vibrato Monte Carlo

The idea is very simple; adopting the idea of conditional expectation, each path simu-
lation for a particular discrete set of Wiener increments W computes a Gaussian con-
ditional probability distribution pS(ŜN |W) for the state of the path approximation at
time T . For a scalar SDE, if µW and σW are the mean and standard deviation for given
W , then

ŜN(W, Z) = µW + σW Z,

16

where Z is a unit Normal random variable. The expected payoff can then be expressed
as

V = EW

[
EZ [f(ŜN) |W]

]
=

∫ {∫
f(ŜN) pS(ŜN |W) dŜN

}
pW (W) dW.

The outer expectation/integral is an average over the different values for the discrete
Wiener increments, while the inner conditional expectation/integral is averaging over Z.

Now, to compute the sensitivity to an input parameter θ, the first step is to apply
the pathwise sensitivity approach at fixed W to obtain ∂µW /∂θ, ∂σW /∂θ. We then apply
LRM to the inner conditional expectation to get

∂V

∂θ
= EW

[
∂

∂θ
EZ

[
f(ŜN) |W

]]
= EW

[
EZ

[
f(ŜN)

∂(log pS)

∂θ
| W

]]
,

where pS is defined in (4.1) and

∂(log pS)

∂θ
=

∂(log pS)

∂µW

∂µW

∂θ
+

∂(log pS)

∂σW

∂σW

∂θ
.

The Monte Carlo estimators for V and ∂V/∂θ have the form

V̂ = M−1
∑

j

CEE
(j)
f ,

∂̂V

∂θ
= M−1

∑
j

CEE
(j)
∂f/∂θ,

where CEE
(j)
f and CEE

(j)
∂f/∂θ are Conditional Expectation Estimates for EZ

[
f(ŜN) |W

]
and
EZ

[
f(ŜN) ∂(log pS)

∂θ
|W
]
, respectively.

Although the discussion so far has had a single output spot price at the terminal term
T , the idea extends very naturally to multiple outputs at the final time, producing a
multivariate Gaussian distribution. If the payoff also depends on values at intermediate
times, not just at maturity, these can be handled by omitting the simulation time closest
to each measurement time, using for that time interval a timestep which is twice as big
as the usual timestep. The distribution at the measurement time can then be obtained
from Brownian interpolation [14].

4.3 Efficient estimators

It is important to have efficient estimators for EZ [f(ŜN) |W] and EZ

[
f(ŜN) ∂(log pS)

∂θ
|W
]
.

For a given W , using the identity EZ [h(Z)] = EZ [h(−Z)] for all functions h(Z) due to
the symmetry of the probability distribution for Z, then

EZ

[
f(ŜN)

]
= f(µW) + EZ [f(µW +σW Z)− f(µW)]

= f(µW) + EZ

[
1
2

(
f(µW +σW Z)− 2f(µW) + f(µW−σW Z)

)]
.

17

If f(S) is differentiable, the second term is the expectation of a quantity which has a
very small mean and variance, and so a single sample will be sufficient for the estimator.

In the case of a one-dimensional SDE,

log pS = − log σW −
(ŜN − µW)2

2σ2
W

− 1
2
log(2π)

and for a given W ,

EZ

[
f(ŜN)

∂(log pS)

∂θ

]
=

∂µW

∂θ
EZ

[
f(ŜN)

∂(log pS)

∂µW

]
+

∂σW

∂θ
EZ

[
f(ŜN)

∂(log pS)

∂σW

]
.

Looking at the first of the two expectations, then

EZ

[
f(ŜN)

∂(log pS)

∂µW

]
= EZ

[
ŜN−µW

σ2
W

f(ŜN)

]

= EZ

[
Z

σW

f(µW +σW Z)

]
= EZ

[
Z

2σW

(f(µW +σW Z)− f(µW−σW Z))

]
.

If f(S) is differentiable, this is the expectation of a quantity which is O(1) in magnitude.
One sample may be sufficient, but if the computational cost of evaluating the payoff is
small compared to the path calculation, it is probably better to use several samples.
If f(S) is discontinuous, then for paths near the discontinuity the expectation is of a
quantity which is O(σ−1

W) = O(h−1/2) and multiple samples should definitely be used to
estimate the expected value.

Similarly, using the additional result that EZ [Z2−1] = 0,

EZ

[
f(ŜN)

∂(log pS)

∂σW

]
= EZ

[(
− 1

σW

+
(ŜN−µW)2

σ3
W

)
f(ŜN)

]

= EZ

[
Z2−1

σW

f(µW +σW Z)

]
= EZ

[
Z2−1

σW

(
f(µW +σW Z)− f(µW)

)]
= EZ

[
Z2−1

2 σW

(
f(µW +σW Z)− 2f(µW) + f(µW−σW Z)

)]
.

The expression within this expectation is in general no larger than for the previous
expectation, and so the same set of samples will suffice.

These estimators can be generalised to the case of multiple assets with a multivariate
Gaussian distribution conditional on the discrete set of Wiener increments. If µW is now

18

the column vector of means, and ΣW is the covariance matrix, then ŜN can be written
as

ŜN(W, Z) = µW + CZ,

where Z is a vector of uncorrelated unit Normal variables (and hence its covariance
matrix is the identity matrix) and C is any matrix such that

ΣW = E
[
(ŜN−µw) (ŜN−µw)T

]
= E

[
CZ ZT CT

]
= C E

[
ZZT

]
CT = C CT .

Provided ΣW is non-singular, which corresponds to the requirement that d1 = d2 in
(2.1), then the joint probability density function for S is

log pS = −1
2
log |Σ| − 1

2
(ŜN − µW)T Σ−1

W (ŜN − µW)− 1
2
d log(2π).

Differentiating this (see [7, 20]) gives

∂ log pS

∂µW

= Σ−1
W (ŜN − µW) = C−T Z,

and

∂ log pS

∂ΣW

= −1
2
Σ−1 + 1

2
Σ−1(ŜN − µW)(ŜN − µW)T Σ−1 = 1

2
C−T

(
ZZT−I

)
C−1,

and then for a given W

EZ

[
f(ŜN)

∂(log pS)

∂θ

]
=

(
∂µW

∂θ

)T

EZ

[
f(ŜN)

∂(log pS)

∂µW

]
+ Trace

(
∂ΣW

∂θ
EZ

[
f(ŜN)

∂(log pS)

∂ΣW

])
,

where the trace of a matrix is the sum of its diagonal elements.
To obtain efficient estimators, we again use the symmetry property to obtain

EZ

[
f(ŜN)

∂(log pS)

∂µW

]
= EZ

[
1
2

(
f(µW +CZ)− f(µW−CZ)

)
C−T Z

]
.

and we use EZ [ZZT−I] = 0 to give

EZ

[
f(ŜN)

∂(log pS)

∂ΣW

]
= EZ

[
1
2

(
f(µW +CZ)− 2f(µW) + f(µW−CZ)

)
C−T (ZZT−I) C−1

]
.

4.4 Adjoint Greeks

This approach is completely compatible with an adjoint calculation of the path sen-
sitivity. In the scalar case, one would first compute the path, and then estimate the
quantities

EZ

[
f(ŜN)

∂(log pS)

∂µW

]
, EZ

[
f(ŜN)

∂(log pS)

∂σW

]
.

19

These values correspond to what AD terminology would call µW and σW , the sensitivity
of the expected payoff for that path to changes in µW and σW . This is the starting
information required for the reverse pass of the adjoint path calculation, following the
algorithmic differentiation procedure described in Section 3.

In the multi-dimensional case, the adjoint initialisation is

µW = EZ

[
1
2

(
f(µW +CZ)− f(µW−CZ)

)
C−T Z

]
,

and

ΣW = EZ

[
1
2

(
f(µW +CZ)− 2f(µW) + f(µW−CZ)

)
C−T (ZZT−I) C−1

]
.

5 Conclusions

In this paper we have given an overview of the Monte Carlo method for determining
the value of financial options, and their sensitivity to changes in input parameters. The
adjoint implementation of pathwise sensitivity calculations is a particularly efficient
way to obtain the sensitivity with respect to a large set of input parameters, and we
have shown the way in which adjoint codes can be developed through the principles of
Algorithmic Differentiation, and with the aid of AD tools. Readers are encouraged to
download the source code for the LIBOR testcase [10] to better understand the software
development process.

Lastly, we have introduced a new idea of vibrato Monte Carlo calculations. This
is a generalisation of the use of conditional expectation and leads to a hybrid method
which applies pathwise sensitivity analysis to the path simulation, and Likelihood Ratio
Method to the payoff evaluation. This offers the computational efficiency of the pathwise
method, together with the greater generality and ease-of-implementation of LRM.

Acknowledgements

This research was funded in part by a research grant from Microsoft Corporation, and in
part by a fellowship from the UK Engineering and Physical Sciences Research Council.

I am very grateful to Ole Stauning for providing FADBAD++ and patiently respond-
ing to my questions, and to Thomas Kaminski and Michael Vossbeck of FastOpt who
generated the TAC++ code and timing results and gave very helpful feedback on the
paper.

20

References

[1] C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for automatic
differentiation. Technical Report IMM–REP–1996–17, Department of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark, 1996.

[2] C.H. Bischof, A. Carle, P.D. Hovland, P. Khademi, and A. Mauer. ADIFOR 2.0
User’s Guide (Revison D). Technical Report 192, Mathematics and Computer
Science Division, Argonne National Laboratory, 1998.

[3] F. Black and M. Scholes. The pricing of options and corporate liabilities. The
Journal of Political Economy, 81(3):637–654, 1973.

[4] I. Charpentier and M. Ghemires. Efficient adjoint derivatives: application to the
meteorological model Meso-NH. Opt. Meth. and Software, 13(1):35–63, 2000.

[5] P. Courtier and O. Talagrand. Variational assimilation of meteorological observa-
tions with the adjoint vorticity equation, II, Numerical results. Q. J. R. Meteorol.
Soc., 113:1329–1347, 1987.

[6] F. Courty, A. Dervieux, B. Koobus, and L. Hascoet. Reverse automatic differen-
tiation for optimum design: from adjoint state assembly to gradient computation.
Opt. Meth. and Software, 18(5):615–627, 2003.

[7] P.S. Dwyer. Some applications of matrix derivatives in multivariate analysis. Jour-
nal of the American Statistical Association, 62(318):607–625, 1967.

[8] R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Trans.
Math. Software, 24(4):437–474, 1998.

[9] R. Giering and T. Kaminski. TAF and TAC++ product information.
http://www.fastopt.com/topics/products.html, FastOpt, 2007.

[10] M.B. Giles. Source code for LIBOR testcase for adjoint sensitivities gener-
ated both by hand-coded routines and FADBAD++ automatic differentiation.
http://www.comlab.ox.ac.uk/mike.giles/libor/, Oxford University Comput-
ing Laboratory, 2007.

[11] M.B. Giles, D. Ghate, and M.C. Duta. Using automatic differentiation for adjoint
CFD code development. In B. Uthup, S. Koruthu, R.K. Sharma, and P. Priyadarshi,
editors, Recent Trends in Aerospace Design and Optimization, pages 426–434. Tata
McGraw-Hill, New Delhi, 2006.

[12] M.B. Giles and P. Glasserman. Smoking adjoints: fast Monte Carlo Greeks. RISK,
January 2006.

[13] M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design.
Flow, Turbulence and Control, 65(3-4):393–415, 2000.

21

[14] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York, 2004.

[15] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors,
Mathematical Programming: Recent Developments and Applications, pages 83–108.
Kluwer Academic Publishers, 1989.

[16] A. Griewank. Evaluating derivatives : principles and techniques of algorithmic
differentiation. SIAM, 2000.

[17] A. Griewank, D. Juedes, and J. Utke. ADOL-C: a package for the automatic differ-
entiation of algorithms written in C/C++. ACM Trans. Math. Software, 22(2):131–
167, 1996.

[18] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide.
http://www-sop.inria.fr/tropics/, INRIA, 2004.

[19] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equa-
tions. Springer-Verlag, Berlin, 1992.

[20] J.R. Magnus and H. Neudecker. Matrix differential calculus with applications in
statistics and econometrics. John Wiley & Sons, 1988.

[21] E. Nielsen and W.K. Anderson. Aerodynamic design optimization on unstructured
meshes using the Navier-Stokes equations. AIAA J., 37(11):957–964, 1999.

[22] C. Othmer, T. Kaminski, and R. Giering. Computation of topological sensitivities
in fluid dynamics: cost function versatility. In P. Wesseling, E. E. Oñate, and
J. Périaux, editors, ECCOMAS CFD 2006. TU Delft, 2006.

[23] O. Stauning and C. Bendtsen. FADBAD++ online documentation.
http://www2.imm.dtu.dk/~km/FADBAD/, Technical University of Denmark,
2007.

[24] O. Talagrand and P. Courtier. Variational assimilation of meteorological obser-
vations with the adjoint vorticity equation, I, Theory. Q. J. R. Meteorol. Soc.,
113:1311–1328, 1987.

[25] A. Walther and A. Griewank. ADOL-C online documentation.
http://www.math.tu-dresden.de/~adol-c/, Technical University of Dresden,
2007.

[26] R.E. Wengert. A simple automatic derivative evaluation program. Comm. ACM,
7(8):463–464, 1964.

