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1 Introduction

For many highly nonlinear problems the standard finite element analysis based
on coercivity (or more generally on inf-sup conditions) cannot be applied in a
straightforward fashion. It can be advantageous to apply variational convergence
techniques based on compactness of discrete solutions and weakened notions of
monotonicity. The field of nonlinear elasticity is a particularly fertile source for
problems of this type. For example, minimizing the energy functional

I(u) =

∫

Ω

f(x, u,∇u) dx, (1.1)

where f is a stored energy function, over a suitable set of admissible deformations
is a classical problem of hyperelasticity (see [3, 7]). The computation of minimiz-
ers to (1.1) is a largely unsolved problem. Only if it is assumed that such a
minimizer is smooth (at least C1(Ω̄)) can it be shown that a conforming Galerkin
finite element discretization of (1.1) converges [4, 17]. Some positive results, us-
ing highly non-standard splitting techniques whose approximation properties are
entirely unclear can be found in [19]. Our analysis in the present work only
covers the case where f is convex in the third argument which is insufficient to
cover physically realistic stored energies (where f is at most polyconvex) and it
can therefore only be considered an exploratory first step towards the solution of
(1.1). However, we hope that the flexibility of the discontinuous Galerkin method
will allow us in the future to finally tackle problems in this class.

Energy minimization problems are by no means the only application of the
techniques developed in this article. They can be used to provide additional in-
sight into any nonlinear problem where classical analysis based on coercivity, or
an inf-sup condition, fails but weaker notions of stability (such as lower semi-
continuity) are available. They can furthermore be used to prove convergence
of a numerical discretization without making any smoothness assumptions on
exact solutions. For example, it becomes straightforward to prove the conver-
gence of DGFEMs for variational inequalities. An application which is currently
under investigation is the development of the DGFEM for the Allen–Cahn and
Cahn–Hilliard equations with double-obstacle potential [13].

Finally, the tools we develop, a continuous reconstruction operator, broken
Sobolev–Poincaré and Friedrichs inequalities and trace theorems for arbitrary
Sobolev indices may be generally useful for analysing DGFEMs.

The outline of the paper is as follows. In Section 2 we provide the main
definitions for discontinuous Galerkin spaces and norms, in Section 3 we state
a continuous minimization problem and the corresponding DGFE discretization
proposed. Sections 4 and 5 are devoted to the developement of the tools which
we require to prove the compactness results of Section 6. In Section 7 we state
and prove the convergence theorem for the VIP-DGFEM. Finally, Section 8 is
devoted to an interesting application of our compactness results: we show that,
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for suitable choices of discrete norms, the embedding constants for broken spaces
are the same as for the corresponding classical Sobolev space.

2 Discontinuous finite element spaces

Let Ω ⊂ R
n be a polygonal Lipschitz domain and let (Th)h∈(0,1] be a family of

partitions of Ω̄ into polyhedral elements which are C∞ images of a set of “refer-
ence” polyhedra. More precisely, we assume that there exists a finite number of
reference polyedra κ̂1, . . . , κ̂r, and that for each κ ∈ Th there exists a C∞ invert-
ible map Fκ and a reference element κ̂i such that κ = Fκ(κ̂i). We assume that
elements are closed sets and that diam(κ) ≤ h for all κ ∈ Th, where h denotes here
the global mesh size. With no loss of generality, we assume that h ∈ (0, 1]. We
will provide further assumptions on the mesh regularity in the following section.

Throughout, we shall use the symbols ≈, . and & to compare quantities
which differ only up to positive constants depending only upon the domain Ω,
or the mesh quality (i.e., on the constants appearing in the next Assumption 1),
but not on the local or global mesh size.

2.1 Mesh regularity

Let Hn−1 denote the (n−1)-dimensional Hausdorff measure and, for a Hausdorff-
measurable set A ⊂ R

n, let dimHA denote the Hausdorff dimension of A.
In this section we propose a set of assumptions on the family of partitions

(Th)h∈(0,1] which are required in order to apply the theory developed in this paper.
As it is standard in the finite element literature, we define the set of (n − 1)-
dimensional faces Eh of the partition as follows:

Eh = {κ ∩ κ′ : κ, κ′ ∈ Th, dimH(κ ∩ κ′) = n − 1}

∪{κ ∩ ∂Ω : κ ∈ Th, dimH(κ ∩ ∂Ω) = n − 1}.

Furthermore, we use Γint to denote the union of all faces e ∈ Eh such that dimH(e∩
∂Ω) < n − 1.

Throughout this article, we make the following assumption on our family of
meshes.

Assumption 1 (Mesh Quality) Let hκ = diam(κ) for all κ ∈ Th. The family
of partitions (Th)h∈(0,1] satisfies:

(a) Shape Regularity. Each element κ ∈ Th is shape regular, i.e., there exist
C1, C2, independent of h, such that

Lip(Fκ) ≤ C1h
n
κ ∀κ ∈ Th and Lip(F−1

κ ) ≤ C2h
−n
κ ∀κ ∈ Th.

where Lip(Fκ) and Lip(F−1
κ ) stand for the Lipschitz constants of the mappings

Fκ and F−1
κ , respectively.



4

(b) Contact Regularity. Each face e ∈ Eh is shape regular. More precisely, we
assume that there exists a constant C1 > 0 such that, for all h ∈ (0, 1] and for
all faces e ∈ Eh, there exist a point xe ∈ e and a radius ρe ≥ C1diam(e) such
that Be = B(xe, ρe) ∩ Ae ⊂ e, where Ae is the affine hyperplane spanned by e.
Moreover, we set he := diam(e), and there are positive constants such that:

cehκ ≤ he ≤ Cehκ c′ehκ′ ≤ he ≤ C ′
ehκ′

where e = κ ∩ κ′.

(c) Submesh Condition. There exists a simplicial submesh T̃h such that

1. for each κ̃ ∈ T̃h there exists κ ∈ Th such that κ̃ ⊂ κ.

2. the elements κ̃ ∈ T̃h are uniformly shape regular, and

3. if κ̃ ⊆ κ, κ ∈ Th, then hκ̃ := diam(κ̃) satisfies: c̃hκ ≤ hκ̃ for a positive
constant c̃.

We denote by h(x) the piecewise constant function defined as h(x) = hκ,
x ∈ int(κ) and h(x) = he, x ∈ e. The global mesh size h can be chosen as
h = maxx∈Ω h(x).

Remark 1 The existence of a simplicial submesh is an entirely technical as-
sumption which may be tedious to verify in practise. We have included it since
it seemed the most general assumption under which we were able to prove the
required results. We note also that in dimension n = 2, 3 such a submesh can
be constructed under fairly mild assumptions on the partition Th [5, Corollary
7.3]. In fact, it seems quite straightforward to generalize the proof to arbitrary
dimensions.

Lemma 2 There exists a constant C, independent of the mesh size, such that

]{e ∈ Eh : e ⊂ κ} ≤ C ∀κ ∈ Th ∀h ∈ (0, 1].

Proof Let κ ∈ Th and let E ⊂ Eh be the set of faces contained in κ. By Assumption
1b, we have

]E hn−1
κ ≈

∑

e∈E

hn−1
e ≈

∑

e∈E

Hn−1(e)

= Hn−1(∂κ) ≈ hn−1
κ .

Upon dividing by hn−1
κ we obtain ]E ≈ 1. �
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2.2 Broken Sobolev spaces and DGFE spaces

Let p ∈ [1,∞). We will use standard Sobolev spaces W1,p(Ω) and Lp-spaces
Lp(Ω) with their corresponding norms, with a self-evident notation. The broken
Sobolev space W1,p(Th) is defined by

W1,p(Th) =
{
u ∈ L1(Ω) : u|κ ∈ W1,p(κ) for all κ ∈ Th

}
.

The dual index is denoted by p′ = p/(p − 1). The Sobolev-dual index which is
related to the Sobolev embedding theorems (see [2]) is denoted by p∗ = np/(n−p)
if p < n and p∗ = ∞ if p ≥ n. We recall that W1,p(Ω) ⊂ Lq(Ω), q ∈ [1, p∗]\{+∞}
and that this embedding is compact for all q < p∗ (see [2] for further details).

The subspace of discontinuous finite element functions of polynomial degree
no higher than k is defined as

Sk(Th) =
{

u ∈ L1(Ω) : u|κ ◦ F−1
κ ∈ P k for all κ ∈ Th

}
,

where P k denotes the space of polynomials of degree k in R
n. For each face e ∈ Eh,

e ⊂ Γint we denote by κ+ and κ− its neighbouring elements. We write ν+, ν− to
denote the outward normal unit vectors to the boundaries ∂κ±, respectively. The
jump and average of a vector-valued function ϕ ∈ W1,1(Th)

m with traces ϕ = ϕ±

from κ± is defined as

[[ϕ]] = ϕ+ ⊗ ν+ + ϕ− ⊗ ν− and

{ϕ} = 1
2
(ϕ+ + ϕ−).

For u ∈ W1,p(Th), we define the broken Sobolev semi-norms:

|u|pW1,p(Th) = ‖∇u‖p
Lp(Ω) +

∫

Γint

h1−p|[[u]]|p ds,

|u|p
W1,p

D
(Th)

= |u|pW1,p(Th) +

∫

ΓD

h1−p|u|p ds

Next, we recall some important facts about the Banach space BV(Ω) of func-
tions of bounded variation which contains the spaces W1,p(Th). To simplify the
notation, our discussion is for scalar functions, but equivalent results for vector-
valued spaces follow immediately from the scalar results. The space is equipped
with the norm

‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω),

where Du is the measure representing the distributional derivative of u and
|Du|(Ω) is its total variation, defined by

|Du|(Ω) = sup
ϕ∈C1

c(Ω)n

‖ϕ‖L∞≤1

∫

Ω

u divϕ dx.
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The symbol C1
c(Ω) denotes the space of continuously differential functions with

compact support in Ω.

Compactness and many other properties of the space BV(Ω) will play an
important role in our analysis. The variation (distributional derivative) of a
broken Sobolev function u ∈ W1,p(Th) is given by the following formula which
can be easily verified using integration by parts on every element of the mesh.

−

∫

Ω

u divϕ dx =

∫

Ω

∇u · ϕ dx −

∫

Γint

[[u]] · ϕ ds ∀ϕ ∈ C1
c(Ω)n. (2.1)

We conclude this section with a result that highlights the correct scaling of
the penalization for the | · |W1,p(Th)-semi-norm. This observation is the crucial
starting point to lift results for the space BV to DGFE spaces.

Lemma 3 There exists a constant C, independent of h and of p, such that, for
all p ∈ [1,∞),

|Du|(Ω) ≤ C |u|W1,p(Th) ∀u ∈ W1,p(Th) ∀h ∈ (0, 1].

Proof The proof is a straightforward generalization of [18, Theorem 3.26] to the case
p 6= 2. For the sake of completeness, we include a brief sketch.

The variation is bounded by

|Du|(Ω) ≤ ‖∇u‖L1(Ω) +

∫

Γint

|[[u]]|ds.

Since |Ω| < +∞, we obviously have ‖∇u‖L1(Ω) ≤ |Ω|1−1/p‖∇u‖Lp(Ω). We can use
Hölder’s inequality and Assumption 1 to estimate

∫

Γint

|[[u]]|ds =

∫

Γint

h1/p′h(1−p)/p|[[u]]|ds

≤

(∫

Γint

hds

)1/p′(∫

Γint

h1−p|[[u]]|p ds

)1/p

.

(
∑

e⊂Γint

hn
e

)1/p′(∫

Γint

h1−p|[[u]]|p ds

)1/p

By Assumption 1 as well as Lemma 2, we have

∑

e⊂Γint

hn
e .

∑

e⊂Γint

∑

κ∈Th
e⊂κ

hn
κ .

∑

κ∈Th

hn
κ ≈ |Ω|,

which gives the result. �
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3 Problem statement

Let Ω be a domain in R
n with boundary ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅ where ΓD has

positive surface measure. Let f : Ω×R
m×R

m×n → R be a Carathéodory function,
i.e., measurable in its first and continuous in its second and third argument.
Suppose that it also satisfies the p-growth condition

c0(|F |p − |u|r + a0(x)) ≤ f(x, u, F ) ≤ c1(|F |p + |u|q + a1(x)) (3.1)

where ai ∈ L1(Ω). We furthermore require that p ∈ (1,∞), that r < p, and that
r ≤ q < p∗. Let g : ΓN ×R

m → R be a Carathéodory function which satisfies the
growth condition

|g(x, u)| ≤ c2(|u|
r + a2(x)), (3.2)

where a2 ∈ L1(ΓN) and r is the same index as in (3.1).
We define the functional I : W1,p(Ω)m → R by

I(u) =

∫

Ω

f(x, u,∇u) dx +

∫

ΓN

g(x, u) ds, u ∈ W1,p(Ω)m. (3.3)

Fix uD ∈ W1,p(Ω)m and let A be the closed, affine subspace of W1,p(Ω)m defined
by

A =
{
u ∈ W1,p(Ω)m : u|ΓD

= uD

}
,

the set of admissible trial functions. We consider the problem of finding a min-
imizer of I in A. The existence of minimizers follows from the direct method
of the calculus of variations; see for example Theorems 3.1, 3.4 and 4.1 in [8].
Note in particular that, if m = 1 or n = 1, then Theorem 3.1 in [8] shows that
convexity of f in its third argument is a necessary and sufficient condition for I
to be sequentially weakly lower semicontinuous (which is a necessary condition
for the direct method to apply to our problem).

Before proposing a discretization strategy, we summarize the most important
technical facts about (3.3) which we use in the convergence proof in Section 7.

Lemma 4 Let f and g be Carathéodory functions which respectively satisfy the
growth conditions (3.1) and (3.2).

(i) If uj → u strongly in Lq(Ω)m and Fj → F strongly in Lp(Ω)m×n then

∫

Ω

f(x, uj, Fj) dx →

∫

Ω

f(x, u, F ) dx, as j → ∞.

(ii) If uj → u strongly in Lr(ΓN)m then

∫

ΓN

g(x, uj) ds →

∫

ΓN

g(x, u) ds as j → ∞.
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(iii) If uj → u strongly in L1(Ω)m, Fj ⇀ F weakly in Lp(Ω)m×n, and if f is
convex in the third argument, then

∫

Ω

f(x, u, F ) dx ≤ lim inf
j→∞

∫

Ω

f(x, uj, Fj) dx.

Items (i) and (ii) follow immediately from Fatou’s Lemma while item (iii) is an
application of [8, Theorem 3.4].

We turn now to the discretization of the functional (3.3). To this end, we first
define the lifting operator R : W1,p(Th)

m → (Sl(Th))
m×n via

∫

Ω

R(u) · ϕ dx = −

∫

Γint

[[u]] · {ϕ} ds ∀ϕ ∈ S l(Th)
m×n. (3.4)

The lifting R(u) is a bulk representation of the jump contribution to the distri-
butional gradient of u. The polynomial degree l is a method parameter and can
be chosen arbitrarily.

We propose the following discrete functional

Ih(uh) =

∫

Ω

f
(
x, uh,∇uh + R(uh)

)
dx +

∫

ΓN

g(x, uh) ds (3.5)

+

∫

ΓD

h1−p|uh − uD|
p ds +

∫

Γint

h1−p|[[uh]]|
p ds,

and our discrete problem is to find a minimizer of (3.5) among all possible vector
fields in Sk(Th)

m. In the tradition of the literature on discontinuous Galerkin
finite element methods, we chose to label the variational method in (3.5) as
VIP-DGFEM (variational interior penalty discontinuous Galerkin finite element
method).

Essentially the same DGFE discretization (with p = 2) was defined by Eyck
and Lew [22] for applications in finite elasticity. We refer to their paper for a
linearized stability analysis and very promising numerical results.

Note that despite its appearance, (3.5) is in fact straightforward to implement.
The definition of the lifting operator (3.4) allows the construction of R(uh) locally
in each element, taking into account only the degrees of freedom on the edges of
the element. For example, if R(uh) is chosen to be piecewise constant (which is
sufficient to obtain convergence) then

R(uh)|κ = |κ|−1
∑

e⊂∂κ

∫

e

[[uh]] ds ∀κ ∈ Th. (3.6)

In order to analyze the discretization (3.5) of (3.3), we need to prove several
results about DGFE spaces which are collected in the next three sections.
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4 Reconstruction operator

As is the case in many works on discontinuous Galerkin methods, ranging from a
posteriori error estimation [12] to the proof of broken Poincaré type inequalities
[5, 6, 20], we require at several points a continuous reconstruction operator. In
this section we will make use of the assumption that there exists a simplicial
submesh of Th (see Assumption 1c).

Our goal is to define a family of quasi-interpolant operators Qh : Sk(Th) →
W1,∞(Ω) and to provide localized error estimates for Qhu − u in Lq norms, q ∈
[1,∞). Our results are more general than previous ones in that we consider
arbitrary Sobolev indices but weaker than those in [5], for example, since we
restrict ourselves to a fixed polynomial degree. In fact, our proofs do not carry
over to arbitrary W1,p(Th) functions in an obvious way. The idea of using quasi-
interpolant operators was inspired by [16].

As we have said earlier, in order to simplify the notation, our discussion here
and in the next section is for scalar functions only. The corresponding results for
vector-valued functions follow immediately.

4.1 Local projection operators

Let us first introduce some notation for the submesh T̃h (see Assumption 1c). We

denote by Ñh the set of nodes of T̃h and by Ñ 0
h the subset of internal nodes. For

every z ∈ Ñh, we define the star-shaped patch

T̃z =
⋃

{κ̃ ∈ T̃h : z ∈ κ̃}, (4.1)

and we set hz = diam(T̃z). Due to the assumptions on the submesh T̃h, it is clear

that T̃z contains a finite number of elements which is independent of the mesh
size.

Next, we establish the existence of linear maps πz : BV(Ω) → R, z ∈ Ñh,
such that

‖u − πz(u)‖L1( eTz) ≤ Chz|Du|(T̃z) ∀z ∈ Ñh ∀u ∈ BV(Ω), (4.2)

where C is independent of h and z. To achieve this, we have to distinguish
between the cases when z lies on the boundary ∂Ω and in the interior of the
domain Ω. If z ∈ Ñ 0

h , i.e., z ∈ int(Ω), let Bz = B(z, ρz), where ρz ≈ hz such that

Bz ⊂ T̃z. The existence of such radii follows immediately from Assumption 1c.
Setting πz(u) = (u)Bz

(i.e., the mean value over the ball Bz), we shall first prove
(4.2) for interior vertices which will also give us an intuition how to proceed for
boundary vertices. We note that our construction as well as the proofs of the
estimates are only minor modifications of the L2 case treated by Verfürth [23].
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Lemma 5 Let K ⊂ R
n be star-shaped with respect to the point x0 ∈ K and

define
ρ = inf

x∈∂K
|x − x0|2 and h = sup

x∈∂K
|x − x0|2,

as well as the chunkiness parameter γ = h/ρ. There exists a constant C, depend-
ing only on γ and on n such that

‖u‖L1(K) ≤ C(‖u‖L1(B) + ρ|Du|(K)) ∀u ∈ BV(K), (4.3)

where B = B(x0, ρ), and

‖u − (u)B‖L1(K) ≤ Cρ|Du|(K) ∀u ∈ BV(K). (4.4)

The proof of Lemma 5, which is merely a modification of the proof of [23, Lemma
4.1], is given in the Appendix.

We note immediately that Lemma 5 together with shape regularity assump-
tion on the submesh T̃h implies (4.2) for interior nodes.

If z lies at the boundary, we define hz as before but we now set

ρz = inf
x∈∂ eTz\∂Ω

|z − x|2.

Let B̃z = B(z, ρz)∩ T̃z = B(z, ρz)∩ Ω̄. Repeating the proof of Lemma 5 verbatim
we obtain

‖v‖L1(Ω) ≤ C
(
‖v‖L1(B̃z) + hz|Dv|(T̃z)

)
∀v ∈ BV(T̃z). (4.5)

Since B̃z is not necessarily convex, we apply a further reduction to the first term
on the right-hand side of (4.5). Since ∂Ω is Lipschitz continuous, there exists a
cone C with positive opening angle α, which can be chosen independently of z,
and apex 0 such that (z + C) ∩ B(z, ε) ⊂ R

n \ T̃z for some ε > 0. Let a ∈ R
n,

|a|2 = ρz/2, be the direction of the axis of the cone C pointing into T̃z and

define z′ = z + a. It can be easily seen that B̃z is star-shaped with respect to z′

and that there exists a value r0 ∈ (0, 1/2] which depends only on α, such that

B(z′, r0ρz) ⊂ B̃z ⊂ T̃z. Hence, we may define πz(u) = (u)Bz
again (but note that

Bz is defined differently now) to obtain the following result.

Lemma 6 For z ∈ Ñh and u ∈ BV(Ω) let πz(u) = (u)Bz
where Bz is defined as

in the above discussion; then, (4.2) holds with a constant C independent of the
mesh size.

Proof For interior vertices, we have already shown that (4.2) holds with a constant
depending only on γz, which measures mesh quality, and it remains to prove a similar
bound for boundary vertices.
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Using (4.5) with v = u − πz(u), we have

‖u − πz(u)‖L1( eTz) . ‖u − πz(u)‖L1( eBz) + hz|Du|(T̃z).

We now apply Lemma 5 with K = B̃z, B = Bz, h = ρz and ρ = r0ρz to obtain

‖u − πz(u)‖
L1( eBz)

. hz|Du|(B̃z).

Combining this estimate with the previous formula, we obtain

‖u − πz(u)‖L1( eTz) . hz |Du|(T̃z).

�

4.2 Construction and analysis of Qh

Finally, we are in a position to define and analyze the reconstruction operator.
For each h ∈ (0, 1] let Qh : Sk(Th) → W1,∞(Ω) be the linear operator defined by

Qhu =
∑

z∈ eNh

πz(u)λz (4.6)

where λz is the standard P 1 nodal basis function on the mesh T̃h associated with
the vertex z.

For later use we define for each z ∈ Ñh, κ ∈ Th and e ∈ Eh:

Tz =
⋃

{κ ∈ Th : z ∈ κ}, Tκ =
⋃

{Tz : z ∈ κ}, and Te =
⋃

{Tκ : e ∈ κ}.

Since T̃h is a submesh of Th, we have that Tz ⊇ T̃z, where T̃z was defined in (4.1).
If we denote by Kκ the number of elements κ′ ∈ Th ∩ Tκ, due to Assumption 1
(Contact regularity), it follows that Kκ is bounded independent of h and of κ.
Together with Assumption 1c this implies that

hz = diam(T̃z) ≈ diam(Tz) ≈ max
κ , z∈κ

diam(Tκ)

and also
diam(Tκ) ≈ min

κ′∈Tκ

hκ′ ≈ hκ.

We use the labels W1,p(Th ∩ Tz), W1,p(Th ∩ Tκ) and W1,p(Th ∩ Te) to denote the
restriction of the broken Sobolev semi-norm to the sets Tz, Tκ and Te, respectively.

Theorem 7 Let p, q ∈ [1,∞). The reconstruction operator Qh defined in (4.6)
satisfies the local estimates

‖u − Qhu‖Lq(κ) . h
n
q
−n

p
+1

κ |u|W1,p(Th∩Tκ) ∀κ ∈ Th (4.7)

‖u − Qh(u)‖Lq(e) . h
(n−1)

q
−n

p
+1

e |u|W1,p(Th∩Te) ∀e ∈ Eh ∩ ∂Ω (4.8)

‖∇Qhu‖Lp(κ) . |u|W1,p(Th∩Tκ) ∀κ ∈ Th. (4.9)
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Furthermore, for q ∈ [p, p∗] \ {∞}, we have the global estimates

‖u − Qhu‖Lq(Ω) . h
n
q
−n

p
+1|u|W1,p(Th) and (4.10)

‖∇Qhu‖Lp(Ω) . |u|W1,p(Th). (4.11)

Proof Fix q ∈ [1,∞). For each z ∈ Ñh we use Lemma 21 to obtain

‖u − πz(u)‖
Lq( eTz)

≈ h
n
q
−n

z ‖u − πz(u)‖
L1( eTz)

.

Our local projection result Lemma 6 gives

‖u − πz(u)‖
Lq( eTz)

. h
n
q
−n+1

z |Du|(T̃z)

. h
n
q
−n+1

z ‖∇u‖L1(Tz) + h
n
q
−n+1

z

∑

e⊂Tz

∫

e
|[[u]]|ds.

For the bulk term ‖∇u‖L1(Tz) we use Lemma 21 and for the surface term we use Hölder’s
inequality (as in the proof of Lemma 3) to deduce

‖u − πz(u)‖
Lq( eTz)

. h
n
q
−n

p
+1

z ‖∇u‖Lp(Tz) + h
n
q
−n

p
+1

z

(
∑

e⊂Tz

h1−p
e

∫

e
|[[u]]|p ds

)1/p

. h
n
q
−n

p
+1

z |u|W1,p(Th∩Tz). (4.12)

We now prove the local estimate (4.7). Using the fact that the hat functions
{λz}z∈ eNh

form a partition of unity, we have:

‖u − Qh(u)‖q
Lq(κ) =

∥∥∥
∑

z∈ eNh∩κ

(u − πz(u))λz

∥∥∥
q

Lq(κ)
.

Rearranging terms, and recalling that ‖λz‖L∞(Ω) = 1 and that λz = 0 outside T̃z, we
compute:

‖u − Qh(u)‖q
Lq(κ) .

∑

z∈ eNh∩κ

‖u − πz(u)‖q

Lq(κ∩ eTz)
.

∑

z∈ eNh∩κ

‖u − πz(u)‖q

Lq( eTz)
.

Using (4.12), we obtain:

‖u − Qh(u)‖q
Lq(κ) .

∑

z∈ eNh∩κ

h
q( n

q
−n

p
+1)

z |u|q
W1,p(Th∩Tz)

.

Rearranging terms, using the definition on Tκ and recalling that the cardinality of
Ñh ∩ κ is uniformly bounded:

‖u − Qh(u)‖Lq(κ) . h
n
q
−n

p
+1

κ




∑

z∈ eNh∩κ

|u|q
W1,p(Th∩Tz)




1/q

. h
n
q
−n

p
+1

κ |u|W1,p(Th∩Tκ).
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If e ∈ Eh ∩ ∂Ω, then

‖u − Qhu‖Lq(e) ≤
∑

z∈ eNh∩e

‖u − πz(u)‖Lq(e∩ eTz).

The set e ∩ T̃z is a union of faces of elements in T̃h. We can therefore use the local
inverse estimate

‖u − πz(u)‖q

Lq(e∩ eTz)
. h−1

κ ‖u − πz(u)‖q

Lq(κ∩ eTz)
,

after which proceed as above to obtain (4.8).
The proof of the third local estimate (4.9) follows along the same lines.
To prove the first global estimate (4.10), we assume q ∈ [p, p∗], q 6= ∞. It then

holds that n
q − n

p + 1 > 0, and we set h∗ = h
n
q
−n

p
+1

(here h is the global mesh size).
We sum (4.7) (to power q) over κ ∈ Th, to obtain

‖u − Qhu‖q
Lq(Ω) . (h∗)q

∑

κ∈Th

(
‖∇u‖p

Lp(Tκ) +

∫

Γint∩Tκ

h1−p|[[u]]|p ds

)q/p

. (h∗)q

(
∑

κ∈Th

[
‖∇u‖p

Lp(Tκ) +

∫

Γint∩Tκ

h1−p|[[u]]|p ds
])q/p

,

where we used the fact
∑

|ai|
α ≤ (

∑
|ai|)

α for α ≥ 1. Finally, we note that due to
Lemma 2, each element κ appears only in finitely many sets Tκ′ and thus, taking the
qth root, we obtain the result.

The second global estimate can be proved in the same way. �

5 Broken embedding theorems

5.1 Poincaré inequalities

In this section, we prove broken Sobolev–Poincaré inequalities for any p ∈ [1, n).
Similar results were previously derived by Lasis and Süli[15] for p = 2. The idea
in our proof is the same as in the proof of Theorem 7, to use the known results in
BV(Ω) and in the Sobolev spaces W1,p(Ω) together with local norm-equivalence
and the reconstruction operator.

Theorem 8 (Sobolev–Poincaré Inequalities) Let p < n and let p∗ = np/(n−
p). There exists a constant Cs such that

‖u − (u)Ω‖Lp∗(Ω) ≤ Cs |u|W1,p(Th) ∀u ∈ Sk(Th) ∀h ∈ (0, 1].

In particular, it holds that

‖u‖Lp∗(Ω) ≤ Cs

(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀u ∈ Sk(Th) ∀h ∈ (0, 1].
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Proof Let v = u− (u)Ω. It is easy to see that Qh respects constants. Hence, it follows
that Qhv = Qhu − (u)Ω and

‖v‖Lp∗ (Ω) ≤ ‖v − Qhv‖Lp∗ (Ω) + ‖Qhv − (Qhv)Ω‖Lp∗ (Ω) + ‖(Qhv)Ω‖Lp∗(Ω). (5.1)

For the first term on the right-hand side of (5.1) we use Theorem 7 to estimate

‖v − Qhv‖Lp∗ (Ω) ≤ Cr|v|W1,p(Th).

For the second term on the right-hand side of (5.1), we employ the Poincaré–Sobolev
inequality for W1,p(Ω), and (4.11), to obtain

‖Qhv − (Qhv)Ω‖Lp∗ (Ω) ≤ C(p,Ω)‖∇Qhv‖Lp(Ω) ≤ CrC(p,Ω)|v|W1,p(Th).

For the last term, we note that ‖(Qhv)Ω‖Lp∗(Ω) . ‖Qhv‖L1(Ω) and

‖Qhv‖L1(Ω) ≤ ‖Qhv − v‖L1(Ω) + ‖v‖L1(Ω)

≤ Crh|v|W1,1(Th) + C(Ω)|Du|(Ω),

where we used Theorem 7 on the first term and the Poincaré inequality for BV(Ω) on
the second term on the right-hand side.

Using our estimate in Lemma 3, we deduce that |Dv|(Ω) = |Du|(Ω) . |u|W1,p(Th),
and we can combine our estimates to yield the first result.

The second result follows immediately from ‖(u)Ω‖Lp∗ (Ω) . ‖u‖L1(Ω). �

5.2 Trace theorem

We first recall some facts about traces of functions of bounded variation. The
following result summarizes Theorems 1 and 2 in [11, Sec. 5.3].

Theorem 9 Let Ω be a Lipschitz domain in R
n. There exists a bounded, linear

operator T : BV(Ω) → L1(∂Ω) (we write Tu = u) such that

∫

Ω

u divϕ dx = −

∫

Ω

ϕ · dDu +

∫

∂Ω

(ϕ · ν)u ds ∀u ∈ BV(Ω) ∀ϕ ∈ C1(Rn)n,

where ν is the unit outward normal to ∂Ω.
If u ∈ BV(Ω) then, for Hn−1-almost every x ∈ ∂Ω, the identity

Tu(x) = lim
r→0

−−

∫

B(x,r)∩Ω

u dx (5.2)

holds.

First, we notice that identity (5.2) immediately implies a Friedrichs inequality
for BV(Ω), and therefore, by Theorem 8, a broken Sobolev–Poincaré inequality
with respect to the norm | · |W1,p

D
(Th) which penalizes boundary values.
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Lemma 10 (Friedrichs Inequality for BV) Let u ∈ BV(Ω) and let ΓD be a
subset of ∂Ω with positive surface measure. Then, there exists a constant CF such
that

‖u‖L1(Ω) ≤ CF

(
|Du|(Ω) +

∫

ΓD

|u| ds

)
∀u ∈ BV(Ω).

Proof We use the usual compactness technique to prove this result. For contradiction,

suppose that no such constant CF exists. Then, there exists a sequence uj ∈ BV(Ω)

such that ‖uj‖L1(Ω) = 1 and |Duj|(Ω) + ‖uj‖L1(ΓD) → 0 as j → ∞. Since ‖uj‖BV is

bounded, there exists a subsequence (not relabelled) and a u ∈ BV(Ω) such that uj
∗
⇀ u

in BV(Ω). Since this implies uj → u strongly in L1(Ω) it follows that ‖u‖L1(Ω) = 1.

Since the functional v 7→ |Dv|(Ω) + ‖v‖L1(ΓD) is convex and strongly continuous, it is

also lower semicontinuous with respect to weak-∗ convergence. Therefore, |Du|(Ω) = 0,

which implies that u is constant in Ω. Since ‖u‖L1(ΓD) = 0 the trace of u at ΓD vanishes

which means that u = 0 and contradicts the assumption that ‖u‖L1(Ω) = 1. �

Corollary 10A (Broken Friedrichs Inequality) Let p ∈ [1, n) and suppose
that ΓD ⊂ ∂Ω with positive surface measure. Then there exists a constant C,
independent of h, such that,

‖u‖Lp∗(Ω) ≤ C|u|W1,p
D

(Th) ∀u ∈ Sk(Th) ∀h ∈ (0, 1].

Proof First, we estimate the boundary penalization, following the proof of Lemma 3:

∫

ΓD

|u|ds .

(
∑

e⊂ΓD

hn
e

)1/p′(∫

ΓD

h1−p|u|p ds

)1/p

. h1/p′Hn−1(ΓD)1/p′

(∫

ΓD

h1−p|u|p ds

)1/p

.

The result now follows immediately by combining Theorem 8 and Lemma 10. �

Theorem 11 (Broken Trace Theorem) Let p < n and set q = p(n− 1)/(n−
p) (i.e., (n − 1)/p−(n − 1)/q = 1−1/p). There exists a constant C, independent
of h, such that

‖u‖Lq(∂Ω) ≤ C
(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀u ∈ Sk(Th) ∀h ∈ (0, 1]. (5.3)

Proof Summing qth powers of (4.8) over the faces on ∂Ω, we obtain:

‖u‖q
Lq(∂Ω) . ‖Qhu‖q

Lq(∂Ω) +
∑

e∈Eh,e⊂∂Ω

h
n−1−nq

p
+q

κ |u|q
W1,p(Th∩Te)

.
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For the choice q = p(n − 1)/(n − p) we have n − 1 − nq/p + q = 0 and furthermore,
q/p ≥ 1. The latter property can be used to estimate

J∑

i=1

|aj|
q/p ≤

( J∑

i=1

|aj|
)q/p

Hence, we can estimate further,

‖u‖q
Lq(∂Ω)

. ‖Qhu‖q
Lq(∂Ω)

+
∑

e∈Eh,e⊂∂Ω

|u|q
W1,p(Th∩Te)

. ‖Qhu‖q
Lq(∂Ω) +

( ∑

e∈Eh,e⊂∂Ω

|u|p
W1,p(Th∩Te)

)q/p

. ‖Qhu‖q
Lq(∂Ω) + |u|q

W1,p(Th)
.

The trace inequality (5.3) is obtained by employing the trace theorem (see for instance

Theorem 6.4.1 in [14]) for Qhu, the continuity property of Qh and the estimate (4.11)

of Theorem 8. �

6 Compactness in W1,p(Th)

We are finally in a position to give the first main results of this work. As we have
already mentioned in Section 3, the lifting operator defined in (3.4) provides a
bulk representation of the jump contribution to the gradients. We first analyze
the main features of the lifting operator. The right-hand side in (3.4) is an inner
product on a finite-dimensional space (cf. also Lemma 22) while the left-hand
side, for u ∈ W1,p(Th)

m fixed, is a linear functional on Sk(Th)
m×n and hence R is

well-defined.

Lemma 12 Let p ∈ [1,∞). There exists a constant CR such that

‖R(u)‖Lp(Ω) ≤ CR

(∫

Γint

h1−p|[[u]]|p ds

)1/p

∀u ∈ W1,p(Th) ∀h ∈ (0, 1].

Proof For each u ∈ W1,p(Th) and for each ϕ ∈ Sl(Th)n we have

∫

Γint

[[u]] · {ϕ}ds ≤

∫

Γint

∣∣h−1/p′ [[u]]
∣∣ ∣∣h1/p′{ϕ}

∣∣ ds

≤
(∫

Γint

h1−p|[[u]]|p ds
)1/p(1

2

∫

Γint

h
(
|ϕ+| + |ϕ−|

)p′
ds
)1/p′

.
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We can further bound the second term in the last estimate by

∫

Γint

h
(
|ϕ+| + |ϕ−|

)p′
ds ≤ 2p′−1

∫

Γint

h
(
|ϕ+|p

′
+ |ϕ−|p

′)
ds

.
∑

κ∈Th

∫

∂κ
h|ϕ|p

′
ds

.
∑

κ∈Th

∫

κ
|ϕ|p

′
dx.

Thus, we have shown that

∫

Γint

[[u]] · {ϕ}ds ≤ C
(∫

Γint

h1−p|[[u]]|p ds
)1/p

‖ϕ‖Lp′ (Ω) (6.1)

∀u ∈ W1,p(Th) ∀ϕ ∈ Sl(Th) ∀p ∈ [1,∞),

where C depends only on the mesh quality and on p. Using the inf-sup condition of

Lemma 22 in the Appendix 9.2, we obtain the result. �

Theorem 13 (Compactness in W1,p(Th)) Let p ∈ (1,∞). For each h ∈ (0, 1]
let uh ∈ W1,p(Th) be such that

sup
h∈(0,1]

[
‖uh‖L1(Ω) + |uh|W1,p(Th)

]
< +∞. (6.2)

Then, there exists a sequence hj ↓ 0 and a function u ∈ W1,p(Ω) such that

uhj

∗
⇀ u in BV(Ω), and

∇uhj
+ R(uhj

) ⇀ ∇u in Lp(Ω).

Proof From Lemma 3 it follows that ‖uh‖BV is bounded. Hence, there exists a
subsequence (which is not relabelled for notational convenience) and a function u ∈

BV(Ω) such that uh
∗
⇀ u in BV(Ω). Using the boundedness of the penalty term and

applying Lemma 12 we also see that ∇uh and R(uh) are bounded in Lp which implies
their weak compactness. Upon extracting a further subsequence (again not relabelled),
we obtain

∇uh ⇀ Fa and R(uh) ⇀ Fj ,

as h → 0, where Fa, Fj ∈ Lp(Ω)n. We show now that Duh converges to Fa + Fj in the
sense of distributions. Since ∇uh ⇀ Fa, we only need to show that the jumps generate
Fj in the limit, i.e., that

∫

Γint

[[uh]] · ϕds →

∫

Ω
Fj · ϕdx ∀ϕ ∈ C1

c(Ω)n. (6.3)
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To this end, we add and subtract a function ϕh ∈ Sl(Th)n, then use the definition of
R(uh) and subtract ϕ again. This procedure gives

∫

Γint

[[uh]] · ϕds =

∫

Γint

[[uh]] ·
{
ϕ − ϕh

}
ds +

∫

Γint

[[uh]] · {ϕh}ds

=

∫

Γint

[[uh]] ·
{
ϕ − ϕh

}
ds +

∫

Ω
R(uh) · ϕh dx

=

∫

Γint

[[uh]] ·
{
ϕ − ϕh

}
ds +

∫

Ω
R(uh) · (ϕh − ϕ) dx

+

∫

Ω
R(uh) · ϕdx.

Using Lemma 12 it follows immediately that, if we choose ϕh in such a way that

‖ϕ − ϕh‖L∞ → 0 then the first and second term tend to zero as h → 0. Since R(uh)

converges weakly to Fj , it follows that Duh converges to Fa + Fj in the sense of

distributions. Since Duh converges also to Du in the sense of distribution, it follows

that Du = Fa + Fj ∈ Lp(Ω)n in the space of distributions. Therefore, the singular

part of Du is zero, whereby u has weak derivative ∇u = Fa + Fj ∈ Lp(Ω)n. Poincaré’s

inequality implies that u ∈ W1,p(Ω). �

Lemma 14 (Compact Embeddings) Under the conditions of Theorem 13 it
also holds that

uhj
→ u in Lq(Ω) ∀ q : 1 ≤ q < p∗, and (6.4)

uhj
→ u in Lq(∂Ω) ∀ q : 1 ≤ q < q∗, (6.5)

where q∗ = (n − 1)p/(n − p) if p < n and q∗ = ∞ if p ≥ n.

Proof For the proof of strong Lq(Ω) convergence it suffices to use the compactness
of the embedding BV(Ω) ⊂ L1(Ω) and use an interpolation theorem to lift the strong
convergence to the Lq spaces indicated.

Unfortunately, the trace operator presented in Theorem 9 is not compact and thus,
we must revert to using the continuous reconstruction operator Qh to prove the second
result.

From (4.8) is follows that, for each face e ⊂ ∂Ω ∩ Eh,

‖uh − Qhuh‖
q
Lq(e) . h

n−1−nq

p
+q

e |u|q
W1,p(Th∩Te)

. (6.6)

We prove (6.5) only for q ∈ [p, (n − 1)p/(n − p)), the other cases being an immediate
consequence of the statement for e.g., q = p. Set α = n − 1 − nq/p + q > 0. Summing
(6.6) over the faces on the boundary, we obtain:

‖uh − Qhuh‖
q
Lq(∂Ω) . hα

∑

e⊂∂Ω

|u|q
W1,p(Th∩Te)

.
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Since q ≥ p we can use ‖ · ‖`q ≤ ‖ · ‖Lp , and Assumption 1b, to deduce that

‖uh − Qhuh‖
q
Lq(∂Ω) . hα

∑

e⊂∂Ω

|u|q
W1,p(Th∩Te)

. hα

(
∑

e⊂∂Ω

|u|p
W1,p(Th∩Te)

)q/p

. hα|u|q
W1,p(Th)

.

This implies that
‖uh − Qhuh‖Lq(∂Ω) → 0 as h → 0. (6.7)

Since the trace operator from W1,p(Ω) to Lq(Ω) is compact (see Theorem 6.3 in [2])

and Qhuh is bounded in W1,p(Ω), it follows that Qhuh → u in Lq(∂Ω) and therefore,

by virtue of (6.7), uh → u in Lq(∂Ω). �

7 Convergence for VIP-DGFEM

We begin by studying the coercivity properties of the functional (3.5) as a dis-
cretization of (3.3).

Lemma 15 (Coercivity) Suppose that the potentials f and g satisfy respec-
tively (3.1) and (3.2). Then there exists a constant C, independent of h such
that

|u|p
W1,p

D
(Th)

≤ C (Ih(u) + 1) ∀u ∈ Sk(Th) ∀h ∈ (0, 1].

Proof By the growth hypotheses (3.1) and (3.2) and the Trace Theorem 11, we have

Ih(u) ≥ c0

(
‖∇u + R(uh)‖p

Lp(Ω) − ‖u‖r
Lr(Ω) − ‖a1‖L1(Ω)

)

−c2

(
‖u‖r

Lr(Ω) + |u|rW1,r(Th) + ‖a2‖L1(ΓN )

)

+

∫

Γint

h1−p|[[u]]|p ds +

∫

ΓD

h1−p|u − uD|p ds.

Since r < p, we can estimate

‖u‖r
Lr(Ω) . ‖u‖r

Lp(Ω) ≤
ε

p/r
‖u‖p

Lp(Ω) +
1

ε(p/r)′
≤ C(ε−1 + ε‖u‖p

Lp(Ω)).

Treating the term |u|rW1,r(Th) in a similar fashion, we obtain

Ih(u) + C(ε) ≥ c0

(
‖∇u + R(uh)‖p

Lp(Ω) − ε‖u‖p
Lp(Ω) − ε|u|p

W1,p(Th)

)

+

∫

Γint

h1−p|[[u]]|p ds +

∫

ΓD

h1−p|u − uD|p ds.

An application of the broken Friedrichs inequality 10A gives

‖∇u+R(u)‖p
Lp(Ω)−ε‖∇u‖p

Lp(Ω)+

∫

Γint

h1−p|[[u]]|p ds+

∫

ΓD

h1−p|u−uD|p ds . Ih(u)+C(ε).
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The first term on the left-hand side can be multiplied by a factor δ ∈ (0, 1) without
changing the validity of the estimate. Thus, for δ ∈ (0, 1), we have

δ‖∇u + R(u)‖p
Lp(Ω) − ε‖∇u‖p

Lp(Ω) +

∫

Γint

h1−p|[[u]]|p ds +

∫

ΓD

h1−p|u − uD|p ds . Ih(u) + C(ε).

Using an inverse triangle inequality, we have

‖∇u + R(u)‖p
Lp(Ω) ≥ 21−p‖∇u‖p

Lp − ‖R(u)‖p
Lp(Ω).

If δ is sufficiently small then the penalty integral dominates δ‖R(u)‖p
Lp(Ω). Furthermore,

setting ε = 1
2δ21−p, we obtain

‖∇u‖p
Lp(Ω) +

∫

Γint

h1−p|[[u]]|p ds +

∫

ΓD

h1−p|u − uD|p ds . Ih(u) + C(ε),

which is the required bound. �

Lemma 15 together with Theorem 13 establishes the compactness of any fam-
ily of DGFEM functions uh for which Ih(uh) is bounded. This allows us to use a
direct method related technique (namely Γ-convergence; see [10, 9]) to prove the
convergence of discrete minimizers to a minimizer of I in A.

Theorem 16 (Convergence) Suppose that f and g are Carathéodory functions
which respectively satisfy (3.1) and (3.2) and that f is convex in its third argu-
ment.

For each h ∈ (0, 1], let uh ∈ argminSk(Th)Ih. Then, there exists a subsequence

hj ↓ 0 and u ∈ A such that uhj

∗
⇀ u. Any such accumulation point u is a

minimizer of I in A and we have, as j → ∞,

uhj
→ u in Lq(Ω) ∀q < p∗, (7.1)

∇uhj
⇀ ∇u in Lp(Ω), (7.2)

Ihj
(uhj

) → I(u) and (7.3)∫

ΓD

h1−p|uhj
− uD|

p ds +

∫

Γint

h1−p|[uhj
]|p ds → 0. (7.4)

If f is strictly convex in its third argument then, in addition,

|u − uhj
|W1,p(Th) → 0 as j → ∞.

If the minimizer is unique, then the entire family uh converges.

Proof By the growth condition (3.1) any family (uh) which is bounded in W1,p(Th)
has bounded energy Ih(uh) and conversely, by Lemma 15, if Ih(uh) is bounded then
|uh|W1,p

D
(Th) is uniformly bounded in h.

From the broken Friedrichs inequality, Corollary 10A, and the compactness result,
Theorem 13, we therefore deduce the existence of a subsequence hj ↓ 0 and of a limit
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point u ∈ W1,p(Ω)m such that ∇uhj
+ R(uhj

) ⇀ ∇u weakly in Lp(Ω)m×n and uhj

∗
⇀ u

in BV(Ω)m. Lemma 14 implies (7.1).

Assume now that (uhj
) is any minimizing sequence for Ihj

converging weakly-∗ to
some u ∈ BV(Ω)m. From the boundedness of |uhj

|W1,p(Thj
) and a standard compactness

and uniqueness argument, using Theorem 13, we deduce again that u ∈ W1,p(Ω) and
that ∇uhj

+ R(uhj
) ⇀ ∇u in Lp. Since the boundary penalty terms,

∫

ΓD

h1−p|uh − uD|p ds

are bounded, using also Lemma 14, it follows that

‖u − uD‖Lp(ΓD) ≤ ‖u − uhj
‖Lp(ΓD) + ‖uhj

− uD‖Lp(ΓD) → 0

as j → ∞ and hence u ∈ A.

Lemma 14 also implies the strong convergence of uhj
to u in Lr(∂Ω), and therefore,

it follows from Lemma 4 (ii) that the surface integral converges, i.e.,

∫

ΓN

g(x, uhj
) ds →

∫

ΓN

g(x, u) ds as j → ∞.

As a consequence, using Lemma 4 (iii), we deduce that

I(u) ≤ lim inf
j→∞

[∫

Ω
f(x, uhj

,∇uhj
+ R(uhj

)) dx +

∫

ΓN

g(x, uhj
) ds

]
.

To see that u ∈ argminAI, fix v ∈ A and let vh ∈ Sk(Th) converge strongly to v in
the ‖ · ‖Lp(Ω) as well as the | · |W1,p(Th)-norm. The existence of such a sequence follows
from standard approximation theory. From Lemma 4 (using also the Trace Theorem
11) we therefore obtain Ih(vh) → I(v), which allows us to estimate

I(u) ≤ lim inf
j→∞

[ ∫

Ω
f(x, uhj

,∇uhj
+ R(uhj

)) dx +

∫

ΓN

g(x, uhj
) ds

]

≤ lim sup
j→∞

Ihj
(uhj

) ≤ lim sup
j→∞

Ihj
(vhj

) ≤ I(v).

Since v was arbitrary it follows that I(u) ∈ argminAI. By choosing v = u we find that
all inequalities are equalities from which we can infer that Ih(uh) → I(u) and that the
penalty terms converge to zero as hj → 0, i.e. that (7.4) holds. As a consequence we
also have R(uh) → 0 strongly which implies (7.2).

If f is strictly convex in its third argument then the theory of Young measures
(see, for instance, [21]) shows that weak convergence together with convergence of the
energy implies strong convergence.

The last point follows from a standard and straightforward uniqueness argument.

�
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8 Optimal embedding constants

In this final section, we present an interesting application of the compactness
results of Section 6. Namely, we shall deduce that, in the limit as h → 0, the
optimal “embedding constant” in the Sobolev–Poincaré inequality (8) is the same
as the embedding constant for the classical Sobolev space. We demonstrate the
technique only on the example of the Sobolev–Poincaré inequality, but we believe
that it should apply to any compact embedding of a Sobolev space.

Unfortunately, our results are incomplete for the particular broken semi-norm
which we have chosen. We therefore present several equivalent norms and discuss
the broken embedding constant in each case. First, we redefine | · |W1,p(Th), by
adding a penalty parameter,

|u|W1,p(Th) =
(
‖∇u‖p

Lp(Ω) + α

∫

Γint

h1−p|[[u]]|p ds
)1/p

. (8.1)

In addition, we define the semi-norms

|u|W1,p
1 (Th) = ‖∇u‖Lp(Ω) + α1

(∫

Γint

h1−p|[[u]]|p ds
)1/p

,

|u|W1,p
R

(Th) =
(
‖∇u + R(u)‖p

Lp(Ω) + αR

∫

Γint

h1−p|[[u]]|p ds
)1/p

, and (8.2)

|u|W1,p
1,R

(Th) = ‖∇u + R(u)‖Lp(Ω) + α1,R

(∫

Γint

h1−p|[[u]]|p ds
)1/p

Proposition 17 If the constants α, α1, αR, α1,R are all positive then the semi-
norms defined in (8.1) and (8.2) are equivalent on the spaces Sk(Th), with con-
stants that are independent of h.

Proof The uniform equivalences of | · |W1,p(Th) and | · |W1,p
1 (Th) and that of | · |W1,p

R
(Th)

and | · |
W1,p

1,R
(Th)

follow from norm-equivalence in R
2. We now show that also | · |

W1,p
1 (Th)

and | · |W1,p
1,R

(Th) are equivalent. Clearly, for u ∈ Sk(Th), it holds that

|u|
W1,p

1,R
(Th)

≤ ‖∇u‖Lp(Ω) + ‖R(u)‖Lp(Ω) + α1,R

( ∫

Γint

h1,p|[[u]]|p ds
)1/p

.

Using Lemma 12 this implies that | · |W1,p
1,R

(Th) . | · |W1,p
1 (Th) with a constant which is

independent of h.

To see that the reverse holds as well, assume for contradiction that hj ∈ (0, 1] and
that uj ∈ Sk(Thj

), j = 1, 2, . . . , such that |uj |W1,p
1 (Thj

)
= 1 and |uj |W1,p

1,R
(Thj

)
→ 0 as

j → ∞. This implies that ∫

Γint

h1−p|[[uj ]]|
p ds → 0
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which, by Lemma 12, implies that ‖R(uhj
)‖Lp(Ω) → 0 and therefore also ‖∇uj‖Lp(Ω) →

0 as j → ∞. However, this means that |uj |W1,p
1 (Thj

)
→ 0 which contradicts the assump-

tion. �

We can now study the Poincaré constants of the various broken semi-norms.
Let p ∈ (1,∞), q ∈ [1, p∗) and let V = {v ∈ L1(Ω) : (v)Ω = 0}. We begin
by noting that the optimal constant C(p, q) for the Sobolev–Poincaré inequality
‖u‖Lq(Ω) ≤ C(p, q)‖∇u‖Lp(Ω) for u ∈ W1,p(Ω) ∩ V is given by

(C(p, q))−1 = inf
u∈W1,p(Ω)\V

‖u‖Lq(Ω)=1

‖∇u‖Lp(Ω).

Similarly, we can define the constants Ch(p, q), Cq
h(p, q), CR

h (p, q) and C1,R
h (p, q)

upon replacing W1,p(Ω) by Sk(Th) and ‖∇u‖Lp(Ω) by the respective seminorms.

Proposition 18 If p ∈ (1,∞) and q ∈ [1, p∗), then CR
h (p, q) → C(p, q) and

C1,R
h (p, q) → C(p, q) as h → 0.

Proof The technique of proof is the same as the proof of Theorem 16. We only

note that, due to Lemma 14, any accumulation point of a family (uh)h∈(0,1] satisfying

‖uh‖Lq(Ω) = 1 must also have unit Lq-norm. �

The case of the seminorms | · |W1,p(Th) and | · |W1,p
1 (Th) is more interesting since

the asymptotic behaviour of the Poincaré constants depends on the magnitude
of the constants α and α1.

Proposition 19 There exists a constant α̂1 > 0 such that
{

limh↓0 C1
h(p, q) = C(p, q), if α̂1 ≥ α1,

lim infh↓0 C1
h(p, q) > C(p, q), if 0 < α1 < α̂1.

Proof We begin by investigating the case where α1 is large. Suppose that uh ∈
Sk(Th) ∩ V , h ∈ (0, 1], that ‖uh‖Lq(Ω) = 1 and that |uh|W1,p

1 (Th) = C1
h(p, q)−1. By

standard approximation results and norm-equivalence it follows that |uh|W1,p
1 (Th) is

bounded and hence we can extract a subsequence uhj
converging weakly-∗ in BV(Ω)

and strongly in Lq(Ω) to a function u ∈ W1,p(Ω). In particular, ‖u‖Lq(Ω) = 1 and we
have

‖∇u‖Lp(Ω) ≤ lim inf
j→∞

‖∇uhj
+ R(uhj

)‖Lp(Ω)

≤ lim inf
j→∞

(
‖∇uhj

‖Lp(Ω) + ‖R(uhj
)‖Lp(Ω)

)
.

If α1 is sufficiently large it follows from Lemma 12 that

‖∇u‖Lp(Ω) ≤ lim inf
j→∞

|uhj
|W1,p

1 (Thj
)

which implies that lim infh↓0 C1
h(p, q)−1 ≥ C(p, q)−1. By standard approximation re-

sults we therefore obtain limh↓0 C1
h(p, q) = C(p, q).
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Now assume that α1 is small. Let u ∈ W1,p(Ω) ∩ V such that ‖u‖Lq(Ω) = 1 and
such that ‖∇u‖Lp(Ω) = C(p, q)−1. For each h ∈ (0, 1] let uh be defined by

uh(x) = (u)κ ∀x ∈ κ ∀κ ∈ Th.

Clearly, uh ∈ Sk(Th) ∩ V and ‖uh − u‖Lq(Ω) → 0 as h ↓ 0. Furthermore, we can bound
the seminorm |uh|W1,p

1 (Th)
in terms of ‖∇u‖Lp(Ω) as follows.

α−p
1 |uh|

p

W1,p
1 (Th)

=
∑

e⊂Γint

h1−p
e Hn−1(e)|(u)κ − (u)κ′ |p

.
∑

e⊂Γint

hn−p
e

[
|(u)κ − π| + |(u)κ′ − π|

]p
, (8.3)

where π ∈ R.
We construct π in a similar fashion as the local projection operators in Section 4.1.

Let z be the center of the ball given in Assumption 1b; then K = κ ∪ κ′ is star-
shaped with respect to z the mesh-regularity assumptions imply the existence of a ball
B = B(z, ρ) ⊂ K such that ρ ≈ hκ ≈ h′

κ. Hence, we can set π = (u)B and use Lemma
5 to deduce that

|(u)κ − π| + |(u)κ′ − π| ≤ h−n
κ ‖u − π‖L1(κ) + h−n

κ′ ‖u − π‖L1(κ′)

. h−n+1
e ‖∇u‖L1(K).

Upon taking p-th powers, and applying Jensen’s inequality, we obtain

[
|(u)κ − π| + |(u)κ′ − π|

]p
. hp

eh
−np
e ‖∇u‖p

L1(K)
. hp−n

e ‖∇u‖p
Lp(K).

Combined with (8.3) and the contact regularity assumptions, this gives

α−p
1 |uh|

p

W1,p
1 (Th)

. ‖∇u‖p
Lp(Ω).

In summary, we have obtained that there exists a constant α̃ which is independent
of h such that,

α−1
1 |uh|W1,p

1 (Th) ≤ α̃C(p, q)−1.

Hence, for α1 < 1/α̃ it follows that

|uh|W1,p(Th) ≤ α1α̃C(p, q)−1 < C(p, q)−1.

as a consequence, we obtain that lim infh↓0 C1
h(p, q) > C(p, q).

Finally, we note that if the latter property holds for a specific α1 = α′
1 then it also

holds for all α1 < α′
1 and hence the proposition follows. �

Remark 20 We conclude our analysis of optimal Sobolev–Poincaré imbedding
constants with a remark on the seminorm | · |W1,p(Th). We can obviously use the
construction of a “recovery sequence” for the | · |W1,p

1 (Th)-seminorm to deduce that,

if α is sufficiently small, then lim infh↓0 Ch(p, q) > C(p, q). However, we have a
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gap for large α. From the corresponding result for C1
h(p, q) it is easy to deduce

from the following variation of Minkovski’s inequality,

(|a| + |b|)p ≤ (1 + ε)|a|p + Bε|b|
p,

where Bε depends only on ε and on p, that

lim
α→∞

lim sup
h↓0

Ch(p, q) = C(p, q).

However, we are unable to prove that lim suph↓0 Ch(p, q) = C(p, q) for any suffi-
ciently large (but fixed) α. In fact, our numerical experiments in one dimension
suggest that this is not the case.

9 Appendix

9.1 Proof of Lemma 5

This proof is a modification of the proof of [23, Lemma 4.1].
Using the local approximation of BV functions by smooth functions (cf. [11,

Sec. 5.2.2]), there exists a sequence uj ∈ BV(K) ∩ C∞(K) such that uj → u
strictly in BV, i.e., uj → u strongly in L1 and |Duj|(K) → |Du|(K) as j → ∞.
Hence, we can assume without loss of generality that u ∈ C∞(Ω) ∩ W1,1(Ω).

We write
‖u‖L1(K) = ‖u‖L1(B) + ‖u‖L1(K\B).

Let Σ be the unit sphere in R
n and, for each σ ∈ Σ, let x0 + r(σ)σ ∈ ∂K. For

the second term, we compute

‖u‖L1(K\B) =

∫

Σ

∫ r(σ)

ρ

tn−1|u(tσ)| dt ds(σ)

≤

∫

Σ

∫ r(σ)

ρ

tn−1
∣∣u(tσ) − u(ρσ)

∣∣dt +

∫

Σ

∫ r(σ)

ρ

tn−1
∣∣u(ρσ)

∣∣ dt ds(σ)

=: S1 + S2.

To obtain a bound on S1, consider

S1 =

∫

Σ

∫ r(σ)

ρ

tn−1
∣∣∣
∫ t

ρ

∂ru(rσ) dr
∣∣∣dt ds(σ)

≤ ρ1−n

∫

Σ

∫ r(σ)

ρ

tn−1

∫ t

ρ

rn−1|∂ru(rσ)| dr dt ds(σ)

≤
1

n
ρ1−n(hn − ρn)

∫

Σ

∫ r(σ)

ρ

rn−1|∂ru(rσ)| dr ds(σ)

≤
ρ

n
(γn − 1)‖∇u‖L1(K\B).
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For S2, we estimate

S2 =
1

n

∫

Σ

(
r(σ)n − ρn

)
|u(ρσ)| ds(σ)

≤
ρ

n

∫

Σ

[hn

ρn
− 1
]
ρn−1|u(ρσ)| ds(σ)

=
ρ

n
(γn − 1)

∫

Σ

ρn−1|u(ρσ)| ds(σ)

=
ρ

n
(γn − 1)‖u‖L1(∂B).

We bound ‖u‖L1(∂B) as follows:

‖u‖L1(∂B) =

∫

Σ

ρn−1|u(ρσ)| ds(σ)

=

∫

Σ

ρn−1
∣∣∣
∫ ρ

0

∂r

[(r

ρ

)n

u(rσ)
]
dr
∣∣∣ds(σ)

=

∫

Σ

ρn−1
∣∣∣
∫ ρ

0

[(r

ρ

)n

∂ru(rσ) +
nrn−1

ρn
u(rσ)

]
dr
∣∣∣ ds(σ)

≤

∫

Σ

ρ−1

∫ ρ

0

rn
∣∣∂ru(rσ)

∣∣dr ds(σ) + n

∫

Σ

ρ−1

∫ ρ

0

rn−1|u(rρ)| dr ds(σ)

≤ ‖∇u‖L1(B) +
n

ρ
‖u‖L1(B).

Combining all our estimates, we obtain

‖u‖L1(K) ≤ ‖u‖L1(B) +
ρ

n
(γn − 1)‖∇u‖L1(K\B)

+
ρ

n
(γn − 1)‖∇u‖L1(B) + (γn − 1)‖u‖L1(B)

= γn‖u‖L1(B) +
ρ

n
(γn − 1)‖∇u‖L1(K)

which gives (4.3).
To obtain the second result, we note that the Poincaré inequality on balls

takes the form (see [1], where this is proved for arbitrary convex sets)

‖u‖L1(B) ≤ ρ‖∇u‖L1(B) ∀u ∈ W1,1(B), (u)B = 0. (9.1)

Thus, (4.4) follows immediately from (4.3).

9.2 Auxiliary results

Lemma 21 Let (Th)h∈(0,1] be a family of partitions of Ω satisfying Assumption
1. Then, for each p, q ∈ [1,∞], there exists a constant C > 0, independent of h,
such that for any κ ∈ Th

h
−n

p
κ ‖v‖Lp(κ) ≤ Ch

−n
q

κ ‖v‖Lq(κ) ∀v ∈ Sk(Th) ∀h ∈ (0, 1].



27

Moreover, for any κ̃ ∈ T̃h

h
−n

p

eκ ‖v‖Lp(eκ) ≤ Ch
−n

q

eκ ‖v‖Lq(eκ) ∀v ∈ S1(T̃h) + Sk(Th) ∀h ∈ (0, 1].

Proof Let κ ∈ Th, κ̂ its corresponding reference element and Fκ : κ̂ → κ the associated
mapping. We set J = |det∇Fκ|. Since Fκ is bi-Lipschitz we have C−1hn

κ ≤ J ≤ Chn
κ

for some constant C which is independent of κ. From the area formula (cf. [11]), we
have ∫

κ
|u|p dx =

∫

κ̂
J |u ◦ Fκ|

p dx ≈ hn
κ

∫

κ̂
|u ◦ Fκ|

p dx.

Using norm-equivalence in finite-dimensional spaces, we obtain

∫

κ
|u|p dx ≈ hn

κ

(∫

κ̂
|u ◦ F |q dx

)p/q

≈ hn−np/q

(∫

κ
|u|q dx

)p/q

.

The first equivalence follows by taking the p-root.

The second equivalence is proved with the same technique, after noting that, given

v ∈ S1(T̃h) + Sk(Th) then v|eκ is a polynomial of degree k. Thus the previous reasoning

applies. �

Lemma 22 Let Sk(Th) be defined as in Section 2 and let the mesh-family satisfy
Assumption 1. Then, there exists a constant C, independent of h, such that

inf
u∈Sk(Th)

sup
v∈Sk(Th)

∫
Ω

uv dx

‖u‖Lp(Ω)‖v‖Lp′
≥ C > 0.

Proof For a given u ∈ Lp(Ω) set v = |u|p−2u so that
∫
Ω uv = ‖u‖Lp(Ω)‖v‖Lp′ . At the

discrete level, if u ∈ Sk(Th), the choice v = |u|p−2u is not allowed, in general. Instead
we set v = Πk(|u|

p−2u), where Πk denotes the L2-projection onto Sk(Th) (note that
this is a projection element by element) and therefore

‖Πku‖2
L2(κ) =

∫

κ
uΠkudx ≤ ‖u‖Lp′ (κ)‖Πku‖Lp(κ) ∀κ ∈ Th.

Using Lemma 21, we obtain

‖Πku‖Lp′ (κ) ≤ CΠ‖u‖Lp′ (κ) ∀κ ∈ Th,

where CΠ is independent of h and κ. Moreover, by the definition of Πk, it holds that∫
Ω uΠkv dx =

∫
Ω uv dx for all u ∈ Sk(Th). A possible value for the constant C in the

statement is therefore given by 1/CΠ. �
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