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Categories of relations over a regular category form a fawfilmodels of quantum theory. Using
regular logic, many properties of relations over sets tifthese models, including the correspon-
dence between Frobenius structures and internal group@sler compact Hausdorff spaces, this
lifting gives continuous symmetric encryption. Over a fiegial’cev category, this correspondence
gives a characterization of categories of completely pesihaps, enabling the formulation of quan-
tum features. These models are closer to Hilbert spacegdeations over sets in several respects:
Heisenberg uncertainty, impossibility of broadcasting] behavedness of rank one morphisms.

1 Introduction

Many features of quantum theory can be abstracted to anpit@mpact dagger categorigd]. Thus
we can compare models of quantum theory in a unified settimdy|aok for features that distinguish the
categoryFHilb of finite-dimensional Hilbert spaces that forms the tradiél model. The categoryel
of sets andelationsis an alternative model. It exhibits many features consideypical of quantum
theory [2], but also refutes presumed correspondencesebetihem([15, 21]. However, apart frdrel
and its subcategory corresponding to Spekkens’ toy modg|f{dw alternative models have been studied
in detail.

We consider a new family of models by generalizing to catiegdrel(C) of relations over an arbi-
trary regular categoryC, including any algebraic category like that of groups, abglian category like
that of vector spaces, and any topos like that of sets. Defit generalityjnternal logic allows us
to state and prove results as if workingRel, as reviewed in Sectidd 2. JustRsl is of independent
interest, alsdRel(C) is not just a toy model: we shortly discusentinuous symmetric encryptidyy
letting C consist of compact Hausdorff spaces. For another examelg ke

Sectiorl b shows thdkel(C) often has the unusual feature of lacking discernible measent out-
comes, but whel€ is a regularMal’cev categoryit behaves more likéHilb thanRel in three ways:
the Heisenberg uncertaintgrinciple, the ability tabroadcast and behavedness @nk onemorphisms.
Thus this family of models is genuinely different, and letathe following scale.

“least quantum” — ‘most quantum”
Rel Rel(C) FHilb
These properties are stated using the CP construction Pl6that makes the Frobenius structures in a
category into the objects of a new one. The object€®fRel) aregroupoids[20], and Sectionl3 proves
that this holds foRel(C) too, for any regulaC. Our main result, discussed in Sectidn 4, is that

CP(Rel(C)) ~ Rel(Cat(C)) 1)

for regular Mal’cev categorie€, whose internal categori€3at(C) and groupoids are understood. Thus
we link the CP passage, from state spaces to algebras olvabtes, tocategorification
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2 Categories of relations as models of quantum theory

Notation We briefly recall thegraphical calculusfor monoidal dagger categories; for more detalil,
see[[26]. Morphismdg are drawn a; composition, tensor product, and dagger, as:

B

C C ®D B D A A
: feg\=[\[g [fT\=[f]
A A B

AxC A C B

Distinguished morphisms are depicted with special diagrattme identityA — A is just the line,| ; the
(identity on) the monoidal unit objedtis the empty picture, and the swap map of symmetric monoidal
categories becomes. In particular, we will drawé,: A@ A— A andé: | — A for the multiplication
and unit ofFrobenius structurgsmade precise in Definitidn 3.1 below.

Continuous symmetric encryption We now illustrate the utility ofRel(C) in its own right, not as
a toy model. The cas€ = Setcan model symmetric encryption [29], and the same techgigyply
to any regulaiC. A symmetric encryption protocah Rel(C) is specified by arencryptionmorphism
E: M x K — E relatingplaintext Pandkey Kto ciphertext C satisfying:

7

P K

The Frobenius structure here is the canonical copying ateting that is available irRel(C) [11].
Equivalently,(Vp: P, k: K)(3c: C)E(p,k,c) andE(p,k,c) AE(p’,k,c) = p= p. The protocol isecure
when no information about plaintext can be deduced fromeatjettt without the key:

C

-

vn—O O— o

P

For examplepne-time pad encryptiois the following secure encryption protocol Rel: takeP, K
andC to be the se{ f: [1,...,n] — G} of messages in a given gro@of lengthn, and takeE to be the
functionE(p,k)(t) = p(t)k(t) [29]. A continuousversion can be described in the categBel(KHaus)
of relations over compact Hausdorff spaces. An analoguekig a continuous function from an interval
[0,T] C R to the unit circleS' C C. TakeP, K andC to be the space of such signals (under the product
topology) and seE (p,k)(t) = p(t)k(t). The latter protocol is useful when encryptiagy. (continuous)
speech rather than (discrete) strings of text, and was preseure by Shannon himself [2@].

1caveat: the latter protocol requires arbitrary key signatsictically, Alice could sample her signal at some poiats] then
transmit using (discrete) one-time pad encryption; Bobtban reconstruct an approximation of the signal. Shanneaoritees
how to generate noise that, when sampled at a given frequpraxides a secure key. Thus the former protocol approxmat
the latter to any resolution.
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Future work  This work is in its early stages, and opens many directionsvalstigation.

e The proof techniqueof internal (regular) logic is very useful. We intend to deyea graphi-
cal version, where wires in string diagrams can be annotatdd ‘eléments’, and investigate its
expressiveness [27].

e The correspondencel (1) between groupoids and operatdralgemains to be understood, perhaps
through so-calledyroupoidification[24]. If C is exactMal'cev, so isCat(C) [18, 3.2]. Hence
CP(Rel(Cat"(C))) ~ Rel(Cat"1(C)), leading tohigher categories

¢ Internal categories in the category of groups amssed modulef8]. Tools from categorical
guantum mechanics might shed light on crossed modules,cerwarsa. In general, standard
notions from categorical quantum mechanics should be figgted inRel(C), such as (strong)
complementarityf Frobenius structures [12].

e Relation-like categories have been axiomatizedalksgjoriesby Freyd and ScedroV [17], and as
bicategories of relationby Carboni and Walters [11]. We hope to extend our study teettmeore
general settings.

2 Categories of relations and regular logic

This section describes regular categories, and theimiateegular logic, by way of example; for more
information, see [9]. We will be led by the constructionRél from the categorysetof sets and func-
tions. Of course, both categories have the same objectsis3he is how to describe relations and their
composition in terms of functions.

Observe that a relatioR C A x B induces a pair of functionR;: R— A andR;: R— B, namely
(a,b) — aand(a,b) — b. Moreover, the inclusioR — A x B is monic. Equivalently, the two functions
R1, Ry arejointly monig and conversely, any two jointly monic functioAs™ R % B determine a relation
R C Ax B. Thus we can describe relations in terms of functions. Caitipa of relations is given in
these terms by pullback:

RXBS

R .SoR. S (2)

The pullback itself is not good enough, Rsg S— A x C might not be monic. To ensure this, we have
to factor that function as a surjection followed by an inj@at and consider its imag8o R. Because
pullbacks of surjections are surjections, the subolfe® is unique, giving a well-defined categdrel.

All'in all, we have used the following properties $€&t it has products, pullbacks, a way to factorize
morphisms as injections after surjections via their imagesl stability of surjections under pullback.
Generalizing surjections to regular epimorphisms leadedalar categories.

Definition 2.1. An epimorphism isregular when it is a coequalizer. Thigernel pair of a morphism
f: A— Bis a pullback cone oA—B<«A. A category igegular when it has finite limits, coequalizers of
kernel pairs, and regular epimorphisms are stable und#ygmbl.



4 Categories of relations as models of quantum theory

Example 2.2. Examples of regular categories abound: any topos, suSktagny algebraic variety, such
as the categorieSp of groups,Rng of rings, orVecty of vector spaces; any category monadic dvet
such aKHaus; any abelian category, such as the cateddodr of modules over a ring; any bounded
meet-semilattice, considered as a category; any functegegey [C, D] to regularD.

There is another way to consider the construction (2), maimetegular logic This is the fragment
of first order logic whose formulae use only the connectidesnd A and equality. InSet we can
describe[(R) using a regular formula as

SoR={(a,c) € AxC| (3be B) R(a,b) AS(b,c)}. (3)

This makes sense in any regular categ@ryany regular formulap whose function symbols are mor-
phisms inC and whose relation symbols are subobjects inductively defines a subobjefta;, . ..,an) €
A x...xAn| @] — AL x--- x Ayasfollows. Equalitfjac A| f(a) =g(a)] is interpreted as the equalizer
of f,g: A— B. Conjunction[ac A| R(a) A S(@)] is interpreted as the pullback Bf S— A. Existential
quantification]a € A | (3b € B)R(a,b)] is interpreted as the image Bf— A x B'5A. This gives two
equivalent ways to define our main object of study.

Definition 2.3. Let C be a regular category. Its categdRel(C) of relations has the same objects as
C, and subobjectR — A x B as morphism#\ — B, with diagonal map# — A x A as identities, under
composition[(R), or equivalentlgo R= [(a,c) € AxC| (3b € B)R(a,b) A S(b,c)].

We denote morphisms iRel(C) asR: A+ B, and the corresponding subobjectGrasR — A x B.
The categoryRel(C) is a compact dagger category with the produaif C inducing® in Rel(C) (where
it is no longer a cartesian product), aRfi(b,a) < R(a,b). Every objectA is self-dual with canonical
cup[(a,b) € Ax Al a=b], and swap maps defined similarly.

Example 2.4. Re{Set) is Rel, so this is a genuine generalizatid®el(Gp) has subgroupR < G x H as
morphismsG — H; Rel(Vecty) has subspacds <V ©&W as morphism¥ — W (cf. [7]).

Whenever one can derive an implicatign=- ( in regular logic, it follows thaf¢] < [¢] as sub-
objects. This allows us to state and prove (regular) thesrienRel(C) as if reasoning irRel. The
following lemma works out an example of this technique; tbst of this paper will not be so painstak-
ingly precise. As inSet, a relationR: A— A is calledsymmetriovhenR(a,b) <= R(b,a), reflexive
when[a € A| R(a,a)] = A, andtransitivewhenR(a,b) AR(b,c) = R(a,c), equivalentyRoR<R. A
symmetric, reflexive and transitive relation is calledeguivalence relationAs in any dagger category,
a relation is calleghositivewhen it is of the fornS' o Sfor some relatiors.

Lemma 2.5. Any positive relatiorR: A— Ain C regular is symmetric and satisfiBéa, b) = R(a,a).

Proof. SinceR is positive we have thaR = S’ o S, for some relatiorS: A— B. ThenR is symmetric
sinceR=S' o S= (SToS)" = R'. Further,

R=S'oS=[(ab)e AxA|(IceB) Sa,c) ASb,c)] (definition ofo and 1)
<[(a,b) e AxA| (IceB) Sa,c)] (3 preserves the order of subobjects)
=[(a,b) e AxA|R(a,a)]

demonstrating thaR(a,b) = R(a,a). O
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3 Groupoids and completely positive maps

Frobenius structures play a central role in categoricahtyia mechanics, representing C*-algebras in
FHilb [30]. In Rel, they represent groupoids [20]. Theorem 3.4 below gerresthis tdRel(C) for any
regularC, by noting that the proof can be stated in regular logic.

Definition 3.1. A special dagger Frobenius structune a dagger monoidal category is an objaatith
morphismsé,: A® A— Aandd: | — A satisfyingunitality, associativity speciality and theFrobenius

kA e O AL

It is commutativavhen b, 0 <X = 4.

Definition 3.2. An internal categoryin a finitely complete category consists of objeCgs(objects) and
C; (morphisms), and morphisnsgsource)t (target),u (identity), andm (composition):

t
Co—4—C M_ C; xg,C1
_ s

HereC; xc,C; is the pullback ok andt. These morphisms must satisfy familiar equations reptagen
associativity of composition and usual behaviour of idéegi Aninternal functor between internal
categories is a pair of morphisni$o, f;) commuting with the above structure. Amternal groupoid
additionally has an inversion morphismC; — C; satisfying usual axioms. We writ€at(C) and
Gpd(C) for the categories of internal categories and groupoids. in

Example 3.3. Internal categories or groupoids 8etare just (small) categories or groupoids.Vecty,
internal categories are the same as internal groupoids §eegon[#), and are also calledvector
spaceq3, Section 3]. Internal categories {Bp are studied under the namssict 2-groups[4] and
crossed module?5, Section 3.3].

Theorem 3.4. For any regular categor@, special dagger Frobenius structuresiel(C) are the same
as internal groupoids i€. More precisely, a special dagger Frobenius structéces.,) in Rel(C)
defines an internal groupoid @ with composition4, and identities given by. Conversely, an internal
groupoid(Co,C1,m,st,u,i) in C defines a special dagger Frobenius structées,,é) in Rel(C) with
A=Cp,b=(u: Cy— A) andb, = (m: AxXA+=A).

Proof. Observe that the proof for the ca€e= Set(see [20, Theorems 7 and 12]) can be carried out
entirely in regular logic. For details, see Appendix A. O

Example 3.5. For any objectA of Rel(C), there is a canonical special dagger Frobenius structure
(Ax A, /~\, ) which corresponds to thadiscrete groupoid

7L o
) Az €0 M3
ATAXA<—’ AxAxA

on A, having a unique morphism fromto b for each pair(a,b) € A x A. The identities are given by the
diagonalA = (ida,ida): A— Ax A, while the inversion is the swap = (15, 1) : AX A— Ax A
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Dagger Frobenius structures @ form the objects of a new catego@P(C) [16,[22]. The key
example is thaCP(FHilb) is the category of finite-dimensional C*-algebras and catghy positive
maps. We briefly recall the relevant form of tli$ constructionsee Appendik B for a proof that this is
indeed a well-defined category. Recall thasitive(endo)morphisms in a dagger category are those the
form g o g for some morphisng.

Definition 3.6. Let C be a compact dagger category. THeR(C) is the category whose objects are
special dagger Frobenius structufés,s, ) in C, and where morphism@, 4.) % (B, 4,) are morphisms
A_f.Bin C whoseChoi matrixis positive:

for someg: A® B — X in C. Such morphismg are calledcompletely positive

To classify completely positive morphismsRel(C), we need to identify when a relation is positive,
i.e.of the formR= [(a,c) € Ax A| (3b € B)S(a,b) A S(c,b)] for some relatiors: A+ B. Lemmd2.5
showed that positive relations in any regular categorsati

R(a,b) = R(a,a) AR(b,a). 4)
It follows that completely positive morphisnfis (A, 4.,6) — (B, 4.,6) respect inversefil6, 7.2]:
R(a7 b) = R(a_la b_l) A R(iddom(a)7 iddOI’T‘(b))7 (5)

where (A, 4.,6) and (B, 4.,é) are regarded as internal groupoidsdn However, the converse of either
statement need not hold.

Proposition 3.7. The following are equivalent for a regular category:

(a) every reflexive symmetric relation is positive;

(b) arelation is positive if and only if it satisfi€s| (4);

(c) arelation between dagger Frobenius structures is aigiplpositive iff it respects inverses.

Proof. For (a= b), letR: A+ A be any relation satisfying{4), and defide= [ac A| R(a,a)]. ThenR
restricted tdJ is reflexive and symmetric, hence equale Sfor some relatiorS. ThenR s equal to
S'S whereS = [(a,u) e AxU | (a=U(u)) ASa)].

For (b= c): the Choi matrixS of a relationR is given byS((a,b), (a/,/)) <= R(@ loab/ob™1),
which can be seen to satsifyl (4) Ritself respects inverses.

To see (c= a), observe that a reflexive symmetric relat®r- A x A defines a stat® in CP(Rel(C))
of the special dagger Frobenius structure given by thednelie groupoid o\ (Exampld_3.5). Positivity
of the Choi matrix ofR’ in this case means thRtis itself positive. O

A category satisfying the properties of the previous prafosis calledpositively regular We can
now generalize the known description©@P(Rel) of [16], Proposition 7.3].
Corollary 3.8. LetC be a positively regular category. Thé&(Rel(C)) is equivalent to the category of
groupoids and relations i@ that respect inverses. O
Example 3.9. Setis positively regular, since any relatid® satisfying [@) is equal t&' o Swith S=
{(a,a,b),(a,b,a) | R(a,b)}. More generally, any coherent category, sucKHsus, is positively regular
and hence so is any topos. Secfion 4 will show tBptandVect are positively regular.

The category of semigroups satisfyifigk, y) xyx= yxyis regular but not positively regular; positive
relations satisfyR(a, b) A R(c,d) = R(ach dbc), but relations satisfyind {4) need not.
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4 Mal'cev categories

This section studies a broad class of regular categoriestimh the CP construction takes a very natural
form, allowing us to bypass the unusual notion of a relat&specting inverses.

Definition 4.1. A categoryC with finite limits is aMal’cev categonyif every reflexive relatiolR— Ax A
in C is an equivalence relation.

Proposition 4.2. The following are equivalent for a regular category:

(a) inverse-respecting subobje&s— A; of internal groupoids are closed under composition;
(b) every relatiorR — A x Ais difunctional (Va,b,c,d € A)R(a,b) AR(c,b) AR(c,d) = R(a,d);
(c) the category is Mal'cev.

Proof. For (a=-b), letR— A x Abe arelation. Define a new relati@— R x Rby settingS((a,b), (c,d))

< R(a,d) AR(c,b). ThenSis reflexive, because it is defined 8yand symmetric. ThuS defines an
inverse-respecting subobject of the indiscrete groupni®aand hence is closed under composition in
Rx R. That is,Sis transitive. Now supposB(a,b), R(c,b), andR(c,d). ThenS((a,b),(c,b)) and
S((c,b),(c,d)), henceS((a,b),(c,d)), and saR(a,d).

To see (b= a), consider an inverse-respecting subobfeet: A;, and setS= [[(a,b) € A x A1 |
(dom(a) = cod(b)) AR(a,b)]. For composablaandbin A, letx = dom(a) = cod(b). SinceRis closed
under igjom—) and iceg—y, we haveS(idy, b), Sa, idx), andS(id, idx). Now S(a,b) by difunctionality,
that is,R(acb), soRis closed under composition.

Finally, (b« c) is well-known [10, Proposition 1.2]. O

Example 4.3. Mal'cev categories were first studied in the context of urgaé algebra. An algebraic
variety is Mal’cev precisely when it contains an operatR, y, z) with p(x,y,y) = p(y,y,X) = x. Hence
the categorie§&sp andVect are regular Mal'cev, as are the categories of Lie algebiaaljaan groups,
rings, commutative rings, associative algebras, quasigy and Heyting algebras. Any abelian category
such asModg is Mal'cev. The opposite category of any topos is regular’téal

In a Mal’'cev categonC, the forgetful functoiGpd(C) — Cat(C) is an isomorphism, that is, every
internal category irC uniquely defines an internal groupold [10, Theorem 2.2]. &dwer,Gpd(C) is
regular wherC is Mal'cev [18, Proposition 3.1 and Theorem 3.2]. In thiseeBel(Gpd(C)), which we
now describe, makes sense. By contrR&(Gpd(Set)) is ill-defined.

Lemma 4.4. Let C be a regular category. Subobjects(8f,A;) in Gpd(C) are subobject® — A; in
C that are closed underoiglﬂ,), inverses, and composition.

Proof. Morphismsf = (fp, f1): (Co,C1) — (Do,D1) in Gpd(C) are determined by morphisnis: C; —
D1 respecting the groupoid structure, sirfgeean be reconstructed as—» dom(f1(idc)) for c € Co. Now
Ki=[(xy) €C1xCy| f1(x) = f1(y)] determines a subgroupakd< C x C, with forg = form: K —D.
If fis monic inGpd(C), thenry = 1% and sof; is monic inC. O

Theorem 4.5. Regular Mal'cev categories are positively regular. Cosebt, a positively regular cate-
gory C is Mal'cev if and only if Corollary 3.8 provides equivalersce

CP(Rel(C)) ~ Rel(Gpd(C)) ~ Rel(Cat(C)).

Note thatRel(Gpd(C)) andRel(Cat(C)) are ill-defined for general positively regul@t
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Proof. For the first statement, |&® be any reflexive symmetric relation in a regular Mal'cev gatg.
ThenRis an equivalence relation and hence satigfiesR' o R, making it positive.

Now let C be a positively regular category. By Corollary I3GP(Rel(C)) is equivalent to the cate-
gory of groupoids and relations that respect inverses. Byrha[4.4 and Propositidn 4.2, the forgetful
functor fromRel(Gpd(C)) to this category is (well-defined and) an isomorphism if anty of C is
Mal'cev, in which casé&pd(C) is isomorphic taCat(C). O

Example 4.6. We may read the previous theorem as saying that the CP cotistruusually taken to add
mixed states and processes to pure quantum theory, candrdedgas a process odtegorificationin a
broad class of categories of relations. The cate@at(Gp) of strict 2-groups is equivalent to the cate-
gory CrMod of crossed modules, when@#(Rel(Gp)) ~ Rel(CrMod ). Similarly, CP(Rel(Vect)) is
equivalent to the category of relations in 2-vector spaces.

Next we observe that, in any Mal’'cev regular category, jseeery internal category is in fact a
groupoid, there is also redundancy in the definition of a daggobenius structure.
Theorem 4.7. If C is a regular Mal'cev category, any pair of morphisps: A A — A, b: | —
A in Rel(C) satisfying unitality form the composition and identitiekan internal category irC, or
equivalently a dagger special Frobenius structuieef(C).

Nl = e oo LA

Proof. Since any internal category { is a groupoid, the second statement follows from Thedrein 3.4
Let, 6, = (M: Ax A+ A) andb= (U: | +A). Then unitality corresponds to the formulae

(IxeU)M(x,a,d) < a=4d (U1)
(IxeU)M(axd) < a=4d (U2)

We will first show thatM is single-valued as a relation. Suppose that béth, b,c) andM(a,b,d),
then by [U1)(3x € U) M(c,x,c), and applying difunctionality we hawd (c,x,d) and soc = d. In any
regular category, such a relation is represented by a sedtafif the form(A x A<~ B-m, A) in C, where
B=[(a,b) € (AxA)|(3ce A) M(ab,c)]; seel[9, Lemma 2.8]. Writéa,b) | for B(a,b). Define the
following relations inC:

S=[(a,x) e AxU | (a,x){]: A~U (6)
T=[(ay eAxU|(y,a)]]: A»U ()
just as in[[20, Definition 2]. Nov&is total, by [U2), and single-valued sinceNif(a,x,a) andM(a,y,a)

for x, yin U, then since unitality giveM (x,x,x) we haveM(x,y, x) by difunctionality, and sx=y. The
same holds fol, and sdS, T correspond to morphisnsst in C defining the data of an internal category
t

U A—M __ AxyA=B
s

where it remains to show th& is in fact a pullback ok andt, i.e. (a,b)| if and only if s(a) = t(b).
Suppose thata,b) | ands(a) = x. Then we havda,b) |, (a,x) ], (x,x)| and hencex,b) | by difunc-
tionality. Conversely,(x,b){, (a,x)], and(x,x)| implies that(a,b) |. Finally, in [10, Theorem 2.2]
it is shown that, in any Mal'cev category, all of the equatiaequired of an internal category follow
automatically whenevean(a,s(a)) = a, m(t(a),a) = a, ands(x) = x=t(x) forallac AandxeU. O
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Note that unitality is a property ¢é, alone, since we must hade=[ac A| 4 (a,a,a)] .

Example 4.8. Crossed modules are known to have numerous equivalenipgtests, as groups i€at or
Gpd, and as categories or groupoidsGp [25, 3.1] [4]. We can now add that a crossed module is just a
unital morphismé, in Rel(Gp). Similarly, a 2-vector space is simply a unital morphisniRiel(Vectx ).

5 Quantum properties of RelC)

The categonRel of sets and relations is compact dagger, kdilb, but fails to satisfy many properties
that are seen as typical to quantum theory. This sectiorepteshree such propertieseilb that fall

in Rel but hold inRel(C) wheneverC is a regular Mal'cev category. In this senRBel(C) is a ‘more
quantum’ model thamRel for regular Mal’'cev categorie€. We conclude by countering this with some
non-quantum features of our maRel(C) examples not shared [Rel.

Heisenberg uncertainty The Heisenberg uncertainty principle states that no infion can be ob-
tained from a quantum system without disturbing its sta@; Bection 5.2]. To model it categorically,
we need an appropriate notion of quantum system. Follovidg e will takequantum structureso

be special dagger Frobenius structure of the fBre (A* @ A,d/~\,d 1), where the scalad: | — |

is invertible. InFHilb, these correspond to the C*-algebhg of n-by-n matrices. IrRel(C) for regular

C, these correspond to indiscrete groupoidsAqsee Example_3l5). We model the principle contrapos-
itively as follows, abstracting the fact that POVMs on a IdifbbspaceA with n outcomes are precisely
morphisms$B — B® C in CP*[C], whereC is a commutative special dagger Frobenius structur€on

Definition 5.1. A compact dagger category satisfies Hwisenberg uncertainty principhen the fol-
lowing holds for any quantum structut8, 4.,4), any commutative special dagger Frobenius structure
(C,4,6), and any completely positive morphidvh: B — B® C:

B o B o ¢ c
= — 3y: 1 —-C) (8)

The categoryFHilb satisfies the Heisenberg uncertainty principle [23, Sadid].

Lemma 5.2. The categonRel does not satisfy the Heisenberg uncertainty principle.

Proof. Let A be the indiscrete groupoid on the two-element{gey}, and letB be the grouZ, = {0,1},
regarded as a groupoid. The inverse-respecting relation

M= {(a,a,0)) |ac ALU{((x,X),(x,x),1))} CAx (AxB).
satisfiedM ((x,x), (x,X),1) but notM((y,y), (y,y),1). O

Proposition 5.3. Let C be a regular Mal’cev category. Th&el(C) satisfies the Heisenberg uncertainty
principle for any quantum structu(®, 4.,4) andany special dagger Frobenius structié 4.,5).
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Proof. RegardM as a relatiorM — (A x A) x (Ax A) x C, whereB is the indiscrete groupoid oA.
SupposeM satisfies the left-hand side 6fi (8), so that

(e C)M((a,d),(b,b),ideomy) <= (ad)=(b,b). 9)

We wish to show(3b € A) M((a,d), (b,b),x) < a=a A (x) for somey — C. Define the new
relationT = [(a,x) € AxC|M((a,a),(a,a),x)]. Then by[(®) and closure &fl under idiom and id:od,
we have(3b € A) M((a, &), (b,b),x) if and only if (a=4a) AT(ax). It suffices to show thal (a,x)
holds precisely whefda' € A) T(&,x), because we may then tage=[x € C| (3a€ A) T(a,x)].

Once more usind{9) and closure Mf under idom and idog, Observe thatva,a € A) (3x € C)
such thafT (a,x) AT (&,x). Hence ifT (&,x) holds then(3y € C) T(a,y) AT (&,y) AT (&,x) and so by
difunctionality T (a,x) holds, as desired. O

Broadcasting While statistical mechanics includes its own version of leecloning theorem, it has
instead been argued that one of the unigue features ofcdhsgistems is in their capacity to beoad-
cast[5]. We now capture this property categorically, followifig].

Definition 5.4. Let C be a compact dagger categorybadcasting mafor an objectA, 4.) of CP(C)
is @ morphismA B, A® Ain CP(C) satisfying:

i |-

Any commutative dagger Frobenius structur€ihas a broadcasting mag, which can be shown to be
completely positive. We sa@ satisfies theo-broadcasting principléf the converse holds.

The categoryFHilb satisfies the no-broadcasting princiglé [6].
Lemma 5.5. [21] The categonRel does not satisfy the no-broadcasting principle.
Proof. Let G be a nonabelian group, and regard it as a groupBidG; ). Define a morphisnB: G; x
G1 — Gy in Rel by B = {(9,idgomg),9) | 9 € G1} U {(9,9,idgomg)) | g € G1}. This relation respects

inverses, so is a morphism 6fP(Rel). It is also a broadcasting map sin¢éx € Go) B(g,idy,h) <=
(Ix € Gp) B(g,h,idx) <= g=hforg,he G;. O

Proposition 5.6. For C regular Mal'cev,Rel(C) satisfies the no-broadcasting principle.
Proof. SupposeB — Ax Ax Ain CP(Rel(C)) is broadcasting. Then:

(Ix e A) B(a,idgomx), @) <= a=a <= (IxcA)B(a,a,idgomx)) (10)
Use closure oB under identities and inverses to show that, in any regultegeay C, (10) implies
(Vae A) dom(a) = cod(a). Now, arguing in the internal logic dE, leta, & € A be such that dofa) =

dom(&), so thatB(a, idgon(a), &) andB(a', @, idgom(a) - SinceC is Mal'cev, Bis closed under composition
in A by Propositioi 412, and $(aca oa*,&,idgoma)). Henceaca = & oa by (10). O
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Rank The third property we discuss concerns the linear struotfirguantum theory. Due to this
structure, morphisms iRHilb come with a notion of rank. Rays, morphisms of rank at most ane
reflected in the graphical calculus by disconnectedness.

Definition 5.7. We say a monoidal dagger category satisfieshibileneck principlaf morphismsR
factor through wheneveR' o R does so:

Gy, o: 1 = A) = = (Je: 1 =-AY:1—B) %ﬂ =

The categoryFHilb clearly satisfies the bottleneck principle, because (ahk ) = rank(f).
Lemma 5.8. The categonRel does not satisfy the bottleneck principle.

Proof. LetB= {0, 1}, and consider the relatidR: B+ B given byR={(0,0),(0,1),(1,1)}. NowR'oR
splits as the product relatiddix B, but R cannot be written as a product of subset8of O

The previous lemma leads to unusual behaviour from a quaptmspective irRel. For example,
taking the partial trace of an entangled std#tean result in a pure state:

[t - o

which cannot occur for entangled states-iilb .

Lemma 5.9. The categonRel(C) satisfies the bottleneck principle for regular Mal’cev gaigesC.

Proof. A relation R: A~ B disconnecting in the above sense meR(& b) A R(&,b') = R(a,b'), in
which caseR(a,b) «= (Ja € AR(@,b) A (30’ € B)R(a,b'). SupposeR’ o R splits as in the left-hand
side of Definition[5.F7, and assuni¥a,b) and R(&,b'); we will show thatR(a,b’). It follows from
(RToR)(a,a) and(RToR)(d, &) that(RToR)(a,&), that is,(3e € A) R(a,e) AR(d,e). But thenR(a, e),
R(a,e) andR(d,b’), and soR(a,b’) holds by difunctionality. O

Projections  To finish, we show that the moddRel(C) for regular Mal’cevC, despite the above results,

have some non-quantum features distinguishing them Fbilitb . For example, by Propositidn 4.2, any
statey: | — (A, 4,) in CP(Rel(C)) is aprojection[15, Definition 3.1]:

s b Y

This is not the case ifkHilb, where, up to scalar factors, the projections of a quantuoctsire are
precisely projections in the usual sense, while statesrhiaay density matrices.
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Unique measurement outcomes Another more striking difference frorgHilb is that many of the
categoriesRel(C) lack distinct classical outcomes of experiments. Theseoooés are represented
categorically by states copied by the mapof a commutative Frobenius structure[13].

We call an objectA of a regular categorf inhabitedif [Ja € A] =id;:1— 1, andC entirely
inhabitedwhen this holds for all objects. Equivalently, any subobf@ terminal object 1 is isomorphic
to 1.

Proposition 5.10. Let C be an entirely inhabited regular category. Then any two ablgystatesd, T
of a special dagger Frobenius struct@fe 4, ) in Rel(C) are equal.

hmd hhe © mm

Proof. Arguing just as inRel(Set), any copyable statel of an internal groupoidA, 4,) is easily seen
to satisfy donfa) = cod(@) for all its members, &, and(dom(a) = dom(b)) AH(b) — H(a) for any
a, bin A. Now by assumptiotd A T is inhabited, meaninggb € A) H(b) AT (b). HenceT (a) implies
that donfa) = dom(b) with bin H, and scH (a) holds also. O

Example 5.11. Any regular category with a zero object is entirely inhadbit& his includes any abelian
category, along with our main examples of Mal'cev catego@® andVect,. Hence these categories
will be unable to model protocols which require distinct galple states to represent classical bits. An
‘ideal’ choice ofC for a toy model would be Mal'cev regular, while not being eslif inhabited: the
category of quasi-groups provides such an example.
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A Proof of Theorem[3.4 for regular categories

Proof. Let C be regular and lefA, 4.,4) be a special dagger Frobenius structur&ei(C), with &, =
(M: Ax A+ A), andé = (U — A). We already saw how unitality is interpreted as the two ragul
formulae [U1), and (U2), while the other equations of Deifmit{3.1) translate into:

(Jee A) M(a,b,e) A\M(e,c,d) < (Jec A) M(a,e d) AM(b,c,e) (A)
(3be A)(Jce A) M(b,c,a) AM(b,c,d) «— a=4 (S)
(Jee A) M(a,e,c) AM(e,d,b) <= (Jec A) M(c,e,a) AM(e,b,d) (F)

We follow the same proof strategy as in Theorend 4.7. It foldvom [3) thatM is single-valued as
a relation and hence corresponds to a subobject of the farmA — B-m, A) in C. Again, we write
(a,b) | for B(a,b), so thatM(a,b,c) means thata,b) | andm(a,b) = c, and define relationS: A+ U,
T :A—-U by () and[(7), as well as

I =[(ab) e AxA|(IxeU)(IyeU) M(a,b,x) AM(b,a,y)]: A+A

It suffices to show these relations are total and singleedhlas they then correspond uniquely to mor-
phismss, t andi in C defining the data of an internal groupoid

t i
A
S

U M __AxyA=B

where we must also show thAtis in fact a pullback of andt.

From the unit laws[(U1)[(U2) and associativityl (A), dedueattelements df) only compose when
they are equal, and then that{# x) | and(a,y) | we have(x,y) | by associativity, and se=y. HenceS
is total and single-valued, asTssimilarly. The special case dfl(F) in whith= s(a), c=t(a) andd =a
shows that is total:

(Jee A) M(a,e,;s(a)) AM(e a,t(a)),

that is, ‘every morphism has an inverse’. Uniqueness ofrseg&then follows as for any category, once
we have shown that the compositionis associative. Writingg* for any inverse of, associativity [[A)
givesm(a~!,a) = s(a), and it follows thata andb are composable whenevs(a) = t(b). Conversely,
whena andb are composablen(a,b) = m(m(a,s(a)),b) = m(a,m(s(a),b)) by (A) and sos(a) = t(b).
HenceB is indeed the pullback af andt.

It remains to verify that these morphisms satisfy the eguatdefining an internal groupoid. Asso-
ciativity of m only requires further thata,b) | and(b,c){ imply (m(a,b),c)|. From [A) we find that
(m(a,b),s(b)) | wheneveia andb compose, and hensém(a, b)) = s(b) as desired. Finally, that inverses
behave as expected follows from the definitior .of

Thus any dagger special Frobenius structurBéf(C) defines an internal groupoid . Note also
that this is the only possible choice §ft andi compatible withM andU since any groupoid operations
must satisfy the formulae definir§y T andl.

Conversely, given any internal groupoi@,Cy,m,s,t,u,i) in C, we must show thaM = & =
(m: C; xCy+Cy) andU =6 = (u: Co — C;) satisfy the formulae (S), {(A)(U1), (W2), arld (F). Special-
ity (§) simply states that the relatiod, is single-valued and surjective, which holds sint@,s(a)) = a
for any a in C;. Equation [(A) follows from associativity of compositian. Unitality (U1l) and [(U2)
follows from the equations satisfied by s andt. Finally, the Frobenius law{F) simply amounts to the
statement tham(a=*,c) = m(b,d~1) if and only if m(c™*,a) = m(d,b1). O
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B The category CRC)

Proposition B.1. The categonCP(C) is well-defined.

Proof. It inherits identities and composition fro@. What we have to show is that composition is
well-defined. Suppose that the Choi matrices of both monphi®, 4,,6) L (B,,4.,4) 9 (C, 4.,é) are
positive, say with square rootgf and,/g. Thengo f also has a positive Choi matrix:

A C

O

A monoidal dagger category positively monoidawhen endomorphism$: A — A are positive
as soon ad ®ida is positive. For such categories, one can prove Stinesprthgorem|[[16, Proposi-
tion 3.4], showing that the morphisnis A — B are precisely those such thi ide sends completely
positive maps — A® E to completely positive mapgs— B® E for all special dagger Frobenius struc-
turesk. It follows thatCP(C) is equivalent taCP*(C) [16]. In particular,CP(FHilb ) is the category of
finite-dimensional C*-algebras and completely positivepmaHowever, this is irrelevant to this paper;
for more details, see the forthcoming [22].

Proposition B.2. The categonRel(C) is positively monoidal for any regular categdgy

Proof. If a relationR: A— A satisfiesR® ids = S’ o Sfor some relatiorSs: A x A— X, thenR is equal
to TTo T whereT = [(a,x) € Ax X | (3c € A) S(a,c,€)] and hence is positive. O
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