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Abstract

The author previously [16,15] defined CSP-like operational semantics whose main
restrictions were the automatic promotion of most τ actions, no cloning of running
processes, and no negative premises in operational semantic rules. He showed that
every operator with such an operational semantics can be translated into CSP and
therefore has a semantics in every model of CSP. In this paper we demonstrate
that a similar result holds for CSP extended by the priority operator described in
Chapter 20 of [15], with the restriction on negative premises removed.
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1 Introduction

As well as its denotational semantics in models such as traces T and failures-
divergences N , CSP [11] has a well-established operational semantics first
described in SOS in [5,6], and congruence with that is perhaps the main cri-
terion for the acceptability of any new semantic model.

The author previously created a class of CSP-like operational semantic
definitions that automatically have semantics over every CSP model. In ad-
dition to a number of other restrictions on the full generality of Structured
Operational Semantic (SOS) definitions, CSP-like ones are not permitted any
negative premises: thus there can be no rule in which some action can fire only
if one of its arguments can not perform some (either one or more) action(s).

There have been a number of proposals for adding priority to CSP. A
straightforward one, because it does not involve building special semantic
models or types of LTSs, was proposed in [15]. Pri≤(P), for a partial order on
the events that processes perform, permits P an event x only when no higher
priority event is possible. With restrictions on how the invisible event τ fits
into ≤, this adds very usefully to CSP, for example by permitting the accurate
description of real-time systems.
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Pri≤(·) is not CSP-like since it requires negative premises. Indeed it does
not have a semantics in most CSP models. This raises the question of whether
we can capture a notion of Pri-CSP-like operational semantics which includes
this operator, where all Pri-CSP-like operators can be expressed in terms of
CSP plus Pri≤(·). Establishing such a notion is the job of the present paper.

In the next section, we remind ourselves about CSP and its operational
semantics. We then recall CSP-like operational semantics and outline their
expressiveness result. Finally we recall the definitions of Pri≤(·) in terms of
operational semantics and over FL, the finite linear or ready traces model that
can record an acceptance set before each event. In Section 3 we generalise the
definition of CSP-like to achieve the goal set out above. The main result
of this paper then follows, in which we show that any operator (or class of
operators) with such Pri-CSP-like operational semantics can be simulated pre-
cisely in augmented CSP. The precision obtained by this simulation depends
on whether or not the language involves the CSP concept of termination, rep-
resented X. However, for brevity this paper does not include the role of X in
CSP semantics: it is fully covered in the extended version [18].

As with [16], the primary motivation of this paper is to characterise what
operators and languages can be translated into CSP (in this paper extended
by Pri≤(·)) to identify which of these can be handled on the model checker
FDR [9], which itself now supports this operator 2 . We give some examples
of what is now representable in Section 5.

2 Background

2.1 The operational semantics of CSP

The SOS operational semantics [5,6] of CSP came along after its well-known
denotational semantics. For CSP (without X and sequential composition),
the action labels come from Σ∪{τ}, where Σ is the alphabet, the actions that
are visible to and controllable by the external observer, and τ is an invisible
and uncontrollable event such that whenever it is enabled and another event
does not happen quickly, it will. Given the process P , αP means its own set
of Σ actions, which is usually just the visible events it uses.

In SOS style [13] we need rules to infer every action that each process can
perform. The conditions that enable actions can be of three sorts:

• Positive: Some other process can perform a specific action. This other
process is determined from the syntax of the process P whose transitions we
are calculating. In our setting these other processes are, except in the case
of recursion, arguments of the operator whose semantics we are defining.

2 FDR3 supports two priority operators: prioritisepo is directly equivalent to the one
used in this paper, while prioritise is a restricted case that does not require the program-
mer to construct an explicit partial order.
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• Negative: The same except the other process cannot perform a given action.

• Side conditions on the actions etc that appear.

A rule has a set of actions/alphabets etc parameters, and some positive and/or
negative premises. A rule with free parameters other than processes is a rule
schema denoting a separate formal rule for each permitted value of these.

CSP has a few constant processes, a number of operators which can be
applied to argument processes, and recursive constructions. The operational
semantics of constants simply describe their actions directly. STOP , which
has no actions, has no operational rules. Other constants are RUNA, which
performs any sequence of events from A ⊆ Σ and never refuses one, ChaosA,
which is the most nondeterministic non-divergent process on the events A, 3

and div, which simply diverges: performs an infinite series of τs.

There are two approaches to the operational semantics of recursion:

µ p.P
τ−→ P [µ p.P/p]

(A)
P [µ p.P/p]

x−→ Q

µ p.P
x−→ Q

(B)

where p is a process identifier and P a process term where p may be free.
Rule (A) introduces a τ every time a recursion is unwound, and Rule (B) does
not. Thanks to the CSP principle that the process τ.P (in CCS notation:
one that performs a τ before becoming P) is equivalent in all but operational
semantics to P , there is no observable difference between the results of these
two rules, provided (B) is well defined. For a clean analysis of operational
semantics, (A) is better as the τ guards eliminate problems caused by under-
defined recursions (of which the simplest example is µ p.p), which become
more severe in the presence of negative premises.

Without such an undefined recursion (one where the first-step actions of
a recursive body P [Q/p] are not independent of those of Q , or where the
derivation of actions in an infinite mutual recursion is not well founded, as
with the recursion Pi = Pi+1 2 a → STOP), such problems do not arise and
(B) gives a more efficient LTS (i.e. less states and transtions). In this paper,
for simplicity (not only with negative premises) we generally assume approach
(A) in any case where it cannot be determined simply that every recursive call
is guarded by at least one action (which can be τ), and the more efficient (B)
otherwise.

3 A formulation of ChaosA valid in all CSP models has τ transitions to ?x : B → ChaosA
for every B ⊆ A. This can be simplified when only the most common semantic models are
in use to have only two states: one which can do a τ to STOP (the other state) or any
member of A to itself.
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2.2 The transition rules of CSP operators

Communications are introduced via prefixing e → P . It has rule

e → P
a−→ subs(a, e,P)

(a ∈ comms(e))

Here e may represent a range of possible communications and bind one or more
identifiers in P , as in the examples ?x : A→ P , c?x?y → P and c?x !e → P .
We assume the existence of functions

• comms(e) is the set of communications described by e. For example, d .3
represents {d .3} and c?x :A?y represents {c.a.b | a.b ∈ type(c), a ∈ A}.

• If a ∈ comms(e), subs(a, e,P) substitutes part of a for each identifier bound
by e. So subs(c.1.2, c?x?y , d !x → P(x , y)) = d !1→ P(1, 2).

Nondeterministic choice picks an argument to act like:

P u Q
τ−→ P P u Q

τ−→ Q

The initial actions of prefixing and P u Q do not depend on those of process
arguments. All the other operators have rules that allow us to deduce what
actions a process of the given form has from the actions of the sub-processes.
Operators may have some arguments ‘active’ and some ‘inactive’. The former
are those whose actions are immediately relevant, the latter the ones which
are not needed to deduce the first actions of the combination.

Both arguments of external choice (2) are active. When an argument is
active, it must be allowed to perform any τ action it is capable of, since the
argument’s environment (in this case the operator) is incapable of stopping
them. Such τ actions are invisible to the operator, so there are always rules
like the following for active arguments:

P
τ−→ P ′

P 2 Q
τ−→ P ′ 2 Q

Q
τ−→ Q ′

P 2 Q
τ−→ P 2 Q ′

which simply allow the τ to happen without otherwise affecting the process
state. These promote the τ actions of the arguments to τ actions of the whole
process. 2 can use visible actions, here resolving the choice.

P
a−→ P ′

P 2 Q
a−→ P ′

(a 6= τ)
Q

a−→ Q ′

P 2 Q
a−→ Q ′

(a 6= τ)

It is important that the argument P of e → P is inactive. If not, it would
be allowed to perform τs so a → P might diverge without performing a.

The rules for hiding and renaming both allow all the actions of the under-
lying process but change some of the names of the events. Renaming applies
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a relation to visible ones; hiding turns selected actions into τs.

P
x−→ P ′

P \ B
x−→ P ′ \ B

(x 6∈ B)
P

a−→ P ′

P \ B
τ−→ P ′ \ B

(a ∈ B)

P
τ−→ P ′

P [[R]]
τ−→ P ′[[R]]

P
a−→ P ′

P [[R]]
b−→ P ′[[R]]

(a R b)

We give the semantics of just one parallel operator. Others can be deduced
from it: P ‖

X
Q synchronises P and Q on all actions in X , and lets them

communicate freely on other events. Both arguments are active

P
τ−→ P ′

P ‖
X

Q
τ−→ P ′ ‖

X
Q

Q
τ−→ Q ′

P ‖
X

Q
τ−→ P ‖

X
Q ′

There are three rules for visible events: two symmetric ones for a 6∈ X

P
a−→ P ′

P ‖
X

Q
a−→ P ′ ‖

X
Q

(a ∈ Σ \ X )
Q

a−→ Q ′

P ‖
X

Q
a−→ P ‖

X
Q ′

(a ∈ Σ \ X )

and one to show a ∈ X requiring both participants to synchronize

P
a−→ P ′ Q

a−→ Q ′

P ‖
X

Q
a−→ P ′ ‖

X
Q ′

(a ∈ X )

Other forms of CSP parallel are interleaving P 9Q , equivalent to P ‖
∅

Q , and

alphabetised parallel P A‖B Q , which forces P to communicate all events in A,
and Q in B . Provided that P and Q do not attempt to communicate outside
A and B respectively it is equivalent to P ‖

A∩B
Q .

CSP provides two ways of getting one process to take over from another
without the first one terminating: interrupt P 4 Q allows P to run, but at
any time offers the initial events of Q . If one of the latter happens then Q
takes over. Both arguments are initially active.

P
τ−→ P ′

P 4 Q
τ−→ P ′ 4 Q

Q
τ−→ Q ′

P 4 Q
τ−→ P 4 Q ′

If P performs a ∈ Σ, then the result is interruptable, whereas if Q performs
a ∈ Σ, then it takes over.

P
a−→ P ′

P 4 Q
a−→ P ′ 4 Q

(a ∈ Σ)
Q

a−→ Q ′

P 4 Q
a−→ Q ′

(a ∈ Σ)
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The other operator allows any event from P in the set A to close it down
and hand over to Q : the throw operator P ΘA Q . P is active: it is allowed to
perform τ or a 6∈ A and carry on whereas a ∈ A hands control to Q :

P
x−→ P ′

P ΘA Q
x−→ P ′ΘA Q

(x 6∈ A)
P

a−→ P ′

P ΘA Q
a−→ Q

(a ∈ A)

The operational semantics of Pri≤(·) can be found in Section 2.4.

2.3 CSP-like operational semantics

All premises above are positive. The rules also have properties

• If an argument process performs an action P
x−→ P ′ in the premises, and

remains after the derived action then P has become P ′ in the result.

• If an argument process does not act in the premises, then if it remains after
the action it stays in its initial state.

• If P appears in any of the premises of the operator F (P , . . .) (i.e., the
initial actions of F (P , . . .) depend on those of P), and P

τ−→ P ′, then
F (P , . . .)

τ−→ F (P ′, . . .). There are no other rules with τ as a premise.

• No argument process ever appears more than once in the result of any
actions. This is the no cloning property. In fact CSP can clone inactive
arguments via recursion, but never active ones.

In [16,15], the author codified all of the above conditions together, includ-
ing the banning of negative premises, and described an operational semantics
all of whose operators obey these principles as CSP-like. The clearest way
of doing this was creating a new notation for operational semantics, so con-
strained that it can only express CSP-like operators.

CSP-like operational semantics bears close comparison with simply WB
cool rules as defined in [10]. This is a restriction on SOS that ensures that op-
erators respect weak bisimulation (hence WB). We adopt some of the nomen-
clature of [10], though this is different from that in [15,16]. This includes
the terms active, and inactive otherwise. [15,16] termed these on and off
respectively. The rules which simply promote a τ action are called patience
rules.

In giving a combinator semantics for the operator F (P1, . . . ,Pn), the first
thing we need to identify is which of the Pi are initially active: which of them
appear in the premises of F ′s SOS operational rules. The notation we will
use for an operator with active arguments P and inactive ones Q in defining
its combinator semantics will take the form FQ(P), emphasising that the
active ones are those immediately relevant. We allow an infinite number of
components to Q. This case does arise in CSP, both thanks to taking the
nondeterministic choice of an infinite number of processes and, in the case
where the alphabet Σ is infinite, prefix constructs (such as c?x → · when the
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type of c is infinite). We only allow finitely many active arguments: not only
does the infinite case not arise in CSP, but it is theoretically problematic.

As with SOS, a combinator operational semantics consists of rule schemas,
with events, sets of events etc varying under side conditions to create sets of
rules for individual operators. An individual rule takes the form of a triple,
sometimes abbreviated to a pair.

• The first component is a tuple with one component for each active argument.
The members of this m-tuple (x1, . . . , xm) are taken from Σ ∪ {·}. The
meaning of this tuple is that all active arguments whose component is not
“·” perform the relevant action, in a synchronised fashion, for the rule to
fire. (We will put quotes around · in text to help distinguish it.) Note that
in some CSP operators m = 0, which simply says that all of the operator’s
actions are unconditional on arguments’ actions. In these cases we write
the now null premises as . Note that τ is not permitted in these tuples:
we will discuss this below.

• The second component is an action y in Σ∪{τ} which represents the result
action of the rule: the one that the operator performs when the active
arguments perform the components of the first. Hiding gives a case where
a visible action is turned into τ , hence the possibility of y being τ .

• The third component represents the successor process after the action.
There are two possibilities here:

(i) The result of the action does not change the process’s shape: it is still the
same operator applied to the same arguments, the only change being that
those active arguments that have participated in the action have moved
forward according to respective component actions. This is a common
case, and applies to all actions of parallel, hiding and renaming operators,
and combinations of these. The third component is then omitted, so the
combinator becomes a pair. Such combinators are homogeneous.

(ii) In any other case we do need to record the state that the process moves
into. This will always be a piece of syntax with place-holders for the active
and inactive arguments. The form of this syntax has to be restricted so
as to prevent either the cloning or suspension of the active arguments of
the original operator. The syntax can, however, do what it likes with the
inactive arguments, and discard any argument it wishes.

The way combinators build the syntax of successor processes can be defined
by specifying that they must treat active arguments, if they are retained at
all, in a way that keeps them active and follows the principles of distributivity,
common to all non-recursive CSP operators. This is a piece of syntax T in
which each argument (active and inactive) is represented by some standardised
identifier. For us these are bold-face indices drawn from {1, . . . ,m} ∪ I , so
1 represents the first active argument, and so on. The result state is now T
with the substitutions:

• An index i ∈ {1, . . . ,m} is replaced by Pi or P ′i such that Pi
xi−→ P ′i
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depending on whether xi = · or xi ∈ Σ.

• An index i ∈ I is replaced by Qi .

To follow the principles above we have to impose conditions on T :

• No active index i ∈ {1 . . . ,m} can appear more than once in T .

• Such active indexes only appear at immediately distributive (ID) places in T
(i.e., where the operational semantics we can derive for T makes a process
argument placed here initially active). This is easy to define by structural
recursion:
· The appearance of i in the simple term i is ID.
· If i appears ID in the term T , then it appears ID in

⊕
(. . . ,T , . . .), where

the place T is an active argument of the CSP-like operator
⊕

.
· No other appearance of i, including any in a recursive definition, is ID.

The pieces of syntax T above can contain arbitrary closed CSP processes
at any point without restriction

Hiding P \ X has rules (a, a)[a 6∈ X ] and (a, τ)[a ∈ X ], using the convention
that for operators with a single active argument, we write a rather than (a)
for the first component. The result of P \ X processing an action P

a−→ P ′

is always P ′ \ X , so its combinators are homogeneous. On the other hand,
the resolution of P 2 Q does change the process structure, so its rules are
((a, ·), a,1) and ((·, a), a,2): either side can perform any action in Σ, resolving
the choice. We do not write down patience rules since they always apply.

Definition 2.1

An operator (language) is CSP-like if and only if it (all its operators) can be
given a combinator operational semantics.

Theorem 2.2 Every CSP-like operator F has a translation to CSP which we
write FCSP such that, for any collection of arguments (P,Q), the operational
semantics of FQ(P) and FQ

CSP(P) are strongly bisimilar.

Therefore any CSP-like operator has a fully compositional semantics over
any model of CSP.

The proof can be found in [16,15] 4 . and is indicated in that of the main
hteorem of this paper.

2.4 Priority

While there have been a number of versions of CSP with priority, for exam-
ple [12,7], the one we use in this paper is that introduced in [15]. This is
conceptually simple, as it does not require any re-interpretation of LTS’s or
CSP models as entities where one action has priority over another. Instead
Pri≤(·) inputs an ordinary LTS and the result is another ordinary one. ≤ is

4 Tom Gibson-Robinson [8] implemented the constructions of [16], thereby providing a
translation of arbitrary CSP-like operators into CSP for use on FDR [9].
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a partial order on events Σ∪{τ} which is subject to several conditions stated
below. The SOS operational semantics are

P
x−→ P ′ ∧ ∀ y .y > x ⇒ ¬P

y−→
Pri≤(P)

x−→ Pri≤(P ′)

P performs actions that are not strictly lower under ≤ than another action
that P can perform from the same state. In the above, x and y range over
the whole of Σ∪{τ}. In order to make this consistent with the tenets of CSP
we need to respect the idea that τ is not controllable and that every process
is equivalent to the one where a single τ precedes it:

• τ is maximal in ≤: it is not dominated by any other event.

• If a < b for any actions a and b, then a < τ

Only the richest CSP models make Pri≤(·) compositional. Of those dis-
cussed in Chapters 10, 11 and 12 of [15], the only ones compositional for the
full range of permitted ≤ are the FL class of models, recording traces extended
by one of the following before each event and after the last:

• • meaning that the state from which the next event happened, or at the
end of the behaviour, has not been observed to be stable (i.e., a state where
no τ is possible).

• Where stability is observed, the exact set of events that the state offers.

Thus a typical behaviour looks like 〈A0, a1,A1, . . . ,An−1, bn ,An〉 with the bi
being drawn from Σ. and the Ai being drawn from {•} ∪ P(Σ)

The semantics of Pri≤(P) over FL are as follows, quoted from [17].

{〈A0, b1,A1, . . . ,An−1, bn ,An〉 | 〈Z0, b1,Z1, . . . ,Zn−1, bn ,Zn〉 ∈ P}

where for each i one of the following holds:

• bi is maximal under ≤ and Ai−1 = • (so there is no condition on Zi−1 except
that it exists).

• bi is not maximal under ≤ and Ai−1 = • and Zi−1 is not • and neither does
Zi−1 contain any c > bi .

• Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬ ∃ b ∈ Zi .b > a}.
• In each case where Ai−1 6= •, bi ∈ Ai−1.

Priority is not CSP-like, so we name the extended language Pri-CSP.

3 What can we express in Pri-CSP?

Pri≤(·) has some of the qualities of CSP-like operators, for example it has the
patience property, and never clones its argument. The only one it obviously
fails is the ban on negative premises.
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To grasp what can be expressed in Pri-CSP we change the expressive power
of combinators. Recall that the first component of a combinator is a tuple of
actions from the active processes. We can extend this by turning the compo-
nents of this tuple into pairs. The first component is either an action in Σ
that the corresponding process should perform or “·” if it does not perform
one in the action. The second is a set of events, which if non-empty contains
τ (if not written down it is assumed implicitly), that the process must not be
able to perform if the rule is to fire. We annotate such negative premises with
the negation symbol ¬. A negative premise can only be satisfied in a stable
state of its argument.

We will be liberal with the way we write down such pairs: where one or
other component is trivial (i.e., · or ∅ (rather than {τ})) we will just write the
other, and if both are trivial we will just write “·”.

There is no difference in the second component of combinators. However,
problems discussed fully in [18] make us more restrictive in the syntax of
the allowed third component syntax T . Specifically we restrict the third
component to be any of

• One of the argument processes by itself (a common case in CSP): this can
be active or inactive in the original state.

• Any constant CSP process (one that does not refer to any argument).

• Any Pri-CSP operator application where each active argument of the orig-
inal operator, if it appears at all, appears in exactly one place amongst the
active arguments of the new operator.

We again assume a patience rule for each active argument. A homogeneous
n-combinator is one where the third component is omitted because the result
has the same structure as the initial process.

Any combinator with a negative premise is termed an n-combinator, and
an n-combinator operational semantics is one in terms of these and ordinary
combinators. A positive combinator semantics is one with only ordinary com-
binators.

Pri≤(·)’s operational semantics can itself be expressed in these extended
combinators. It has the implicit patience rule and, for each a ∈ Σ maximal in
≤ the simple combinator (a, a). For non-maximal a it has the n-combinator
((a,¬{x ∈ Σ ∪ {τ} | a < x}), a), where we note that the set of negative
premises always includes τ due to the restrictions placed on ≤ in the definition
of the priority operator.

Recall that the operator P ΘA Q starts Q whenever P communicates an
element in A. We can think of this as P throwing an exception. With n-
combinators we could build an operator P∆ΘQ in which any deadlock in P
was caught and starts Q : with the active argument P it would simply need
the combinators (a, a) for a ∈ αP plus the n-combinator (¬αP , τ,q), where
q points to the inactive argument Q . Once we have discussed the imple-
mentation of general negative premises later, we will show how to implement
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this.

Definition 3.1 An operator has Pri-CSP-like operational semantics if its op-
erational semantics can be given according to the above conventions in terms
of combinators and n-combinators.

4 Expressibility theorem

Theorem 4.1 Suppose the operator FQ(P) is Pri-CSP-like together with all
other operators reachable (transitively) through the T third components of its
combinators. Then for any arguments P and Q, FQ(P) is expressible in Pri-
CSP in the sense that the simulation is strongly bisimilar to FQ(P).

This implies that such operators have a compositional semantics over FL.

As in [16,15], our proof is to construct the (Pri-)CSP implementation.
This is even more complex than the one without negative premises. For the
issues in common with the earlier result, the constructions we use have a lot
in common, though we do find several simplifications.

(i) First we consider the case of homogeneous combinators (no negative
premises). Thus we consider operators whose combinators are all of the
form (p, a), with p having no negative aspect.

(ii) Next we consider how to add similarly restricted n-combinators. This is
the heart of the extension to the original construction.

(iii) The next step is to allow actions to throw away active arguments.

(iv) We then allow non-homogeneous combinators, but only ones that use the
existing active arguments rather than inactive ones.

(v) The final stage is to show how to use inactive arguments.

In this version of the paper we concentrate on the first two stages. The rest are
given in detail in the extended version. At each stage the simulation we build
takes the form of the parallel composition of processes representing each argu-
ment that is active, plus additional parallel components to regulate behaviour,
and “zombie” processes representing those that have been inactivated.

4.1 Homogeneous positive combinators

In this case (in a simplification from the construction in [16,15]), the simulation
will take the form

(((‖n
i=1

(Ai ,Pi [[Ri ]])) ∪A‖C RUNC )[[CR]]) \ {Tau}

where P1, . . . ,Pn are the (all active) arguments of some operator F . Tau is a
member of Σ we introduce to model a combinator generating a τ action. ∪A
is the union of the Ai .
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Let C be the set of combinators for F . We add C into the alphabet and
can construct the renamings as follows.

• Ri maps each event a of Pi to each combinator which requires the ith
argument to perform a.

• CR maps the combinator (p, a) to a if a ∈ Σ, and to Tau if a = τ .

• Ai consists of all combinators c which have a proper premise (i.e., not “·”)
in position i .

• The RUN process provides a way in which combinators with no active
arguments can happen. It is later replaced by more elaborate regulator
processes.

• Any Pi that can perform a τ can perform it in the simulation, with the
simulation state progressing exactly as we require in the patience rule that
F must have for its ith argument.

• The event representing the combinator c can occur precisely when the
premises of c are met (i.e., each non-“·” component performs the appro-
priate event). The renamed Pi can then synchronise to perform c, which
CR and the hiding of Tau combine to turn into its own second component.
Again the successor state (with just the Pi that contribute to c progressing)
is exactly the one that simulates the state that the combinator semantics
will have reached under the same action.

• Every state reachable from F (P1, . . . ,Pn) in our restricted circumstances
is of the form F (P ′1, . . . ,P

′
n) for P ′i some state of Pi , and by the above

observations this state is strongly bisimilar – indeed isomorphic in the sense
of transition systems – to the following simulation state.

((‖n
i=1

(Ai ,P
′
i [[Ri ]])) ∪A‖C RUNC )[[CR]] \ {Tau}

We have therefore completed the construction in this first case.

4.2 Adding negation

Suppose for the moment that no combinator has both positive and negative
premises for the same argument. Then we can get the argument process if
necessary to contribute one or other to the firing of the combinator. We know
how to achieve this for positive ones. For negative premises we can use priority
to deliver an event just when some set of actions is not possible.

For the S ⊆ Σ that might (each together with {τ}) be negative premises
for argument process P , let ¬S be a new event that will represent P ’s inabil-
ity to perform any of them. Let the set of such ¬S for P (in the context it
is placed) be negs(P). Then Negate0(A,P) = Pri≤P

(P 9 RUNnegs(P)) where
¬S <P a if and only if a ∈ S , can perform ¬S when P is in a stable state
that cannot perform any member of S . We can check a negative premise on P
by getting Negate0(P) to perform an event as part of a combinator synchro-
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nisation whenever that is appropriate. The first component of a combinator
now becomes a tuple with components that are either a positive event a, a
¬S or the absence “·” of that process’s involvement. The renamings Ri on
the components are extended so the ¬S is renamed to each combinator c that
has ¬S as a component at the given process’s place.

There are cases with positive and negative premises on the same argu-
ment, such as the semantics of the priority operator itself: Pri≤(P) can only
perform non-maximal a if P itself can, but cannot perform any higher pri-
ority event. To handle this we use further events: (a,¬S ) (with a 6∈ S )
means that the process can perform a while in a stable state where no mem-
ber of S can happen. The above definition is extended to Negate(P) =
Pri≤P

(P [[NegR]] 9 RUNNeg(P)) where NegR maps each event a in P ’s alphabet
to both itself and the (a,¬S ) we introduced above, and ≤P is extended so
that (a,¬S ) is given the same priority as ¬S . Thus (a,¬S ) can happen just
in those stable states where a can be performed by P but no member of S
can be. To handle this the renaming Ri is extended so that (a,¬S ) is mapped
to every combinator c which has this particular pair of premises for its ith
argument.

4.3 Further stages

The rest of this proof follows similar lines to the one in [16] without priority.
This is set out in detail in the extended paper [18]. To handle processes being
discarded (as can happen to either argument of P 2 Q and the first arguments
of P 4 Q and P ΘA Q) we place each Negate(Pi) in a harness, where Pi can
be switched off by ΘA whether or not Pi itself participates in the (necessarily
non-homogeneous) combinator that causes this effect. A strong sense of how
this is done is given by the deadlock-exception catching operator P∆ΘQ we
described earlier: it can be written ((Pri≤(P 9 δ → STOP)) Θδ Q) \ {δ} for
δ a new event, the only ordering by ≤ being to place δ below all others.

The other aspects of non-homogeneous combinators that need to be han-
dled are (i) allowing the sorts of continuation permitted by the third com-
ponent syntax T and (ii) activating inactive arguments to participate in the
operations of such T . The first is achieved by extending the alphabet to in-
clude labelled (n-)combinators for every form that the system might evolve to
as the simulation progresses, together with a regulator process which under-
stands what the present format of the system is and how the current active
argument processes map onto the format’s active arguments.

There are two ways of handling the activation of inactive arguments: one
each is described in [16] and [18]. The first dynamically generates new argu-
ment processes each time one is activated. The second is possible where the
overall number of active arguments has an upper bound, and works by recy-
cling them: letting the zombies created by turning arguments off be reborn in
a new form.

13
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All of this can be be done in such a way as to obtain strong bisimulation.

5 Examples

We have seen how to create an operator that allows deadlock in one process
to cause a second process to start. The following transformation provides the
basis for many similar constructions.

Suppose P has alphabet Σ0, and that we have added as follows to the
overall alphabet: Σ1 = {¬a | a ∈ Σ0} and Σ2 = {¬¬a | a ∈ Σ0} (all these
new labelled events being different to each other and members of Σ0).

Now define two partial orders on Σ = Σ0∪Σ1∪Σ2: ¬a <1 a and ¬¬a <2 ¬a
for each a ∈ Σ0, with no other pairs ordered except for those required to make
τ maximal. Let us now think through the behaviour of the process

Probe(P) = Pri≤2(Pri≤1(P 9 RUNΣ1∪Σ2))

(i) The process inside the priority operators can perform any action of P ,
and also always perform any action in Σ1 ∪ Σ2 without changing state.

(ii) The result of the inner priority operator can still perform any action of
P and any member of Σ2, but can now only perform ¬a ∈ Σ1 when P
itself is in a stable state than cannot perform a.

(iii) Probe(P) can perform the same members of Σ0 ∪ Σ1 as at stage 2, but
can now only perform ¬¬a ∈ Σ2 when P is in a stable state which can
perform a. When this process performs either ¬a or ¬¬a, its state does
not change. This gives the observer, by viewing events alone, the ability
to “probe” what events the current state of P can perform.

Building on this, we can for example create a stronger version of the angelic
choice operator � of [15]: P �N Q behaves like P 2 Q except that when P
and Q offer the same visible event a the choice between them is delayed rather
than forced when a occurs. The operational semantics of P �N Q can only
perform a visible event a if either both P and Q perform it in parallel, or if
one of them does perform it and the other one cannot.

This is implemented by running P̂ ΘΣ1 RUN Σ0 alongside Q̂ ΘΣ1 RUNΣ0 .
Here, P̂ is Probe(P) without the ¬¬a events, and in the combination a ∈ Σ0

can synchronise with either itself or ¬a, in each case creating the external
event a. For full details see the the extended version.

6 Comparisons

The good comparator for CSP-like operational semantics is van Glabbeek’s [10] 5

concept of simply WB-cool operational semantics. This is more liberal than
CSP-like because it permits cloning and because it explicitly allows arbitrary

5 Van Glabbeek’s work was itself closely related to work by Bloom and others [1].

14



Roscoe

probing of active arguments: it allows multiple premises of the form P
a−→ P ′a

for different as, and we can choose to use either the results P ′a or the original P
in the result term. Van Glabbeek also allows active arguments to become in-
active under limited circumstances. The restrictions there are all expressed in
the language of SOS. Van Glabbeek shows that such semantics ensure congru-
ence under weak bisimulation. [10] also introduces some variants on WB-cool
which have congruence properties for different forms of bisimulation.

Both CSP-like and Pri-CSP-like operational semantics (like strictly WB
cool and similar classes) come firmly within the GSOS class of operational
semantics defined in [3]. This is well studied, and implies, for example [4],
that the use of negative premises causes no problems with the well-definedness
of operational semantics.

A very detailed survey of restrictions on SOS semantics which are intended
to preserve various forms of congruence is provided in [2]. This identifies full
probing – namely the ability to test the complete acceptance/ready set as a
condition for actions – with the natural notion of operational semantics which
coincides with the FL style of model, there termed ready-trace. The main
construction in Section 5, elaborated on in the extended version of this paper,
shows that the same can be done in Pri-CSP. Whereas CSP-like operators
are a closed world in the sense that any composition of CSP-like operators is
also describable in combinators, the same is not true of Pri-CSP-like and (n)-
combinators, helping to explain why one can go beyond direct expressibility in
terms of these by composing operators that are. This is why the continuation
syntax T is more restricted when negative premises are allowed.

7 Conclusions

One of the most interesting features of this work is the great expressive power
of Pri≤(·) in conjunction with ordinary CSP.

In a future paper by the author and others, we will show how refinement
checking over a wide variety of CSP models can be reduced, using priority, to
trace refinement.

It is reasonable to ask how crucial the choice of priority is for an extra
operator to achieve the degree of expressiveness seen here. Clearly such an
operator cannot be CSP-like, and must have the property that Pri≤(·) is
expressible using it and the rest of CSP. It cannot have a semantics in any
CSP model where Pri≤(·) does not, for it must be able to express priority.
We pose this as a question for further work.
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