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Abstract. We are witnessing a huge growth in popularity of wearable
and implantable devices equipped with sensors that are capable of moni-
toring a range of physiological processes and communicating the data to
smartphones or to medical monitoring devices. Examples include fitness
bands that can monitor the heartbeat and estimate the time you spend in
deep sleep, wristbands that authenticate users based on the unique shape
of their electrocardiogram (ECG), implantable glucose sensors that send
measurements to an insulin pump, and leadless cardiac pacemakers that
are implanted inside the heart. Applications include not only medical
diagnosis and treatment, but also biometric authentication systems. An
important requirement is personalisation of the devices, namely, their
ability to adapt to the physiology of the human wearer and to faithfully
reproduce the characteristics in real-time for the purposes of authentica-
tion or optimisation of medical therapies. In view of the complexity of the
embedded software that controls such devices, model-based frameworks
have been advocated for their design, development, verification and test-
ing. In this paper, we focus on applications that exploit the unique char-
acteristics of the heart rhythm. We introduce a hybrid automata model
of the electrical conduction system of a human heart, adapted from Lian
et al [22], and present a framework for the estimation of personalised
parameters, including the generation of synthetic ECGs from the model.
We demonstrate the usefulness of the framework on two applications,
ensuring safety of a pacemaker against a personalised heart model and
ECG-based user authentication. The paper concludes by discussing the
challenges and opportunities in this field.

1 Introduction

Recent technological advances have spurred a huge growth in apps and wear-
ables for use in health monitoring. They employ a multiplicity of noninvasive
sensors, e.g. accelerometers and miniature cameras, that can read physiologi-
cal indicators, wirelessly send data to smartphones and analyse it not only to
record trends, but also to support decision making for diagnosis and interven-
tion. Examples include fitness bands, such as Jawbone UP31, which can count
steps, monitor the heartbeat, and estimate the calories intake and the time you
spend in deep sleep. The success in miniaturisation of electronics has led to
novel variants of traditional medical devices being introduced on the market, to
mention leadless cardiac pacemakers that can be implanted inside the human
heart (e.g. Nanostim2) and implantable glucose monitors that transmit data to
a wristwatch to alert the wearer about any undesirable trends (e.g. Minimed3).
Applications are not limited to the medical field, and include also emerging
technologies for biometric user authentication and security, such as wristbands

1 https://jawbone.com/store/buy/up3
2 http://www.sjm.com/leadlesspacing/intl/options/leadless-pacing
3 http://www.medtronicdiabetes.com/treatment-and-products/

minimed-revel-insulin-pump
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that periodically check the electrocardiogram (ECG) of the user to produce a
template authentication signal (e.g. the Nymi band4).

An important requirement for wearables is their personalisation, namely, the
ability for the device to adapt to the physiology of the human wearer based
on the person’s individual characteristics. This is viewed as a key enabler of
personalised healthcare, achieved through automation of medical intervention
strategies uniquely adapted to the individual. Personalisation is typically im-
plemented via an appropriate parameterisation of a model of the physiological
process, through parameter estimation and parameter synthesis techniques. Au-
tomation of personalised delivery of medical treatment is a major challenge; for
example, rate-adaptive pacemakers are able to vary the rate of pacing depend-
ing on the activity and age of the patient [18], but insulin pumps still rely on
human supervision. Another important role of personalised devices is in device
safety assurance, where they can be used to faithfully reproduce the unique
characteristics of the wearer in real-time for the purposes of testing.

Undoubtedly, personalised medical wearable and implantable devices are an
important step towards achieving personalised healthcare. However, major ad-
vances are necessary to realise this vision, ranging from technological (minia-
turisation, low-power circuits), software technologies (design automation, code
generation, integration), to regulatory and legal frameworks (FDA approval,
certification). This paper is concerned with model-based design and verification
techniques for ensuring safety and e↵ectiveness of personalised devices based on
the bioelectrical activity of the heart.

We focus on the hybrid automata framework for closed-loop quantitative
verification of cardiac pacemakers introduced in [9,19], where a pacemaker is
modelled as a timed automaton, composed in closed loop with a heart model
represented as a hybrid automaton. The heart and pacemaker models are pro-
vided in Simulink, and their safety and energy e�ciency is analysed for a range
of heart conditions, including chronotropic deficiency that can be treated with
the rate-adaptive pacemaker. This was extended in [11] with techniques to au-
tomatically synthesise optimal timing delays to minimise energy consumption,
and in [4] with a hardware-in-loop simulator to evaluate embedded pacemaker
software on low-power hardware similar to that of a real pacemaker. However,
personalisation was not supported.

In this paper, we extend the framework of [9,19] as follows. We introduce a
new hybrid heart model, an adaptation of the model of Lian et al [22], encoded
in Simulink/Stateflow and develop techniques to personalise the model through
parameter estimation based on ECG data. We implement methods to produce
synthetic ECGs that are characteristic for the given individual, and also to com-
pare di↵erent ECG patterns. We consider two applications: verification of safety
properties for a pacemaker against a personalised heart model, and biometric au-
thentication based on matching the wearer’s signature with ECG data acquired
for recognition.

4 https://www.nymi.com/
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2 Background

In this section, we introduce our main modelling formalism, timed I/O automata
with priorities and data [20,3], which extend the model of [11] with data vari-
ables, and show how to equip it with probabilistic dynamics, which we will need
in the parameterization of the heart model from ECG data. The hybrid dynam-
ics of the electrical conduction of a human heart is relatively simple, and in fact
can be modelled using timed automata with data. To model the conduction, we
use data variables in the guards of the automaton and, each time an edge is
taken, we compute the valuation that the data variables are updated to in the
target location. Priorities are needed to impose determinism.

2.1 Timed I/O automata with priorities and data

Let X be a set of non-negative real-valued variables, called clocks. Let D be
a set of real-valued variables, called data. A variable valuation is a function
⌘ = ⌘|X [ ⌘|D, where ⌘|X : X ! R�0

and ⌘|D : D ! R. We denote the set of
variables with V = X [D. Let � be a set of real-valued parameters. A parameter
valuation is a function � : � ! R mapping each parameter p to a value in its
domain dom(p) ✓ R.

Let Y be a set and V(Y) denote the set of all valuations over Y. We con-
sider guard constraints of the form

V
i

v

i

./

i

f

i
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i

2 X is a clock,
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2 {<,6, >,>} and f

i

: V(D)⇥V(� ) ! R is a real-valued function over data
variable and parameter valuations. Compared to the usual TAs, these constraints
involve real-valued data and parameters whose dynamics are more complex. A
variable valuation ⌘ and a parameter valuation � satisfy the above constraint i↵V

i

⌘(v
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) ./
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f
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(⌘|D, �) holds. We denote with B(V ) the set of guard constraints
over V . We extend the TA notion of “reset” to describe both the reset of the
clocks and the update of data variables. The reset of a set of variables V 0 ✓ V is
thus a function r : V 0⇥V(V )⇥V(� ) ! R. Given valuations ⌘ and �, ⌘ is updated
by reset r to the valuation ⌘[r] = {v 7! r(v, ⌘, �) | v 2 V

0}[ {v 7! ⌘(v) | v 62 V

0}
that applies the reset r to the variables in V

0 and leaves the other variables un-
changed. We denote with R the set of reset functions. The valuation ⌘ after time
� 2 R�0

has elapsed is denoted by ⌘+� and is such that ⌘+�(v) = ⌘(v) + � if
v 2 X and ⌘+�(v) = ⌘(v) otherwise. This implies that all clocks proceed at the
same speed and data variables are not a↵ected by the passage of time. However,
when an edge is taken the reset function on data can perform an arbitrary com-
putation over the current valuation of all clock variables and parameters, which
in particular enables solving simple di↵erential equations needed to model hybrid
dynamics.

Definition 1 (Deterministic Timed I/O Automaton with Priority and
Data). A deterministic timed I/O automaton (TIOA) with priority and data
A = (X ,�,D, Q, q

0

,⌃

in

, ⌃

out

,!) consists of:

– A finite set of clocks X , data variables D and parameters � .
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2, !Abeat, x1 = SA d,

{x1 := 0, a dV := SA dV}

1, ?NextAtrBeat,>,

{x1 := 0}

1, ?NextAtrBeat,>,

{x1 := 0}

Wait4ABeat

Wait4ASynch

(a) Timed I/O Automaton with data

Wait4ASynchWait4ABeat

?NextAtrBeat

1
?NextAtrBeat

after(SA_d),!Abeat,
{a_dV=SA_dV}

2

SANode

(b) Stateflow diagram

Fig. 1: Automata for the SA node

– A finite set of locations Q, with the initial location q

0

2 Q.
– A finite set of input actions ⌃

in

and a finite set of output actions ⌃

out

.
– A finite set of edges !✓ Q⇥ (⌃

in

[⌃

out

)⇥ N⇥ B(V )⇥R⇥Q. Each edge
e = (q, a, pr, g, r, q0) is described by a source location q, an action a, a priority
pr, a guard g, a reset r and a target q0.

We require that priorities define a total ordering of the edges out of any
location, and that output actions have higher priority than input actions.

Fig. 1a depicts an automaton modelling the sino-atrial node. The automaton
contains one clock, x

1

, one data variable, a dV, and two parameters SA d and
SA dV. The set of locations is Q = {Wait4ABeat,Wait4ASynch}, Wait4ABeat
being the initial state. The action sets are ⌃

in

= {?NextAtrBeat} and ⌃

out

=
{!Abeat}. Digits 1, 2 labelling edges denote priorities.

The TIOAs as defined above are able to synchronise on matching input and
output actions, thus forming networks of communicating automata. We say that
an output edge is enabled when the associated guard holds. On the other hand,
an input edge is enabled when both its guard holds and it can synchronise
with a matching output action fired by another component of the network. A
component of a network of TIOAs is enabled if, from its current location, there
is at least one outgoing edge enabled. Also, we assume that output edges are
urgent, meaning that they are taken as soon as they become enabled. As shown
in [11], priority and urgency imply that the TIOA is deterministic.

Definition 2 (Network of TIOAs). A network of TIOAs with m components
is a tuple N = ({A1

, . . . ,Am},X ,�,D,⌃

in

,⌃

out

) of TIOAs, where

– for j = 1, . . . ,m, Aj = (X ,�,D, Q

j

, q

j

0

,⌃

in

,⌃

out

,!j) is a TIOA,
– X ,�,D,⌃

in

,⌃

out

are the common sets of clocks, parameters, data variables,
input and output actions, respectively.

We define the set of network modes by Q = Q

1 ⇥ · · · ⇥ Q

m, with initial mode
q0 = (q1

0

, . . . , q

m

0

) and the initial variable valuation ⌘

0

. A state of the network is
a pair (q, ⌘), where q 2 Q and ⌘ 2 V(V ).
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The execution of a network of TIOAs N (�) is described by a sequence ⇢ =

(q0, ⌘0)
t0! (q1, ⌘1)

t1! · · · , where, for each i, ⇢[i] = (qi, ⌘i) is a state of the
network and t

i�1

is the time spent in that state. A step in the path occurs as
soon as at least one component is enabled and evolves as follows. Each component
can (i) have an output edge with maximum priority enabled, in which case the
component fires the output edge and moves to the next location accordingly,
or (ii) if no output edge is enabled then it fires the enabled input edge with
maximum priority, thus synchronising with an output edge taken by another
component, or (iii) if no input edge is enabled, it lets time pass.

Probabilistic resets. Let Distr(S) be the set of all probability distribution func-
tions over a space S ✓ V(V ). We implement probabilistic dynamics by enabling
the reset of data and clock variables with values sampled from distributions in
Distr(S). In this case, the reset of a set of variables V

0 ✓ V becomes a func-
tion r : V 0 ⇥ V(V ) ⇥ V(� ) ! Distr(S). Given valuations ⌘ and �, r induces an
updated valuation ⌘[r] such that, for any s 2 S:

Pr (⌘[r](v) = s) = r(v, ⌘, �)(s), for v 2 V

0

Pr (⌘[r](v) = s) = �

⌘(v)

(s), for v 62 V

0

In other words, the reset r(v, ⌘, �) is now a probability distribution, which
determines the probability that a variable v 2 V

0 is assigned a value s 2 S in the
updated valuation ⌘[r]. Note that deterministic updates can still be expressed
by choosing a Dirac distribution for r(v, ⌘, �). Furthermore, as timing delays can
depend on the variables, they can be made probabilistic too.

The second equation states that, when v is not a↵ected by the reset, its value
stays the same with probability 1, since �

⌘(v)

denotes the Dirac distribution
centered at ⌘(v), i.e. such that �

⌘(v)

(s) is 1 for s = ⌘(v) and 0 otherwise.
In Fig. 2 we extend the TIOA for the SA node in Fig. 1a with probabilistic

resets. In this version, the waiting time in location Wait4ABeat is uniformly
distributed in the interval [a, b]. This is implemented through an additional data
variable rand delay, which is updated with a randomly sampled value (assignment
rand delay := U(a, b)) every time before entering location Wait4ABeat. For the
sake of simplicity, we use the shortcut x

1

:= 0 to denote the deterministic update
x

1

:= �

0

.
Note that the probabilistic choices a↵ect directly only updates of variables.

When an edge (q
1

, a, p, r, g, q

2

) is taken, the distribution r is sampled and vari-
ables are updated accordingly. As timing delays depend on the variables, they
indirectly become probabilistic.

Modelling of Stateflow charts. The formalism of TIOAs conveniently captures a
subset of the Simulink/Stateflow modelling language. In particular, we do not
consider state hierarchy, meaning that automata locations cannot be specialised
as sub-components. We also exclude state actions, used in Stateflow to model
updates that occur without firing a transition, e.g. continuous flows. TIOAs
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{rand delay :=
U(a, b)}

2, !Abeat, x1 = rand delay,

{x1 := 0, a dV := SA dV}

1, ?NextAtrBeat,>,

{x1 := 0, rand delay := U(a, b)}

1, ?NextAtrBeat,>,

{x1 := 0, rand delay := U(a, b)}

Wait4ABeat

Wait4ASynch

Fig. 2: Automaton in Fig. 1a extended with probabilistic resets.

employ broadcast communication, where synchronisation is not restricted, while
Stateflow supports also local events, that is, two-party communication where
the receiver is pre-determined. Nevertheless, local communication can be easily
encoded as broadcast communication by means of appropriate action names. In
addition, TIOAs do not support junctions and multiple actions associated to
a single edge. Each Stateflow component possesses an implicit clock, which is
reset to 0 whenever an edge is taken. In Stateflow charts, the keyword after(t) is
equivalent to the time guard x = t, where x is the implicit clock.

Fig. 1 shows the same model both as a timed I/O automaton and a Stateflow
chart.

3 Heart Model

The heart model describes the electrical conduction system of the heart and is
used to reproduce the propagation of the cardiac action potential from the atria
to the ventricles through the AV node. It is a TIOA translation of the model by
Lian et al [22]. Model files are available5 in the Simulink/Stateflow file format
for both the heart and the pacemaker.

In [22], the heart model is coded as a C program. In contrast, we provide a
heart model as a network comprising hybrid automata and probabilistic timed
automata represented in Stateflow, within a model-based plug-and-play frame-
work that supports modular designs. Thus, for example, a novel pacemaker
model can be added and composed in a closed loop with a heart model for
pacemaker verification, or the heart model can be adapted to model a specific dis-
ease. The main advantage of a model-based framework is that it is rigorous, and
therefore supports automated verification, e.g. checking safety of pacemakers [9]
and parameter synthesis that minimises pacemaker energy consumption [4]. In
addition, a range of additional analyses can be provided for the same model,
including generation of executable or simulatable code.

The high-level structure of the model is depicted in Figure 3. It comprises 9
conduction nodes and two main conduction pathways: the antegrade conduction,

5 http://qav.cs.ox.ac.uk/subm/HeartModel.zip
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that is, the normal situation where an electrical impulse generated by the sinoa-
trial (SA) node stimulates the atria and is conducted to the ventricles through the
atrio-ventricular (AV) node; and the retrograde conduction, where the impulse
travels in the opposite direction (from the ventricles to the atria through the AV
node). Generally, retrograde conduction is less frequent and is originated when
the ventricular myocardium is stimulated artificially by a pacemaker or by an
ectopic action potential. The conduction between nodes is implemented through
synchronisation between the involved components. In this way, the model can
be easily extended with other accessory conduction pathways, in order to repro-
duce heart conditions such as the Wol↵–Parkinson–White syndrome [6] which is
characterised by an abnormal pathway between the atria and the ventricles that
bypasses the AV node.

In the figure, we also illustrate the optional connection with a generic dual-
chamber pacemaker component: the device sends impulses to the (right) atrium
and (right) ventricle through actions AP and VP, respectively, and senses intrin-
sic impulses from the atrium and ventricle by synchronising on actions Vget and
Aget, respectively. Model parameters are summarised in Table 2.

Ventricle

Pacemaker

Atrium

SANode

AVJOut

AVJ

AP

Abeat

VgetAget

VP

Vbeat
AbeatAEctopic

AAVConductor AVJAnteIn AVJRetroIn

AVJAnteOutAVJRetroOut

AtrRetroIn

AtrAnteOut
VtrAnteIn

VtrRetroOut
VEctopic

AAVRetroIn AVVAnteIn

AVVConductor

Fig. 3: TIOA components in the heart model. Arrows indicate synchronisations,
with the target component synchronising with the output action performed by
the source component, and are labelled with the action name. The antegrade
conduction (blue arrows) passes from the Atrium component to the Ventricle
component. The retrograde conduction (red arrows) follows the opposite path.
Grey arrows indicate the connection with the pacemaker.

Below we provide a detailed description of the TIOA components of the heart
model, expressed as Stateflow charts.

Atrial rhythm generation (Figure 4a). Impulses in the atria are generated by the
components SANode, which models the sinoatrial node with a firing rate equal to
SA d, and AEctopic, which generates ectopic beats with rate AEcto d. While the
sinoatrial node is located in the right atrium, atrial ectopic beats (also called pre-
mature atrial contractions or PAC) are originated by the spontaneous excitation
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of di↵erent portions of the atrial tissue, mainly from the pulmonary veins [24].
The potential is transmitted to the Atrium component through the output ac-
tion !Abeat, when stepping from location Wait4ABeat to location Wait4ASynch.
The strength of the action potential is stored in variable a dV and is determined
by parameter SA dV for intrinsic impulses from the SANode, or AEcto dV for
ectopic ones.

Atrium (Figure 4b). This component provides an abstraction of the left and right
atria and their stimulation dynamics. Initially, it stays in the Refractory location
for Atr refrD time units, before switching location to Excitable. In this mode, it
can be stimulated by three types of impulses: intrinsic or ectopic from the SAN-
ode or the AEctopic components through action Abeat; paced impulses from
the pacemaker through AP; or a retrograde signal from the ventricles through
AtrRetroIn. These trigger a contraction of the atria. When the atrial stimulus
is generated by the SA node or the pacemaker, this is propagated towards the
ventricles through the AV node by performing action AtrAnteOut. When the
stimulus is not artificial, i.e., it is either an intrinsic or ectopic beat, the com-
ponent outputs an Aget action for the pacemaker to read. Before reaching the
Refractory state again, an intermediate action is required (NextAtrBeat) to syn-
chronise the SANode component.

Wait4ASynchWait4ABeat

?NextAtrBeat

1
?NextAtrBeat

after(SA_d),!Abeat,
{a_dV=SA_dV}

2

SANode

q0

AEctopic

after(AEcto_d),
!Abeat, {a_dV = AEcto_dV}

(a) SA node and ectopic beat generation.

Asense
AsenseRetro

Refractory

ASynch

GenerateAnteWave

Excitable

!Aget

?AP

2!NextAtrBeat

after(Atr_refrD)

?Abeat

1

!Aget

3

Atrium

!AtrAnteOut

?AtrRetroIn

(b) Atrium

Fig. 4: Atrial rhythm generation components (a) and Atrium component (b).

Conductors (Figure 5). The AAVConductor (Atrium-AV node conductor) and
RV conductor (AV node-Ventricle conductor) are structurally equivalent compo-
nents that apply a propagation delay to the transmission of the action potential
in both directions between the Atrium and the AV node (component AVJ),
and between the AV node (component AVJOut) and the Ventricle, respectively.
From the physiological viewpoint, the AAVConductor component reproduces
the behaviour of the so-called internodal tracts, while the AVVConductor is an
abstraction of the nodes connecting the AV node and the ventricles, namely,
the bundle of His and the Purkinje fibres. When both antegrade and retrograde
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AnteEmpty

Retro
2

1

2 2

1
1

AAVConductor

after(AAV_anteD),
!AVJAnteIn

after(AAV_retroD),
!AtrRetroIn

?AtrAnteOut

?AAVRetroIn

?Atr
Ante
Out

?AAV
Retro
In

AnteEmpty

Retro
2

1

2 2

1
1

AVVConductor

after(AVV_anteD),
!VtrAnteIn

after(AVV_retroD),
!AVJRetroIn

?AVVAnteIn

?VtrRetroOut

?AVV
Ante
In

?Vtr
Retro
Out

Fig. 5: AAVConductor (left) and AVVConductor (right) components.

waves reach one conductor, a so called fusion beat happens, i.e. they annihilate
each other, bringing the conductor back to the Empty state.

Vsense

Excitable

VsenseAnte

Refractory

GenerateRetroWave

!Vget
?VP

2

after(Vtr_refrD)

!Vget

1

?Vbeat

3

Ventricle

q0

VEctopic

after(VEcto_d),
!Vbeat

!VtrRetroOut

?VtrAnteIn

Fig. 6: Ventricular ectopic rhythm generation (top) and Ventricle component
(bottom).

Ventricle and ventricular rhythm generation (Figure 6). The structure of the
Ventricle component is similar to that of the Atrium component. The main dif-
ference is that we do not explicitly model the spontaneous depolarisation of the
ventricles, which can occur with very slow rate in the absence of external elec-
trical impulses. However, we include the VEctopic component for generating ec-
topic ventricular beats (also called premature ventricular contractions or PVC),
which typically originate in the Purkinje cells or in the ventricular myocardium.
Therefore, escape beats can still be reproduced by choosing an appropriate firing
rate of ectopic beats (parameter VEcto d) in the VEctopic component. In the
ventricle automaton, the activation of the retrograde pathway is triggered from
location GenerateRetroWave by firing the action VtrRetroOut after receiving a
stimulus from the pacemaker (action VP) or an ectopic beat (action Vbeat).

AV node (Figure 7). The AV node plays a crucial role in the conduction of
cardiac waves, and thus requires precise modelling of its action potential. It is
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?AVJAnteIn, {

Retro

AnteRecovery

Refractory
avj_tRec=ctime;
avj_refr_0=initRefrPeriod(avj_tRec);
avj_refr=avj_refr_0;}

3

avj_refr=avj_refr-ctime+...
modulateRefrAnte(ctime,avj_refr_0,a_dV);}

1

after(avj_t4), {
avj_tRec=avj_t4;
avj_refr_0=initRefrPeriod(avj_tRec);
avj_refr=avj_refr_0;}

2

avj_t4 = timeToDep(AV_Vr+ ...
ctime*AV_k4 + a_dV);
avj_tRec=ctime;}1

avj_refr=avj_refr-ctime+...
modulateRefrRetro(ctime,avj_refr_0);}

2

{avj_t4=timeToDep(AV_Vr);}
after(avj_t4),
avj_tRec=avj_tRec+ctime;
avj_refr_0=initRefrPeriod(avj_tRec);
avj_refr=avj_refr_0;}

!AVJAnteOut, {

after(avj_refr), {
avj_t4=timeToDep(AV_Vr);}

3

AVJ

Retro

Empty Ante
1

after(AVJDelay(avj_tRec,AV_retroDMin)),
!AAVRetroIn

2

after(AVJDelay(avj_tRec,AV_anteDMin)),
AVJOut

?AVJAnteIn, {

?AVJRetroIn, {

!AVJRetroOut

?AVJRetroIn, {

?AVJRetroOut

?AVJAnteOut

!AVVAnteIn

Fig. 7: Components modelling AV node.

implemented through the components AVJ (atrio-ventricular junction), which
models the action potential of cells in the AV node, and AVJOut, which applies
additional delays depending on the state of the action potential. In the figure,
ctime denotes the implicit automaton clock.

timeToDep(Vm) = max
�
0, AV Vt�Vm

AV k4

�

initRefrPeriod(t) = AV refrDMin+ AV � ·
�
1� exp

�
� t

AV tr

��

modulateRefrAnte(t, t0) = AV refrDMin ·
⇣

t
t0

⌘AV ✓
·min

⇣
1, dV

AV Vt�AV Vr

⌘AV �

modulateRefrRetro(t, t0) = AV refrDMin ·
⇣

t
t0

⌘AV ✓

AVJDelay(t, tmin) = tmin + AV ↵ · exp(� t
AV ⌧c

)

Table 1: Equations regulating the conduction delay and action potential in the
AV node

In Table 1, we report the main functions used in the model to implement the
AV conduction delay. Figure 8 illustrates the evolution of action potential in two
possible cases: intrinsic depolarisation and excitation from atrial stimulus.

In the first case (Figure 8a), the AV node does not receive any external
stimuli. In the Recovery state the action potential increases linearly starting from
the resting potential AV Vr with rate AV k4. This slow depolarisation phase ends
when the action potential reaches the threshold AV Vt, after which we register a
fast increase of the potential (rapid depolarisation). In the AVJ component, this
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Fig. 8: Action potential of the AV node
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behaviour is implemented by the transition from Recovery to Refractory. Given
the current membrane potential V m, function timeToDep(V m) computes the
time left to reach rapid depolarisation during the linear increase phase.

In the refractory period, the action potential is roughly constant and does
not a↵ect the time spent in this state. Rather, this is a↵ected by the time
previously spent in the Recovery state (variable avj tRec) through function ini-
tRefrPeriod(avj tRec), according to which the initial refractory period (variable
avj refr 0) decays exponentially with avj tRec.

Signals arriving at this stage prolong the refractory time according to func-
tions modulateRefrAnte or modulateRefrRetro, depending of whether the signal
originates from the Atrium or the Ventricle. This phenomenon is known as AV
concealed conduction [26,17,23]. At the end of the refractory period, the ac-
tion potential decreases to AV Vr. This is modelled by the switching from the
Refractory to the Recovery location.

The second case is the most common one, where a signal reaches the AVJ
during the recovery period. Figure 8b shows an example of action potential re-
ceiving a stimulus from the Atrium. Depending on the intensity of the wave, the
action potential increases promptly and is usually su�cient to trigger the depo-
larisation by exceeding the value AV Vt. The atrial potential is stored in the a dV
variable, but in the figure we assume it comes from an intrinsic beat with po-
tential SA dV. Depending on the type of conduction, in the AVJ component the
stimulus is detected through input action AVJAnteIn or AVJRetroIn, after which
the component transitions into state Ante or Retro, respectively. In particular,
we assume that signals from the Ventricle are always strong enough to trigger
the depolarisation, while the impulse strength from the Atrium is used to update
the time left to spend in the recovery period (stored in variable a dV) through
function initRefrPeriod. We also suppose that, during the recovery period, only
one signal at a time can reach the AV node.

When it is depolarised, the AV node transmits the potential outside to the
AVJOut component by performing output actions AVJAnteOut or AVJRetroOut.
Through function AVJDelay(avj tRec,t

min

), the latter component applies an ad-
ditional conduction delay, which decays exponentially with avj tRec.

Fig. 9 illustrates some possible dynamics that can be reproduced by the model
(with no pacemaker attached) in the form of stem plots. For these examples,
timings and resets are deterministic. Fig. 9a shows a healthy behaviour, obtained
with the default parameters, while Fig. 9b shows a bradycardia episode (slow
heart rate) reproduced by increasing the SA node firing rate (parameter SA d).

In Fig. 9c, we simulate a conduction defect of the AV node known as Wencke-
bach phenomenon [8]. This is characterized by the progressive prolongation of
the atrio-ventricular conduction delay, until one wave fails to conduct to the
ventricles. The AV delay is longest immediately before the dropped beat and
shortest immediately after the dropped beat. In the figure, we can observe that
the delay between atrial and ventricular events keeps increasing until the atrial
event occurring at approximately 5 seconds is not conducted to the ventricles.
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Parameter Value Description

SA d 1000 ms SA node firing rate

AEcto d 10400 ms Rate of atrial ectopic beats

SA dV 50 mV Voltage increment in AV node action potential due
to atrial beat

AEcto dV 50 mV Voltage increment in AV node potential due to atrial
ectopic beat

Atr refrD 50 ms Atrial refractory period

AAV anteD 30 ms Conduction delay from Atrium to AAVConductor

AAV retroD 30 ms Conduction delay from AAVConductor to Atrium

AVV anteD 50 ms Conduction delay from AVVConductor to Ventricle

AVV retroD 50 ms Conduction delay from Ventricle to AVVConductor

AV Vr �90 mV AV node resting potential

AV Vt �40 mV AV node depolarisation threshold potential

AV k4 0.03 mV·ms�1 AV node spontaneous depolarisation slope

AV refrDMin 50 ms minimum AV node refractory period

AV ↵ 150 ms maximum AV node delay time

AV � 250 ms maximum AV node refractory period

AV tr 500 ms AV node refractory time constant

AV � 10 electrotonic modulation constant for concealed im-
pulse strength

AV ✓ 10 electrotonic modulation constant for concealed im-
pulse timing

AV ⌧c 100 ms AV node conduction time constant

AV anteDMin 50 ms minimum AV node antegrade conduction time

AV retroDMin 50 ms minimum AV node retrograde conduction time

VEcto d 30450 ms Rate of ventricular ectopic beats

Vtr refrD 200 ms Ventricular refractory period

Table 2: Default parameters of the heart model (taken from [22]).
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This behaviour is reproduced by increasing the AV threshold potential pa-
rameter AV Vt. Indeed, when AV Vt is too high, the potential from the atria is
not su�cient by itself to trigger the depolarization. This causes an increased
recovery time (i.e. waiting time in location Ante, see Fig. 7) and hence the re-
fractory time is also increased according to the initRefrPeriod function. In turn,
the increased time in the refractory state shortens the interval between the be-
ginning of the next recovery period and the arrival of the next atrial stimulus,
leading to a recovery time even longer than that of the previous cycle and to an
increased conduction delays. The delays keep increasing until the atrial stimulus
occurs during a refractory period and is thus dropped.

4 Estimation from ECG data

In this section, we describe the workflow and the methods to estimate from ECG
data personalised parameters for the heart model introduced in Section 3. The
workflow is depicted in Figure 10.

The first step is the filtering and analysis of the input ECG recordings and
the detection of the characteristic ECG waves, which is described in Section 4.1.
Information on the time intervals between ECG waves is directly mapped to a
subset of the parameters, called explicit. However, there are also some implicit
parameters that cannot be directly estimated from the ECG, e.g. those a↵ect-
ing the conduction delay within the AV node. For such parameters, we adopt
Gaussian Process (GP) optimisation (described in Section 4.4) to find the val-
ues that maximise the probability that the input ECG is generated from the
personalised heart model. In particular, the objective function is the statistical
distance between the input ECG and the synthetic ECG, i.e. the ECG signal
generated by the heart model. The derivation of the synthetic ECG and the
statistical distance are described in Section 4.2 and 4.3, respectively.

4.1 ECG detection and mapping of explicit parameters

The electrocardiogram (ECG) is a signal acquired from the patient’s skin through
electrodes and provides information on the electrical activity of the heart [1]. In
Figure 11 we depict an example ECG for one cardiac cycle. It comprises five
waves, P, Q, R, S and T, which map to specific heart events:

– P wave: activation of the atrium;
– QRS complex : activation of the ventricles; and
– T wave: ventricular repolarisation.

From ECG to model. The time interval between the P and Q waves, or PQ
interval, represents the time needed for the impulse to travel from the atrium
to the AV node. In the model, it is the time between an Aget event and the
following AVJAnteReached event, which is determined by parameter RA anteD.
The distance between two consecutive R waves, called RR interval, gives the
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Atrium Beat Ventricle Beat

(a) Healthy behaviour obtained with default parameters (Table 2).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Atrium Beat Ventricle Beat

(b) Bradycardia episode. Parameter SA d is set to 1100 ms.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Atrium Beat Ventricle Beat

(c) Wenckebach AV Block. Parameter AV Vt is set to �17 mV.

Fig. 9: Examples of reproducible heart dynamics. A short vertical stem (green)
corresponds to an atrial event, whereas a longer one (blue) to a ventricular event.
Time (x-axis) is in milliseconds.
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ECG detection

Simulation
Gaussian Process Optimisation

Personalized Heart Model

ECG Explicit Parameters

Synthetic ECG

Hidden parameters

ECG distance

Comparison

Fig. 10: Workflow for the estimation of personalised heart models from ECG
data

Aget VgetAVJAnte
Reached

RA_anteD Vtr_refrD

Fig. 11: Illustration of example ECG for one cardiac cycle and the corresponding
P, Q, R, S, T peaks. On the bottom, we show the mappings with events (orange)
and parameters (purple) of the heart model.
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time between two ventricular impulses, i.e. the duration of the cardiac cycle. In
general, this can be mapped to the SA node frequency (parameter SA d). The ST
interval describes the period of zero potential between ventricular depolarisation
and repolarisation, during which the ventricular myocardial cells are refractory,
that is, they cannot be stimulated by other impulses. Hence, this interval corre-
sponds to parameter Vtr refrD. Finally, the QS interval represents the time for
the impulse to reach the ventricles from the AV node. In the model, this corre-
sponds to the time between an AVJAnteReached event and a Vget event, which
results from the dynamics of the components AVJ, AVJOut and RVConductor.

In Table 3 we summarise the mappings between ECG features and parameters
or events of the heart model. Some of these mappings are explicit (PQ, RR
and ST), i.e. when the corresponding ECG interval can be directly mapped to
a parameter. Implicit mappings (QS) occur when the interval spans multiple
events and is a↵ected by multiple parameters.

Remark 1. Explicit mappings are implemented in the TIOA model in a proba-
bilistic fashion. We first derive a discrete distribution from the detected intervals.
Then, in the TIOA model, the corresponding parameter is replaced by a data
variable that is updated with values uniformly sampled from the distribution.
Some example distributions of PQ intervals are depicted in Fig. 19.

Interval Explicit Parameter(s)

RR X SA d

PQ X RA anteD

ST X Vtr refrD

QS AV Vr, AV Vt, AV k4, AV refrDMin, AV �, AV tr,
AV �, AV ✓, AV ⌧c, AV anteDMin, RV anteD

Table 3: Mapping of ECG intervals to heart model parameters (see Table 2 for
the description of parameters).

ECG detection algorithm. The method for extracting peaks and intervals from
the ECG signal consists of the following three steps:

1. Pre-processing. At this stage, the ECG signal is normalised in order to ensure
a 0 mV baseline, and filtered to remove noise and baseline drift. Specifically,
we employ a lowpass Butterworth filter.

2. R peaks detection. ECG waves are detected starting from the R wave, which
indicates the presence of a heart beat. Here, R peaks are detected using the
Pan-Tompkins algorithm [27].

3. ECG detection. The location and amplitudes of the other peaks and the
duration of RR, PQ, ST and QS intervals are derived through an adapted
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version of the ECG detection algorithm in [30]. For each wave, we also com-
pute the full width at half maximum, i.e. the width of the wave at half of
its amplitude, which will be used in the generation of the synthetic ECG, as
explained in Section 4.2.

4.2 Generation of model-based synthetic ECGs

The derivation of the synthetic signal is inspired by [25] and obtained by sum-
ming, for each wave kind i 2 {P,Q,R, S, T} and for each wave location l

i

2
Peaks

i

produced during the simulation of the model (see mapping with automata
actions in Sect. 4.1), a Gaussian function centred at l

i

, with height a
i

and stan-
dard deviation c

i

. For each peak, a
i

and c

i

are uniformly sampled from the sets
of amplitudes and widths extracted in the ECG detection phase. In particular, c

i

is related to the detected full width at half maximum (FWHM) by c

i

= FWHM
2

p
2 log 2

.

Thus, the synthetic ECG at time t is given by:

synthECG(t) =
X

i2{P,Q,R,S,T}

X

li2Peaksi

a

i

· exp
 
� (t� l

i

)2

2c2
i

!
.

Starting from the input raw signal, the process of ECG detection and gener-
ation of synthetic signal is illustrated in Figure 12.

4.3 Measuring ECGs distance

In this section we illustrate how we compute the statistical distance between the
filtered input ECG signal and the synthetic ECG.

Phase assignment and statistical waveform. For each signal, we first need to de-
rive a statistical description of the corresponding ECG waveform. To facilitate
the comparison of the two signals, their statistical waveforms should be indepen-
dent of the heart rate and represented so that the main peaks are synchronised
between the signals.

To achieve this, we consider the linear phase assignment approach of [29]
and implemented in [28]. It consists in assigning a periodic phase value to each
sample in the ECG, starting from one R-peak (phase 0) and ending with the
next R-peak (phase 2⇡). Then, the other samples between the two R-peaks are
assigned linearly a phase value in (0, 2⇡), as shown in Figure 13.

The resulting statistical waveform is a function w : [0, 2⇡) ! 2R mapping
phase values to the set of ECG samples registered at those values. In Figure 14,
we depict the mean value and the standard deviation of an example statistical
waveform, where we can clearly distinguish the characteristic ECG waves (with
the R wave centred at phase 0).
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Fig. 12: ECG detection and generation of synthetic signal
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Fig. 14: Mean and standard deviation of statistical ECG waveform.
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Statistical distance. We now want to provide a measure of similarity between two
statistical ECG waveforms w

i

and w

j

. For this purpose, we define a statistical
distance function d(w

i

, w

j

) that returns a score from 0, when the waveforms are
equivalent, to 1, when they are completely di↵erent.

We first divide the phase space of the waveforms into a finite number of
right-open intervals and re-assign the samples accordingly. Specifically, if we
assume k intervals, [0, 2⇡) would be divided into {[0, 2⇡

k

), [ 2⇡
k

, 2 · 2⇡
k

), . . . , [(k�1) ·
2⇡

k

, 2⇡)}. Let P = {0, 2⇡

k

, . . . , (k � 1) · 2⇡

k

}. Then, a waveform w is transformed
into a discretised waveform w

0 : P ! NR such that, for each p

0 2 P , w0(p0)
is the multiset of samples recorded within the interval [p0, p0 + 2⇡

k

): w0(p0) =U
p2[p

0
,p

0
+

2⇡
k )

w(p).

Let w

0
i

and w

0
j

be the discretised versions of w
i

and w

j

, respectively. These
can be easily transformed into discrete probability distributions, which will be
used as the inputs of the statistical distance function. For each interval p in the
phase space, we fix a number of intervals k

p

for dividing the sample space of
w

0
i

(p) and w

0
j

(p). Let m = min{w0
i

(p), w0
j

(p)} and M = max{w0
i

(p), w0
j

(p)}. For
x 2 X = {m,m+ M�m

kp
, . . . ,M}, we define the function µ

i,p

(x) (µ
j,p

(x)) as

µ

i,p

(x) =
|{w0

i

(p) | w0
i

(p) 2 [x, x+ M�m

kp
)}|

|w0
i

(p)| .

It is easy to show that µ
i,p

is a discrete probability distribution, since µ

i,p

(x) is
the relative frequency that the samples in w

0
i

(p) take values within [x, x+ M�m

kp
).

The same derivation can be done for µ
j,p

.
In our experiments, to compare distributions µ

i,p

and µ

j,p

we employ the
total variation distance [21], which is defined as:

d(µ
i,p

, µ

j,p

) =
1

2

X

x2X

|µ
i,p

� µ

j,p

|.

Finally, the distance d(w
i

, w

j

) we seek is computed as the mean of the dis-
tances between distributions µ

i,p

and µ

j,p

for each point p in the discretised
phase space:

d(w
i

, w

j

) =

P
p2P

d(µ
i,p

, µ

j,p

)

|P |

4.4 GP optimisation for synthesising heart parameters

Gaussian process optimisation is a black-box optimisation method, where sam-
ples are drawn by querying a statistical model of the unknown system, updated
at run-time as new simulation results or measurements are obtained. It alternates
between two main phases: compute an approximate solution x

⇤ by optimising
the statistical model; then perform actual measurements to obtain the objective
function value at x

⇤, f(x⇤), and use it to improve online the accuracy of the
model. In our case, the inputs of the statistical model are the implicit heart
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parameters and the output to optimize is the statistical distance between the
synthetic ECGs generated through the heart model and the training ECG sig-
nals. The optimisation algorithm is based on [16] and consists of the following
steps:

i) select n initial samples (by e.g. Latin hypercube) and compute their objective
values;

ii) estimate a statistical model from the current samples;
iii) use the model to predict the point x⇤ that maximises the expected improve-

ment (EI) and obtain f(x⇤);
iv) add the latter to the set of samples and go to step ii).

The statistical model is built following theGaussian process regression (GPR)
method, which can be seen as a stochastic generalisation of linear regression.
Given n samples x

(1)

, x

(2)

. . . , x

(n), and their respective objective function val-
ues f

�
x

(1)

�
, f

�
x

(2)

�
. . . , f

�
x

(n)

�
, the method assumes that they are drawn from

a model of the form:

f

⇣
x

(i)

⌘
= g

⇣
x

(i)

⌘
T

·� + ✏

⇣
x

(i)

⌘
i = 1, 2, . . . , n (1)

g
�
x

(i)

�
T ·� is called the regression part, where g

�
x

(i)

�
is the vector of basis

functions and � is the vector of unknown coe�cients estimated through classical
regression techniques. ✏ is normally distributed with zero mean and correlation
dependent on a weighted Euclidean distance of the n samples. Such weights are
the parameters of the statistical model, and are estimated by maximising the
likelihood function. For a point x⇤, GPR is able to predict both an approximate
value for f(x⇤), assuming it is randomly distributed according to Eq.(1), and an
estimate of the prediction standard error. For our experiments, we implement GP
optimisation by using the MATLAB SUMO toolbox [14], and employ training
ECG from the MIT-BIH Normal Sinus Rhythm database (Id: 1, Table 4).

Id Experiment Database Record Time (s)
1 Training MIT-BIH Normal Sinus Rhythm 16265m [0,59]
2 Authentication MIT-BIH Normal Sinus Rhythm 16265m [60,119]
3 Failed authentication MIT-BIH Normal Sinus Rhythm 17453m [0,59]
4 Bradycardia verification MIT-BIH Arrhythmia 202m [900,1020]

Table 4: Summary of ECG recordings extracted from [13] and used in the ex-
periments.

Figure 15 shows the results of the estimation process through GP optimi-
sation (30 samples). We consider three implicit heart parameters (see Table 3):
the minimum times for antegrade and retrograde conduction in the AV node,
AV anteDMin and AV retroDMin, respectively, and the AV node depolarisation
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threshold AV Vt. AV anteDMin and AV retroDMin are updated at each itera-
tion with the same value, thus yielding a 2-dimensional parameter space for
the optimisation problem. The search space is [1, 500] ms for AV anteDMin and
AV retroDMin, and [�50,�30] mV for AV Vt. From plot a), we observe good
distance values at low AV Vt (approximately in the interval [�30,�32] mV),
while the distance does not seem a↵ected by AV anteDMin and AV retroDMin
in a consistent way. The standard deviation (plot b) is below 0.02 for a large
majority of the parameter space, which indicates good accuracy of the statistical
estimation. The accuracy can be further improved by increasing the number of
samples.
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Fig. 15: Estimation of implicit parameters by GP optimisation of statistical dis-
tance between training and synthetic ECGs waveforms. Synthetic waves are
generated by sampling parameters AV anteDMin and AV retroDMin (x-axis, up-
dated with the same value) and AV Vt (y-axis). a) The heat-map shows the
mean values of the estimated Gaussian process (red: large distance values, blue:
small distance values). Black dots indicate the simulated samples, the red dot
the optimal sample. c) Standard deviation (blue: low, red: high).

In Figure 16a we report the mean and standard deviation of the synthetic
ECG associated with the optimal parameters. The comparison with the mean
ECG waveform of the training set (plot b) provides evidence that the estimated
parameters can reproduce the patient’s electro-physiology well.
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Fig. 16: Mean and standard deviation of synthetic ECG (a) and comparison with
training ECG (b).
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5 Applications

5.1 Pacemaker Verification

In this section we describe the pacemaker model and give examples of properties
that can be checked in combination with the heart model. The pacemaker has
the role of maintaining the synchronisation between the atrium and the ventricle.
In particular, we consider the DDD pacemaker specification [7], that is, pacing
and sensing both the atrium and the ventricle, and provide a TIOA network
model adapted from the timed automata model of Jiang et al [15].

We briefly describe the components of the pacemaker model shown in Fig. 17
(see [9] for details): AVI maintains the synchronisation between the atrium and
the ventricle; LRI sets a lower bound for the heart rate; URI sets an upper
bound for the heart rate; PVARP detects intrinsic atrial events; and VRP detects
intrinsic ventricle events. The pacemaker communicates with the heart model by
means of four actions: AP (atrial pace), VP (ventricle pace), Aget (atrial sense)
and Vget (ventricle sense). Every component has associated a timing parameter.
By changing these parameters one can control, for instance, the pacing rate in
the atrium or ventricle, or the signal propagation delay from the atrium to the
ventricle.

LRI

VRP

AVI

PVARP

URI

Aget

Vget

AP

VP

AS

VS

AS

VS

Aget
VP

VP
Vget

VP

VS

VS
AP
AS

VP
VS

AP

VP

Fig. 17: Pacemaker model

Properties. We use the notation of temporal logic to express the properties of
interest, see e.g. [9] for details on the syntax. The first property that we study
characterises the probability that, within the first minute (60000 milliseconds),
the time between any two successive ventricular contractions is always less than
1.1 seconds:

P

1

:= P

=?

G

<60000

�
(Vget _ VP) =) F

<1100(Vget _ VP)
�

The proposition Vget holds when a Vget action is fired, i.e. when the ventricle
contracts naturally and VP when the ventricle contracts due to pacemaker stim-
ulation. Note that the subformula enclosed by the probabilistic operator P

=?
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is falsified when the heart su↵ers bradycardia. We used our approach to build
a personalised model from an ECG recording including a bradycardia episode
(record 202 of MIT-BIH Arrhythmia Database on PhysioBank [13]).

Property Healthy Arrhythmia With Pacemaker

P1 0.99997± 0.0012 0.360607± 0.000015 1� 0.00003
P2 0.946454± 0.0005 0.0 + 0.000005 0.875494± 0.0008

Table 5: Results of pacemaker verification. For each property we report the sat-
isfaction probability and the confidence interval considering healthy parameters
(first column), arrhythmia parameters (second column, bradycardia for prop-
erty P

1

and AV block for P

2

) and arrhythmia parameters in combination with
the pacemaker (third column). Properties are checked with the statistical model
checker Cosmos [2] through 1 million simulations of the code generated from the
model. Confidence intervals are built using the Clopper Pearson algorithm with
a confidence level of 0.99.

The results reported in Table 5 provide evidence that bradycardia is fully
corrected by the pacemaker since the verification of P

1

yields a satisfaction prob-
ability of 1. By detaching the pacemaker, we demonstrate that the probability
of satisfying P

1

is much lower (nearly 0.36).
The second property asks for the probability that after, each atrial beat, a

ventricular beat always occurs within [100, 200] ms:

P

2

:= P

=?

G

<60000

⇣
(Aget _ AP) =) F

[100,200](Vget _ VP)
⌘

In this case, we would expect a consistently low satisfaction probability in pres-
ence of an atrio-ventricular block (AVB) that delays the propagation from the
atrium to the ventricle. Specifically, we simulate a first degree AVB, i.e. the fixed
lengthening of the AV conduction time, through increasing both AV anteDmin
and RV anteD by 60 ms. In the results table, we observe that the pacemaker does
not make the property hold with probability 1, but the obtained probability is
close to that of a healthy heart. This probability is lower than that of property
P

1

due to instabilities such as atrial ectopic beats occurring during the refractory
period of the AV node.

5.2 Authentication

Recently, biometrics based on the ECG and heart rhythm have been proposed for
use in authentication, demonstrating a good level of accuracy (see e.g. [33,32]).
Another advantage of this method is that the ECG signal cannot be captured
without cooperation from the person, and currently it is di�cult to falsify a
person’s ECG. Fingerprint authentication, in comparison, can be compromised
using high quality pictures [12].
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A variety of methods exist to perform authentication based on ECG [32],
with several of them based on feature extraction, e.g. delays between peaks
or relative widths of peaks. Another class of methods is based on representing
the ECG with simpler objects (wavelet decomposition, Fourier decomposition,
decomposition into polynomials). Other techniques rely on the use of statistical
distances similar to that presented in Sec. 4.3, or neural networks.

In general, the process consists of two phases:

1. Enrolment : the system captures and processes one or several ECG readings
from the user and generates a biometric template.

2. Authentication: the system assesses the user’s identity by capturing her/his
ECG, called recognition ECG, and matching it with the biometric template.

Our framework can be directly applied to authentication as follows. For the
enrolment phase, we use synthetic ECGs generated by the personalised heart
model as the biometric template. For the authentication, we compute its distance
with the acquired recognition ECG. Or, from the recognition ECG we can build a
personalised model and generate synthetic ECGs to match with the template. If
the obtained score is small enough (e.g. not exceeding 50% of the score obtained
in the parameter estimation phase), the authentication is successful.

Fig. 18a shows an example of successful authentication when the ECGs
for model estimation and authentication come from the same patient6, while
Fig. 18b shows how authentication fails with a recognition ECG from a di↵er-
ent patient7. Alternatively, the extracted ECG features can be directly used for
biometric authentication. As visible in Fig. 19, the template ECG and the recog-
nition ECG from the same patient have associated almost identical distributions
of PQ intervals. On the contrary, we observe a large discrepancy with the PQ
intervals from a di↵erent patient.

Thus, our framework employs both feature extraction and statistical distance
and, unlike other methods, does not rely solely on the PQRST waves. Indeed,
our framework can also model abnormal rhythms, such as the presence of ectopic
beats or retrograde conduction.

We remark that, by the construction of the statistical ECGs through the
linear phase assignment approach, the distance between two ECG waveforms is
not a↵ected by the heart rate. This is necessary to avoid false negatives due to
emotional or physical stress that increase the heart rate.

6 Conclusion

In this work, we presented methods to derive personalised heart models from
data and showed their usefulness in the safety verification of pacemaker devices
and in the ECG-based authentication. Besides enabling formal verification and

6 Dataset 2, Table 4
7 Dataset 3, Table 4
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(a) Same patient (dataset 2, Table 4). Distance: 0.42.
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Fig. 18: Authentication tests by statistical distance between template ECG and
recognition ECG from same (a) and di↵erent patients (b).

60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

PQ interval (ms)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

 

 

Template
Successful auth
Failed auth

Fig. 19: Cumulative distributions of PQ intervals detected from the template
ECG (blue line) and the recognition ECGs from same (green) and di↵erent
(red) patients.
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synthesis [10,5], code generation and modularity, our formal model-based frame-
work is su�ciently general to support, at the same time, other kinds of phys-
iological systems and medical devices. This would enable improvement of the
authentication performance by combining the ECG with other biometrics (e.g.
fingerprints or iris) [31], and ultimately verification of the collective behaviour
of multiple interconnected devices in a closed-loop with a highly-personalised
model of the human physiological system.

There are several directions for future work. Firstly, more accurate synthetic
ECGs can be obtained by using Gaussian regression also to estimate some of
the explicit parameters. For example, when waves are close to each other as
in the QRS complex, their overlap makes the estimation of the amplitudes less
accurate. In addition, the Gaussian functions used in the synthetic ECG could
be replaced by non symmetric curves, given that most waves in real ECGs are
not symmetric, see for instance the S waves in Fig. 13.

On a final note, ECG authentication is currently believed to be secure be-
cause it is di�cult to obtain or copy someone’s ECG recording. The same belief
was held until recently for fingerprint and iris authentication, but in [12] it was
shown that a picture taken with a smartphone is su�cient to reconstruct a finger-
print. As more and more devices record ECG data (smart watches, wearables),
the risk of breaking the ECG authentication mechanism is growing, not least
because wearables, which are not designed with security as a primary concern,
may broadcast poorly secured ECG data via radio.
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