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1 Introduction

In 1988 Bramble and Pasciak [6] introduced a block triangular preconditioner for the
discrete Stokes problem (matrix) which had the almost magical effect of turning the
original indefinite symmetric matrix problem into a non-symmetric matrix which is both
self-adjoint and, in certain practical circumstances, positive definite in a non-standard
inner product; thus the conjugate gradient method could be used in the non-standard
inner product.

Precisely, the symmetric saddle point problem

[
A BT

B −C

]

︸ ︷︷ ︸
x = b

A

(1.1)

with symmetric A and C, if preconditioned on the left by

P =

[
A0 0
B −I

]
with P−1 =

[
A−1

0 0
BA−1

0 −I

]
(1.2)

results in the non-symmetric matrix

Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A − B BA−1

0 BT + C

]
(1.3)

which turns out to be self-adjoint (many would say ‘symmetric’) in the inner product
〈·, ·〉H defined by 〈x, y〉2H := xTHy where

H =

[
A − A0 0

0 I

]
.

Moreover, 〈x, Âx〉H > 0 for all x 6= 0 so that Â is also positive definite. For these
results to hold, the matrix block A0 has to be symmetric and positive definite and must
be scaled in order that A − A0 is also positive definite so that 〈·, ·〉H not only defines
a symmetric bilinear form but also satisfies the positivity requirement 〈x, x〉H > 0 for
x 6= 0 which ensures that it is an inner product.

The outcome is that the Conjugate Gradient (cg) method based on this inner prod-
uct can be applied and the system can be solved efficiently. This Bramble and Pasciak
cg method is a very powerful and widely used tool to solve saddle point systems. Fur-
ther analysis and applications can be found in [1–3, 7, 9, 15, 19, 21, 25, 31, 32].

The Bramble and Pasciak Conjugate Gradient method is not the only solver of its
kind where a matrix is preconditioned and then a non-standard inner product can be
found such that efficient Krylov subspace solvers like cg can be applied. More examples
are given in [5, 12, 19, 23, 27] and will be explained and used later in this paper.

We comment that alternative approaches for the Stokes and other saddle-point
problems use symmetric preconditioners and iterative methods such as minres and
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sqmr(see [11] Chapter 6, [4]). It is not our intention here to compare with such
methods - see for example [9]. Rather, we explore some more abstract but elementary
algebraic structures which enable some broadening of the set of available preconditioners
for which saddle-point problems may be treated by symmetric iterative methods and in
particular cg in non-standard inner-products. The outcome is some new precondition-
ing techniques which might be useful in practice. Our algebraic results apply generally
but we have not considered other than saddle-point examples.

2 Background

For linear systems with large dimension, it is well-known that iterative methods are
most often the only feasible solution approaches; direct methods for dense and sparse or
structured matrices work well provided bandwidth/skyline is not too large, but if fill-in in
the computed triangular factors is too great such methods are usually infeasible beyond
a certain dimension. Amongst the available iterative methods, multigrid approaches
are extremely attractive for certain classes of problems (see for example [11]), and in
more generality Krylov subspace methods can be excellent solvers provided suitably fast
convergence can be achieved: preconditioning is almost always required to achieve this.

For symmetric matrix systems, the Conjugate Gradient (cg) method ( [17]) for
positive definite and minimum residual (minres) or symmlq methods ( [24]) for
indefinite systems are based on short term recurrences and are the Krylov subspace
methods of choice. The cg method is especially popular because of its efficiency. By
contrast, for nonsymmetric matrix systems there is a large number of methods (gm-

res,bicgstab, qmr, . . . [26], [8], [14]) and various hybrid methods (gmresr,
bicgstab(`),. . . [30], [29]) reflecting that convergence is less well understood than in
the symmetric case and the best method for any particular problem is usually not clear,
see [28] for a good overview and further references. This situation is rather unsatisfac-
tory. Certainly if it were computationally possible to somehow convert a non-symmetric
system to an equivalent one with a symmetric matrix so that cg or minres could
be employed then this could be very attractive. Even in the case of a symmetric and
indefinite matrix system, conversion to a symmetric and positive definite matrix system
is attractive since it enables use of cg (the above case of the Bramble and Pasciak
method is an example). Use of the normal equations approach — replacing Ax = b with
AT Ax = AT b — is usually not so attractive because for other than a matrix which is very
well-conditioned this usually leads to much poorer convergence of iterative methods.

One can broaden the possibilities by allowing non-standard inner-products — the
important/desirable matrices are then the matrices which are self-adjoint with respect to
such an inner product. The self-adjointness in a non-standard inner-product can enable
the use of cg for positive definite systems and minres for self-adjoint but indefinite
systems. A method like itfqmr ( [13]) can be used if only the self-adjointness in a
symmetric bilinear form is given. For related considerations, in particular in connection
with Krylov subspace methods, see [28], section 13.

Here we reserve the word symmetric when referring to matrices to mean those ma-
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trices which are self-adjoint in the usual Euclidean inner product defined by 〈x, y〉 :=
xT y =

∑
xiyi ie. those matrices whose entries satisfy ai,j = aj,i. Correspondingly, by

AT (= B) we mean the matrix with entries bi,j = aj,i ie. the adjoint matrix in the usual
Euclidean inner product.

3 Basic properties

Firstly we review the basic mathematics. We consider here only real Euclidean vector
spaces; we see no reason that our theory should not apply in the complex case or indeed
for other vector spaces, but we have not done so.

We say that
〈·, ·〉 : R

n × R
n → R (3.1)

is a symmetric bilinear form if

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ R
n

• 〈αx + y, z〉 = α〈x, z〉 + 〈y, z〉 for all x, y, z ∈ R
n and all α ∈ R.

With the addition of a non-degeneracy condition, Gohberg et al (cf . [16]) use the term
‘indefinite inner product’; general properties of such forms can also be found here.

If additionally, the positivity conditions

〈x, x〉 > 0 for x 6= 0 with 〈x, x〉 = 0 if and only if x = 0

are satisfied, then (3.1) defines and inner product on R
n.

For any real symmetric matrix, H, 〈·, ·〉H defined by

〈x, y〉2H := xTHy (3.2)

is easily seen to be a symmetric bilinear form which is an inner product if and only if H
is positive definite.

A matrix A ∈ R
n×n is self-adjoint in 〈·, ·〉 if and only if

〈Ax, y〉 = 〈x,Ay〉 for all x, y.

Self-adjointness of the matrix A in 〈·, ·〉H thus means that

xTATHy = 〈Ax, y〉H = 〈x,Ay〉H = xTHAy

for all x, y so that
ATH = HA (3.3)

is the basic relation for self-adjointness of A in 〈·, ·〉H. We emphasize that 〈·, ·〉, 〈·, ·〉H
must be symmetric bilinear forms here, but we do not require them to be inner prod-
ucts in order that we use the self-adjointness concept. For practical reasons, we will
consider positivity/non-positivity of symmetric bilinear forms and positive definite-
ness/indefiniteness of self-adjoint matrices separately from our considerations of sym-
metry and self-adjointness. Whenever we write 〈·, ·〉H, H will be symmetric.

It is easy to check that
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Lemma 3.1 If A1 and A2 are self-adjoint in 〈·, ·〉H then for any α, β ∈ R, αA1 + βA2

is self-adjoint in 〈·, ·〉H.

Also

Lemma 3.2 If A is self-adjoint in 〈·, ·〉H1
and in 〈·, ·〉H2

then A is self-adjoint in

〈·, ·〉αH1+βH2
for every α, β ∈ R.

Now if A is preconditioned on the left by P, then from (3.3), Â = P−1A is self-adjoint
in 〈·, ·〉H if and only if

(P−1A)TH = HP−1A (3.4)

which is
ATP−TH = HP−1A

or
AT (P−TH) = (P−TH)TA

since H is symmetric. Thus if A is also symmetric we get

(P−TH)TA = A(P−TH) (3.5)

and so

Lemma 3.3 For symmetric A, Â = P−1A is self-adjoint in 〈·, ·〉H if and only if P−TH
is self-adjoint in 〈·, ·〉A.

Proof Follows directly from the above and (3.3).

�

Remark 3.4 Lemma 3.3 includes the even more simple situations that P−1A is self-

adjoint in 〈·, ·〉P and AP−1 is self-adjoint in 〈·, ·〉A−1 when both A and P are symmetric

since I is trivially self-adjoint in any symmetric bilinear form. Clearly invertibility of P
and A respectively are needed in these two cases.

Now for symmetric A, if P1 and P2 are such that P−1
i A is self-adjoint in 〈·, ·〉Hi

,
i = 1, 2 for symmetric matrices H1, H2, then

(P−1
1 A)TH1 = H1(P

−1
1 A) and (P−1

2 A)TH2 = H2(P
−1
2 A). (3.6)

Using Lemma 3.3, P−T
i Hi is self-adjoint in 〈·, ·〉A for i = 1, 2 and thus by Lemma 3.1

αP−T
1 H1 + βP−T

2 H2

is also self-adjoint in 〈·, ·〉A for any α, β ∈ R. Now, if for some α, β we are able to
multiplicatively split the matrix (αP−T

1 H1 + βP−T
2 H2) = P−T

3 H3 for some symmetric
matrix H3, then P−T

3 H3 is self-adjoint in 〈·, ·〉A and a further application of Lemma 3.3
yields that P−1

3 A is self-adjoint in 〈·, ·〉H3
. We have proved
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Lemma 3.5 If P1 and P2 are left preconditioners for the symmetric matrix A for which

symmetric matrices H1 and H2 exist with P−1
1 A self-adjoint in 〈·, ·〉H1

and P−1
2 A self-

adjoint in 〈·, ·〉H2
and if

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

for some matrix P3 and some symmetric matrix H3 then P−1
3 A is self-adjoint in 〈·, ·〉H3

.

Lemma 3.5 shows a possible way to generate new preconditioners for A. In Section 5
we show a practical example of its use.

The construction of P3, H3 in Lemma 3.5 also allows straightforward inheritance of
positive definiteness — for this to be a useful property it is essential that 〈·, ·〉H defines
an inner product ie. that H is positive definite. It is trivial to construct examples of
indefinite diagonal matrices A and H for which 〈Ax, x〉H > 0 for all non-zero x, but in
order to be able to take advantage of positive definiteness, for example by employing
Conjugate Gradients, it is important that 〈x, x〉H = xTHx > 0 for all non-zero x.

Lemma 3.6 If the conditions of Lemma 3.5 are satisfied and additionally if P−1
i A is

positive definite in 〈·, ·〉Hi
, i = 1, 2 then P−1

3 A is positive definite in 〈·, ·〉H3
at least for

positive values of α and β.

Proof Positive definiteness of P−1A in 〈·, ·〉H means that

〈P−1Ax, x〉H > 0, for x 6= 0

ie. that xTAP−THx > 0 so that AP−TH is a symmetric matrix with all eigenvalues positive.
Thus each of AP−T

1 H1 and AP−T
2 H2 is symmetric and positive definite and it follows that

αAP−T
1 H1 + βAP−T

2 H2 = AP−T
3 H3

must also be symmetric and positive definite at least for positive values of α and β.

�

We comment that there will in general be some negative values of α or β for which P−1
3 A

remains positive definite but at least one of α and β needs to be positive in this case.
The precise limits on the values that α and β can take whilst positive definiteness is
preserved depend on the extreme eigenvalues of AP−T

1 H1 and AP−T
2 H2. Unfortunately,

even if H1 and H2 are positive definite there is no guarentee that H3 will be also.
We can also consider right preconditioning: if Â = AP−1 is self-adjoint in 〈·, ·〉H

then
P−TATH = HAP−1 (3.7)

which is
(P−1)T (ATH) = (ATH)TP−1. (3.8)

Thus

Lemma 3.7 If the right preconditioner P is symmetric and Â = AP−1 is self-adjoint

in 〈·, ·〉H for some symmetric matrix H, then ATH is self-adjoint in 〈·, ·〉P−1.
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Lemma 3.7 shows that we could combine problem matrices and symmetric bilinear forms
for the same preconditioner. This is obviously more a theoretical than a practical result
compared to obtaining new preconditioners for a given problem as in the case of left
preconditioning above. The splitting in P−T

3 H3 introduced in Section 5 will provide
not only a symmetric inner product matrix but also a symmetric preconditioner and
therefore fulfills the conditions of Lemma 3.7.
We now want to discuss very briefly the eigenvalues of matrices which are self-adjoint
according to our definition which allows indefinite symmetric bilinear forms. Assume
that ATH = HA holds and that (λ, x) is a given eigenpair of A. Thus,

Ax = λx, x 6= 0. (3.9)

Multiplying (3.9) from the left by xTH gives

xTHAx = λxTHx (3.10)

and using (3.3) we obtain

1

2
xT (HA + ATH)x = xTHAx = λxTHx. (3.11)

Notice that the left hand side of (3.11) is the field of values of a symmetric matrix
which is obviously real, see Chapter 8.1 in [20]. The right hand side is given by λxTHx
where xTHx is also real since H is symmetric. Therefore, the eigenvalue λ must be
real. Furthermore, if the matrix H is definite the eigenvalues of A are bounded. Note
that, a matrix H always exists such that ATH = HA since any matrix is similar to its
transpose, see for example Chapter 3.2 in [18]. In the context of the above theory, the
interesting candidates for H are the real symmetric matrices.

Note that the above arguments establish that there is no symmetric bilinear form in
which A is self-adjoint unless A has real eigenvalues.

It is also known that for a real diagonalizable matrix A which has only real eigenvalues
there always do exist inner products in which A is self-adjoint.

Lemma 3.8 If A = R−1ΛR is a diagonalization of A with the diagonal matrix Λ of

eigenvalues being real, then A is self-adjoint in 〈·, ·〉RT ΘR for any real diagonal matrix

Θ.

Proof The conditions (3.3) for self-adjointness of A in 〈·, ·〉H are

RTΛR−TH = HR−1ΛR

which are clearly satisfied for H = RTΘR whenever Θ is diagonal because then Θ and Λ
commute.

�

We remark that this result is not of great use in practice since knowledge of the
complete eigensystem of A is somewhat prohibitive.
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4 Self-adjointness for saddle point systems

For the remainder of this paper we consider only saddle-point matrices A of the form

A =

[
A BT

B 0

]
, (4.1)

that is as given in (1.1) with A = AT and C = 0. Using the same block structure, we
consider the preconditioner

P−1 =

[
X Y T

Z W

]
(4.2)

so that

Â = P−1A =

[
XA + Y T B XBT

ZA + WB ZBT

]
. (4.3)

To define the symmetric bilinear form 〈·, ·〉H we take the symmetric matrix

H =

[
E F T

F G

]
. (4.4)

The main intention is now to identify suitable blocks of P and H such that Â is
self-adjoint in 〈·, ·〉H. Using (3.3) this reduces to

[
AXT + BY T AZT + BT W T

BXT BZT

] [
E F T

F G

]
=

[
E F T

F G

] [
XA + Y T B XBT

ZA + WB ZBT

]
. (4.5)

Expanding we get

AXT E + BTY E + AZTF + BTW T F = EXA + EY T B + F T ZA + F T WB (4.6)

AXT F T + BT Y F T + AZT G + BT W TG = EXBT + F T ZBT (4.7)

BXT E + BZTF = FXA + FY T B + GZA + GWB (4.8)

BXT F T + BZTG = FXBT + GZBT . (4.9)

in which the assumed symmetry of H and therefore of E and G ensure that (4.7) and
(4.8) are transposes of each other and are therefore the same. Under the assumption
that H is block-diagonal (F = 0) this simplifies to

AT XT E + BT Y E = EXA + EY T B (4.10)

AT ZT G + BT W T G = EXBT (4.11)

BXT E = GZA + GWB (4.12)

BZT G = GZBT (4.13)

where again (4.11) and (4.12) are the same.
We will now describe some examples where it can be checked that the above condi-

tions are satisfied. The descriptions will be brief and we refer the reader to the original
papers [5, 6, 19, 22] for more details.
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The first example is the classical method by Bramble and Pasciak already mentioned
in the Introduction. The preconditioner is given by

P =

[
A0 0
B −I

]
and P−1 =

[
A−1

0 0
BA−1

0 −I

]
(4.14)

and the symmetric bilinear form defined by the matrix

H =

[
A − A0 0

0 I

]
. (4.15)

In 2006 Benzi and Simoncini gave a further example, see [5]. Namely,

P = P−1 =

[
I 0
0 −I

]
(4.16)

and

H =

[
A − γI BT

B γI

]
. (4.17)

Recently, Liesen made an extension to this method taking a non-zero matrix C in (1.1)
into account, see [22]. The preconditioner is again

P = P−1 =

[
I 0
0 −I

]
(4.18)

but the symmetric bilinear form is now defined by

H =

[
A − γI BT

B γI − C

]
. (4.19)

There are certain conditions which must be satisfied by the parameter γ in order
to guarantee positive definiteness of H so that cg in the inner product 〈·, ·〉H can be
reliably employed – see [5], [22].

There are also extensions to the classical Bramble-Pasciak case which are not re-
stricted to the case C = 0 in (1.1), see [19, 23, 27]. In [23] for example, a Schur comple-
ment preconditioner S0 is introduced into P giving

P =

[
A0 0
B −S0

]
and P−1 =

[
A−1

0 0
S−1

0 BA−1
0 −S−1

0

]
; (4.20)

under certain conditions positive definiteness of the preconditioned saddle-point system
can still be guaranteed in a non-standard inner product similar to (4.15).

5 Combination preconditioning

Here we demonstrate just one example of how Lemma 3.5 can be used to combine
preconditioners in order to create new ones. In the process, new symmetric bilinear
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forms are created which sometimes have the desirable positivity property making them
inner products in which for example cg can be employed.

We consider P1,H1 defined by the classical Bramble-Pasciak method (4.14),(4.15)
and P2,H2 defined by the Benzi-Simoncini approach (4.16),(4.17). From Lemma 3.5 we
get

(αP−T
1 H1 + βP−T

2 H2) =

[
(αA−1

0 + βI)A − (α + βγ)I (αA−1
0 + βI)BT

−βB −(α + βγ)I

]
(5.1)

which is self-adjoint ∀α, β ∈ R in 〈·, ·〉
A
. If we are able to multiplicatively split this into

a new preconditioner P3 and a symmetric matrix H3, Lemma 3.5 guarentees that P−1
3 A

will be self-adjoint in 〈·, ·〉
H3

.
One possibility is

P−T
3 =

[
αA−1

0 + βI 0
0 −βI

]
and H3 =

[
A − (α + βγ)(αA−1

0 + βI)−1 BT

B α+βγ

β
I

]
.

(5.2)
Numerical results for the cg solution of Ax = b with preconditioner P3 and sym-

metric bilinear form 〈·, ·〉H3
are presented here for various choices of α,β and γ. The

test problem is a Stokes flow problem generated using the ifiss software in matlab

( [10]). We assume that the conditions for γ in the Benzi-Simoncini case and for A0 in
the Bramble-Pasciak case are fulfilled. The matrix generated by ifiss is of dimension
659 and represents the flow over a channel domain. Figure 6 shows the comparison of
the Bramble-Pasciak cg method (solid black line) compared with the Benzi-Simoncini
cg (dotted blue line) and also the combination of the two methods with combination
parameters α = 1/2 and β = 1/2 (dashed red line). The slow convergence of the Benzi
and Simoncini method can be explained by the lack of preconditioning in this method
whereas the results for the Bramble-Pasciak cg justify its popularity. Figure 6 shows
the same constellation with only a change in the combination parameters α = 15 and
β = 0.1.

6 Conclusions

We have explained the general concept of self-adjointness in non-standard inner products
or symmetric bilinear forms and in the specific case of saddle point problems have shown
how a number of known examples fit into this paradigm. We have indicated how self-
adjointness may be taken advantage of in the choice of iterative solution method of
Krylov subspace type—in general it is more desirable to be able to work with iterative
methods for self-adjoint matrices rather than general nonsymmetric matrices because of
the greater efficiency in general of symmetric iterative methods and certainly because the
understanding of the convergence of symmetric iterative methods is much more secure
and descriptive than for nonsymmetric methods.

The possibility of combination preconditioning by exploiting self-adjointness in dif-
ferent non-standard inner products or symmetric bilinear forms has been analysed and
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an example given of how two methods can be combined to obtain a new preconditioner
and a different symmetric bilinear form.

Our analysis may provide the basis for the discovery of further useful examples
where self-adjointness may hold in non-standard inner products and also shows how
preconditioning can usefully be employed to create rather than destroy symmetry of
matrices.
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Figure 1: Combination preconditioning with α = 1/2 and β = 1/2 compared to Bramble-
Pasciak and Benzi-Simoncini cg .
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