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Abstract. Ontologies have recently became a popular mechanism to expose rela-
tional database (RDBs) due to their ability to describe the domain of data in terms
of classes and properties that are clear to domain experts. Ontological terms are
related to the schema of the underlying databases with the help of mappings, i.e.,
declarative specifications associating SQL queries to ontological terms. Devel-
oping appropriate ontologies and mappings for given RDBs is a challenging and
time consuming task. In this work we present BOOTOX, a system that aims at fa-
cilitating ontology and mapping development by their automatic extraction (i.e.,
bootstrapping) from RDBs, and our experience with the use of BOOTOX in in-
dustrial and research contexts. BOOTOX has a number of advantages: it allows
to control the OWL 2 profile of the output ontologies, bootstrap complex and
provenance mappings, which are beyond the W3C direct mapping specification.
Moreover, BOOTOX allows to import pre-existing ontologies via alignment.

1 Introduction
The Semantic Web community has actively investigated the problem of bridging the gap
between relational databases and ontologies. One of the main targets behind this effort
is to enable the access to the data stored in databases via Semantic Web technologies.
An advantage of this approach is that ontologies provide a formal specification of the
application domain that is close to the end-users’ view of the domain, while databases
are oriented towards an efficient data storage and retrieval and thus represent the data
using structures that often not intuitive to end-users.

Manually building an ontology and connecting it to the data sources via mappings
is, however, a costly process, especially for large and complex databases (a typical sce-
nario in industry [20, 22]). The cost of this manual process will typically be even more
severe when dealing with multiple databases, e.g., in the context of accessing the Deep
Web [16]. To aid this process, tools that can extract a preliminary ontology and map-
pings from database schemata play a critical role. In the literature one can find a broad
range of approaches to bootstrap an ontology and mappings from a relational database
schema. The interested reader may have a look at the following surveys [34, 41]. These
approaches can be classified with respect to different aspects such as: (i) level of au-
tomation (i.e., manual, semi-automatic, automatic), (ii) type of mappings (i.e., com-
plex or direct mappings), (iii) language of the bootstrapped mappings and the ontology,
(iv) reuse of external vocabularies (e.g., domain ontologies or thesauri), and (v) purpose
(e.g., OBDA, constraint validation, database integration, ontology learning).

In this paper we present BOOTOX5 (not) yet another ontology and mapping boot-
strapper. Our main motivation to implement a new bootstrapper is to give more flexi-

5 http://www.cs.ox.ac.uk/isg/tools/BootOX/

http://www.cs.ox.ac.uk/isg/tools/BootOX/


bility with respect to the classification aspects described above. Most of the existing
approaches commit to concrete purposes or to a concrete ontology expressiveness.
BOOTOX allows to define different “profiles” depending on the application scenario
and the required Semantic Web technologies. For example, if the bootstrapped ontol-
ogy is to be used in a so-called Ontology Based Data Access (OBDA) scenario where
the ontology provides a virtual access layer to the data, OWL 2 QL will be chosen
as the ontology language as it is required by the query rewriting engine.6 Neverthe-
less, if the data is materialised, one could opt for other OWL 2 profiles depending on
the used query answering engine. BOOTOX also allows to import domain ontologies,
which will be integrated to the bootstrapped one via alignment [18] or directly mapped
to the database. BOOTOX follows the W3C direct mappings directives to connect the
ontological vocabulary to the relational database; moreover, it offers a suit of advanced
techniques for bootstrapping of mapping that are beyond the direct ones. Furthermore,
it extends the bootstrapped mappings with provenance information.

We have tested BOOTOX and compared it to several bootstrapping systems over a
number of databases and use cases from industrial and research contexts, including the
relational-to-ontology benchmark suite RODI [29].

The paper is organised as follows. Section 2 introduces the concepts behind se-
mantic access to databases. Section 3 presents the problem of bootstrapping. Section 4
describes the techniques implemented in BOOTOX. Section 5 presents the scenarios
where we deployed BOOTOX and the conducted experiments to evaluate the quality of
the bootstrapping. In Section 6 we provide a summary of relevant related work, and we
conclude in Section 7.

2 Exposing Relational Data Through Ontologies
The main idea behind exposing relational data via an ontology is to provide the user
with access to the data store via the use of a domain specific vocabulary of classes, i.e.,
unary predicates, and properties, i.e., binary predicates, that the user is familiar with.
This vocabulary is related to the database schema via view definitions, called mappings;
thus, technical details of the database schema are hidden from end-users. Using an
example from the oil industry domain, we now intuitively introduce the main concepts
that are needed to understand the approach and refer the reader to [31] for details.

Relational Databases. In the relational data model, a database consists of a schema and
instance, where the schema is a set of table names with corresponding attribute names
and constraints, e.g., primary and foreign keys. The instance ‘populates’ tables of the
schema with tuples by assigning values to the tables’ attributes. Figure 1 shows our
running example, a fragment of a relational database based on the oil industry domain.
For example, a Wellbore is given a name that is unique, has a content (e.g., GAS, OIL,
or DRY), has a depth (e.g., 12,500 feet), belongs to a Well, and is located in a Field.

Ontologies. An ontology is usually referred to as a ‘conceptual model’ of (some as-
pect of) the world. It introduces the vocabulary of classes and properties that describe
various aspects of the modelled domain. It also provides an explicit specification of the
intended meaning of the vocabulary by describing the relationships between different
vocabulary terms. These relationships are specified with special first-order formulae,
also called axioms, over the vocabulary. An ontology can be thought of simply as a
set of such axioms—i.e., a logical theory. Besides axioms, an ontology can contain

6 The language underlying OWL 2 QL has the first-order (FO) rewritability property [8].
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Well(id, nameNN, type)
Field(id, name, statusCK, intersects fieldFK)
Operator(id, nameNN)
Operator Field(operatorFK, fieldFK)
Wellbore(id, nameUQ, contentCK, depthCK, wellFK, locationFK)
ExplorationWellbore(wellboreFK, seismic location)
DevelopmentWellbore(wellboreFK, production facility)

Fig. 1: Relational Database Schema. Primary keys are underlined. FK stands for Foreign
Key (the foreign key name indicates the target table), NN stands for Not Null, UQ stand
for Unique and CK stands for Check

ontological facts, which can be specified as first-order atoms with constants, but not
variables. These constants are usually interpreted as (representations of) objects from
the domain. Viewing an ontology as a logical theory opens up the possibility of using
automated reasoning for different tasks, including checking an ontology’s internal con-
sistency (checking whether the ontology does not entail ‘false’, i.e., if it is logically
consistent), query answering, and other (non-)entailments. OWL 2 is a W3C standard
ontology language and it is heavily used in the Semantic Web community. OWL 2 has
profiles:7 EL, QL, and RL, that have different favourable computational properties.

Mappings. Mappings declaratively define how ontological terms are related to terms
occurring in the relational schema and are essentially view definitions of the following
form that declare how to populate classes with objects—in OWL 2 objects are rep-
resented with Uniform Resource Identifiers (URIs)—and to populate properties with
object-object and object-value pairs:

Class(fo(x))¢ SQL(x),

objectProperty(fo(x), fo(y))¢ SQL(x, y),

dataProperty(fo(x), fv(y))¢ SQL(x, y),

where SQL(x) and SQL(x, y) are SQL queries with respectively one and two output
variables, and fo, fv are functions that ‘cast’ values returned by the SQL queries into
respectively objects, i.e, URIs, and values.8 Classes are populated with URIs fo(x)
computed from the values x returned by SQL(x). Properties can relate two objects, e.g.,
by stating that a wellbore has a particular location, or assigning a value to an object, e.g.,
stating that a field has a particular name (a string); and they are respectively populated
with pairs of objects fo(x), fo(y) or pairs of an object fo(x) and value fv(y) computed
from the values x and y returned by the SQL query. For our running example, we may
create the following mappings:

Wellbore(fo(id))¢ SELECT id FROM Wellbore,

hasLocation(fo(id), fo(location))¢ SELECT id, location FROM Wellbore,

hasContent(fo(id), fv(content))¢ SELECT id, content FROM Wellbore.

Query Answering. Consider a data access instance (D,V,O,M), where D is an RDB,
V is an ontological vocabulary, O is a set of ontological axioms over V , andM is a set
of mappings between V and D. There are two approaches to answer a query Q over V:
(i) materialisation: ontological facts are materialised (i.e., classes and properties partic-
ipating in mappings are populated with individuals by evaluating SQL queries partici-
pating in mappings) and this gives a set of ontological facts A and then Q is evaluated

7 OWL 2 profiles: http://www.w3.org/TR/owl2-profiles/
8 These functions ensure coherent generation of URIs that respects primary and foreign keys.

3

http://www.w3.org/TR/owl2-profiles/


over O and A with standard query-answering engines for ontologies, or (ii) virtual: Q
should be first rewritten into an SQL query SQL using O andM and then SQL should
be executed over D.

In either case, the ontology and mappings are the backbone of query processing in
this data access approach; thus, the problem of obtaining them has to be addressed in
any implementation of such approach. The exact kind of ontology and mappings re-
quired for data access depends on the application scenario. For example, in a scenario
where virtual query answering is required, the ontology should be in OWL 2 QL. In
the case of materialisation the ontology should fall in the profile supported by the un-
derlying systems, e.g., EOLO [42] can do query answering over OWL 2 EL ontologies,
and thus the bootstrapping should output an EL ontology; a semantic faceted search
system SEMFACET [2–4, 15] relies on RDFOX [28] that can do query answering over
OWL 2 RL ontologies and thus the bootstrapper facilitating SEMFACET should pro-
duce RL ontologies; PAGOdA [47] does query answering over the whole OWL 2 and
can work with any bootstrapper that produces OWL 2 ontologies.

3 Bootstrapping: Problem Definition
In this section we define the tasks for bootstrapping ontologies and mappings, or assets,
from RDBs and quality metrics for these tasks. The tasks are the following:

(i) Semantic access instance generation: Given a relational database D, generate an
instance (D,V,O,M). This task can be naturally divided into two sub-tasks.
- Vocabulary and Ontology generation: Given D, create a vocabulary V and an

ontology O over V .
- Mapping generation: Given D, V , and O create a set of mappingsM relating
D with V .

(ii) Importing: Given an instance (D,V,O1,M) and an ontology O2, return an in-
stance (D,V,O,M), where O is the alignment of O1 and O2.

Task (ii) is important in applications where ontologies (partially) describing the do-
main of interest have been already created and users want to incorporate them into their
semantic data access system.

The bootstrapping of the ontologies and the mappings enables a (preliminary) de-
ployment of semantic data access system. However, the bootstrapped assets should meet
some minimal requirements so that they can be usable in practice. We have identified
the following metrics to measure the quality of generated assets:

(1) Ontology language: compliance with standard ontology languages with well-defined
semantics like OWL 2 and its profiles to enable the use of a wide-range of Seman-
tic Web technologies. Note that the choice of the ontology language (e.g., one of
OWL 2 profiles) also affects suitability of the different query answering engines.

(2) Mapping language: compliance with standard directives like the W3C direct map-
ping specification9 and standard W3C mapping languages like R2RML.10

(3) Query coverage: suitability of the ontology vocabulary to formulate the queries that
the user is interested in.

(4) Query results: accuracy of the query results obtained with the bootstrapped instance
in the sense that the query answer should satisfy the user’s expectations.

9 Direct mappings: http://www.w3.org/TR/rdb-direct-mapping/
10 R2RML language: http://www.w3.org/TR/r2rml/
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4 Bootstrapping Techniques in BOOTOX
In this section we present our bootstrapping techniques implemented in BOOTOX. Sec-
tion 4.1 focuses on the techniques to generate the ontological vocabulary and the axioms
over this vocabulary, where we give special attention to the concrete language of the
generated ontology. In Section 4.2 we describe how the database terms are linked to the
ontological vocabulary. Furthermore, we also present how mappings are enhanced with
provenance information. Section 4.3 gives an overview of the incorporated ontology
alignment techniques to import pre-existing ontologies. Finally, Section 4.4 summarises
the conformance with the requirements presented in Section 3.

4.1 Vocabulary and Ontology Generation
The general rule to create ontological vocabulary from a relational schema would trans-
late (i) each (non-binary) table into an OWL class; (ii) each attribute not involved in a
foreign key into an OWL datatype property; (iii) each foreign key into an OWL object
property. Generation of axioms, however, is usually a more involved process. BOOTOX
follows Table 1 to automatically create the vocabulary and a set of OWL 2 axioms from
the listed database features.11 One could opt for adding all the axioms associated with
a feature or only a selection of them depending on the intended purpose. In the remain-
der of the section we will discuss the main considerations regarding bootstrapping that
should be taken into account.
Closed-world vs Open-world Semantics. Modelling database features in OWL 2 in-
evitably leads to different interpretations due to the Closed-world (CWA) and Open-
world assumptions (OWA). In a relational database, every fact that occurs in the database
is true, and all other facts are false (CWA). In an ontology, the truth value of some facts
may be unknown, i.e., they are neither provably true nor provably false (OWA). More-
over, constraints have a very different meaning in databases and ontologies [27, 34]. In
a database, constraints define valid database states, and updates that would violate these
constraints are simply rejected. In an ontology, constraints are treated as material im-
plications, and may lead to the derivation of “new” facts that are not explicitly stated in
the data. Such derivations may produce unintended consequences,12 as we discuss next.

Table 1 presents a possible encoding of relational database features as OWL 2 ax-
ioms. The encoding, in general, does not lead to only one option, but several possible
OWL 2 axioms. For example, considering the running example of Figure 1, for the data
attribute name in table Field we apply encoding pattern (3) in Table 1, which proposes
to add five different axioms. The general rule translates the data attribute name as a data
property declaration axiom. In addition one may opt to add global restrictions (e.g.,
‘name Domain: Field ’)13 and/or local restrictions (e.g., ‘Field SubClassOf: name
some xsd ∶string’). The use of global and/or local restrictions will lead to different
interpretations and potentially to different logical consequences when combined with
data facts. For example, the fact ‘operator987 Facts: name Statoil’ in combination
with the domain axiom for Field and name will lead to the undesired consequence
‘operator987 Types: Field ’. In this case, if the property name is to be used in differ-
ent contexts, using only local restrictions seems to be more appropriate.
11 When not stated the contrary in Table 1, a class CT , an object property Pf , a data property
Ra and a datatype dt represent the ontology encoding of a table T , a foreign key fk, a data
attribute a, and an SQL type t, respectively.

12 Note that the use of disjointness axioms may help in the detection of such “errors”.
13 For writing OWL 2 axioms we use the Manchester OWL Syntax [17].

5



Table 1: Encoding of relational database features as OWL 2 axioms. OWL 2 axioms are
expressed in the Manchester OWL Syntax [17]. * Enumeration with only one literal

# RDB feature Ontology feature OWL 2 axiom OWL 2 profile
QL RL EL

(1) Non-binary Relation / Ta-
ble T

A class CT for the non-binary
table

Class: CT ✓ ✓ ✓

(2)
Binary Relation or Many-
to-Many Table referencing
tables T1 and T2

A property P (and its in-
verse Q) associated to the
classes CT1

and CT2
with lo-

cal and/or global constraints

ObjectProperty: P ✓ ✓ ✓
Q InverseOf: P ✓ ✓ -
P Domain: CT1

✓ ✓ ✓
P Range: CT2

✓ ✓ ✓
CT1

SubClassOf: P some CT2
✓ - ✓

CT1
SubClassOf: P only CT2

- ✓ -

(3) Data attribute in table T
of (sql) type t

A property Ra associated to
the class CT and datatype dt

with local and/or global con-
straints.

DataProperty: Ra ✓ ✓ ✓
Ra Domain: CT ✓ ✓ ✓
Ra Range: dt ✓ ✓ ✓

CT SubClassOf: Ra some dt ✓ - ✓
CT SubClassOf: Ra only dt - ✓ -

(4)
Foreign Key in table T1,
referencing T2, no inter-
section with or strict sub-
set of primary key

A property Pf associated to
the classes CT1

and CT2
with local and/or global con-
straints

ObjectProperty: Pf ✓ ✓ ✓
Pf Domain: CT1

✓ ✓ ✓
Pf Range: CT2

✓ ✓ ✓
CT1

SubClassOf: Pf some CT2
✓ - ✓

CT1
SubClassOf: Pf only CT2

- ✓ -

(5) Foreign Key is the pri-
mary key in T1, ref. T2

Class CT1
is subsumed by

class CT2
CT1

SubClassOf: CT2
✓ ✓ ✓

(6)
Foreign Key in table T
referencing the same ta-
ble

A property Pf associated
to class CT with a self-
restriction. The property Pf

may also be declared with sev-
eral characteristics

CT SubClassOf: Pf some CT ✓ - ✓
CT SubClassOf: Pf some Self - - ✓
Pf Characteristics: Transitive - ✓ ✓
Pf Characteristics: Symmetric ✓ ✓ -
Pf Characteristics: Reflexive ✓ - ✓

(7)
Primary Key or Unique
constraint in table T1 on a
foreign key fk referencing
T2

Key axiom for class CT1
and

property Pf . Pf is associated
to (local and/or global) cardi-
nality constraints

CT1
HasKey: Pf - ✓ ✓

Pf Characteristics: Functional - ✓ -
Pf Characteristics: InverseFunctional - ✓ -
CT1

SubClassOf: Pf exactly 1 CT2
- - -

CT1
SubClassOf: Pf max 1 CT2

- ✓ -
CT1

SubClassOf: Pf some CT2
✓ - ✓

(8)
Primary Key or Unique
constraint on a data at-
tribute a of (sql) type t in
table T

Key axiom for class CT and
data property Ra. Ra is asso-
ciated to (local and/or global)
cardinality constraints.

CT HasKey: Ra - ✓ ✓
Ra Characteristics: Functional - ✓ ✓

CT SubClassOf: Ra exactly 1 dt - - -
CT SubClassOf: Ra max 1 dt - ✓ -
CT SubClassOf: Ra some dt ✓ - ✓

(9) Composed Primary Key
in table T

Key axiom for the class CT

and the data and object prop-
erties involved in primary key

CT HasKey: R1 . . .Rn P1 . . . Pn - ✓ ✓

(10) Not Null Constraint on a
data attribute in T , type t

Existential or cardinality re-
striction over Ra in CT

CT SubClassOf: Ra min 1 dt - - -
CT SubClassOf: Ra some dt ✓ - ✓

(11) Not Null Constraint on a
foreign key in T1, ref. T2

Existential or cardinality re-
striction over Pf in CT

CT1
SubClassOf: Pf min 1 CT2

- - -
CT1

SubClassOf: Pf some CT2
✓ - ✓

(12)
Check Constraint on data
attribute a of type t in ta-
ble T listing posible val-
ues v1. . .vn (n ≥ 1)

Enumeration of literals: in a
restriction in class CT and/or
as a range of Ra. Alterna-
tively, one could create sub-
classes for each of the values

CT SubClassOf: Ra some {v1 . . .} - - ✓*
CT SubClassOf: Ra only {v1 . . .} - - -

CT SubClassOf: Ra value v1 - - ✓
Ra Range: {v1 . . .} - - ✓*

CTvi
SubClassOf: CT ✓ ✓ ✓

(13)
Check Constraint on at-
trib. a in table T restrict-
ing numerical range of t

Datatype restriction: in a class
restriction in CT and/or as a
range of Ra

CT SubClassOf: Ra some dt[> x] - - -
CT SubClassOf: Ra only dt[> x] - - -

Ra Range: dt[> x] - - -

(14)
Several data attributes
a1. . .an in different ta-
bles T1. . .Tn with the
same name and type t

Group properties R1. . .Rn

under new superproperty Ra

or merge R1. . .Rn into new
property Ra

Ri SubPropertyOf: Ra ✓ ✓ ✓
Ra Domain: CT1

or . . . or CTn - - -
CTi

SubClassOf: Ra some dt ✓ - ✓
CTi

SubClassOf: Ra only dt - ✓ -

(15) T1 and T2 not involved in
a inheritance relationship

Class CT1
is disjoint with

class CT2
CT1

DisjointWith: CT2
✓ ✓ ✓
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Profiling the Ontology. BOOTOX takes into account the concrete language (i.e., one of
OWL 2 profiles) that is generated from the relational database features, which will en-
able the use of different Semantic Web technologies (e.g., query answering engines). As
mentioned above, database features can be encoded using different axioms which may
lead to different OWL 2 profiles. For example, primary keys and unique constraints (pat-
terns (7) and (8) in Table 1) can be modelled with the OWL 2 construct HasKey (e.g.,
‘Well HasKey: id ’), which is supported in OWL 2 RL and OWL 2 EL, but must be
avoided if the target ontology language is OWL 2 QL. Alternatively (or in addition) one
could use global and local cardinality restrictions (e.g., ‘id Characteristics: Functional’
and ‘Well SubClassOf: id exactly 1 xsd ∶int’, respectively), which leads to similar
issues since not all profiles support them. For example, none of the OWL 2 profiles
support exact cardinalities. If a profile does not support a type of axiom, an approxima-
tion is used instead (e.g., ‘Well SubClassOf: id max 1 xsd ∶int’ that is supported in
OWL 2 RL, or ‘Well SubClassOf: id some xsd ∶int’ that is allowed in both OWL 2
QL and EL profiles). However, a representative approximation or alternative may not
be always available for a database feature, as for the datatype restrictions (pattern (13)
in Table 1), which is not supported by any of the profiles. BOOTOX, when the required
ontology output is one of the OWL 2 profiles, keeps this knowledge as OWL 2 annota-
tion axioms (e.g., ‘depth Annotations: ann ∶max value“12,500”’). These axioms have
no logical impact on the ontology, but they can potentially be used in user interfaces to
guide the formulation of queries (e.g., [38–40]).

Selection of Ontology Axioms. BOOTOX, in the default setting, encodes the database
features with all axioms suitable for a required OWL 2 profile. The user can optionally
select the kind of preferred axioms (i.e., local or global restrictions). Additionally, the
suggested OWL 2 axioms may require an extra validation step to accurately represent
a database feature. This is the case of pattern (6) in Table 1 where the generated object
property can be declared with different characteristics which may not necessarily hold
in the database. For example, in our running example from Figure 1, the foreign key
intersects field in table Field represents a self-reference to the same table. In this case,
the foreign key can be encoded as a reflexive (a field intersects with itself) and symmetric
object property; transitivity, however, does not necessarily apply for this property.

Mapping SQL Datatypes to OWL 2. There is a clear mapping between SQL datatypes to
XML schema datatypes. However, there are some XML schema datatypes that are not
built-in datatypes in OWL 2. For example, xsd ∶date is not supported in OWL 2. Further-
more, OWL 2 profiles also include specific restrictions on the supported datatypes. For
example, xsd ∶boolean or xsd ∶double are not supported in OWL 2 QL nor OWL 2 EL.
BOOTOX addresses this issue by mapping SQL datatypes, whose XML counterparts
are not supported in OWL 2 (resp., OWL 2 profile), to the OWL 2 built-in datatype
rdfs ∶Literal . This datatype denotes the union of all datatypes (i.e., top datatype). Note
that a more intuitive approximation of unsupported datatypes (e.g., xsd ∶double to
xsd ∶decimal ) is not possible since the value spaces of primitive datatypes are disjoint.14

4.2 Mapping Generation
Generation of Direct Mappings. BOOTOX follows the W3C direct mapping guidelines
to generate mappings from a relational database to an ontological vocabulary. BOOTOX
relies on the R2RML language to produce direct mappings, which are particular cases

14 http://www.w3.org/TR/swbp-xsch-datatypes/
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of the mappings that can be expressed in R2RML. Intuitively, an R2RML mapping
allows to map any valid SQL query or view (i.e., logical table) into a target vocabulary.

The W3C direct mapping specification does not introduce specific restrictions on the
used target ontological vocabulary, that is, it only requires to reference the ontological
vocabulary via its URI. Hence, the generated mappings may reference the vocabulary
of any given ontology. BOOTOX allows this behaviour and it can produce mappings
for a vocabulary generated from the relational database (see Section 4.1) or for the
vocabulary of an external domain ontology.

Generation of Mappings beyond Direct Ones. Besides direct mappings described above,
that involve only projection operator in the SQL part, BOOTOX can help user to build
complex R2RML mappings, that may also include selection and/or join operators. There
are three general approaches that we use to find candidate mappings:

(i) In the direct mapping approach, tables are mapped to classes. To generalise this,
consider a table T and a table T ′ that has a foreign key constraint referencing T
or that can be joined. By taking the left join of T and T ′ we obtain a subset of
the tuples in T . If this subset of tuples is sufficiently big and sufficiently different
from T itself, we obtain a subclass of the class T was mapped to. Furthermore, by
letting this process to continue recursively, we obtain rich class hierarchies. Here,
as in direct mappings, the many-to-many exception applies.

(ii) Another way to discover subclasses in the database is to look for clusters of tuples
in a table. To this end, we can consider a tuple to be a vector of numerical val-
ues (assigning distinct numbers to each value), and look for sets of tuples whose
distance from each other is sufficiently small.

(iii) Finally, one can also consider subsets of the attributes of a table, particularly when
tables are not known to in standard normal forms, such as BCNF. In such tables,
there will usually be tuples with repeating values in attributes. Such sets of tuples
can, again, be considered subclasses of the class the table itself was mapped to.

Note that the generation of these complex mappings heavily relies on interaction with
the users since these techniques allow to generate only the SQL queries for mappings,
while they do not offer the names of classes and properties defined by these queries; the
names should be introduced by the users.

Generation of Provenance Mappings. BOOTOX automatically extends direct mappings
with metainformation about provenance.15 The provenance metainformation is mod-
elled in the mapping assertion, adding, for instance, the source database from which the
information is extracted, and more granular information, like table and column identi-
fiers. Currently, provenance in BOOTOX comes into three different granularity levels,
whose convenience will depend on the intended use of this information:

(i) URI level: each generated URI is associated with provenance information. This is
especially interesting when different database elements are merged into the same
URI (e.g., see pattern (14) in Table 1).

(ii) Triple level: triples are annotated with provenance via RDF reification (i.e., three
new triples are added for each triple).

(iii) Graph level: in this granularity, provenance is attached to RDF named graphs
that group triples with similar provenance characteristics. For example, one could
group triples generated by automatically generated mappings or triples derived
from the same data source.

15 Based on the W3C recommendation PROV-O http://www.w3.org/TR/prov-o/.
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This metainformation can be later used for a wide range of purposes. For example it
can be used to provide a richer query answering interface, to help in the debugging of a
data access instance (i.e., identifying faulty ontology axioms or mappings), or to discard
some sources based on a variety of criteria, e.g., licenses, access privileges, costs, etc.

4.3 Importing
It is increasingly often the case that a high quality ontology of (parts of) the domain al-
ready exists and captures the domain experts vocabulary better than the directly mapped
ontology. When such an ontology is available, BOOTOX allows importing it to extend
the automatically generated ontology.16 To this end, BOOTOX integrates the ontology
alignment system LogMap [18, 19], that aligns two ontologies O1 and O2 by deriving
OWL 2 equivalence and sub-class(property) axioms between the entities fromO1’s and
O2’s vocabularies using the lexical characteristics of the terms and the structure of the
ontologies. BOOTOX gives special care to avoid introducing unwanted consequences
that may lead to unexpected answers. Thus, LogMap will discard alignment axioms
that would lead to inconsistencies, or faulty consequences like ‘Well SubClassOf:
WellBore’. This is based on novel techniques to avoid violations of the so called con-
sistency and conservativity principles (the interested reader please refer to [37]).

4.4 Conformance with Problem Requirements
BOOTOX covers the two bootstrapping tasks defined in Section 3 and fully meets the
Metrics (1) and (2) regarding the ontology and mapping language.

Furthermore, as shown in Section 5, it provides reasonable results in practice with
respect to Metrics (3) and (4). Query coverage, i.e., Metric (3), is enhanced thanks to
the importing facility. Regarding query results, i.e., Metric (4), note that we supply the
system with provenance capabilities, which are useful for analysis. In the case when
query results contain unexpected answers, provenance will help the user to “trace” the
source of these answers, thus helping to gain a better understanding of possible issues
with the ontology or mappings.

5 BOOTOX at Work
BOOTOX has been tested with a number of databases and scenarios (e.g., virtual and
materialised data access). In this section we present results with respect to the quality of
the bootstrapped assets (i.e., vocabulary, ontology, and mappings). We have evaluated
(i) the ability of formulating queries with the bootstrapped vocabulary in an industrial
scenario (Section 5.1), and (ii) the ability of (enabling the) answering of queries with
the bootstrapped ontology and mappings in a controlled scenario (Section 5.2).

We compared BOOTOX17 to three other bootstrapping systems: IncMap [30], MIR-
ROR [26], and -ontop- [32]. IncMap is designed to directly map a relational database to
a target ontology, but is focused on a semi-automatic, incremental/interactive approach
rather than direct automated bootstrappings. Both -ontop- and MIRROR follow an ap-
proach that is similar to the one employed in BOOTOX, with respect to the generation
of a semantic data access instance (i.e., vocabulary, ontology, and mappings).18

16 If the imported ontology is outside the desired target profile it should first be approximated
using off-the-shelf semantic or syntactic approximation techniques (e.g., [11]).

17 Note that we have evaluated BOOTOX with its automatic setting, that is, with the functionality
to generate complex mappings turned off.

18 -ontop- generates only vocabulary, that is, an ontology containing only declaration axioms.
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Fig. 2: BOOTOX interfaces in the Optique platform, from left to right, top to bottom:
the main BOOTOX menu, the bootstrapping form, and the query catalog coverage

5.1 Query Coverage in the EU Optique Project
In this section we assess the quality of the bootstrapped ontology vocabulary to enable
the formulation of queries. To this end we used the terms from the query catalogs avail-
able in the industrial scenario provided by the EU Optique project. We looked at how
many terms from the catalogs were covered by the bootstrapped ontological vocabulary
and then did manual verification of the quality of the coverage.

Industrial Scenario. The EU Optique project aims at facilitating scalable end-user ac-
cess to big data in the oil and gas industry [14]. Optique advocates for an OBDA ap-
proach where the ontology provides a virtual access to the data and the mappings con-
nect the ontology with the data source. The project is focused around two demanding
use cases provided by Optique industry partners Siemens and Statoil. BOOTOX has
been deployed in Siemens [20] and Statoil [22] as part of the “Ontology and mapping
management module” provided by Optique’s platform [21]. Furthermore, BOOTOX has
already shown to save time, in the creation of the initial OBDA assets, to the IT experts
of both Statoil and Siemens. Note that the Optique scenario requires BOOTOX to boot-
strap an OWL 2 QL as it is required by the query rewriting engine in order to rewrite the
queries formulated over the ontology into queries on the database using reasoning [8].

BOOTOX in the Optique Platform. Figure 2 shows an overview of the BOOTOX related
interfaces. The main menu presents to the user the available options currently supported
in BOOTOX: automatic bootstrapper, guided bootstrapper, ontology alignment, prove-
nance bootstrapping, bootstrapping related statistics, etc. The screenshot on the right
shows the integrated bootstrapping form in BOOTOX where the user can select from
a number of options including the database schema, imported ontology, provenance,
OWL 2 QL approximation. The bottom screenshot shows the coverage of a selected
query catalog by the vocabulary of a bootstrapped ontology.

Coverage of Statoil Query Catalog. The query catalog at Statoil currently includes 60
queries that contain representative information needs from Statoil geologists. Most of
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Fig. 3: Coverage of terms from the Optique query catalog with terms from ontolo-
gies. Inner pie charts show coverage by lexical confidence using I-SUB [43]: in
[0.9,1.0], in [0.8,0.9), in [0.6,0.8). Outer pie charts represent the manual verifi-
cation of the quality of the terms with a coverage above 0.6: true positive, semi-true
positive, false positive. Note that semi-true positives are not clear-cut cases where
the ontology term has a broader or narrower meaning with respect to the query term

the data needed by Statoil geologists is stored in the Exploration and Production Data
Store (EPDS), Statoil’s corporate data store for exploration and production data and
interpretations. The NPD FactPages [36] ontology is relevant to the domain of EPDS.

We bootstrapped ontological vocabulary from the relevant parts of EPDS using
BOOTOX, MIRROR and -ontop-. The generated vocabulary, on average, contained
more than 3,000 classes, 3,500 object properties, and 42,000 datatype properties. Note
that IncMap relies on the vocabulary of the available domain ontology. BOOTOX, un-
like -ontop- and MIRROR, includes a built-in ontology alignment system which allows
to import the vocabulary of the domain ontologies into the bootstrapped ontology.

The results of the query catalog coverage are summarised in Figure 3(a). The first
column represent the coverage of the bootstrapped ontologies computed by BOOTOX
(without importing the domain ontologies), -ontop- and MIRROR. Since all three sys-
tems rely on the direct mapping directives, the bootstrapped vocabulary is, apart from
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minor differences, basically the same. The middle columns represent the coverage of
the vocabulary of the domain ontology, which is equal to the coverage of IncMap. The
third columns shows the coverage results achieved by the ontology bootstrapped by
BOOTOX including importing. For example, 44% of the classes in the query catalog has
a good lexical intersection (greater or equal 0.8) with terms of the ontology bootstrapped
by BOOTOX; furthermore, 29% of the classes are fully covered (i.e., true positives).

Coverage of Siemens Query Catalog. The data in the Siemens use-case is stored in sev-
eral databases with different schemata. Although the schemata are not specially large,
the size of the data is in the order of hundreds of terabytes, e.g., there is about 15 GB of
data associated to a single turbine, and it currently grows with the average rate of 30 GB
per day [20]. As for the Statoil use case, we extracted the relevant terms of the query
catalog, bootstrapped an ontology from one of the Siemens databases using BOOTOX,
MIRROR and -ontop-. Additionally, BOOTOX performed alignment with two Siemens
ontologies about diagnostic procedures and turbines. Finally, IncMap relied on the vo-
cabulary of these ontologies. The results of the coverage are summarised in Figure 3(b).

Quality Assessment. The experiments show that the bootstrapped ontologies without
importing had a higher coverage than the domain ontologies in isolation, e.g., 39% of
query class coverage against 27% in the Statoil use case. These results suggest that there
is an adequate number of table and column names with potentially adequate semantic
relations with the terms that domain experts at Statoil and Siemens have in mind when
they access data, and thus, the ontology vocabulary computed by the ontology boot-
starppers is indeed relevant to query formulation. Nevertheless, the domain ontologies
naturally complement the vocabulary obtained from the database and hence BOOTOX
is able to bootstrap and ontology with better coverage over the query catalog than the
ones generated by -ontop- and MIRROR. For example, 48% of the classes (resp., 90%)
in the Statoil (resp., Siemens) catalog are fully or partially covered in the bootstrapped
ontology computed by BOOTOX.

5.2 Query Answering in a Controlled Scenario
In this section we assess the quality of the bootstrapped ontology and mappings to en-
able the answering of queries in a controlled scenario.19 To this end we ran experiments
with a recently released relational-to-ontology benchmark suite, RODI [29], comparing
BOOTOX to IncMap, -ontop- and MIRROR. RODI is designed to test relational-to-
ontology mappings end-to-end: it provides an input database and a target ontology and
requests complete mappings or mapped data to query. RODI is based on scenarios,
with each scenario comprising several query tests. While RODI is extensible and can
run scenarios in different application domains, it ships with a set of default scenarios in
the conference domain that are designed to test a wide range of fundamental relational-
to-ontology mapping challenges in a controlled fashion. The effectiveness of mappings
is then judged by a score that mainly represents the number of query tests that return
expected results on mapped data.

IncMap is designed to automatically map the target ontology directly to the in-
put database, while BOOTOX approached this task in two steps: first, it bootstrapped
an intermediate ontology and mappings from the database. Then, it aligned this inter-
mediate, bootstrapped ontology to the target ontology as provided by the benchmark.

19 Note that assessing the quality of the bootstrapped ontology and mappings in an open scenario
like Optique requires a huge involvement of domain experts, thus we leave it for future work.
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Table 2: RODI results of all tests per scenario. Values in cells are the success scores

Scenario IncMap MIRROR -ontop- BOOTOX
Adjusted naming

CMT 0.5 0.28 0.39 0.39
CONFERENCE 0.26 0.27 0.37 0.37

SIGKDD 0.21 0.3 0.45 0.45
Cleaned hierarchies

CMT 0.44 0.17 0.28 0.28
CONFERENCE 0.16 0.23 0.3 0.3

SIGKDD 0.11 0.11 0.16 0.16
Combined case

SIGKDD 0.05 0.11 0.16 0.16
Missing FKs

CONFERENCE 0.03 0.17 - 0.17
Denormalised

CMT 0.22 0.22 0.28 0.28

As mentioned in Section 5.1, neither -ontop- nor MIRROR include a built-in ontology
alignment system to support the importing of the target ontology provided by the bench-
mark. In order to be able to evaluate these systems with RODI, we aligned the generated
ontologies by -ontop- and MIRROR with the target ontology using the LogMap system
in a similar setup to the one used in BOOTOX.

Scenarios. RODI default scenarios are a selection of benchmark scenarios set in the
conference domain, based on three different conference ontologies: CMT, CONFER-
ENCE, and SIGKDD20. For each ontology, the benchmark provides a set of database
instances that are to be mapped to the ontology vocabulary. While all databases are mod-
elled to contain the same data that the ontologies might contain, they deviate largely in
how close they are to their corresponding ontologies in terms of structure and mod-
elling patterns. For each ontology, there is a number of mapping challenges that can be
tested: (i) Adjusted naming. Here the identifier names in the databases are syntactically
changed in comparison with the names in the ontology. (ii) Cleaned hierarchies. In this
scenarios, the databases are remodelled from ground to follow widely used relational
database design patterns. Most significantly, this includes cases where abstract parent
classes have no corresponding table in the database, several sibling classes are jointly
represented in a single table, etc. (iii) Combined case mixes changes made in scenarios
with adjusted naming and cleaned hierarchies. (iv) Missing FKs represents the case of a
database with no explicit referential constraints at all. (v) In the denormalised case, the
database contains a few denormalised tables.

Results. Results show that the BOOTOX comes out in top position for seven out of
nine tested scenarios (see Table 2). This shows that BOOTOX is well suited for meet-
ing the requirements of an end-to-end scenario. Note that the results between BOOTOX
and -ontop- may look very similar; however, currently RODI only provides the percent-
age of correctly answered queries (i.e., BOOTOX and -ontop- fail in the same queries).
RODI is being extended to include a more fine grained evaluation in terms of Preci-
sion and Recall in order to take into account partially answered queries, which may
reveal more differences among the evaluated systems. On a more generic note, how-
ever, results also demonstrate that none of the tested systems to date manages to solve
relational-to-ontology mapping challenges with a score above 0.5. This confirms the
need for specialised relational-to-ontology bootstrapping systems such as BOOTOX,
which build the foundation for better solutions.

20 http://oaei.ontologymatching.org/2015/conference/
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Provenance. When we evaluated BOOTOX with RODI without the use of provenance
mappings, the results were slightly worse than the ones in Table 2: in three scenarios
we detected unexpected answers. Then we made use of the provenance functionality of
BOOTOX to analyse the source of these unexpected answers. As an outcome of such
an analysis we identified and fixed the faulty mappings, hence improving the results for
those scenarios.

6 Related Work
The implementation of BOOTOX has been motivated by the fact that existing ontology
and mapping bootstrappers provide limited or no support for the bootstrapping tasks
and quality requirements described in Section 3 (see, e.g., [34, 41]). Most of the state
of the art bootstrappers fail to conform with the ontology and mapping language stan-
dards, or they do not provide profiling capabilities for the outpout ontology. Moreover,
to the best of our knowledge they do not provide bootstrapping of complex mappings.
For historical reasons (i.e., OWL was not yet defined), former systems used RDFS and
F-Logic axioms (e.g., [5, 44]). Other systems have also used DLR-Lite based languages
(e.g., [25]) and extensions based on SWRL (e.g., [13, 24]). Regarding mapping gener-
ation, before R2RML became a W3C recommendation, system typically relied on their
own native language to define mappings (e.g., D2RQ [7], Mastro [10]). To the best of
our knowledge, currently only IncMap [30], MIRROR [26], -ontop- [32], and Ultra-
wrap [33, 35] produce mappings in the R2RML language.

Among the systems using OWL or OWL 2 as the ontology language, only BOOTOX
put special attention to the target ontology expressiveness. BOOTOX allows to output
different ontology axioms to conform to the required OWL 2 profile as discussed in Sec-
tion 4.1. Many bootstrapping systems typically use exact or min cardinality restrictions
which fall outside the three OWL 2 profiles (e.g., [1, 46]). Furthermore, other systems,
like [6], produce an ontology that falls into OWL 2 Full due to the use of the Inverse-
Functional characteristic in both data and obtect properties. Finally, MIRROR, -ontop-,
and Ultrawrap are conformant to the OWL 2 QL, but they do not support profiling to
the other sublanguages of OWL 2.

As BOOTOX, systems like Automapper [13], Relational.OWL [23] and ROSEX
[12] complement the automatically generated ontology with links to domain ontolo-
gies. However, none of these systems apply logic-based techniques to assess the conse-
quences of such links to domain ontologies.

Special mention require the approaches in [9, 36]. These approaches use (semi-
automatic) ontology learning techniques to exploit the data and discover interesting
patterns that can be included to enrich the ontology. Currenly, BOOTOX only relies on
a (fully-automatic) schema-driven generation of the ontology and mappings.

In the literature one can also find several appoaches to overcome the OWA problem
when dealing with data-centric applications (e.g., [27, 45]). These approaches typically
extend the semantics of OWL 2. The integration of these approaches in a bootstrapping
scenario is, however, still an open problem.

7 Conclusions and Future Work
We presented BOOTOX, an automatic ontology and mapping bootstrapper. To the best
of our knowledge, BOOTOX is the only bootstrapper that (i) profiles the concrete lan-
guage of the output OWL ontology, (ii) puts special attention to the datatype conversion,
(iii) enhances the direct mappings with provenance metainformation, (iv) bootstraps a
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range of complex mappings, and (v) includes a built-in logic-based ontology alignment
system. Furthermore, we tested BOOTOX in a number of databases and test cases in-
volving materialised or virtual data access. The evaluation suggests that automatic tech-
niques to bootstrap an initial ontology and mappings are suitable to be used in practice.

We see bootstrapping as the first step towards the creation of a fully-fledged se-
mantic data access system. Bootstrapped assets are by no means perfect, and thus
they should be post-processed, validated, and extended. Our evaluation in both in-
dustrial (i.e., Optique) and research contexts has also served to guide the extension
of BOOTOX with semi-automatic techniques. For example, while working with Sta-
toil’s EPDS database, we found that the discovery of implicit constraints represents a
critical feature since EPDS has very few constraints, e.g., many tables are materialised
views without specified primary or foreign keys. In the close future we aim at extend-
ing our evaluation to understand the limits of semi-automatic ontology and mapping
bootstrappers to enable the answering of the queries in open scenarios like Optique.
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[18] E. Jiménez-Ruiz et al. Large-Scale Interactive Ontology Matching: Algorithms and Im-

plementation. In: ECAI. 2012.
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