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ABSTRACT
An increasing number of applications rely on RDF, OWL 2, and
SPARQL for storing and querying data. SPARQL, however, is not
targeted towards end-users, and suitable query interfaces are needed.
Faceted search is a prominent approach for end-user data access,
and several RDF-based faceted search systems have been devel-
oped. There is, however, a lack of rigorous theoretical underpinning
for faceted search in the context of RDF and OWL 2. In this pa-
per, we provide such solid foundations. We formalise faceted inter-
faces for this context, identify a fragment of first-order logic captur-
ing the underlying queries, and study the complexity of answering
such queries for RDF and OWL 2 profiles. We then study interface
generation and update, and devise efficiently implementable algo-
rithms. Finally, we have implemented and tested our faceted search
algorithms for scalability, with encouraging results.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscellaneous; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods
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1. INTRODUCTION
The Resource Description Framework (RDF) is the W3C rec-

ommendation graph data model for representing information about
Web resources, and SPARQL is the standard language for querying
RDF. In the last ten years, we have witnessed a constant growth in
the amount of available RDF data, and an increasing number of ap-
plications are relying on RDF and SPARQL for storing, publishing,
and querying data. The functionality of many such applications is
enhanced by an OWL 2 ontology: a set of first-order sentences that
are used to provide background knowledge about the application
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domain and enrich query answers with information not explicitly
given in the RDF data.

Although the growing popularity of RDF, OWL 2, and SPARQL
has been accompanied by the development of better and better query
answering engines, writing SPARQL queries is not well-suited for
the majority of users. Thus, an important challenge is the devel-
opment of simple yet powerful query interfaces that capture well-
defined fragments of SPARQL.

Faceted search is a prominent approach for querying document1

collections where users can narrow down the search results by pro-
gressively applying filters, called facets [1]. A facet typically con-
sists of a property (e.g., ‘gender’ or ‘occupation’ when querying
documents about people) and a set of possible string values (e.g.,
‘female’ or ‘research’), and documents in the collection are anno-
tated with property-value pairs. During faceted search users itera-
tively select facet values and the documents annotated according to
the selection are returned as the search result.

Several authors have proposed faceted search for querying doc-
ument collections annotated with RDF, and a number of systems
have been developed, e.g. [2–10]. The theoretical underpinnings of
faceted search in the context of semantic technologies, however,
have received less attention [11–13]. In particular, the following
key questions have not been satisfactorily addressed (see related
work section).
(Q1) What fragments of SPARQL can be naturally captured using

faceted search as a query paradigm?
(Q2) What is the complexity of answering such queries?
(Q3) What does it mean to generate and interactively update an

interface according to a given RDF graph?
Questions 1 and 2 correspond to the study of expressive power

and complexity of query languages in the context of faceted search.
These are central topics in data management and addressing them
is a key requirement to develop information systems that can pro-
vide correctness, robustness, scalability, and extensibility guaran-
tees. Furthermore, update (Question 3) is a key task in information
systems where query formulation is fundamentally interactive. Our
first goal is to answer these questions, thus providing rigorous and
solid foundations for faceted search over RDF data.

Furthermore, existing works have focused mostly on RDF, thus
essentially disregarding the role of OWL 2 ontologies. We see this
as an important limitation. Ontological axioms can be used to en-
rich query answers with implicit information, thus enhancing the
search for relevant documents. Moreover, they provide schema-
level structure, which can be exploited to improve faceted inter-
faces. Finally, RDF-based faceted search systems are data-centric,
and hence cannot be exploited to browse large ontologies or to for-
mulate meaningful queries at the schema level. Our second aim is to
address this limitation and provide a framework for faceted search
that is also applicable to the wider setting of OWL 2.
1We use ‘document’ to refer to any resource referenced by a URI.



(1 ) A(x) ∧R(x, y1) ∧B(y1) ∧R(x, y2) ∧B(y2)→ y1 ≈ y2,

(2 ) R(x, y)→ S(x, y), (3 ) A(x)→ ∃y.[R(x, y) ∧B(y)],

(4 ) A(x)→ x ≈ a, (5 ) R(x, y) ∧ S(y, z)→ T (x, z),

(6 ) A(x)→ B(x), (7 ) A(x) ∧B(x)→ C(x),

(8 ) R(x, y)→ A(x), (9 ) A(x) ∧R(x, y)→ B(y),

(10 ) A(x)→ R(x, a), (11 ) R(x, a)→ B(x),

(12 ) R(x, y)→ A(y), (13 ) R(x, y)→ S(y, x),

(14 )R(x, y) ∧B(y)→A(x)

Table 1: Rules corresponding to OWL 2 profiles

In Section 3 we formalise faceted interfaces that are tailored to-
wards RDF and OWL 2 and which capture the key functionality im-
plemented in existing faceted search systems. Our interfaces cap-
ture both the combination of facets displayed during search, and the
facet values selected by users. In this way, an interface encodes both
a query, whose answers constitute the current search results, and the
facet values available for further selection. Analogously to existing
work on RDF-based faceted search and in contrast to traditional
faceted search, our notion of interface allows users to ‘navigate’
across interconnected collections of documents and establish filters
to each of them. Furthermore, it abstracts from considerations spe-
cific to GUI design (e.g., facet and value ranking), while at the same
time reflecting the core functionality of existing systems.

In Section 4 we study the expressivity and complexity of faceted
queries: queries encoded by faceted interfaces. To this end, we
identify a fragment of first-order logic that is sufficient to cap-
ture such queries, and study the complexity of query answering in
the presence of OWL 2 ontologies. Since OWL 2 reasoning can
be computationally expensive and hence significantly affect sys-
tems’ performance and robustness, we focus on ontologies in the
OWL 2 profiles [14]: language fragments with favorable computa-
tional properties. For each of these profiles we establish tight com-
plexity bounds and propose practical query answering algorithms.

In Section 5 we study interface generation and update. Exist-
ing techniques for RDF are based on exploration of the underlying
RDF graph. In this way, by generating facets according to the RDF
graph, systems can guide users in the formulation of ‘meaningful’
queries. We lift this approach by proposing a graph-based repre-
sentation of OWL 2 ontologies and their logical entailments for the
purpose of faceted navigation. Then, we characterise what it means
for an interface to conform to an ontology, in the sense that ev-
ery facet and facet value in the interface is justified by an edge in
the graph (and hence by an entailment of the ontology). Finally,
we propose generic interface generation and update algorithms that
rely on the information in the graph, and show tractability of these
tasks for ontologies in the OWL 2 profiles.

In Section 6 we present a faceted search platform that provides
functionality for generating and updating interfaces based on our
algorithms in Section 5. Our platform relies on an external triple
store with OWL 2 reasoning capabilities, and it is compatible with
faceted search GUIs, as well as with text search engines for retriev-
ing documents from keywords. We have tested the scalability of
our platform using different triple stores, with encouraging results.
As proof of concept, we have integrated our platform in a faceted
search system that bundles the triple store JRDFox, the search en-
gine Lucene, and our own faceted search GUI.

2. PRELIMINARIES
We use standard notions from first-order logic. We assume pair-

wise disjoint infinite sets of constants C, unary predicates UP, and
binary predicates BP. A signature is a subset of C ∪UP ∪BP.
We treat equality ≈ as an ordinary predicate in BP, and assume
that any set of formulae contains the axioms of equality for its sig-
nature. We treat > as a special symbol in UP, which is used to

represent a tautology. W.l.o.g. we assume all formulae to be recti-
fied; that is, no variable appears free and quantified in a first-order
formula ϕ, and every variable is quantified at most once in ϕ. The
set of free variables of a formula ϕ is denoted as fvar(ϕ).

A fact is a ground atom and a dataset is a finite set of facts. A rule
is a sentence of the form ∀x∀z [ϕ(x, z) → ∃yψ(x,y)], where x,
z, and y are pairwise disjoint tuples of variables, the body ϕ(x, z)
is a conjunction of atoms with variables in x ∪ z, and the head
∃yψ(x,y) is an existentially quantified non-empty conjunction of
atoms ψ(x,y) with variables in x ∪ y. Universal quantifiers are
omitted. The restriction of ψ(x,y) being non-empty ensures sat-
isfiability of any set of rules and facts, which makes query results
meaningful. A rule is Datalog if its head has at most one atom and
all variables are universally quantified.

OWL 2 defines three profiles: weaker languages with favourable
computational properties [14]. Each profile ontology can be nor-
malised as rules and facts using the correspondence of OWL 2
and first-order logic and a variant of the structural transformation.2

Thus, we see an ontology as a finite set of rules and facts. Table 1
specifies the rules allowed in these profiles. An ontology with only
sentences from Table 1 is (i) RL if it has no rules of Type (3);
(ii) EL if it does not contain rules (1), (9), and (13); and (iii) QL if
it does not contain rules (1), (4), (5), (7), (9)-(11), and (14).

Let V be a signature, at(V ) the set of equality-free and constant-
free atoms over V , and eq(V ) the set of atoms x ≈ c with x a vari-
able and c a constant from V . A positive existential query (PEQ)
Q(x) is a formula with free variables x, constructed using ∧, ∨ and
∃ from atoms in at(V ) ∪ eq(V ). A PEQ Q is monadic if fvar(Q)
is a singleton, and it is a conjunctive query (CQ) if it is ∨-free.

We consider two different semantics for query answering. Under
the classical semantics, a tuple t of constants is an answer toQ(x)
w.r.t. an ontologyO ifO |= Q(t). Under the active domain seman-
tics, t is an answer to Q w.r.t. O if there is a tuple t′ of constants
from O such that O |= ϕ(t, t′), where ϕ(x,y) is the formula ob-
tained from Q by removing all quantifiers. The evaluation problem
under classical (resp. active domain) semantics is to decide, given a
tuple of constants t, a PEQ Q and an ontology O in a language L,
whether t is an answer toQw.r.t.O under the given semantics. The
classical semantics is the default in first-order logic, whereas active
domain is the default semantics of the SPARQL entailment regimes
[15]. The latter can be seen as an approximation of the former (an
active domain answer is also an answer under classical semantics,
but not vice versa). The difference between both semantics mani-
fests itself only in the presence of existentially quantified rules and
queries; thus, both semantics coincide if either the input ontology
is Datalog, or if all variables in the input query are free.

3. FACETED INTERFACES
In this section, we formalise a notion of a faceted interface,

which provides a rigorous foundation for faceted search over RDF
graphs enhanced with OWL 2 ontologies. To motivate our defini-
tions, we will use an example based on an excerpt of DBpedia.
Our goal is to find US presidents who graduated from Harvard or
Georgetown and have a child who graduated from Stanford.

EXAMPLE 1. The document URIs dtr and dbc for Theodore
Roosevelt and Bill Clinton are annotated with the category ‘presi-
dent’. Roosevelt’s son Kermit dkr and Clinton’s daughter Chelsea
dcc are categorised as ‘person’. The document URIs for George-
town dg , Harvard dh , and Stanford ds are categorised under ‘uni-
versity’, and the USA dus and UK duk as ‘country’. These annota-
tions are given in RDF and correspond to the following facts:

2Note that the profiles provide the special concept ⊥, which is im-
material to query answering over satisfiable profile ontologies.



President(dtr ) President(dbc) Person(dkr )
Person(dcc) Country(dus) Country(duk )
Univ(dh) Univ(dg) Univ(ds)

Specific information about documents is represented by liter-
als. For example, Theodore Roosevelt’s date of birth is encoded as
dateOfBirth(dtr , 1858-10-27). Most importantly, documents are
also annotated with other documents; such annotations are rep-
resented in RDF and correspond to the following facts:

citiz(dtr , dus) citiz(dbc , dus) child(dtr , dkr ) child(dbc , dcc)
grad(dtr , dh) grad(dbc , dg) grad(dkr , dh) grad(dcc , ds)

Finally, DBpedia can be extended with ontological rules, which are
exploited to describe the meaning of the predicates and constants
in the vocabulary. Consider for example the rules given next:

President(x) ∧ citiz(x, dus)→ USpres(x), (1)
USpres(x)→ President(x) ∧ citiz(x, dus), (2)

grad(x, y)→ Person(x) ∧ Univ(y), (3)

Person(x)→ ∃y.
(
citiz(x, y) ∧ Country(y)

)
. (4)

Rules (1) and (2) define US presidents as those with US national-
ity. Rule (3) specifies the domain and range of grad. Finally, (4)
mandates that each person has a (maybe unspecified) nationality.

Analogously to traditional faceted search, we represent facets as
pairs of a predicate (or facet name) and a set of values. In the con-
text of RDF, however, documents can be used to annotate other
documents, and thus annotations form a graph, rather than a tree.
Thus, facet values can be either document URIs or literals. Ex-
amples of facet names are the relations ‘grad’ and ‘dateOfBirth’,
and example values are documents such as ‘ds’ and literals such as
‘1858-10-27’. Selection of multiple values within a facet can be in-
terpreted conjunctively or disjunctively, and hence we distinguish
between conjunctive and disjunctive facets. We also distinguish a
special facet type, whose values are categories (i.e., unary predi-
cates) rather than documents or literals. Finally, a special value any
denotes the set of all values compatible with the facet name.

DEFINITION 2. Let type and any be symbols not occurring in
C∪UP∪BP. A facet is a pair (X, ◦Γ), with ◦ ∈ {∧,∨}, Γ a non-
empty set, and either (i)X = type and Γ ⊆ UP, or (ii)X ∈ BP,
any ∈ Γ and either Γ ⊆ C∪{any} or Γ ⊆ UP∪{any}. A facet of
the form (X,∧Γ) is conjunctive, and a facet of the form (X,∨Γ) is
disjunctive. In a facet F = (X, ◦Γ), X is the facet name, denoted
by F |1, and Γ contains the facet values and it is denoted by F |2.

EXAMPLE 3. The following facets are relevant to our example.

F1 = (type,∨{USpres,Country}),
F2 = (child,∨{any, dkr , dcc}), F3 = (grad,∨{any, dh, ds, dg}),
F4 = (citiz,∧{any, dus, duk}), F5 = (citiz,∨{any, dus, duk}).

The disjunctive facet F1 can be exploited to select the categories
to which the relevant documents belong. Facet F2 can be used to
narrow down search results to those individuals with children; fur-
thermore, the value any can be used to state that we are not looking
for any specific child. The intuition behind F3, F4, and F5 is simi-
lar; note, however, that facet F4 is conjunctive.

3.1 The Notion of Faceted Interface
We next move on to the definition of a faceted interface, which

encodes both a query (whose answers determine the search results)
and the choices of facet values available for further refinement.

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William 
Jefferson Blythe III; August 19, 1946) is an 
American politician who served as the 42nd 
President of the United States from 1993 to 
2001. Inaugurated at age 46, he was the third-
youngest president. He took office at the end 
of the Cold War, and was the first president of 
the baby boomer generation...
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Figure 1: A visualisation of the example interface

DEFINITION 4. A basic faceted interface (BFI) is a pair (F,Σ),
with F a facet and Σ ⊆ F |2 the set of selected values. The set of
faceted interfaces (or interfaces, for short) is given by the following
grammar, where I0 and I1 = (F,Σ) are BFIs and F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path),

path ::= I0 | (I1/I).

A BFI encodes user choices for a specific facet, e.g., the BFI
(F1, {USpres}) selects the documents categorised as US presidents.
BFIs are put together in paths: sequences of nested facets that cap-
ture navigation between sets of documents. Documents are anno-
tated with other documents by means of binary relations (e.g., child
connects parents to their children); thus, nesting (I1/I) requires
the BFI I1 to have a binary relation as facet name. With nesting
we can capture queries such as ‘people with a child who gradu-
ated from Stanford’ by using the interface (F2, {any})/(F3, {ds})
which first selects people having (any) children and then those chil-
dren with a Stanford degree. Finally, two types of branching can be
applied: (path1 ∧ path2) indicates that search results must satisfy
the conditions specified by both path1 and path2, while (path1 ∨
path2) indicates that they must satisfy those in path1 or path2.

EXAMPLE 5. Consider the following interface Iex, which is vi-
sualised in our system as in Figure 1.(
(F1, {USpres}) ∧ (F3, {dh , dg})

)
∧
(
(F2, {any})/(F3, {ds})

)
.

The interface consists of three paths connected by ∧-branching.
The first path selects US presidents. The second path selects grad-
uates of Harvard or Georgetown. The third path selects individu-
als with a child who is a Stanford graduate. Since paths are com-
bined conjunctively their constraints apply simultaneously. Thus,
we obtain the US presidents who graduated from either Harvard or
Georgetown and who have a child who graduated from Stanford.

The query encoded by the selected values in an interface is for-
mally specified in terms of first-order logic as given next.

DEFINITION 6. Let I be an interface, and let each xw with
w ∈ {0, 1, . . . , 9, ·}∗ be a variable. The query of I is the formula
Q[I] = JI, xε, x0K, with one free variable xε, defined as in Table 2.

Our semantics assigns to each interface a PEQ with one free vari-
able. For each facet F we have J(F, ∅), v, xwK = >(v), indicating
that no restriction is imposed by F if no value is selected. BFIs
with a type-facet are interpreted as the conjunction (disjunction) of
unary atoms over the same variable. BFIs having as facet name a
binary predicate result in either an atom whose second argument is
existentially quantified (if any is selected), or in a conjunction (dis-
junction) of binary atoms having a variable as second argument that
must be equal to a constant or belong to a unary predicate. Branch-
ing (path1 ◦ path2) with ◦ ∈ {∧,∨} is interpreted by constructing
the conjunction (disjunction) of the queries for each pathi; further-
more, if for some pathi we have that Jpathi, v, xwK = >(v), indi-
cating that no value from the facets occurring in pathi is selected,



Basic Faceted Interfaces: J(F,Σ), v, xwK =

>(v) if Σ = ∅
∃xw F |1(v, xw) if any ∈ Σ

◦
C∈Σ

C(v) if F |1 = type and Σ 6= ∅
◦

ti∈Σ
∃xw·i F |1(v, xw·i) ∧ xw·i ≈ ti if F |1 6= type, any /∈ Σ,

Σ 6= ∅ and Σ ⊆ C

◦
Ci∈Σ

∃xw·i F |1(v, xw·i) ∧ Ci(xw·i) if F |1 6= type, any /∈ Σ,
Σ 6= ∅ and Σ ⊆ UP

Nesting: J((F,Σ)/I), v, xwK =

>(v) if Σ = ∅
∃xw F |1(v, xw) ∧ JI, xw, xw·0K if any ∈ Σ

◦
ti∈Σ
∃xw·i F |1(v, xw·i)∧ if any /∈ Σ, Σ 6= ∅

xw·i ≈ ti ∧ JI, xw·i, xw·i·0K and Σ ⊆ C

◦
Ci∈Σ

∃xw·i F |1(v, xw·i)∧ if any /∈ Σ, Σ 6= ∅
Ci(xw·i) ∧ JI, xw·i, xw·i·0K and Σ ⊆ UP

Branching: J(path1 ◦ path2), v, xwK =

(Jpath1, v, xw·0K ◦ Jpath2, v, xw·1K) if Jpath1, v, xw·0K 6= >(v)
Jpath2, v, xw·1K 6= >(v)

Jpath1, v, xw·0K if Jpath1, v, xw·0K 6= >(v)
Jpath2, v, xw·1K = >(v)

Jpath2, v, xw·1K if Jpath1, v, xw·0K = >(v)
Jpath2, v, xw·1K 6= >(v)

>(v) if Jpath1, v, xw·0K = >(v)
Jpath2, v, xw·1K = >(v)

Table 2: Semantics of faceted interfaces

then pathi is ignored. Finally, nesting involves a “shift” of variable
from the parent BFI to the nested subexpression.

EXAMPLE 7. Interface Iex encodes the following query:

Qex(x) = USpres(x) ∧
(
∃y1 (grad(x, y1) ∧ y1 ≈ dh)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ dg)
)

∧ ∃z
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ ds)

)
.

If we consider only facts, the answer is empty (e.g., no document
is categorised as ‘US president’). If we also consider the ontology
rules, however, we obtain dbc (i.e., Bill Clinton) as an answer.

Our notion of interface motivates the class of faceted queries,
i.e., PEQs that can be captured by some faceted interface.

DEFINITION 8. A first-order formula ϕ is a faceted query if
there exists a faceted interface I such that ϕ and Q[I] are iden-
tical modulo renaming of variables.

Note that our notion of interface abstracts from several consid-
erations that are critical to GUI design. For instance, our notion
is insensitive to the order of BFIs composed by ∧- or ∨- branch-
ing, as well as to the order of facet values (which are carefully
ranked in practice). Furthermore, we model type-facet values as
‘flat’, whereas in applications categories are organised hierarchi-
cally. Although these issues are important from a front-end per-
spective, they are immaterial to our technical results.

3.2 Faceted Interfaces with Refocussing
The interface in Example 5 finds presidents (such as Bill Clinton)

who graduated from either Harvard or Georgetown and have chil-
dren who graduated from Stanford. If we want to know who these
children are (i.e., see Chelsea Clinton as an answer), we must pro-
vide refocussing (or pivoting) functionality [9, 10]. We next extend
faceted interfaces to allow for such functionality.

DEFINITION 9. Let focus be a symbol not occurring in C ∪
UP ∪ BP. An extended basic faceted interface (EBFI) is either

Extended Basic Faceted Interfaces: J(F,Σ ∪ {focus}), v, xwK =

F |1(v, xw) if Σ = ∅
J(F, {focus}), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J
(
(F, {focus})/((type,∨F |2),Σ)

)
, v, xwK if Σ 6= ∅ and

Σ ⊆ UP ∪ {any}
Nesting: J((F,Σ ∪ {focus})/I), v, xwK =

F |1(v, xw) ∧ JI, xw, xw·0K if Σ = ∅
J((F, {focus})/I), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J
(
(F, {focus})/

(
((type,∨F |2),Σ) ∧ I

))
, v, xwK if Σ 6= ∅ and

Σ ⊆ UP ∪ {any}

Table 3: Semantics of extended faceted interfaces

a BFI or a pair (F,Σ ∪ {focus}), where (F,Σ) is a BFI and
F |1 ∈ BP. Moreover, the set of extended faceted interfaces (EFIs)
is defined by the same grammar given in Definition 5, but where I0
is a BFI and I1 = (F,∆) is an EBFI with F |1 ∈ BP. Finally,
each EFI I must have at most one occurrence of the symbol focus.

The special value focus is used to change the free variable of
the query Q, which determines the kinds of objects returned as an-
swers. Thus, refocussing is used over a facet that generates new
variables in the query, which by Table 2 requires that F |1 ∈ BP.

The query encoded by an extended interface can be specified in
terms of first-order logic as given next.

DEFINITION 10. Let I be an EFI and JI, xε, x0K be a formula
defined by the extension of Table 2 with the rules in Table 3. Then
the query of I is the formula Q[I] defined as follows:

Q[I] =

{
JI, xε, x0K if focus does not occur in I ,
∃xε JI, xε, x0K otherwise.

Finally, a formula ϕ is an extended faceted query if there is an EFI
I s.t. ϕ and Q[I] are identical modulo renaming of variables.

For example, consider the following EFI I , which is focused on
the children of the US presidents:(
(F1, {USpres}) ∧ (F3, {dh , dg})

)
∧
(
(F2, {focus})/(F3, {ds})

)
.

Then,Q[I] is obtained fromQex(x) in Example 7 by first dropping
the existential quantifier ∃z fromQex(x), and then adding the exis-
tential quantifier ∃x to the resulting query, thus obtaining Q′ex(z):

∃x
(
USpres(x) ∧

(
∃y1 (grad(x, y1) ∧ y1 ≈ dh)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ dg)
)

∧
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ ds)

))
.

The answer to Qex(z) is precisely dcc (Chelsea Clinton).

4. ANSWERING FACETED QUERIES
Each time a user selects a facet value to refine the search results,

a faceted search system must compute the answers to a query. Thus,
query evaluation is a key reasoning problem for the development of
efficient and robust faceted search systems.

As discussed in Section 3, faceted queries are monadic positive
existential queries resulting from the selection of facet values in an
interface. By standard results for relational databases, PEQ evalu-
ation is an NP-hard problem, even if we restrict ourselves to CQs
and ontologies consisting of just a dataset.

Our main result is that, in contrast to PEQs (and even CQs),
faceted query evaluation over datasets is tractable; furthermore, the
problem remains tractable in most cases if we consider ontologies
belonging to the OWL 2 profiles. Our tractability results concern



Algorithm 1: ANSWER-FQ: Faceted Queries over Datasets
INPUT : D a dataset; Q a faceted query
OUTPUT: Answers to Q w.r.t. D

1 S := Set of disjunctive subformulas of Q
2 �:= partial order on S s.t. ϕ � ϕ′ iff ϕ is a subformula of ϕ′
3 for each ϕ = (ϕ1 ∨ ϕ2) ∈ S listed in ascending �-order do
4 for each 1 ≤ i ≤ 2 do
5 ϕ′i := REWRITE(ϕi)
6 Ansi := ANSWER-TREE-CQ(ϕ′i,D)
7 D := D ∪ {Cϕ1∨ϕ2 (d) | d ∈ Ans1 ∪ Ans2}
8 Q′ := REWRITE(Q)
9 Ans := ANSWER-TREE-CQ(Q′,D)

10 return Ans

Function REWRITE

INPUT : ϕ a faceted query
OUTPUT: A conjunctive query

1 case ϕ an atom return ϕ
2 case ϕ = ∃z.ϕ′ return ∃z.REWRITE(ϕ′)
3 case ϕ = ϕ1 ∧ ϕ2 return REWRITE(ϕ1) ∧ REWRITE(ϕ2)
4 case ϕ = ϕ1 ∨ ϕ2 return Cϕ1∨ϕ2 (y) with y = fvar(ϕi)

combined complexity, which takes into account the size of the en-
tire input (i.e., ontological rules, RDF data and queries).

4.1 Faceted Query Answering Over Datasets
The rationale behind our tractability result is that PEQs originat-

ing from faceted interfaces are of a rather restricted shape, which
is determined by Table 2 in Section 3. A closer look at the table
reveals that variables in a faceted query can be arranged in a tree
with root xε and where each variable xw.i is a child of xw.

DEFINITION 11. Let Q(x) be a monadic PEQ. The graph of Q
is the smallest directed graph GQ with a node for each variable
in Q and a directed edge (y, y′) for each atom R(y, y′) occur-
ring in Q where R is different from ≈. Moreover, Q is tree-shaped
if (i) GQ is a (possibly empty) directed tree rooted at x; (ii) for
each edge (y, y′) there is at most one binary atom in Q of the form
R(y, y′).

Note that query Qex(x) in Example 7 is tree-shaped. The second
observation in Table 2 is that disjunction in a faceted query origi-
nates from either a disjunctive facet or from ∨-branching between
paths. In either case, disjunctive subqueries are monadic tree-shaped
PEQs. These observations are summarised as follows:

PROPOSITION 12. Every faceted query Q is a monadic tree-
shaped PEQ with the following property: if ϕ = (ϕ1 ∨ ϕ2) is a
subformula of Q, then fvar(ϕ1) = fvar(ϕ2) = {x} for some x.

We next show how the restricted shape of faceted queries can
be exploited to make query answering more efficient. We start by
providing a polynomial algorithm for answering faceted queries
over datasets. The key observation is that the disjunctive subqueries
ϕ = ϕ1 ∨ ϕ2 in the input query Q can be evaluated w.r.t. the input
dataset in a ‘bottom-up’ fashion . To answer one such ϕ, we solve
ϕ1 and ϕ2 independently and ‘store’ the answers as facts in the
dataset using a fresh unary predicate Cϕ uniquely associated to ϕ.

EXAMPLE 13. Query Qex can be answered over the dataset in
our running example as follows. First, solve the subquery ϕ asking
for graduates from either Harvard or Georgetown; each disjunct is
a tree-shaped CQ, and we obtain B. Clinton, T. Roosevelt and K.
Roosevelt as answers. Then, extend the dataset with facts Cϕ(dbc),
Cϕ(dtr) and Cϕ(dkr ) over a fresh predicate Cϕ. Finally, rewrite
Qex by replacing ϕ(x) with Cϕ(x) and answer the rewritten query

Algorithm 2: ANSWER-FQ-ACTIVE

INPUT :O an ontology; Q a faceted query
OUTPUT : Active domain answers to Q w.r.t.O

1 D := COMPUTE-ENTAILED-FACTS(O)
2 Ans := ANSWER-FQ(Q,D)
3 return Ans

over the extended dataset. We obtain the empty set of answers since
no document is explicitly categorised as US president.

Algorithm 1 implements these ideas. The algorithm relies on
a specialised algorithm ANSWER-TREE-CQ to answer (monadic)
tree-shaped CQs, which is used as a ‘black box’. The following
theorem establishes correctness of our algorithm.

THEOREM 14. Algorithm 1 computes all answers toQ w.r.t.D.

Thus, faceted queries can be evaluated in polynomial time with
an oracle for the evaluation of tree-shaped CQs. By a classic result,
acyclic CQs (and hence also tree-shaped CQs as in Def. 11) can be
answered in polynomial time [16]. Thus, tractability tree-shaped
CQ evaluation transfers to the evaluation of faceted queries.

COROLLARY 15. Faceted query evaluation over datasets is fea-
sible in polynomial time.

In what follows we study query answering over ontologies (and
not just datasets) under both active domain and classical semantics.

4.2 Active Domain Semantics
In practice, queries over ontology-enhanced RDF data are typi-

cally represented in SPARQL and executed using off-the-shelf rea-
soning engines with SPARQL support. The specification of SPARQL
under entailment regimes [15] is based on active domain semantics,
which requires existentially quantified variables in the query Q to
map to actual constants in the input ontologyO. In this case, we can
answer queries using Algorithm 2, which first computes the dataset
D of all facts entailed by O and then answers Q w.r.t. the dataset
D. The correctness of Algorithm 2 follows directly from Theorem
14 and the following proposition.

PROPOSITION 16. Let Q be a PEQ, let O be an ontology, and
let D be the set of all facts α such that O |= α. Then, the active
domain answers to Q w.r.t. O and w.r.t. D coincide.

Fact entailment is tractable for all the OWL 2 profiles; thus, by
committing to the active domain semantics of SPARQL we can
achieve tractability without emasculating the ontology language.

THEOREM 17. Active domain evaluation of faceted queries is
in PTIME w.r.t. all normative OWL 2 profiles. Furthermore, it is
PTIME-complete w.r.t. the EL and RL profiles.

4.3 Classical Semantics
Classical and active domain semantics coincide if we restrict our-

selves to Datalog ontologies. Thus, Algorithm 2 can also be used
for query answering under classical semantics if the input ontology
is Datalog. An immediate consequence is that our results in Theo-
rem 17 transfer to OWL 2 RL ontologies under classical semantics.

In contrast to RL, the EL and QL profiles can capture existen-
tially quantified knowledge and hence active domain and classi-
cal semantics may diverge for queries with existentially quantified
variables. To deal with EL ontologies, we exploit techniques de-
veloped for the combined approach to query answering [17, 18].
These techniques are currently applicable to guarded EL ontolo-
gies, i.e., EL ontologies without axioms of Type (5). The idea is to
rewrite rules of Type (3) in Table 1 into Datalog by Skolemising
existentially quantified variables into fresh constants.



DEFINITION 18. Let O be in EL. The ontology Ξ(O) is ob-
tained fromO by replacing each ruleA(x)→ ∃y.[R(x, y)∧B(y)]
with A(x) → P (x, cR,B), P (x, y) → R(x, y), P (x, y) → B(y),
where P is a fresh predicate and cR,B is a globally fresh constant
uniquely associated with R and B.

Although this transformation strengthens the ontology, it pre-
serves the entailment of facts [17]. The following theorem estab-
lishes that the evaluation of faceted queries is also preserved.

THEOREM 19. Let Q be a faceted query, O a guarded EL on-
tology, and c a constant in O. Then, O |= Q(c) iff Ξ(O) |= Q(c).

Thus, we can answer faceted queries over an EL ontology O
by applying Algorithm 2 to Ξ(O). Since Ξ is a linear transforma-
tion and Ξ(O) is an RL ontology, we can conclude tractability of
faceted query evaluation for EL (a result consistent with existing
results for acyclic CQs in EL [19]). In contrast, the evaluation of
acyclic CQs is already NP-hard for OWL 2 QL [20] and we can
show that faceted query evaluation is NP-complete for OWL 2 QL.
The following theorem summarises our results.

THEOREM 20. Faceted query evaluation under classical seman-
tics is (i) PTIME-complete for RL and guarded EL ontologies; and
(ii) NP-complete for QL ontologies.

4.4 Extended Faceted Queries
We conclude by arguing that the refocussing functionality does

not increase complexity of query evaluation. PEQs obtained from
EFIs satisfy Proposition 12, with the only difference that the cor-
responding query graph is no longer rooted in the answer variable.
Algorithm 1 can be extended to prove that Corollary 15 also holds
for extended faceted queries. From this, and using the same tech-
niques as in the proofs of Theorems 17 and 20, we obtain that:

PROPOSITION 21. Extended faceted query evaluation under
classical semantics is (i) PTIME-complete for RL and guarded EL;
and (ii) NP-complete for QL. Moreover, active domain evaluation
of extended faceted queries is in PTIME w.r.t. all normative OWL 2
profiles, and it is PTIME-complete for RL and EL.

5. INTERFACE GENERATION & UPDATE
Faceted navigation is an interactive process. Starting with an

initial interface generated from a keyword search, users ‘tick’ or
‘untick’ facet values and the system reacts by updating both search
results (query answers) and facets available for further navigation.

EXAMPLE 22. Consider the interactive construction of our ex-
ample interface Iex. Navigation starts with the following interface
with no selected value, which may have been generated as a re-
sponse to a keyword search (facets Fi are given in Example 3):

I0 = (F1, ∅) ∧ (F3, ∅) ∧ (F2, ∅) ∧ (F5, ∅).

We may then select the category USpres in F1, which narrows down
the search to US presidents. In response, the system may construct
the following new interface I1:

I1 = (F1, {USpres}) ∧ (F3, ∅) ∧ (F2, ∅).

Interface I1 incorporates the required filter on US presidents. Fur-
thermore, it no longer includes facet F5 since US presidents have
only US nationality and hence any filter over this facet becomes
redundant. Next, we select Harvard and Georgetown in facet F3,
which narrows down the search to US presidents with either a Har-
vard or Georgetown degree and yields the following interface:

I2 = (F1, {USpres}) ∧ (F3, {dh, dg}) ∧ (F2, ∅).

Next, we select any in facet F2 to look for presidents with children.
In response, the system constructs the following interface:

I3 = (F1, {USpres}) ∧ (F3, {dh , dg}) ∧
(
(F2, {any})/(F3, ∅)

)
.

Interface I3 provides a nested BFI (F3, ∅), which allows us to se-
lect the university that children of US presidents attended. We pick
Stanford, and the system finally constructs Iex.

We next propose interface generation and update algorithms that
are ‘guided’ by the (explicit and implicit) information in O. Our
algorithms are based on the same principle: each element of the
initial interface (resp. each change in response to an action) must
be ‘justified’ by an entailment in O. In this way, by exploring the
ontology, we guide users in the formulation of meaningful queries.

There is an inherent degree of non-determinism in faceted navi-
gation: if a user selects a facet value, it is unclear whether the next
facet generated by the system should be conjunctive or disjunctive,
and whether it should be incorporated in the interface by means
of conjunctive or disjunctive branching. In applications, however,
different values in a facet are typically interpreted disjunctively,
whereas constraints imposed by different facets are interpreted con-
junctively. Thus, to resolve such ambiguities and devise fully de-
terministic algorithms, we focus on a restricted class of interfaces
where conjunctive facets and disjunctive branching are disallowed.

DEFINITION 23. A faceted interface I is simple if all facets oc-
curring in I are disjunctive, and it does not contain sub-interfaces
of the form (path1 ∨ path2).

5.1 The Ontology Facet Graph
We capture the facets that are relevant to an ontology O in what

we call a facet graph. The graph can be seen as a concise represen-
tation ofO, and our interface generation and update algorithms are
parameterised by such graph rather than by O itself.

The nodes of a facet graph are possible facet values (unary pred-
icates and constants), and edges are labelled with possible facet
names (binary predicates and type). The key property of a facet
graph is that every X-labelled edge (v, w) is justified by a rule or
fact entailed by O which ‘semantically relates’ v to w via X . We
distinguish three kinds of semantic relations: existential, where X
is a binary predicate and (each instance of) v must be X-related
to (an instance of) w in the models of O; universal, where (each
instance of) v is X-related only to (instances of) w in the models
of O; and typing where X = type, and (the constant) v is entailed
to be an instance of (the unary predicate) w.

DEFINITION 24. A facet graph forO is a directed labelled multi-
graphG having as nodes unary predicates or constants fromO and
s.t. each edge is labelled with a binary predicate from O or type.
Each edge e is justified by a fact or rule αe s.t. O |= αe and αe is
of the form given next, where c, d are constants, A,B unary predi-
cates and R a binary predicate:

(i) if e is c R−→ d, then αe is of the form

R(c, d) or R(c, y)→ y ≈ d;

(ii) if e is c R−→ A, then αe is a rule of the form

>(c)→ ∃y.[R(c, y) ∧A(y)] or R(c, y)→ A(y);

(iii) if e is A R−→ c, then αe is a rule of either of the form

A(x)→ R(x, c) or A(x) ∧R(x, y)→ y ≈ c;

(iv) if e is A R−→ B, then αe is a rule of the form

A(x)→ ∃y.[R(x, y) ∧B(y)] or A(x) ∧R(x, y)→ B(y);



(v) if e is c
type−−→ A, then αe = A(c).

Moreover, rangeG(R) denotes the set of nodes in G with an in-
coming R-labelled edge.

The first (resp. second) option for each αe in (i)-(iv) encodes the
existential (resp. universal)R-relation between nodes in e, whereas
(v) encodes typing. A graph may not contain all justifiable edges,
but rather those that are deemed relevant to the given application.

EXAMPLE 25. Recall our ontology in Example 1. A facet graph
may contain nodes for dbc (Bill Clinton) and dcc (Chelsea Clin-
ton), as well as for predicates such as USpres and Univ. Exam-
ple edges are: (i) a child-edge linking dbc to dcc, which is jus-
tified by the fact child(dbc, dcc); (ii) a citiz-edge from Person to
Country justified by Rule (4); and (iii) a grad-edge from dcc to
Univ since dcc graduated from Stanford and hence the ontology
entails Person(dcc)→ ∃y.(grad(dcc, y) ∧ Univ(y)).

It follows from the following proposition that facet graph compu-
tation can be efficiently implemented. In practice, the graph can be
precomputed when first loading data and ontology, stored in RDF,
and accessed using SPARQL queries. In this way, reasoning tasks
associated to faceted search are performed offline.

PROPOSITION 26. Checking whether a directed labelled multi-
graph is a facet graph for O is feasible in polynomial time if O is
in any of the OWL 2 profiles.

To realise the idea of ontology-guided faceted navigation, we re-
quire that interfaces conform to the facet graph, in the sense that the
presence of every facet and value in the interface is supported by a
graph edge. In this way, we ensure that interfaces mimic the struc-
ture of (and implicit information in) the ontology and the interface
does not contain irrelevant (combinations of) facets. Since a given
facet or value can occur in many different places in an interface, we
need a mechanism for unambiguously referring to each element in
the interface. To this end, we introduce an alternative representa-
tion of interfaces in the form of a tree. This representation will also
be instrumental to our notions of update in Section 5.3.

DEFINITION 27. The node-labelled tree tree(I) = (N,E, λ)
of a simple EFI I is recursively defined as follows.

(i) If I is an EBFI, then N = {ε}, E = ∅, and λ(ε) = I .
(ii) If I = (I0 ∧ I1) where tree(Ii) = (Ni, Ei, λi), then

N = {ε} ∪ {0w | w ∈ N0} ∪ {1w | w ∈ N1},
E = {(ε, 0), (ε, 1)} ∪ {(iu1, iu2) | (u1, u2) ∈ Ei}.

Furthermore, λ(w) = ε if w = ε, and λ(w) = λi(u) if w of
the form iu with i ∈ {0, 1}.

(iii) If I = (I0/I1), where tree(I1) = (N1, E1, λ1), then

N = {ε} ∪ {0w | w ∈ N1},
E = {(ε, 0)} ∪ {(0u1, 0u2) | (u1, u2) ∈ E1}.

Furthermore, λ(ε) = I0, and for each w ∈ N \ {ε} it holds
that λ(w) = λ1(u) where w = 0u.

A position in I is a pair (w, v) where w is a node in tree(I) with
label an EBFI (F,Σ) and v ∈ F |2 ∪ {focus}.

We can now define conformance of an interface to a facet graph.

DEFINITION 28. Let G be a facet graph for O and I a simple
EFI. Let (w1, v1) and (w2, v2) be distinct positions in I , where
λ(wi) in tree(I) is (Fi,Σi) and Fi|1 = Xi for i = 1, 2. Position
(w2, v2) is justified by (w1, v1) in G if w1 is the least ancestor
of w2 in tree(I) with λ(w1) 6= ε and one of the following holds:
(i) there is anX2-labelled edge from v1 to v2; or (ii) v1 = any and

Algorithm 3: CREATEINTERFACE

INPUT : A facet graph G = (V,E) forO, a set S of nodes in G
OUTPUT : A simple faceted interface

1 Υ = {w | v type−−→ w ∈ E and v ∈ S}
2 I = ((type,∨Υ), ∅)
3 for each R ∈ BP do
4 Γ,Υ′ := ∅
5 for each v ∈ S and v R−→ w ∈ E do
6 if w is a constant then Γ := Γ ∪ {w}
7 else Υ′ := Υ′ ∪ {w}
8 if Γ 6= ∅ then I := I ∧ ((R,∨(Γ ∪ {any})), ∅)
9 if Υ′ 6= ∅ then I := I ∧ ((R,∨(Υ′ ∪ {any})), ∅)

10 return I

there is an X2-labelled edge from some u ∈ rangeG(X1) to v2; or
(iii) v2 = any and v1 has an outgoing X2-edge; or (iv) v1 = v2 =
any and u has an outgoing X2-edge for some u ∈ rangeG(X1).

Interface I conforms to G if for each position (w, v) in I , one
of the following holds: (i) there is no ancestor w′ of w in tree(I)
with λ(w) 6= ε; or (ii) there is a position (w′, v′) in I s.t. λ(w′) is
(F ′,Σ′), v′ ∈ Σ′ and (w, v) is justified by (w′, v′) in G.

Intuitively, (w2, v2) is justified by (w1, v1) if there is an edge
from v1 to v2 labelled with the facet nameX2 of F2. This indicates
that there is an entailment in O that justifies the appearance of v2

given v1 and X2. Our definition, however, must also consider that
v1 can be any, which indicates that any value reachable by using the
facet name X1 of facet F1 can be used to justify v2. Analogously,
v2 can also be any, in which case it is enough to use v1 to justify
any value reachable by using the facet name X2.

5.2 Interface Generation
Algorithm 3 shows how a fresh interface can be generated from a

starting set mS of nodes in a facet graph G. The algorithm starts by
grouping all unary predicates categorising the constants in S in a
BFI (Lines 1-2). Then, for each binary predicateR and each v ∈ S,
the algorithm collects the nodes w with an incoming R-edge from
v and groups them in sets Γ and Υ′ depending on whether they
are constants or unary predicates (Lines 3-7). All constants in Γ
(resp. predicates in Υ′) are put together in a BFI with facet name
R, which is coupled to the interface using ∧-branching (Lines 8-9).

Algorithm 3 can be directly exploited to generate an initial inter-
face from a set of keywords. A faceted search backend would first
compute an initial set D of documents relevant to the keywords
(e.g., using a text search engine), and then generate an initial in-
terface by calling Algorithm 3 with input D and a facet graph for
O. The resulting interface I has no selected facet values or nested
facets, which reflects that I constitutes the starting point to naviga-
tion. Furthermore, I is conformant to the input graph G.

PROPOSITION 29. On input G and S, Algorithm 3 outputs a
simple interface that conforms to G.

5.3 Interface Update
The initial interface where no facet value has been yet selected

marks the start of the navigation process. User actions on an inter-
face can be seen as elementary ‘ticking’ and ‘unticking’ operations
on facet values that result in another interface. We define these ac-
tions by exploiting the tree representation of interfaces (c.f. Defini-
tion 27). We start with the ticking operation.

DEFINITION 30. The action TICK is applicable to a simple EFI
I , a position (w, v) in I , and a facet graph G for O under the
following preconditions: (i) v is not selected in λ(w) and (ii) if an
ancestor w′ of w in tree(I) is labelled with an EBFI (F ′,Σ′), then
Σ′ 6= ∅. The result is the interface computed by Algorithm 4.



Algorithm 4: TICK

INPUT : I, (w, v), and G as in Def. 30, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then
2 Iout := remove all occurrences of focus in I , and then replace Σ

in λ(w) with Σ ∪ {focus}
3 else
4 I1 := replace Σ in I with Σ ∪ {v}
5 if v ∈ C ∪UP then I2 := CREATEINTERFACE(G, {v})
6 else I2 := CREATEINTERFACE(G, rangeG(F |1))
7 if w is a leaf in tree(I1) then
8 Iout := replace λ(w) in I1 with (λ(w)/I2)
9 else Iout := replace λ(w0) in I1 with (λ(w0) ∧ I2)

10 return Iout

Algorithm 5: UNTICK

INPUT : I, (w, v) and G as in Def. 32, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then Iout := replace Σ in I with Σ \ {focus}
2 else
3 S := {(w′, v′) | (w′, v′) is uniquely justified by (w, v) in G,

λ(w′) = (F ′,Σ′) and v′ ∈ Σ}
4 for each (w′, v′) ∈ S do I := UNTICK(I, (w′, v′), G)
5 Iout := replace Σ in I with Σ \ {v}
6 λout := labelling function of tree(Iout)
7 for each node w′ in tree(Iout) do
8 (F ′,Σ′) := λout(w′)
9 if λout(w′′) = (F ′′, ∅) for some ancestor w′′ of w′ in tree(Iout)

then Iout := replace Σ′ in Iout with ∅
10 return Iout

Algorithm TICK starts by checking whether the value v is focus,
in which case it adds v to Σ and removes all other occurrences
of focus in I (Lines 1-2). Otherwise, it generates a fresh EFI I1
from I by adding v to Σ (Line 4), and constructs a new EFI I2
that collects all the values adjacent to v in G (Line 5). Notice that
if v = any, then the value v itself is not considered; instead, v is
replaced by the values in G with an incoming F |1-labelled edge.
Finally, Algorithm TICK includes in I1 the navigation alternatives
encoded in I2 by considering two cases. If w is a leaf in tree(I1),
then we incorporate I2 via nesting by replacing λ(w) in I1 with
(λ(w)/I2) (Line 7); otherwise,w has a nested childw0 in tree(I1),
in which case the navigation alternatives encoded in I2 are included
in w0 by replacing λ(w0) in I1 with (λ(w0) ∧ I2).

PROPOSITION 31. Assume that I , (w, v) and G are as in Def-
inition 30. If I conforms to G, then TICK(I, (w, v), G) is a simple
EFI that also conforms to G.

We next define the unticking operation. Intuitively, when untick-
ing a value v in a given position of an interface all values that were
justified by v (and only by v) should also be unticked. In particu-
lar, we say that (w2, v2) is uniquely justified by (w1, v1) in G if
(w2, v2) is justified by (w1, v1) in G and (w2, v2) is not justified
in G by any pair other than (w1, v1).

DEFINITION 32. The action UNTICK is applicable to a simple
EFI I , a position (w, v) in I and a facet graph G for an ontology
O, if v ∈ Σ with (F,Σ) the label of w in tree(I). The result is the
interface computed by Algorithm 5 .

Algorithm UNTICK considers two cases depending on what kind
of value v is unticked. If v is focus, then the value is simply unse-
lected (Line 1). Otherwise, not only Σ must be replaced in I with
Σ \ {v}, but also all the positions in I that are uniquely justified
by (w, v) have to be unticked (Lines 2-5). Unticking propagates
recursively along the tree of I since positions deeper down the tree

could ultimately be affected. Finally, the algorithm makes sure that
no selected value remains ‘disconnected’ with the rest (Lines 7-9).

PROPOSITION 33. Assume that I , (w, v) and G are as in Defi-
nition 32. If I conforms to G, then UNTICK(I, (w, v), G) is a sim-
ple EFI that also conforms to G.

5.4 Minimising Interfaces
An important issue in the design of faceted interfaces is to avoid

the overload of users with redundant facets or facet values. Intu-
itively, an (unselected) facet value v is redundant if selecting v ei-
ther leads to a ‘dead end’ (i.e., an empty set of answers) or it does
not have an effect on query answers. Then, a faceted interface is
minimal if none of its component BFIs contains redundant values.

DEFINITION 34. Let I be a simple EFI and G a facet graph
for O. Then I is minimal w.r.t. G if for each position (w, v) in I
s.t. TICK is applicable to I , (w, v) and G, the following holds:
(i) Q[TICK(I, (w, v), G)] has non empty answers w.r.t. O; and
(ii) the answers toQ[TICK(I, (w, v), G)] w.r.t.O are different from
the answers to Q[I] w.r.t. O.

Note that the transition from interface I0 to I1 in Example 22
involves a minimisation step. The BFI in I0 involving F5 is pruned
since ticking a value will either not affect the search results (if any
or dus is ticked) or yield an empty set of answers (if duk is ticked).

To avoid overwhelming users with irrelevant information, our
system minimises the output of Alg. 4 before showing it to the
user. Our system ‘runs’ each possible expansion of a EFI in the
background by calling the reasoning engine, and prunes all facet
values that do not change query answers, or make them empty.

6. IMPLEMENTATION AND TESTING
We have developed a faceted search platform providing the fol-

lowing main functionality: (i) computation of facet graphs from an
ontology; (ii) interface generation from facet graphs; and (iii) inter-
face update in response to user actions. Our platform relies on an
external triple store for querying and OWL reasoning.

In our implementation, facet graphs are represented in RDF: each
R-labelled edge from v to w is stored as a triple (v,R,w). A graph
G can be either loaded from an existing RDF document, or con-
structed from (the facts entailed by) the ontology O by adding ad-
ditional edges. The kinds of relevant additional edges are described
by means of customisable rules, and the edges themselves are com-
puted by materialisation of such rules. Furthermore, our platform
implements Algorithm 3 for generating interfaces, Algorithms 4
and 5 for interface update, and strategies for interface minimisa-
tion. Our algorithms can operate both under the assumption that
the facet graphG is explicitly materialised, or it is defined virtually
using rules and then generated ‘on the fly’ as needed.

We have implemented a proof-of-concept system, called SemFacet,
that bundles our platform with JRDFox3 as triple store, Lucene for
keyword search, and an HTML 5 GUI [21]. The system’s architec-
ture is given in Figure 2(c). Our system is available online.4

6.1 Performance Metrics
Performance of our platform critically depends on the follow-

ing parameters of the underlying triple store, which can be esti-
mated empirically by benchmarking the triple store over the dataset
of interest: (i) t[run query]: time to execute an atomic query; and
(ii) t[look up]: time to iterate over query results.

Interface generation (Algorithm 3) requires computing all triples
(v, w, u) in the facet graph G for each v in the input nodes S, and
then iterating over the results to compose the interface. Thus, to
3
www.cs.ox.ac.uk/isg/tools/RDFox/

4
http://www.cs.ox.ac.uk/isg/tools/SemFacet/



#(answers) JRDFox Stardog Sesame

100 0.000 0.010 0.011

1, 000 0.000 0.064 0.060

10, 000 0.002 0.521 0.294

100, 000 0.021 2.934 0.566

1, 000, 000 0.206 4.475 2.513

10, 000, 000 2.056 n/a n/a

(a) Average runtime in seconds for lookup in
a set of query answers

#(queries) JRDFox Stardog Sesame

1 0.000 0.007 0.012

10 0.000 0.188 0.233

100 0.004 2.414 0.630

1, 000 0.059 5.666 3.683

10, 000 0.498 15.025 26.126

100, 000 4.799 n/a n/a

(b) Average runtime in seconds for
processing a set of queries
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on Ontology

(c) Architecture of our faceted search
system

Figure 2: Experimental results for JRDFox, Stardog, and Sesame

Algorithm 6: CREATEINTERFACEIMPLEMENTED

INPUT : G: facet graph; S: set of nodes in G
OUTPUT: A simple faceted interface

1 I := Empty interface
2 for each v ∈ S do
3 Triplesv := SELECT ?y,?z FROM G WHERE (v, ?y, ?z)
4 for each t ∈ Triplesv do I := COMPOSEINTERFACE(t, I)

estimate the cost of interface generation (tCI), we can use Alg. 6
instead of Alg. 3. We assume constant time for the call to COMPO-
SEINTERFACE. The cost can then be estimated as follows:

tCI = (|S| × t[run query]) + (#[answers]× t[look up]). (5)

In this expression, #[answers] is the union of all sets Triplesv for
each v ∈ S. In the worst-case, #[answers] is |G|, whereas in the
best-case it corresponds to |S|. For improved efficiency, our plat-
form implements a variation of Algorithm 6 where facets are com-
puted lazily: facet names are computed first, and values are com-
puted ‘on demand’ when users click on a facet. For this, we mod-
ify the query in Line 3 such that ?y is the only answer variable.
Then, #[answers] is estimated as follows, where the number of
facet names corresponds to the number of different edge labels in
G, and the number of facet values to the number of nodes:

#[answers]naive = O(#[facet names])×O(#[facet values]),
#[answers]lazy = O(#[facet names]).

The cost tCI in (5) can also be used to estimate the cost of interface
updates. The Algorithm for ticking (Sec. 5.3) can be seen as a vari-
ant of Alg. 6 with S the set of values relevant to the tick. In the case
of unticking, the worst-case cost is estimated as k× tCI, with k the
number of selected values in the interface. Indeed, k measures the
worst-case number of recursive calls to UNTICK (Alg. 5), whereas
tCI estimates the cost of a single recursive call.

6.2 Performance Estimations
To estimate the parameters t[run query] and t[look up], thus also

estimating the cost tCI of interface generation, we have conducted
experiments over a fragment of DBpedia enriched with OWL 2 RL
rules and we have used JRDFox, Stardog5, and Sesame6. All exper-
iments were conducted on a MacBook Pro laptop with OS X 10.8.5,
2.4 GHz Intel Core i5 processor, and 8GB 1333 MHz DDR3 mem-
ory. Since triple stores such as JRDFox operate in main memory,
and we wanted to test our algorithms on stock hardware, we con-
sidered a fragment that covers 20% of DBpedia (3.5 million triples)
and which can be loaded using 8GB of RAM. Each experiment was
executed 100 times it total, and we measured average and median
running time for each experiment. Since results never differ in more
than 5% for a single experiment, we report only average times.
5
http://stardog.com/

6
http://www.openrdf.org/

Results are summarised in Figures 2(a) and 2(b). Figure 2(a) es-
timates #[answers] × t[look up] by measuring time required to it-
erate over an answer set of a given size. In turn, Figure 2(b) esti-
mates |S| × t[run query] by computing the times required for the
triple store to answer a given number of atomic queries. We can
make the following observations: (i) The time needed to iterate
over query results is small in comparison to query execution times;
for example, to execute 10, 000 queries, JRDFox requires 0.498s,
whereas to iterate over 10, 000 answers it requires 0.002s. This
should be taken into account when optimising interface generation.
(ii) In some triple stores (i.e., Stardog and Sesame), iteration and
query answering times do not grow linearly, and they have to be de-
termined empirically. In contrast, JRDFox shows linear behaviour.

We first discuss query execution times. To generate the initial in-
terface, the size of S is determined by the number of relevant results
returned by the search engine from keywords. If the ranking algo-
rithm of the search engine produces high quality results, one can
establish a cap on S. As shown in Figure 2(b), obtaining a reason-
able cap is important since query execution is expensive. For ex-
ample with a cap of 1, 000 results in S, JRDFox would execute the
queries necessary for interface generation almost instantaneously.

Concerning iteration times over query results, JRDFox could
perform this task in 0.2s for 1 million results and 2s for 10 mil-
lion. We were not even able to conduct experiments with 10 million
answers over Stardog and Sesame since loading the data in our ma-
chine consumed all RAM and system behavior became unstable.
The facet graph for the whole of DBpedia contains 24 million facet
values and 1, 843 facet names [4]. JRDFox would require 5s in the
worst-case to iterate through that many values using the exhaustive
algorithm. When computing interfaces lazily, all triple stores would
complete the required iteration over facet names instantaneously.

7. RELATED WORK
The design of visual interfaces for querying ontologies has re-

ceived significant attention in recent years. Existing systems typi-
cally support query formulation by exploiting either a form of con-
trolled natural language (e.g., Quelo [22]), or different graphical
representations for queries (e.g., SEWASIE [23], iSPARQL [24],
OntoVQL [25], Wonder [26], or the OptiqueVQS [27], or other ap-
proaches, including interactive exploration of [28].

Faceted search over RDF has also attracted a great deal of at-
tention. Developed systems include mSpace [5], /facet [7], Piggy
Bank [8], Tabulator [2], gFacet [6], Humboldt [9], Parallax [10],
Longwell [29], faceted DBpedia [4], X-ENS [3], Broccoli [30], and
others [31–33]. The functionalities provided by these systems in-
clude navigation through different sets of documents, refocussing,
and interface minimisation via elimination of dead-ends.

These works are primarily systems-oriented and their main focus
is on improving user experience, development of ranking functions
and value grouping heuristics [11, 13], and backend optimisation
via indexing schemes [4, 34]. Our framework was inspired by the
capabilities of existing systems, and covers their main functionali-
ties. Since our aim was to study the fundamental properties of query



languages and update tasks, our framework abstracts from (and is
compatible with) usability, ranking, and indexing considerations.

The expressivity of the query languages supported by existing
systems is discussed in the literature mostly verbally, which makes
it difficult to determine the underpinning SPARQL fragment. Most
systems seem to support some form of conjunctive queries (e.g.,
see [11, 13]), and disjunction is present only in a limited form [3,
4]. The approach of [12] allows for conjunction, disjunction, and
other operators, e.g., negation, thus, they cover a wider fragment of
SPARQL than we do. At the same time, [12] is orthogonal to other
faceted search approaches for RDF, including ours: their facet val-
ues are possible queries rather than (set of) documents, and a selec-
tion of a facet value corresponds to a syntactic query transformation
rather than to setting a filter on a set of documents. Expressiveness
of this approach is determined by the expressiveness of queries that
are allowed to be used as facet values.

When query languages have not been formalised, the complexity
of query answering was not addressed. The common assumption is
that user selections in an interface are compiled in SPARQL [12] or
Prolog [7], and executed by a query evaluation engine over the un-
derlying RDF data. Complexity considerations are, however, criti-
cal when RDF data is enhanced with OWL 2 reasoning. This setting
was not addressed by existing systems, where ontological axioms
are limited to class and property hierarchies [7, 11], and reasoning
plays little or no role. Interface generation and update mechanisms
are mostly informally described. A common approach is to gen-
erate and update interfaces from the RDF data graphs. Since we
generate interfaces from facet graphs that subsume RDF datasets,
we see our approach as a generalisation of existing work. Finally,
scalability of faceted search systems over large RDF datasets is an
important concern [4, 34]. Since facet graphs can be much larger
than the underlying RDF datasets, scalability becomes even more
critical in our setting. Our experiments, however, suggest that our
approach is feasible in practice.

The works closest to ours are [11–13]. The query language in [13]
is formalised using CQs, whereas the language in [11] (also con-
junctive) is introduced via set operations. These works, however,
do not study the complexity of query answering, and ontological
reasoning is also not considered. We can also find notions of facet
trees and graphs in the literature [7, 11, 13, 29, 35]. These repre-
sent combinations of (possibly nested) facets displayed in a GUI
as a tree or a graph, and they depend on both search results and
front-end considerations. We see our notions of interface and facet
graph as GUI-independent generalisation of existing notions since
our graphs are derived from ontologies and independently from
search results. Finally, the ‘navigation graph’ of [12] defines nav-
igation links at the syntactic level as query transformations, rather
than semantic relations between sets and objects, as in our case.

8. CONCLUSION AND FUTURE WORK
In this paper, we have established theoretical foundations for

faceted search in the context of RDF and OWL 2. Our results sug-
gest many problems for future work, such as exploring extensions
of our update algorithms beyond simple interfaces. Concerning sys-
tem design, substantial work is needed to improve GUI design, es-
pecially with respect to refocussing. We are also planning to bench-
mark our platform on real-world applications.
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APPENDIX
A. PROOFS

PROPOSITION 12. Every faceted query Q is a monadic tree-shaped PEQ with the following property: if ϕ = (ϕ1 ∨ ϕ2) is a subformula
of Q, then fvar(ϕ1) = fvar(ϕ2) = {x} for some x.

PROOF. The claim in the proposition can be shown by a straightforward induction on the structure of faceted queries. We show that for
every interface I the query JI, xε, x0K is a monadic tree-shaped PEQ with a single free variable xε at the root of the tree and satisfying the
property stated in the proposition.

Consider Table 2. For the base case consider BFIs. It can be immediately seen that all queries are monadic PEQs with free variable v.
Furthermore, they are tree-shaped with v at the root of the tree and (existentially quantified) variables xw and xw.i as children of v in the
graph of the query.

Let us consider now nesting. The first case is direct. By the induction hypothesis, we know that JI, xw, xw·0K and JI, xw·i, xw·i·0K are
monadic tree-shaped PEQs with free variable xw (resp. xw·i) at the root of the tree, and satisfying the property in the proposition. Since
variable xw (resp. xw·i) becomes existentially quantified, then J((F,Σ)/I), v, xwK has v as free-variable; furthermore, it is tree-shaped with
v the new root of the tree. Again, a disjunctive formula is introduced if ◦ is ∨ and each of the disjuncts has v as common free variable.

The case for branching of paths also follows directly from the inductive hypothesis.

THEOREM 14. Algorithm 1 computes all answers to Q w.r.t. D.

PROOF. First, note that the properties of faceted queries given in Proposition 12 and the definition of the function REWRITE ensure that
the input passed to ANSWER-TREE-CQ in each call is indeed a tree-shaped conjunctive query.

Correctness of the algorithm follows directly from the following property, which holds in each iteration of the main loop.

(?) Let ϕ = (ϕ1 ∨ ϕ2) ∈ S be as in Line 3. Then, the answers to ϕ w.r.t. the input ontology are precisely Ans1 ∪Ans2 as in Line 7.

Consider the case where ϕ = ϕ1∨ϕ2 is�-minimal. Then, neither ϕ1 nor ϕ2 are disjunctive. In this case, ϕ′i in Line 5 is precisely ϕi, and
Property (?) holds directly by the semantics of first-order logic and the fact that the input ontology is disjunction-free (i.e., it has a universal
model that can be used for query answering): d is an answer to ϕ iff it is an answer to either of its disjuncts.

Consider the case ϕ = ϕ1 ∨ ϕ2 is not �-minimal. For each ϕi we have two possibilities: (i) ϕi is not disjunctive, in which case ϕ′i in
Line 5 is precisely ϕi and thus the answers to ϕ′i coincide with the answers to ϕi; (ii) ϕi contains disjunctive subformulas, in which case
the definition of REWRITE ensures that ϕi will be rewritten as disjunction-free by replacing each�-maximal disjunctive subformula γ of ϕi
with Cγ(y). But then, since each such γ � ϕi we have that the updated ontology includes the answers to γ as facts over Cγ .

PROPOSITION 16. Let Q be a PEQ, let O be an ontology, and let D be the set of all facts α such that O |= α. Then, the active domain
answers to Q w.r.t. O and w.r.t. D coincide.

PROOF. First, note that since O |= D and D is a dataset, every answer to Q w.r.t. D is an answer to Q w.r.t. O. To show the converse,
pick an active domain answer to Q w.r.t. O. By the definition of active domain semantics, there must exist a tuple t′ of constants from O
such that O |= ϕ(c, t′), where ϕ is the formula obtained from Q by removing all quantifiers. Clearly, ϕ(c, t′) is a Boolean combination
of facts, which has an equivalent representation in CNF. Furthermore, we can transform O into a Logic Program PO by Skolemising
existentially quantified variable in rules using functional terms (note that standard Skolemisation preserves entailment). Program PO has a
(possibly infinite) Herbrand model H that can be homomorphically embedded into any other Herbrand model of PO (such model can be
computed using standard techniques, such as the Skolem chase). Furthermore, H coincides with D when restricted to constants. We have
that O |= ϕ(c, t′) iff PO |= ϕ(c, t′) iffH |= ϕ(c, t′) iff D |= ϕ(c, t′). Indeed, if we see ϕ(c, t′) in CNF, this implies that O |= ϕ(c, t′) iff
O entails some fact in each clause from ϕ(c, t′). Hence, we can conclude that c is also an answer to Q w.r.t. D.

THEOREM 17. Active domain evaluation of faceted queries is in PTIME w.r.t. all normative OWL 2 profiles. Furthermore, it is PTIME-
complete w.r.t. the EL and RL profiles.

PROOF. By Proposition 16, it suffices to show that fact entailment is tractable for each of the profiles. We first observe that entailment of
unary facts is feasible in polynomial time since instance checking for atomic class expressions is tractable for each of the normative profiles
[14]. Finally, we argue that checking O |= α with α a binary fact of the form R(c, d) is also tractable:

If O is an OWL 2 EL ontology, then this is the case iff the following holds, where A is a fresh unary predicate

O ∪ {R(x, d)→ A(x)} |= A(c)

which can be checked in polynomial time. If O is in OWL 2 RL, then O |= R(c, d) iff R(c, d) the fact holds in the materialisation of O,
which can be computed in polynomial time. Finally, if O is in OWL 2 QL, then O |= R(c, d) iff OP does, where OP is the subset of facts
and rules of Type (2), (10), (12), and (16) in O. Since OP is also an OWL 2 RL ontology then the check is also feasible in polynomial
time.

The following Lemma follows directly from the results in [17] (c.f. Lemma 4 in [17]).

LEMMA 35. letO be a guarded EL ontology and α a fact using only constants and predicates fromO. Then, Ξ(O) |= α impliesO |= α.

LEMMA 36. letO be a guarded EL ontology, let c be a constant fromO, and Q(x) be a monadic, tree-shaped CQ. Then, Ξ(O) |= Q(c)
implies O |= Q(c).



PROOF. For each constant a occurring in O, let Aa be a fresh unary predicate uniquely associated to a. Let O1 be the ontology obtained
from O by adding the fact Aa(a) for each constant a occurring in Q. Furthermore, let Q1 be the CQ obtained from Q by replacing each
equality atom y ≈ a in Q with the atom Aa(y). It is routine to show that the following holds:

1. The answers to Q w.r.t. O coincide with the answers to Q1 w.r.t. O1;

2. The answers to Q w.r.t. Ξ(O) coincide with the answers to Q1 w.r.t. Ξ(O1).

Consider the Datalog rule ϕ(x,y)→ AQ1(x), whereAQ1 is a fresh unary predicate and ϕ(x,y) is the conjunction of atoms inQ1. Since
Q1 is tree-shaped, then the given rule can be normalised as an ontology O2 that is both EL and RL, as given next. Consider the tree GQ1

associated to Q1 (c.f. Definition 11), and let us associate to each variable z in GQ1 a fresh unary predicate Pz . If z is a leaf of GQ1 , let Oz
be the ontology consisting of the following rule: ∧

Ai(z) inQ1

Ai(z)→ Pz(z)

If z is not a leaf, then letOz be the ontology consisting of the following rules, where z1, . . . , zn are all the children of z inGQ1 andRi(z, zi)
is the unique binary atom involving z and zi in Q1:∧

Ai(z) inQ1

Ai(z) ∧
∧
j

[Ri(z, zj) ∧ Pzj (zj)]→ Pz(z)

Then, O2 is defined as follows:

O2 = [
⋃

z inQ1

Oz] ∪ {Px(x) ∧
∧

Ai(x) inQ1

Ai(x)→ AQ1(x)}

Clearly, the following holds:

3. The answers to Q1 w.r.t. O1 and the instances of AQ1 w.r.t. O1 ∪ O2 coincide.

4. The answers to Q1 w.r.t. Ξ(O1) and the instances of AQ1 w.r.t. Ξ(O1 ∪ O′2) coincide.

Assume that Ξ(O) |= Q(c). Then, by Point 2 be have Ξ(O1) |= Q1(c) and by Point 4 Ξ(O1 ∪ O2) |= AQ1(c). But then, Lemma 35 gives
us O1 ∪ O2 |= AQ1(c). Thus, by Points 3 and 1 we obtain O |= Q(c), as required.

THEOREM 19. Let Q be a faceted query, O a guarded EL ontology, and c a constant in O. Then, O |= Q(c) iff Ξ(O) |= Q(c).

PROOF. The left-to-right implication is trivial since Ξ(O) logically entails O.
For the right-to-left implication, assume that Ξ(O) |= Q(c). Since Q(c) is a PEQ, there is a (maybe exponentially larger) Union of

Conjunctive Queries U(c) =
∨n
i=1 Q

′
i(c) that is logically equivalent to Q(c). Consequently, Ξ(O) |= Q(c) iff Ξ(O) |= U(c). Since Ξ(O)

is a Datalog ontology, we have that Ξ(O) |= U(c) iff Ξ(O) entails some CQ Q′i(c) occurring as a disjunct in U(c). Hence, it suffices to
show that O |= Q′i(c)

Since Q(c) is tree-shaped, so is U(c) (none of the DNF normalisation transformations affect the arrangement of variables), and thus so is
Q′i(c). But then, by Lemma 36 we have that O |= Q′i(c), as required.

THEOREM 20. Faceted query evaluation under classical semantics is (i) PTIME-complete for RL and guarded EL ontologies; and
(ii) NP-complete for QL ontologies.

PROOF. We first show tractability of faceted query evaluation for RL and guarded EL ontologies. Since each RL ontologyO is a Datalog
program, classical and active domain semantics coincide and hence we can use Algorithm 2. ProgramO contains at most 3 variables per rule
and hence procedure COMPUTE-ENTAILED-FACTS can be implemented in polynomial time. Finally, Corollary 15 ensures that ANSWER-FQ
can be implemented in polynomial time over datasets. In the case of guarded EL, Theorem 19 ensures that we can apply Algorithm 2 to
Ξ(O). Since Ξ(O) is an RL ontology, which can be constructed in linear time fromO, tractability of faceted query evaluation for RL implies
tractability for guarded EL.

We now move to the proof that faceted query evaluation under classic semantics is in NP for QL ontologies. Given faceted queries Q1

and Q2, we say that Q1 is more specific than Q2 if Q1 can be obtained from Q2 by replacing a subformula (ϕ1 ∨ ϕ2) of Q2 by either ϕ1

or ϕ2. Moreover, we define E as the reflexive and transitive closure of the relation of being more specific, and given a faceted query Q, we
define the determinisation of Q, denoted by det(Q), as the set {Q′ | Q′ E Q and Q′ is a conjunctive query}. The following lemma provides
a fundamental property of the notion of determinisation.

LEMMA 37. For every faceted query Q, QL ontology Q and constant c, it holds that O |= Q(c) if and only if there exists Q′ ∈ det(Q)
such that O |= Q′(c).

It is known that query evaluation of arbitrary conjunctive queries is NP-complete for QL ontologies. From this result and Lemma 37, we
obtain that faceted query evaluation under classic semantics is in NP for QL ontologies.

We next show complexity lower bounds. First, note that entailment of unary facts w.r.t. RL and EL ontologies is a PTIME-hard problem [14],
which immediately transfers to tree-shaped CQ evaluation. Finally, we show NP-hardness for unrestricted QL ontologies. We adapt the proof
of Theorem 1 in [20], which shows NP-hardness of CQ evaluation w.r.t. OWL 2 QL ontologies by means of a reduction from propositional
satisfiability. Consider an arbitrary propositional formula in CNF α =

∧m
j=1 Dj over propositional variables p1, . . . , pn where each Dj is a



propositional clause. Next, consider the following OWL 2 QL ontology O consisting of the following axioms for 1 ≤ i ≤ n, 1 ≤ j ≤ m
and k = 0, 1:

Cj(x)→ A0(x)

Cj(x)→ Ai(x)

Xk
i (x)→ Ai(x)

Ai(x)→ ∃y.(R(x, y) ∧Ai−1(y))

Ai−1(x)→ ∃y.(S(x, y) ∧Xk
i (y))

S(x, y)→ R(y, x)

X0
i (x)→ ∃y.(R(x, y) ∧ Cj(y)) if ¬pi ∈ Dj
X1
i (x)→ ∃y.(R(x, y) ∧ Cj(y)) if pi ∈ Dj

Cj(x)→ ∃y.(R(x, y) ∧ Cj(y))

A0(a)

Further, when writing faceted interfaces, we will omit sets of selected values for simplicity, that is, we will write (X, ◦Γ) instead of
((X, ◦Γ),Σ), assuming that Σ = Γ. Moreover, (X, v) will designate the facet (X,∨{v}).

Consider now the following family of sub-interfaces for j = 1, . . . ,m.

Ej = (R, any)/

(
(type, An−1) ∧

(
(R, any)/

(
(type, An−2) ∧ . . . ∧ ((R, any)/(type,∧{A0, Cj}))

)))
.

Next consider the following faceted interface I:

I =(type, A0) ∧
(

(S, any)/
(

(type, A1) ∧ . . .
(
(S, any)/((type, An) ∧ E1 ∧ . . . ∧ En)

)))
.

Furthermore, Q[I] is isomorphic to the following query, where y = (y1, . . . , yn) and zj = (zj0, . . . , z
j
n−1) for each 1 ≤ j ≤ m:

∃y∃z1 . . .∃zm.
(
A0(y0)

∧
n∧
i=1

S(yi−1, yi) ∧Ai(yi)

∧
m∧
j=1

[
R(yn, z

j
n−1) ∧

1∧
i=n−1

Ai(z
j
i ) ∧R(zji , z

j
i−1)

∧A0(zj0) ∧ C(zj0)]
)
.

It can be checked that a is an answer to Q[I] w.r.t. O iff the propositional formula α is satisfiable.

PROPOSITION 21. Extended faceted query evaluation under classical semantics is (i) PTIME-complete for RL and guarded EL; and
(ii) NP-complete for QL. Moreover, active domain evaluation of extended faceted queries is in PTIME w.r.t. all normative OWL 2 profiles,
and it is PTIME-complete for RL and EL.

PROOF. Note that the complexity results we have obtained for faceted queries actually apply to the class of PEQs satisfying the properties
given in Proposition 12 as we did not make in our proofs any further assumptions about the structure of faceted queries.

Let us now consider extended faceted queries and their semantics as in Definition 10. Their structure is exactly the same as regular faceted
queries with the only difference that the answer variable does not need to be rooted in variable xε. Suppose the answer variable to such
query Q is y. To check wether some constant c is an answer to Q we simply add the equality atom y ≈ c to Q and existentially quantify
y. The result is a Boolean query that s is tree-shaped (if we take xε as root) and which satisfies the property stated in Proposition 12 for
disjunctive subformulas. Hence, the complexity of faceted query evaluation is exactly the same as the complexity of evaluating extended
faceted queries.

PROPOSITION 26. Checking whether a directed labelled multigraph is a facet graph for O is feasible in polynomial time if O is in any
of the OWL 2 profiles.

PROOF. It suffices to show that checking whether an edge in the graph is justified is feasible in polynomial time. We show that checking
entailment for each different type of rule or fact α is feasible in polynomial time for all profiles.
Cases αe = R(c, d) and αe = A(c). As already discussed, fact entailment is tractable for all profiles.
Case αe is a Datalog rule γ1 . . . γn → η. Consider a substitution σ = {x 7→ e, y 7→ f} with e and f fresh constants not occurring in O.
Then,O |= αe iffO∪{σ(γi)}ni=1 |= σ(η). Tractability of checkingO |= αe then follows immediately from tractability of fact entailement
in the profiles.
Case αe = A(x) → ∃y.[R(x, y) ∧ B(y)] Tractability of checking O |= αe follows from tractability of subsumption checking for EL and
QL. In the case of RL we have that O |= αe iff O ∪ {A(e)} |= ∃y.[R(e, y) ∧ B(y)], in which case tractability follows from tractability of
tree-shaped CQ evaluation for RL.



Case αe = >(c)→ ∃y.[R(c, y) ∧A(y)]. We have that O |= αe iff O ∪ {>(c)} |= ∃y.[R(c, y) ∧A(y)] The argument is then the same as
in the previous case for RL. If we consider EL and QL, we have that O ∪ {>(c)} |= ∃y.[R(c, y) ∧ A(y)] iff c is an instance of the concept
∃R.A w.r.t. O, a tractable problem for both EL and QL.


