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Abstract. In this paper we consider the problem of computing the min-
imum expected time to reach a target and the synthesis of the corre-
sponding optimal controller for a probabilistic timed automaton (PTA).
Although this problem admits solutions that employ the digital clocks ab-
straction or statistical model checking, symbolic methods based on zones
and priced zones fail due to the difficulty of incorporating probabilistic
branching in the context of dense time. We work in a generalisation of
the setting introduced by Asarin and Maler for the corresponding prob-
lem for timed automata, where simple and nice functions are introduced
to ensure finiteness of the dense-time representation. We find restrictions
sufficient for value iteration to converge to the minimum expected time
on the uncountable Markov decision process representing the semantics
of a PTA. We formulate a Bellman operator on the backwards zone
graph of a PTA and prove that value iteration using this operator equals
that computed over the PTA’s semantics. This enables us to extract an
ε-optimal controller from value iteration in the standard way.

1 Introduction

Systems which exhibit real-time, probabilistic and nondeterministic behaviour
are widespread and ubiquitous in many areas such as medicine, telecommunica-
tions, robotics and transport. Timing constraints are often vital to the correct-
ness of embedded devices and stochasticity is needed due to unreliable channels,
randomisations and component failure. Finally, nondeterminism is an important
concept which allows us to model and analyse systems operating in a distributed
environment and/or exhibiting concurrency. A natural model for such systems,
probabilistic timed automata (PTAs), a probabilistic extension of timed automata
(TAs) [1], was proposed in [20]. They are finite-state automata equipped with
real-valued clocks which measure the passage of time and whose transitions are
probabilistic. Transitions are expressed as discrete probability distributions over
the set of edges, namely a successor location and a set of clocks to reset.

An important class of properties on PTAs are probabilistic reachability prop-
erties. They allow us to check statements such as: “with probability 0.05 or
less the system aborts” or “the data packet will be delivered within 1 second
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with minimum 0.95 probability”. Model checking algorithms for these properties
are well studied. Forwards reachability [20] yields only approximate probability
values (upper bounds on maximum reachability probabilities). An abstraction
refinement method, based on stochastic games, has subsequently been proposed
in [17] for the computation of exact values and implemented in PRISM [18].
An alternative method is backward reachability [21], also giving exact values.
These are all symbolic algorithms based on zones, a structure that represents in
a concise way sets of the automaton states with equivalent behaviour.

Another important class of properties, which is the focus of this paper, is
expected reachability. They can express statements such as “the expected num-
ber of packets sent before failure is at least 100” or “the expected time until a
message is delivered is at most 20ms”. These properties turned out to be more
difficult to verify on PTAs and currently no symbolic approach exists. Even for
TAs, the research first concentrated on checking whether there exist system be-
haviours that satisfy a certain property φ (for example, reaching the target set
of states). In many situations this is not sufficient, as we often want to distin-
guish between behaviours that reach target states in 10 or in 1000 seconds. In
[2], a backward fixed-point algorithm was proposed for controller synthesis for
TAs, which generates a controller that reaches the target in minimum time. The
analogous problem for priced timed automata, a model comprising more general
reward (or cost) structures, was also considered. The minimum reward reacha-
bility for this model has been solved using the region graph method [4], and later
extended for more efficient priced zones [22] and implemented in Uppaal [23].

Contributions. We propose the first zone-based algorithm to compute the min-
imum expected time to reach a target set and synthesise the ε-optimal controller
for PTAs. The semantics of a PTA is an uncountable Markov decision process
(MDP). Under suitable restrictions, we are able to prove that value iteration
converges to the minimum expected time on this MDP. We formulate a Bellman
operator on the backwards zone graph of a PTA and show that value iteration
using this operator yields the same value as that computed on the MDP. This
enables us to extract an ε-optimal controller from value iteration in the stan-
dard way. This problem has been open for several years, with previous symbolic
zone-based methods, including priced zones, being unsuitable for computing ex-
pected values since accumulated rewards are unbounded. In order to represent
the value functions we introduce rational k-simple and rational k-nice functions,
a generalisation of Asarin and Maler’s classes of functions [2].

Related work. Expected reachability properties of PTAs can be verified us-
ing the digital clocks method [19], which assumes an integral model of time as
opposed to a dense model of time. This method, however, suffers from state-
space explosion. In [12], the minimum expected reward for priced timed games
has been solved using statistical model checking and Uppaal-SMC [11]. This
is orthogonal to numerical model checking, based on simulation and hypothesis
testing, giving only approximate results which are not guaranteed to be correct.
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In [7] the authors consider priced probabilistic timed automata and study
reward-bounded probabilistic reachability, which determines whether the max-
imal probability to reach a set of target locations, within given bounds on the
accumulated reward and elapsed time, exceeds a threshold. Although this prob-
lem is shown to be undecidable [6], a semi-decidable backwards algorithm using
priced zones, which terminates if the problem is affirmative, is implemented in
Fortuna [8].

Outline. In Section 2 we define MDPs and give existing results concerning
optimal reward computation for uncountable MDPs. Section 3 defines PTAs and
introduces the assumptions needed for the adoption of the results of Section 2.
In Section 4, we present our algorithm for computing the minimum expected
time and synthesis of an ε-optimal controller using the backwards zone graph
of a PTA. Section 4 also introduces a representation of the value functions that
generalise the simple and rational nice functions of [2] and gives an example
demonstrating the approach. We conclude with Section 5.

This paper is an extended version, with proofs, of [15].

2 Background

Let R be the set of non-negative reals, N the integers, Q the rationals and Q`
the non-negative rationals. A discrete probability distribution over a set S is a
function µ : SÑr0, 1s such that

ř

sPS µpsq “ 1 and the set ts P S | µpsqą0u is
finite. We denote by DistpSq the set of distributions over S.

Markov Decision Processes (MDPs) is a widely used formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1. An MDP is a tuple M “ pS, s0, A,PM,RMq, where S is a (pos-
sibly uncountable) set of states, s0 P S is an initial state, A is a (possibly un-
countable) set of actions, PM : pSˆAq Ñ DistpSq is a (partial) probabilistic
transition function and RM : pSˆAq Ñ R is a reward function.

A state s of an MDP M has a set of enabled actions, denoted Apsq, given by
the set of actions for which PMps, aq is defined. A transition in M from state
s is first made by nondeterministically selecting an available action a P Apsq.
After the choice is made, a successor state s1 is selected randomly according to
the probability distribution PMps, aq, i.e. the probability that a transition to s1

occurs is equal to PMps, aqps
1q, and the reward RMps, aq is accumulated when

making this transition.
An infinite path is a sequence ω “ s0

a0
ÝÑ s1

a1
ÝÑ s2

a2
ÝÑ ¨ ¨ ¨ of transitions

such that PMpsi, aqpsi`1qą0 for all iě0, and it represents a particular resolution
of both nondeterminism and probability. A finite path is a prefix of an infinite
path ending in a state. The pi`1qth state of a path ω is denoted by ωpiq and the
action associated with the pi`1qth transition by steppω, iq. We denote the set of
all infinite (finite) paths of M by IPathsM (FPathsM) and the last state of a
finite path ω by lastpωq.
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A strategy (also called an adversary or policy) of M resolves the choice
between actions in each state, based on the execution so far.

Definition 2. A strategy of an MDP M is a function σ : FPathsMÑDistpAq
such that σpωqpaqą0 only if a P Aplastpωqq.

For a fixed strategy σ and state s, we can define a probability measure Pσs over
the set of infinite paths starting in s [16]. A strategy σ is memoryless if its
choices only depend on the current state, and deterministic if σpωq is a point
distribution for all ω P FPathsM. The set of strategies of M is denoted by ΣM.

Two fundamental quantitative properties of MDPs are the probability of
reaching a set of target states and the expected reward accumulated before
reaching a target. For a strategy σ, state s and set of target states F , the
probability of reaching F and expected reward accumulated before reaching F
from s under σ are given by:

PσMps, F q
def
“ Pσs tω P IPathsM | ωpiq P F for some i P Nu

EσMps, F q
def
“

ş

ωPIPathsM
rewpω, F qdPσs

where for any infinite path ω:

rewpω, F q
def
“

"

řmintk´1 | ωpkqPF u
i“0 RMpωpiq, steppω, iqq if ωpkq P F for some k P N

8 otherwise.

The standard approach is to analyse the optimal values of these measures, i.e.
the minimum and maximum values over all strategies. In this paper, we are
concerned with the maximum probability of reaching a target and minimum
expected accumulated reward before reaching a target:

Pmax
M ps, F q

def
“ supσPΣM

PσMps, F q and Emin
M ps, F q

def
“ infσPΣM EσMps, F q .

The optimal values can be computed using a Bellman operator [5]. More pre-
cisely, under certain conditions on the MDP and target set under study, using
a Bellman operator the optimal values can be obtained through a number of
techniques, including value iteration and policy iteration, see for example [10,9].
Concerning minimum expected reachability we have the following definition.

Definition 3. Given an MDP M and target set F , the Bellman operator TM :
pSÑRq Ñ pSÑRq for minimum expected reachability is defined as follows. For
any f : S Ñ R and s P S:

TMpfqpsq “

"

0 if s P F
infaPApsq tRMps, aq `

ř

s1PS PMps, aqps
1q¨fps1qu otherwise.

Value iteration for TM corresponds to repeatedly applying the operator when
starting from some initial approximation f0 until some convergence criterion
is met, e.g. computing Tn`1pf0q“T pT

npf0qq until }Tn`1pf0q´T
npf0q} ď ε for

some threshold ε. On the other hand, policy iteration starts with an arbitrary,
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deterministic and memoryless strategy, and then tries repeatedly to construct
an improved (deterministic and memoryless) strategy. This is achieved by com-
puting the expected reachability values for the current strategy and, if possible,
updating the actions choices so that the expected reachability values decrease.

We now adapt the results of [14] for the total expected reward for possibly
uncountable-state and uncountable-action set MDPs. The conditions imposed by
[14] correspond, in our setting, to those given below (since we restrict to discrete
distributions and non-negative reward values, the assumptions we require are
weaker).

Assumption 1. For an MDP M and target set F :

(a) Apsq is compact for all s P S;
(b) RM is bounded and a ÞÑ RMps, aq is lower semi-continuous for all s P S;
(c) if σ is a memoryless, deterministic strategy which is not proper, then EσMps, F q

is unbounded for some s P S;
(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if PσMps, F q“1 for all s P S.

Using these assumptions we have the following result.

Theorem 1 ([14]). If M and F are an MDP and target set for which Assump-
tion 1 holds, then:

– there exists a memoryless, deterministic strategy that achieves the minimum
expected reward of reaching F ;

– the minimum expected reward values are the unique solutions to TM;
– value iteration over TM converges to the minimum expected reward values

when starting from any bounded function;
– policy iteration converges to the minimum expected reward values when start-

ing from any proper, memoryless, deterministic strategy.

3 Probabilistic Timed Automata

We now introduce Probabilistic Timed Automata, a modelling framework for sys-
tems which incorporate probabilistic, nondeterministic and real-time behaviour.

Clocks, Clock Valuations and Zones. Let X be a set of real-valued variables
called clocks, which increase at the same, constant rate. A function v : XÑR is
called clock valuation function and the set of all clock valuations is denoted as
RX . Let 0 be a valuation that assigns 0 to all clocks in X . For any R Ď X and
any valuation v on X , we write vrRs for the valuation on X such that vrRspxq“0
if x P R and vrRspxq“vpxq otherwise. For t P R, v`t denotes the valuation
which assigns pv`tqpxq“vpxq`t to all x P X . A zone is an expression of the
form: ζ :“ x„c | x´y„c | ζ^ζ, where x, y P X , „P tă,ď,ą,ěu and c P N. The
set of zones on X is denoted ZonespX q. A clock valuation v satisfies a zone ζ,
denoted v|ùζ, if ζ resolves to true after substituting each occurrence of clock x
with vpxq. A zone ζ represents the set of clock valuations v which satisfy it.
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We require a number of classical operations on zones [24]. Zone Õζ contains
all valuations reachable from a valuation in ζ by letting time pass. Conversely,
Öζ contains all valuations that can reach ζ by letting time pass. Furthermore,
for a set of clocks R, ζrRs includes the valuations obtained by those in ζ by
resetting the clocks R and rRsζ the valuations which result in a valuation in ζ
when the clocks in R are reset to 0.

Definition 4. A PTA P is a tuple pL, l0,X ,Act , enab, prob, invq where: L is a
finite set of locations; l0 P L is an initial location; X is a finite set of clocks; Act
is a finite set of actions; enab : pLˆActq Ñ ZonespX q is an enabling condition;
prob : pLˆActq Ñ Distp2XˆLq is a probabilistic transition function; inv : L Ñ
ZonespX q is an invariant condition.

A state of P is a pair pl, vq P LˆRX such that the clock valuation v satisfies the
invariant invplq. A transition is a time-action pair pt, aq corresponding to letting
time t elapse and then performing the action a. In a state pl, vq, time can elapse
as long as the invariant invplq remains continuously satisfied and action a can be
performed only if the enabling condition enabpl, aq is then satisfied. If transition
pt, aq is performed, then the set of clocks to reset and successor location are
selected randomly according to the probability distribution probpl, aq.

For pl, aq P LˆAct , an element pR, l1q P 2XˆL such that probpl, aqpR, l1qą0
is called an edge of pl, aq and the set of all edges of pl, aq is denoted edgespl, aq.

Definition 5. For PTA P “ pL, l0,X ,Act , prob, invq its semantics is given by
the (infinite-state) MDP rrPss “ pS, s0,RˆAct ,PrrPss,RrrPssq where:

– S “ tpl, vq P LˆRX | v |ù invplqu and s0 “ pl0,0q;
– PrrPssppl, vq, pt, aqq “ µ if and only if v`t1 |ù invplq for all 0 ď t1 ď t, v`t |ù

enabpl, aq and for any pl1, v1q P S:

µpl1, v1q “
ř

t| probpl, aqpR, l1q | R Ď X ^ v1 “ pv`tqrRs |u

– RrrPsspt, aq “ t for all pt, aq P RˆAct.

For Theorem 1 to be applicable to semantics of a PTA, we need to ensure
Assumption 1 holds. To this end, we introduce the following assumptions.

Assumption 2. For any PTA P we have:

(a) all invariants and enabling conditions of P are bounded;
(b) only non-strict inequalities are allowed in clock constraints (P is closed);
(c) P is structurally non-zeno [25] (this can be identified syntactically and in a

compositional fashion [26] and guarantees time-divergent behaviour).

Conditions (a) and (b) are necessary and sufficient to ensure Apsq is compact
for all states s P S, i.e. Assumption 1(a) holds. Assumption 1(b) follows from
Definition 5 as, for any pt, aq P RˆAct , we have RrrPssps, pt, aqq“t for all s P S.
Structurally non-zeno is sufficient for ensuring Assumption 1(c) holds. More
precisely, if for strategy σ the probability of reaching the target is less than
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l0 l1

l3l2

a 0.7

x:“0
0.3

x:“0

5ďxď10

c

2ďxď10b

d
e, xě1, x:“0

Fig. 1. PTA example

1, there is a non-negligible set of paths under σ which never reach the target
and, since σ is non-zeno, elapsed time (and hence the accumulated reward) must
diverge on the paths in this set.

The remaining assumption, Assumption 1(d), holds if we restrict attention
to the sub-MDP of rrPss which contains only states s for which Pmax

rrPssps, F q“1

[13]. More precisely, if Pmax
rrPssps, F q“1, then, using the region graph construction

[20], there exists a memoryless, deterministic strategy that reaches the target
with probability 1, and hence this strategy will also be proper.

We have imposed several restrictions on PTAs we analyse. First, bounded-
ness is not actually a restriction since bounded TAs are as expressive as standard
TAs [4] and the result carries over to PTAs. The fact that PTAs must be closed
is not a severe restriction in practice, as any PTA can be infinitesimally approx-
imated by one with closed constraints. Non-zenoness is a standard assumption
for both TAs and PTAs, as it discards unrealistic behaviours, i.e. executions for
which time does not diverge.

Example 1. Consider the PTA shown in Figure 1 where the target is l3. We
assume the invariant in each location equals xď10 and the enabling conditions
for transitions labelled a and d equal xď10. From the state pl0, vq, if action a is
chosen, then the minimum expected time equals 0.3¨5`0.7¨2 “ 2.9. On the other
hand, if action d is selected, then the minimum expected time equals 5´vpxq if
vpxqď5 and 0 otherwise. Therefore, in the initial state, i.e. when vpxq“0, the
minimum expected time equals mint2.9, 5´0u “ 2.9.

In this example, the optimal choices are to take transitions as soon as they
are available. However, as we will see, this does not hold in general since we
might need to wait longer in a location in order for an enabling condition to be
satisfied later.

4 Minimum Expected Time Algorithm for PTAs

In this section we present our algorithm for the minimum expected time com-
putation for PTAs. It is based on a backwards exploration of the state space.
We adopt backwards as opposed to forwards search since, although forwards has
proven successful in the context of TAs, for PTAs it yields only upper bounds for
maximum probabilistic reachability [20]. For the remainder of the section we fix
a PTA P “ pL, l0,X ,Act , enab, prob, invq, target set of locations F and suppose
rrPss “ pS, S0,RˆAct ,PrrPss,RrrPssq and SF “ tpl, vq | l P F ^ v|ùinvplqu.
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BackwardsReachpP, F q

1 Z :“ ∅
2 E :“ ∅
3 Y :“ tpl, invplqq | l P F u
4 while (Y ‰ ∅)
5 choose y P Y

6 Y :“ Y z tyu

7 Z :“ ZY tyu

8 for pl, aq P pLzF qˆAct and pR, l1q P edgespl, aq
9 z :“ dprepl, a, R, l1qptprepyqq

10 if (z ‰ ∅)
11 if (z R Z) then Y :“ YY tzu

12 E :“ EY tpz, a, pR, l1q, yqu

13 for pz̃, a, pR̃, l̃1q, ỹq P E such that pR̃, l̃1q ‰ pR, l1q
14 if (z^z̃ ‰ ∅) and z^z̃ R Z then Y :“ YY tz^z̃u

15 for z P Z and pz1, a, pR, l1q, z2q P E do
16 if z Ď z1 then
17 E :“ tpz, a, pR, l1q, z2qu Y E

18 return pZ, Eq

Fig. 2. Backward reachability algorithm

Symbolic States. A symbolic state z of P is a pair pl, ζq P LˆZonespX q rep-
resenting the set of PTA states tpl, vq | v|ùζu. Let ZF“tpl, invplqq | l P F u, i.e.
the target set of symbolic states. For any symbolic states z“pl, ζq and z1“pl, ζ 1q
let z^z1“pl, ζ^ζ 1q, z Ď z1 if and only if ζ Ď ζ 1 and z“∅ if and only if ζ“false.
The time and discrete predecessor operations for z“pl, ζq are defined as follows:

tprepzq “ pl,Öζ ^ invplqq

dprepl2, a, pR, l1qqpzq “

"

pl2, falseq if l ‰ l1

pl2, rRsζ ^ enabpl2, aqq otherwise

where pR, l1q P edgespl2, aq, l2 P L and a P Act .

Backward Reachability Algorithm. We use a slightly modified version of the
backward reachability algorithm on symbolic states taken from [21] (the same
operations are performed, we just add action labels to the edge tuples). The
modified version is given in Figure 2.

The backwards algorithm returns a zone graph pZ, Eq with symbolic states
as vertices. Termination of the algorithm is guaranteed by the fact that only
finitely many zones can be generated. As demonstrated in [21], from this graph
one can build a finite state MDP for computing the exact maximum reachability
probabilities of rrPss. The MDP MpZ,Eq has state space Z, action set 2E and if
z P Z and E P 2E, then PMpZ,Eq

pz, Eq is defined if and only if there exists a P Act
such that

– pz2, a1, pR, l1q, z1q P E implies z2 “ z and a1 “ a;
– pz, a, pR, l1q, z1q ‰ pz, a, pR̃, l̃1q, z̃1q P E implies pR, l1q ‰ pR̃, l̃1q;
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where PMpZ,Eq
pz, Eqpz1q“

ř

t|probpl, aqpR, l1q | pz, a, pR, l1q, z1q P E|u for z1 P Z.
The following theorem shows the correspondence between the maximum

reachability probabilities for rrPss and MpZ,Eq.

Theorem 2 ([21]). Let pZ, Eq be the zone graph returned by BackwardsReachpP, F q,
then for any state s of rrPss we have:

– Pmax
rrPssps, SF qą0 if and only if there exists z P Z such that s P tprepzq;

– if Pmax
rrPssps, SF qą0, then Pmax

rrPssps, SF q “ max
 

Pmax
MpZ,Eq

pz, ZF q | zPZ^sPtprepzq
(

.

Using Theorem 2 we can find the states s of rrPss for which Pmax
rrPssps, SF q“1

by computing the symbolic states z for which Pmax
MpZ,Eq

pz, ZF q“1. Finding these

symbolic states does not require numerical computation [13], and hence we do
not need to build MpZ,Eq, but can use pZ, Eq directly in the computation.

For the remainder of this section we assume we have computed the states of
MpZ,Eq, and hence of rrPss, for which the maximum reachability probability is 1,
and rrPss and pZ, Eq are the sub-MDP and sub-graph restricted to these states.
Using Theorem 2, s P S if and only if there exists z P Z such that s P tprepzq.

For states not considered, i.e. states for which the maximum reachability
probability is less than 1, since we assume P is non-zeno (Assumption 2(c)) their
minimum expected time equals infinity. Therefore, if we compute the minimum
expected time for the states of the constructed sub-MDP, we will have found the
minimum expected time for all states of the PTA.

Following the discussion in Section 3, rrPss now satisfies Assumption 1 and
therefore we can use Theorem 1. In particular, value iteration for the Bellman
operator of Definition 3 for rrPss and SF converges to the minimum expected
time when starting from any bounded function. Below we will present a value
iteration method over pZ, Eq and prove that it corresponds to that for rrPss and
SF , and hence will also converge to the minimum expected time values for rrPss.

Value iteration over the zone graph. To present the value iteration operator
for pZ, Eq, we require the following notation. For pl, ζq P Z, the set of edges E Ď E

is an element of Epl, ζq if and only if there exists a P Act such that edgespl, aq “
tpR1, l1q, . . . , pRn, lnqu and E“tpz, a, pR1, l1q, z1q, . . . , pz, a, pRn, lnq, znqu for some
z1, . . . , zn P Z.

Definition 6. The operator TpZ,Eq :pZÑpSÑRqqÑpZÑpSÑRqq on the zone graph
pZ, Eq is such that for g : ZÑpSÑRq, pl, ζq P Z and pl, vq P S where pl, vq P
tprepl, ζq we have TpZ,Eqpgqpl, ζqpl, vq equals 0 if l P F and otherwise equals

inf
tPR^v`tPζ

min
EPEpl,ζq

#

t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPE

probpl, aqpR, l1q¨gpl1, ζ 1qpl1, pv`tqrRsq

+

.

We now demonstrate the correspondence between value iteration using this op-
erator over pZ, Eq and that given by Definition 3 over rrPss.
Proposition 1. If f : SÑR and g : ZÑpSÑRq are functions such that fpsq “
gpzqpsq for all z P Z and s P tprepzq, then for any s P S and n P N we have:
Tn
rrPsspfqpsq “ mintTn

pZ,Eqpgqpzqpsq | z P Z^ s P tprepzq u.
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Proof. Consider any f : SÑR and g : ZÑpSÑRq such that fpsq “ gpzqpsq for
all z P Z and s P z. The proof is by induction on n P N. If n“0, then the result
follows by construction of f and g and since T 0

rrPsspfq “ f and T 0
pZ,Eqpgq “ g.

Next we assume the proposition holds for some n P N. For any s“pl, vq P S, if
l P F , then by the construction of the zone graph (see Figure 2), Definition 3 and
Definition 6 we have: Tn`1

rrPss pfqpsq “ 0 “ min
 

Tn`1
pZ,Eqpgqpzqpsq | z P Z^s P tprepzq

(

.

It therefore remains to consider the case when s“pl, vq P S and l R F . For any
pt1, a1q P Apsq and pR, l1q P edgespl, aq by the induction hypothesis there exists
pl1, ζpR,l1qq P Z with pl1, pv`t1qrRsq P tprepl1, ζpR,l1qq such that:

TnpZ,Eqpgqpl
1, ζpR,l1qqpl

1, pv`t1qrRsq “ TnrrPsspfqpl
1, pv`t1qrRsq . (1)

Now since pt1, a1q P Apsq and pl1, pv`t1qrRsq P tprepl1, ζpR,l1qq it follows from Defi-
nition 5 that pl, v`tq P dprepl, a1, pR, l1qqptprepl1, ζpR,l1qqq.

Since the edge pR, l1q P edgespl, aq was arbitrary, by the construction of the
zone graph (see Figure 2), there exists pl, ζq P Z such that v`t1 P ζ and edge set:

E1 “ tpl, ζq, a1, pR, l1q, pl1, ζpR,l1qqq | pR, l
1q P edgespl, aqu P Epl, ζq . (2)

Furthermore, by definition of tpre we have pl, vq P tprepl, ζq. Now, by Definition 6,
Tn`1
pZ,Eqpgqpl, ζqpl, vq equals:

inf
tPR^v`tPζ

min
EPEpl,ζq

#

t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPE

probpl, aqpR, l1q¨TnpZ,Eqpgqpl
1, ζ 1qpl1, pv`tqrRsq

+

ď min
EPEpl,ζq

#

t1 `
ř

ppl,ζq,a1,pR,l1q,pl1,ζ1qqPE

probpl, a1qpR, l1q¨TnpZ,Eqpgqpl
1, ζ 1qpl1, pv`t1qrRsq

+

(since v`t1 P ζ)

ď t1 `
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPE1

probpl, a1qpR, l1q¨TnpZ,Eqpgqpl
1, ζ 1qpl1, pv`t1qrRsq

(since E1 P Epl, ζq)

“ t1 `
ř

pR,l1qPedgespl,a1q

probpl, a1qpR, l1q¨TnrrPsspfqpl
1, pv`t1qrRsq (by (1) and (2))

“ RrrPssps, pt
1, a1qq `

ř

s1PSPrrPssps, pt
1, a1qqps1q¨TnrrPsspfqps

1q (by Definition 5)

Therefore, since pt1, a1q P Apsq was arbitrary it follows from Definition 3 that:

Tn`1
rrPss pfqpsq ě min

 

Tn`1
pZ,Eqpgqpzqpsq | z P Z^ s P tprepzq

(

. (3)

Next we consider any z“pl, ζq P Z such that v`t P ζ for some t P R (i.e. z P Z

such that s P tprepzq). For any t1 P R such that v`t1 P ζ and E1 P Epl, ζq by
construction of the zone graph there exists a1 P Act where:

E1 “ tpl, ζq, a1, pR, l1q, pl1, ζpR,l1qqq | pR, l
1q P edgespl, a1qu (4)

and pl1, pv`t1qrRsq P tprepl1, ζpR,l1qq for all pR, l1q P edgespl, aq. Now by the induc-
tion hypothesis for any pR, l1q P edgespl, aq:

TnrrPsspfqpl
1, pv`t1qrRsq ď TnpZ,Eqpgqpl

1, ζpR,l1qqpl
1, pv`t1qrRsq . (5)
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Furthermore, by Definition 5 we have pt1, a1q P Apsq. Now by Definition 3:

Tn`1
rrPss pfqpl, νq “ inf

pt,aqPApl,vq

"

RrrPssps, pt, aqq `
ř

s1PS

PrrPssps, pt, aqqps
1q¨TnrrPsspfqps

1q

*

ď RrrPssps, pt
1, a1qq `

ř

s1PS

PrrPssps, pt
1, a1qqps1q¨TnrrPsspfqps

1q (since pt1, a1q P Apsq)

“ t1 `
ř

pR,l1qPedgespl,aq

probpl, a1qpR, l1q¨TnrrPsspfqpl
1, pv`t1qrRsq (by Definition 5)

ď t1 `
ř

pR,l1qPedgespl,aq

probpl, a1qpR, l1q¨TnpZ,Eqpgqpl
1, ζpR,l1qqpl

1, pv`t1qrRsq (by (5))

“ t1 `
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPE1

probpl, a1qpR, l1q¨TnpZ,Eqpgqpl
1, ζpR,l1qqpl

1, pv`t1qrRsq

(by (4))

Since z“pl, ζq P Z such that v`t P ζ for some t P R, t1 P R such that v`t1 P ζ
and E1 P Epl, ζq were arbitrary, by Definition 6 it follows that:

Tn`1
rrPss pfqpsq ď min

 

Tn`1
pZ,Eqpgqpzqpsq | z P Z^ s P tprepzq

(

. (6)

Combining (3) and (6) we have:

Tn`1
rrPss pfqpsq “ min

 

Tn`1
pZ,Eqpgqpzqpsq | z P Z^ s P tprepzq

(

.

and hence, since s P S was arbitrary, the proposition holds by induction. [\

Rational simple functions and rational nice functions. In [2], the authors
introduce simple functions and show that all value functions encountered during
the iterative procedure for computing the minimum time reachability for TAs
belong to this special class. For a zone ζ, a function f : ζÑR is simple if and
only if it can be represented as:

fpvq “

#

cj if v P Cj

dl´vpxlq if v P Dl

where cj , dl P N, xl P X , Cj and Dl are zones for 1ďjďM and 1ďlďN .
When it comes to PTAs, due to the presence of probabilistic branching,

simple functions are not sufficient, as shown by the example below. Moreover,
the domain of clocks cannot be represented by zones, as we now need to allow
more general linear constraints on clocks with rational coefficients.

Example 2. We return to the PTA of Example 1 (see Figure 1). Expressing the
minimum expected time in the initial location as a function f : RXÑR we have:

fpvq “

$

&

%

2.9 if xď2.1
5´vpxq if 2.1ďxď5

0 if 5ďxď10

and hence it cannot be represented using simple functions.
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We introduce rational simple functions to represent the functions encountered
during value iteration. Let X “ tx1, . . . , xnu and k be the maximum constant
appearing in P. By Assumption 2(a) P is bounded, and hence all clock values
in P are bounded by k.

Definition 7. A (convex) k-polyhedron C Ď tv P RX | vpxqďk for x P X u is
defined by finitely many linear inequalities; formally, it is of the form:

C “
 

v P RX |
řn
i“1 qij ¨vpxiq ď fj for 1ďjďM

(

where qij , fj P Q and fjďk for all 1ďiďn and 1ďjďM for some M P N.

Definition 8. For zone ζ, a function f : ζÑR is rational k-simple if and only
if it can be represented as:

fpvq “

#

cj if v P Cj

dl ´
řn
i“1 pil¨vpxiq if v P Dl

where cj , dl P Q`, pil P Q`Xr0, 1s such that
řn
i“1 pilď1 and Cj , Dl are k-

polyhedra for all 1ďiďn, 1ďjďM and 1ďlďN .

Furthermore, a function f : ZÑpSÑRq is rational k-simple if fpl, ζqpl, ¨q :ÖζÑR
is rational k-simple for all pl, ζq P Z.

We require the following definition and lemma for rational k-simple functions.

Definition 9. If f : ζÑR is a rational k-simple function and R Ď X , let f rRs :
rRsζÑR be the function where f rRspvq “ fpvrRsq for all v P ζ.

Lemma 1. If f : ζÑR is rational k-simple and R Ď X , then f rRs : rRsζÑR is
rational k-simple. (The proof can be found in the appendix.)

During value iteration we obtain functions of the form v ÞÑ t`fpl, ζqpl, v`tq
where f is rational k-simple. This motivates the introduction of rational k-nice
functions, based on Asarin and Maler’s k-nice functions [2].

Definition 10. A k-bipolyhedron is a set of the form tpv, tq | v P C^v`t P Du
where C and D are k-polyhedra. For a zone ζ, a function g : pζˆRq Ñ R is
rational k-nice if and only if it can be represented as:

gpv, tq “

#

cj`t if pv, tq P Fj

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl

where cj , dl P Q`, pil P Q`Xr0, 1s such that
řn
i“1 pilď1 and Fj , Gl are rational

k-bipolyhedra for all 1ďiďn, 1ďjďM and 1ďlďN .

We require the following properties of k-nice functions (proofs are in the ap-
pendix).

Lemma 2. A convex combination of rational k-nice functions is rational k-nice.
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Lemma 3. The minimum of rational k-nice functions is rational k-nice.

Lemma 4. For any zone ζ, if g : pζˆRqÑR is rational k-nice, then the function
f : ζÑR where fpvq “ inftPR gpv, tq for v P ζ is rational k-simple.

We are now in a position to show that that rational k-simple functions are a
suitable representation for value functions.

Proposition 2. If f : ZÑpSÑRq is a rational k-simple function, then TpZ,Eqpfq
is rational k-simple.

Proof. Consider any rational k-simple function, z P Z and E P Epzq. For any
v P RX and t P R we have:

t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPEprobpl, aqpR, l
1q¨fpl1, ζ 1qpl1, pv`tqrRsq

“ t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPEprobpl, aqpR, l
1q¨f rRspl1, ζ 1qpl1, v`tq

(by Definition 9)

“
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPEprobpl, aqpR, l
1q¨

`

t` f rRspl1, ζ 1qpl1, v`tq
˘

(7)

since probpl, aq is a distribution. By construction f is rational k-simple, and
hence for any pz, a, pR, l1q, zq P E using Lemma 1 we have f rRs is also rational
k-simple. Therefore, it follows from Definition 10 that:

pv, tq ÞÑ t` f rRspl1, ζ 1qpl1, v`tq

is rational k-nice. Thus, since pz, a, pR, l1q, zq P E was arbitrary, using Lemma 2
and (7) we have that:

pv, tq ÞÑ t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPEprobpl, aqpR, l
1q¨fpl1, ζ 1qpl1, pv`tqrRsq

is also rational k-nice. Since E P Epzq was arbitrary and Epzq is finite, Lemma 3
tells us:

pv, tq ÞÑ min
EPEpzq

!

t`
ř

ppl,ζq,a,pR,l1q,pl1,ζ1qqPEprobpl, aqpR, l
1q¨fpl1, ζ 1qpl1, pv`tqrRsq

)

is again rational k-nice. Finally, using Definition 6 and Lemma 4, it follows that
TpZ,Eqpfqpzq is rational k-simple as required. [\

Controller Synthesis. We now give an approach for computing the minimum
expected time of reaching a target in a PTA and synthesising ε-optimal strategy
when starting from the initial state. We first build the backwards zone graph
pZ, Eq (see Figure 2), then, using Theorem 2 and graph-based algorithms [13], we
can find the states of rrPss for which the maximum probability of reaching the
target is less than 1 and remove these from the zone graph. Next, using Defini-
tion 6, we apply value iteration to the zone graph which, by Proposition 2, can
be performed using rational k-simple functions (and rational k-nice functions).
Convergence to the minimum expected reachability values of P is guaranteed by
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l0 l1 l2a x:“0 0.5

xě1

y:“0
0.5 xě9

b

y“5^ x“0

c

xě1, x:“0

Fig. 3. PTA

z10

z20

z11

z21

z2a, ptxu, l0q

a, ptxu, l0q

a, ptxu, l0q
a, ptxu, l1q

a, ptxu, l1q

a, ptxu, l1q

b, p∅, l2q

c, p∅, l2q

Fig. 4. Backwards Zone graph

Proposition 1 and Theorem 1. An ε-optimal deterministic, memoryless strategy
can be synthesised once value iteration has converged by starting from the initial
state and stepping through the backwards graph, in each state choosing the time
and action that achieve the values returned by value iteration.

Example 3. The PTA in Figure 3 presents an example where waiting longer
than necessary in a location can reduce the time to reach the target. Again
we suppose the invariant in all locations is xď10. The target is location l2 and
the zone graph is given in Figure 4, where z10“pl0, xě1q, z20“pl0, y“5^xě1q,
z11“pl1, xě9q, z21“pl1, y“5^x“0q and z2“pl2, xě1q. Starting from the constant
0 function f0 and performing value iteration gives for ně 2:

TnpZ,Eqpf0qpz
1
0q “

"

p1´vpxqq`
řn´1
i“1 0.5n¨9 if xď1

řn
i“1 0.5n´1¨9 if 1ďxď10

TnpZ,Eqpf0qpz
2
0q “

"

p5´vpyqq`0.5¨p
řn
i“1 0.5n´1¨9q if yď5

0.5¨p
řn´1
i“1 0.5n´1¨9q if 5ďyď10

TnpZ,Eqpf0qpz
1
1q “

"

9´vpxq if xď9
0 if 9ďyď10

and Tn
pZ,Eqpf0qpz

2
1q “ Tn

pZ,Eqpf0qpz2q “ 0. Therefore, value iteration converges to:

fpz10q “

"

p1´vpxqq`9 if xď1
9 if 1ďxď10

and fpz20q “

"

p5´vpyqq`0.5¨9 if yď5
0.5¨9 if 5ďyď10

and hence the minimum expected time for the initial state equals the minimum
of p1´0q`9 and p5´0q`0.5¨9, yielding 9.5. Performing controller synthesis we
find this corresponds to waiting until y“5, then performing the action a. If l1
is reached, we immediately perform the action c and reach the target. On the
other hand, if l0 is reached, we repeatedly immediately perform a and, if l1 is
reached, wait until x“9 and then perform the action b reaching the target.

5 Conclusion

We have proposed an algorithm to compute the minimum expected time to
reach a target set in a PTA. The algorithm is formulated as value iteration over
the backwards zone graph of the PTA. We also demonstrate that there is an
effective representation of the value functions in terms of rational simple and
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rational nice functions. However, zones are not sufficient and convex polyhedra
are required. Nevertheless, the Parma Polyhedra Library [3] offers efficient ways
to manipulate convex polyhedra and is commonly used in a variety of real-time
verification problems. For example, methods based on priced zones for TAs and
PTAs, such as [7] and [22], also use convex polyhedra, where similarly zones do
not suffice.

Regarding future work, as well as working on an implementation, we note
that optimisations to the backwards algorithm presented in [8], including first
performing forwards reachability to restrict analysis to the reachable state space,
could be considered here as well. Since policy iteration also converges (see The-
orem 1), we plan to investigate this approach and compare with value iteration.
Extending to linearly-priced PTAs does not appear straightforward, as ratio-
nal simple functions are not sufficient. Likewise, the case of maximum expected
values raises additional issues, since here one relies on minimum probabilistic
reachability, which is more complex to compute using zones and convexity is
lost [21].
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Appendix

In the appendix we give the proofs of the Lemmas required by Proposition 2.

Proof (of Lemma 1). For any k-polyhedron C and R Ď X , let rRsC be the
k-polyhedron tv P RX | vrRs P C ^ vpxqďk for x P X u.

Now consider any R Ď X and rational k-simple function f : ζÑR such that
for any v P ζ:

fpvq “

#

cj if v P Cj

dl´
řn
i“1 pil¨vpxiq if v P Dl

Now by Definition 9, for any v P rRsζ:

f rRspvq “ fpvrRsq

“

#

cj if vrRs P Cj

dl´
řn
i“1 pil¨vrRspxiq if vrRs P Dl

(by definition of f)

“

#

cj if v P rRsCj

dl´
řn
i“1 pil¨vrRspxiq if v P rRsDl

(by definition of rRsC)

“

#

cj if v P rRsCj

dl´
řn
i“1 p

1
il¨vpxiq if v P rRsDl

where p1il“0 if xi P R and p1il“pil otherwise. It follows that f rRs is rational
k-simple as required. [\

Proof (of Lemma 2). It is sufficient to consider a binary convex combination as
any other convex combination can be rewritten as a sequence of binary convex
combinations. Therefore, consider any zone ζ, rationals r, r1 P Q` such that
r` r1 “ 1 and rational k-nice functions g, g1 : pζˆRqÑR such that for any v P ζ:

gpv, tq “

#

cj`t if pv, tq P Fj

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl

g1pv, tq “

#

c1j1`t if pv, tq P F 1j1

d1l1´
řn
i“1 p

1
il1 ¨vpxiq` p1´

řn
i“1 p

1
il1q ¨t if pv, tq P G1l1

Let h : pζˆRqÑR be the function where hpv, tq “ r¨gpv, tq ` r1¨g1pv, tq for any
pv, tq P ζˆR. Considering any pv, tq P ζˆR we have the following four cases to
consider:

– if pv, tq P Fj X F
1
j1 for some j and j1, then hpv, tq “ r¨cj`r

1¨c1j1 ;
– if pv, tq P Fj XG

1
l1 for some j and l1, then

hpv, tq “ r¨pcj ` tq`r
1¨
`

d1l1´
řn
i“1p

1
il1 ¨vpxiq`p1´

řn
i“1p

1
il1
˘

¨tq

“ pr¨cj`r
1¨d1l1q´

řn
i“1pr

1¨p1il1q¨vpxiq ` pr`r
1´
řn
i“1pr

1¨p1il1qq¨t (rearranging)

“ pr¨cj`r
1¨d1l1q´

řn
i“1pr

1¨p1il1q¨vpxiq ` p1´
řn
i“1pr

1¨p1il1qq¨t (since r`r1“1)

and
řn
i“1 r

1¨p1il1 “ r1¨p
řn
i“1 p

1
il1q ď r1¨1 ď 1 since g1 is rational k-nice.
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– if pv, tq P Gl X F 1j1 for some l and j1, then similarly to the above using the
fact that r`r1“1:

hpv, tq “ r¨ pdl´
řn
i“1pil¨vpxiq` p1´

řn
i“1pilq ¨tq`r

1¨
`

c1j1 ` t
˘

“ pr¨dl`r
1¨c1j1q´

řn
i“1pr¨pilq¨vpxiq ` p1´

řn
i“1pr¨pilqq¨t

and
řn
i“1 r¨p

1
il ď 1 since g is rational k-nice.

– if pv, tq P Gl X G1l1 for some l and l1, then again using the fact that r`r1“1
we have:

hpv, tq “ r¨ pdl´
řn
i“1pil¨vpxiq` p1´

řn
i“1pilq ¨tq

` r1¨
`

d1l1´
řn
i“1p

1
il1 ¨vpxiq`

`

1´
řn
i“1p

1
il1
˘

¨t
˘

“ pr¨dl`r
1¨d1l1q`

řn
i“1pr¨pil`r

1¨p1il1q¨vpxiq ` p1´
řn
i“1pr¨pil`r

1¨p1il1qq¨t

and
řn
i“1pr¨pil`r

1¨p1il1q “ r¨p
řn
i“1 pilq ` r

1¨p
řn
i“1 p

1
il1q ď r¨1`r1¨1 “ 1 since g

and g1 are rational k-nice.

As these are all the cases to consider and the intersection of k-polyhedra is a
k-polyhedron, it follows that h is a rational k-nice function as required. [\

Proof (of Lemma 3). Given rational k-nice functions g, g1 : pζˆRqÑR where for
pv, tq P ζˆR:

gpv, tq “

#

cj`t if pv, tq P Fj

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl

g1pv, tq “

#

cj1`t if pv, tq P F 1j1

d1l1´
řn
i“1 p

1
il1 ¨vpxiq` p1´

řn
i“1 p

1
il1q ¨t if pv, tq P G1l1

and let h “ mintg, g1u. Now for any pv, tq P ζˆR we have the following four cases
to consider.

– if pv, tq P Fj X F
1
j1 for some j and j1, then

hpv, tq “

#

cj`t if pv, tq P Fj XH

cj1`t if pv, tq P F 1j1 XH 1

where H “ tpv, tq P ζˆR | cj`t ď c1j1`tu “ tpv, tq P ζˆR | cj ď c1j1u and
similarly H 1 “ tpv, tq P ζˆR | cj1 ď cju.

– if pv, tq P Fj XG
1
l1 for some j and l1, then

hpv, tq “

#

cj`t if pv, tq P Fj XH

d1l1´
řn
i“1 p

1
il1 ¨vpxiq` p1´

řn
i“1 p

1
il1q ¨t if pv, tq P G1l1 XH

1

where

H “ tpv, tq P ζˆR | cj`t ď d1l1´
řn
i“1p

1
il1 ¨vpxiq`

`

1´
řn
i“1p

1
il1
˘

¨tu

“ tpv, tq P ζˆR |
řn
i“1p

1
il1 ¨pvpxiq`tq ď d1l1´cju (rearranging)

“ tpv, tq P ζˆR |
řn
i“1p

1
il1 ¨pv`tqpxiq ď d1l1´cju (by definition of v`t)

and similarly H 1 “ tpv, tq P ζˆR |
řn
i“1´p

1
il1 ¨pv`tqpxiq ď cj´d

1
l1u.
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– if pv, tq P Gl X F
1
j1 for some l and j1, then

hpv, tq “

#

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl XH

cj1`t if pv, tq P F 1j1 XH 1

By a similar reduction to the case above we have:

H “ tpv, tq P ζˆR |
řn
i“1´pil¨pv`tqpxiq ď cj1´dlu

H 1 “ tpv, tq P ζˆR |
řn
i“1pil¨pv`tqpxiq ď dl´cj1u

– if pv, tq P Gl XG
1
l1 for some l and l1, then

hpv, tq “

#

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl XH

d1l1´
řn
i“1 p

1
il1 ¨vpxiq` p1´

řn
i“1 p

1
il1q ¨t if pv, tq P G1l1 XH

1

where

H “ tpv, tq P ζˆR | dl´
řn
i“1pil¨vpxiq` p1´

řn
i“1pilq ¨t

ď d1l1´
řn
i“1p

1
il1 ¨vpxiq`

`

1´
řn
i“1p

1
il1
˘

¨tu

“ tpv, tq P ζˆR |
řn
i“1pp

1
il1´pilq¨vpxiq`

řn
i“1pp

1
il1´pilq¨t ď d1l1´dlu

(rearranging)

“ tpv, tq P ζˆR | ´
řn
i“1pp

1
il1´pilq¨pvpxiq`tq ď d1l1´dlu (rearranging again)

“ tpv, tq P ζˆR | ´
řn
i“1pp

1
il1´pilq¨pv`tqpxiq ď d1l1´dlu

(by definition of v`t)

and similarly H 1 “ tpv, tq P ζˆR | ´
řn
i“1ppil´p

1
il1q¨pv`tqpxiq ď dl´d

1
l1u.

Since in each case H and H 1 are k-bipolyhedra, if follows from Definition 10 that
the lemma holds. [\

Proof (of Lemma 4). Consider any zone ζ and rational k-nice function g :
pζˆRqÑR. by Definition 10, for any pv, tq P ζˆR, we have:

gpv, tq “

#

cj`t if pv, tq P Fj

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨t if pv, tq P Gl

where

Fj “ tpv, tq | v P Cj ^ v`t P C
1
ju and Gl “ tpv, tq | v P Dl ^ v`t P D

1
lu

for some k-polyhedra Cj , C
1
j , Dl and D1l. Now for any k-polyhedron C, let

∆pv, Cq
def
“ inftt | v`t P Cu, similarly to [2] we have the function ∆p¨, Cq : ζÑR

is k-simple over k-polyhedra. If fpvq “ inftPR gpv, tq, since 0ď
řn
i“1 pilď1, for

any v P ζ:

fpvq “

$

’

’

’

&

’

’

’

%

cj if v P Cj X C
1
j

cj `∆pv, C
1
jq if v P CjzC

1
j

dl´
řn
i“1 pil¨vpxiq if v P Dl XD

1
l

dl´
řn
i“1 pil¨vpxiq` p1´

řn
i“1 pilq ¨∆pv,D

1
lq if v P DlzD

1
l
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In all but the final case, since ∆p¨, Cq : ζÑR is k-simple, it follows that f is
rational k-simple. In this final case, by definition of k-simple functions we have
the following two cases to consider.

– ∆pv,D1lq “ d1l if v P DlzD
1
l for some d1l P Q`, and therefore for any v P DlzD

1
l:

fpvq “ dl´
řn
i“1pil¨vpxiq` p1´

řn
i“1pilq ¨∆pv,D

1
lq

“ pdl ` p1´
řn
i“1pilq ¨d

1
lq´

řn
i“1pil¨vpxiq

which is rational k-simple, since g is rational k-nice.
– ∆pv,D1lq “ d1l´vpxi1lq if v P DlzD

1
l for some d1l P Q` and 1ďi1lďn, and hence

for any v P DlzD
1
l:

fpvq “ dl´
řn
i“1pil¨vpxiq` p1´

řn
i“1 pilq ¨∆pv,D

1
lq

“ dl´
řn
i“1pil¨vpxiq` p1´

řn
i“1 pilq ¨pd

1
l´vpxi1lqq

“ pdl ` p1´
řn
i“1pilq ¨d

1
lq´

řn
i“1p

1
il¨vpxiq

where p1il “ pil`p1´
řn
i“1 pilq if i“i1l and p1il“pil otherwise. Now since g is

k-nice we have pil P Q`Xr0, 1s for all 1ďiďn and
řn
i“1 pilď1, it follows that

p1il P Q` X r0, 1s for all 1ďiďn and that:

řn
i“1 p

1
il “

řn
i“1 pil ` 1´

řn
i“1 pil “ 1 ,

and hence f is rational k-simple.

Therefore, it follows that f is rational k-simple as required. [\
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