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Categories of relations over a regular category form a family of models of quantum theory. Using
regular logic, many properties of relations over sets lift to these models, including the correspon-
dence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this
lifting gives continuous symmetric encryption. Over a regular Mal’cev category, this correspondence
gives a characterization of categories of completely positive maps, enabling the formulation of quan-
tum features. These models are closer to Hilbert spaces thanrelations over sets in several respects:
Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

1 Introduction

Many features of quantum theory can be abstracted to arbitrary compact dagger categories[1]. Thus
we can compare models of quantum theory in a unified setting, and look for features that distinguish the
categoryFHilb of finite-dimensional Hilbert spaces that forms the traditional model. The categoryRel
of sets andrelations is an alternative model. It exhibits many features considered typical of quantum
theory [2], but also refutes presumed correspondences between them [15, 21]. However, apart fromRel
and its subcategory corresponding to Spekkens’ toy model [14], few alternative models have been studied
in detail.

We consider a new family of models by generalizing to categoriesRel(C) of relations over an arbi-
trary regular categoryC, including any algebraic category like that of groups, any abelian category like
that of vector spaces, and any topos like that of sets. Despite this generality,internal logic allows us
to state and prove results as if working inRel, as reviewed in Section 2. Just asRel is of independent
interest, alsoRel(C) is not just a toy model: we shortly discusscontinuous symmetric encryptionby
letting C consist of compact Hausdorff spaces. For another example see [7].

Section 5 shows thatRel(C) often has the unusual feature of lacking discernible measurement out-
comes, but whenC is a regularMal’cev categoryit behaves more likeFHilb thanRel in three ways:
theHeisenberg uncertaintyprinciple, the ability tobroadcast, and behavedness ofrank onemorphisms.
Thus this family of models is genuinely different, and leadsto the following scale.

“least quantum” ↔ “most quantum”
Rel Rel(C) FHilb

These properties are stated using the CP construction [16, 22], that makes the Frobenius structures in a
category into the objects of a new one. The objects ofCP(Rel) aregroupoids[20], and Section 3 proves
that this holds forRel(C) too, for any regularC. Our main result, discussed in Section 4, is that

CP(Rel(C))≃Rel(Cat(C)) (1)

for regular Mal’cev categoriesC, whose internal categoriesCat(C) and groupoids are understood. Thus
we link the CP passage, from state spaces to algebras of observables, tocategorification.
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2 Categories of relations as models of quantum theory

Notation We briefly recall thegraphical calculusfor monoidal dagger categories; for more detail,

see [26]. Morphismsf are drawn as f ; composition, tensor product, and dagger, as:

g◦ f

A

C

=
g

f

A

B

C

f ⊗g

A⊗C

B⊗D

= f g

A

B

C

D

f †

B

A

= f

B

A

Distinguished morphisms are depicted with special diagrams: the identityA→ A is just the line, ; the
(identity on) the monoidal unit objectI is the empty picture, and the swap map of symmetric monoidal
categories becomes. In particular, we will draw : A⊗A→ A and : I → A for the multiplication
and unit ofFrobenius structures, made precise in Definition 3.1 below.

Continuous symmetric encryption We now illustrate the utility ofRel(C) in its own right, not as
a toy model. The caseC = Set can model symmetric encryption [29], and the same techniques apply
to any regularC. A symmetric encryption protocolin Rel(C) is specified by anencryptionmorphism
E : M×K→ E relatingplaintext Pandkey Kto ciphertext C, satisfying:

E

E

KP

P

C

key generation

Alice encrypts

Bob decrypts

=

P

P

K

The Frobenius structure here is the canonical copying and deleting that is available inRel(C) [11].
Equivalently,(∀p: P, k: K)(∃c: C)E(p,k,c) andE(p,k,c)∧E(p′,k,c)⇒ p= p′. The protocol issecure
when no information about plaintext can be deduced from ciphertext without the key:

E

P

C

=

P

C

For example,one-time pad encryptionis the following secure encryption protocol inRel: takeP, K
andC to be the set{ f : [1, . . . ,n]→G} of messages in a given groupG of lengthn, and takeE to be the
functionE(p,k)(t) = p(t)k(t) [29]. A continuousversion can be described in the categoryRel(KHaus)
of relations over compact Hausdorff spaces. An analogue signal is a continuous function from an interval
[0,T] ⊆ R to the unit circleS1 ⊆ C. TakeP, K andC to be the space of such signals (under the product
topology) and setE(p,k)(t) = p(t)k(t). The latter protocol is useful when encryptinge.g.(continuous)
speech rather than (discrete) strings of text, and was proven secure by Shannon himself [28].1

1Caveat: the latter protocol requires arbitrary key signals. Practically, Alice could sample her signal at some points,and then
transmit using (discrete) one-time pad encryption; Bob canthen reconstruct an approximation of the signal. Shannon describes
how to generate noise that, when sampled at a given frequency, provides a secure key. Thus the former protocol approximates
the latter to any resolution.
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Future work This work is in its early stages, and opens many directions ofinvestigation.

• The proof techniqueof internal (regular) logic is very useful. We intend to develop a graphi-
cal version, where wires in string diagrams can be annotated with ‘elements’, and investigate its
expressiveness [27].

• The correspondence (1) between groupoids and operator algebra remains to be understood, perhaps
through so-calledgroupoidification[24]. If C is exactMal’cev, so isCat(C) [18, 3.2]. Hence
CP(Rel(Catn(C)))≃ Rel(Catn+1(C)), leading tohigher categories.

• Internal categories in the category of groups arecrossed modules[8]. Tools from categorical
quantum mechanics might shed light on crossed modules, or vice versa. In general, standard
notions from categorical quantum mechanics should be investigated inRel(C), such as (strong)
complementarityof Frobenius structures [12].

• Relation-like categories have been axiomatized: asallegoriesby Freyd and Scedrov [17], and as
bicategories of relationsby Carboni and Walters [11]. We hope to extend our study to these more
general settings.

2 Categories of relations and regular logic

This section describes regular categories, and their internal regular logic, by way of example; for more
information, see [9]. We will be led by the construction ofRel from the categorySetof sets and func-
tions. Of course, both categories have the same objects. Theissue is how to describe relations and their
composition in terms of functions.

Observe that a relationR⊆ A×B induces a pair of functionsR1 : R→ A andR2 : R→ B, namely
(a,b) 7→ a and(a,b) 7→ b. Moreover, the inclusionR →֒ A×B is monic. Equivalently, the two functions
R1,R2 arejointly monic, and conversely, any two jointly monic functionsA

R1← R
R2→ Bdetermine a relation

R⊆ A×B. Thus we can describe relations in terms of functions. Composition of relations is given in
these terms by pullback:

A B C

R S

R×B S

R1 R2 S1 S2

S◦R (2)

The pullback itself is not good enough, asR×B S→ A×C might not be monic. To ensure this, we have
to factor that function as a surjection followed by an injection, and consider its imageS◦R. Because
pullbacks of surjections are surjections, the subobjectS◦R is unique, giving a well-defined categoryRel.

All in all, we have used the following properties ofSet: it has products, pullbacks, a way to factorize
morphisms as injections after surjections via their images, and stability of surjections under pullback.
Generalizing surjections to regular epimorphisms leads toregular categories.

Definition 2.1. An epimorphism isregular when it is a coequalizer. Thekernel pair of a morphism
f : A→ B is a pullback cone ofA

f→B
f←A. A category isregular when it has finite limits, coequalizers of

kernel pairs, and regular epimorphisms are stable under pullback.



4 Categories of relations as models of quantum theory

Example 2.2.Examples of regular categories abound: any topos, such asSet; any algebraic variety, such
as the categoriesGp of groups,Rng of rings, orVectk of vector spaces; any category monadic overSet,
such asKHaus; any abelian category, such as the categoryModR of modules over a ring; any bounded
meet-semilattice, considered as a category; any functor category[C,D] to regularD.

There is another way to consider the construction (2), namely by regular logic. This is the fragment
of first order logic whose formulae use only the connectives∃ and∧ and equality. InSet, we can
describe (2) using a regular formula as

S◦R= {(a,c) ∈ A×C | (∃b∈ B) R(a,b)∧S(b,c)}. (3)

This makes sense in any regular categoryC: any regular formulaφ whose function symbols are mor-
phisms inC and whose relation symbols are subobjects inC inductively defines a subobjectJ(a1, . . . ,an)∈
A1× . . .×An | φK֌A1×·· ·×An as follows. EqualityJa∈A | f (a) = g(a)K is interpreted as the equalizer
of f ,g: A→ B. ConjunctionJa∈ A | R(a)∧S(a)K is interpreted as the pullback ofR,S֌ A. Existential
quantificationJa ∈ A | (∃b∈ B)R(a,b)K is interpreted as the image ofR֌ A×B

π1→A. This gives two
equivalent ways to define our main object of study.

Definition 2.3. Let C be a regular category. Its categoryRel(C) of relations has the same objects as
C, and subobjectsR֌ A×B as morphismsA→ B, with diagonal mapsA→ A×A as identities, under
composition (2), or equivalentlyS◦R= J(a,c) ∈ A×C | (∃b∈ B)R(a,b)∧S(b,c)K.

We denote morphisms inRel(C) asR: A B, and the corresponding subobject inC asR֌ A×B.
The categoryRel(C) is a compact dagger category with the product× of C inducing⊗ in Rel(C) (where
it is no longer a cartesian product), andR†(b,a)⇔ R(a,b). Every objectA is self-dual with canonical
cupJ(a,b) ∈ A×A | a= bK, and swap maps defined similarly.

Example 2.4. Rel(Set) is Rel, so this is a genuine generalization;Rel(Gp) has subgroupsR≤G×H as
morphismsG→ H; Rel(Vectk) has subspacesK ≤V⊕W as morphismsV →W (cf. [7]).

Whenever one can derive an implicationφ ⇒ ψ in regular logic, it follows thatJφK ≤ JψK as sub-
objects. This allows us to state and prove (regular) theorems in Rel(C) as if reasoning inRel. The
following lemma works out an example of this technique; the rest of this paper will not be so painstak-
ingly precise. As inSet, a relationR: A A is calledsymmetricwhenR(a,b) ⇐⇒ R(b,a), reflexive
whenJa∈ A | R(a,a)K = A, andtransitivewhenR(a,b)∧R(b,c)⇒ R(a,c), equivalentlyR◦R≤ R. A
symmetric, reflexive and transitive relation is called anequivalence relation. As in any dagger category,
a relation is calledpositivewhen it is of the formS† ◦S for some relationS.

Lemma 2.5. Any positive relationR: A A in C regular is symmetric and satisfiesR(a,b)⇒ R(a,a).

Proof. SinceR is positive we have thatR= S† ◦S, for some relationS : A B. ThenR is symmetric
sinceR= S† ◦S= (S†◦S)† = R†. Further,

R= S†◦S= J(a,b) ∈ A×A | (∃c∈ B) S(a,c)∧S(b,c)K (definition of◦ and †)

≤ J(a,b) ∈ A×A | (∃c∈ B) S(a,c)K (∃ preserves the order of subobjects)

= J(a,b) ∈ A×A | R(a,a)K

demonstrating thatR(a,b)⇒ R(a,a).
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3 Groupoids and completely positive maps

Frobenius structures play a central role in categorical quantum mechanics, representing C*-algebras in
FHilb [30]. In Rel, they represent groupoids [20]. Theorem 3.4 below generalizes this toRel(C) for any
regularC, by noting that the proof can be stated in regular logic.

Definition 3.1. A special dagger Frobenius structurein a dagger monoidal category is an objectA with
morphisms : A⊗A→ A and : I → A satisfyingunitality, associativity, speciality, and theFrobenius
law:

= = = = =

It is commutativewhen ◦ = .

Definition 3.2. An internal categoryin a finitely complete category consists of objectsC0 (objects) and
C1 (morphisms), and morphismss (source),t (target),u (identity), andm (composition):

C0 C1 C1×C0 C1
mu

s

t

HereC1×C0 C1 is the pullback ofs andt. These morphisms must satisfy familiar equations representing
associativity of composition and usual behaviour of identities. An internal functor between internal
categories is a pair of morphisms( f0, f1) commuting with the above structure. Aninternal groupoid
additionally has an inversion morphismi : C1 → C1 satisfying usual axioms. We writeCat(C) and
Gpd(C) for the categories of internal categories and groupoids inC.

Example 3.3. Internal categories or groupoids inSetare just (small) categories or groupoids. InVectk,
internal categories are the same as internal groupoids (seeSection 4), and are also called2-vector
spaces[3, Section 3]. Internal categories inGp are studied under the namesstrict 2-groups[4] and
crossed modules[25, Section 3.3].

Theorem 3.4. For any regular categoryC, special dagger Frobenius structures inRel(C) are the same
as internal groupoids inC. More precisely, a special dagger Frobenius structure(A, , ) in Rel(C)
defines an internal groupoid inC with composition and identities given by. Conversely, an internal
groupoid(C0,C1,m,s, t,u, i) in C defines a special dagger Frobenius structure(A, , ) in Rel(C) with
A=C1, = (u: C0 ֌ A) and = (m: A×A A).

Proof. Observe that the proof for the caseC = Set (see [20, Theorems 7 and 12]) can be carried out
entirely in regular logic. For details, see Appendix A.

Example 3.5. For any objectA of Rel(C), there is a canonical special dagger Frobenius structure
(A×A, , ) which corresponds to theindiscrete groupoid

A A×A A×A×A
π1,3∆

π1

π2 σ

on A, having a unique morphism froma to b for each pair(a,b) ∈ A×A. The identities are given by the
diagonal∆ = 〈idA, idA〉 : A→ A×A, while the inversion is the swapσ = 〈π2,π1〉 : A×A→ A×A.



6 Categories of relations as models of quantum theory

Dagger Frobenius structures inC form the objects of a new categoryCP(C) [16, 22]. The key
example is thatCP(FHilb ) is the category of finite-dimensional C*-algebras and completely positive
maps. We briefly recall the relevant form of thisCP construction; see Appendix B for a proof that this is
indeed a well-defined category. Recall thatpositive(endo)morphisms in a dagger category are those the
form g†◦g for some morphismg.
Definition 3.6. Let C be a compact dagger category. ThenCP(C) is the category whose objects are
special dagger Frobenius structures(A, ) in C, and where morphisms(A, ) f (B, ) are morphisms
A f B in C whoseChoi matrixis positive:

f =
g

g

for someg: A⊗B→ X in C. Such morphismsf are calledcompletely positive.
To classify completely positive morphisms inRel(C), we need to identify when a relation is positive,

i.e. of the formR= J(a,c) ∈ A×A | (∃b∈ B)S(a,b)∧S(c,b)K for some relationS: A B. Lemma 2.5
showed that positive relations in any regular category satisfy

R(a,b)⇒ R(a,a)∧R(b,a). (4)

It follows that completely positive morphismsR: (A, , )→ (B, , ) respect inverses[16, 7.2]:

R(a,b)⇒ R(a−1
,b−1)∧R(iddom(a), iddom(b)), (5)

where(A, , ) and(B, , ) are regarded as internal groupoids inC. However, the converse of either
statement need not hold.
Proposition 3.7. The following are equivalent for a regular category:
(a) every reflexive symmetric relation is positive;
(b) a relation is positive if and only if it satisfies (4);
(c) a relation between dagger Frobenius structures is completely positive iff it respects inverses.

Proof. For (a⇒ b), letR : A A be any relation satisfying (4), and defineU = Ja∈ A |R(a,a)K. ThenR
restricted toU is reflexive and symmetric, hence equal toS† ◦S for some relationS. ThenR is equal to
S′†S′ whereS′ = J(a,u) ∈ A×U | (a=U(u))∧S(a)K.
For (b⇒ c): the Choi matrixS of a relationR is given byS((a,b),(a′ ,b′)) ⇐⇒ R(a′−1 ◦a,b′ ◦b−1),
which can be seen to satsify (4) iffR itself respects inverses.
To see (c⇒ a), observe that a reflexive symmetric relationR֌ A×A defines a stateR′ in CP(Rel(C))
of the special dagger Frobenius structure given by the indiscrete groupoid onA (Example 3.5). Positivity
of the Choi matrix ofR′ in this case means thatR is itself positive.

A category satisfying the properties of the previous proposition is calledpositively regular. We can
now generalize the known description ofCP(Rel) of [16, Proposition 7.3].
Corollary 3.8. Let C be a positively regular category. ThenCP(Rel(C)) is equivalent to the category of
groupoids and relations inC that respect inverses.
Example 3.9. Setis positively regular, since any relationR satisfying (4) is equal toS† ◦S with S=
{(a,a,b),(a,b,a) | R(a,b)}. More generally, any coherent category, such asKHaus, is positively regular
and hence so is any topos. Section 4 will show thatGp andVectk are positively regular.

The category of semigroups satisfying(∀x,y)xyx= yxy is regular but not positively regular; positive
relations satisfyR(a,b)∧R(c,d)⇒ R(acb,dbc), but relations satisfying (4) need not.
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4 Mal’cev categories

This section studies a broad class of regular categories forwhich the CP construction takes a very natural
form, allowing us to bypass the unusual notion of a relation respecting inverses.

Definition 4.1. A categoryC with finite limits is aMal’cev categoryif every reflexive relationR֌A×A
in C is an equivalence relation.

Proposition 4.2. The following are equivalent for a regular category:

(a) inverse-respecting subobjectsR֌ A1 of internal groupoids are closed under composition;

(b) every relationR֌ A×A is difunctional: (∀a,b,c,d ∈ A)R(a,b)∧R(c,b)∧R(c,d)⇒ R(a,d);

(c) the category is Mal’cev.

Proof. For (a⇒ b), letR֌A×Abe a relation. Define a new relationS֌R×Rby settingS((a,b),(c,d))
⇔ R(a,d)∧R(c,b). ThenS is reflexive, because it is defined onR, and symmetric. ThusS defines an
inverse-respecting subobject of the indiscrete groupoid on R, and hence is closed under composition in
R×R. That is,S is transitive. Now supposeR(a,b), R(c,b), andR(c,d). ThenS((a,b),(c,b)) and
S((c,b),(c,d)), henceS((a,b),(c,d)), and soR(a,d).

To see (b⇒ a), consider an inverse-respecting subobjectR֌ A1, and setS= J(a,b) ∈ A1×A1 |
(dom(a) = cod(b))∧R(a,b)K. For composablea andb in A1, let x= dom(a) = cod(b). SinceR is closed
under iddom(−) and idcod(−), we haveS(idx,b), S(a, idx), andS(idx, idx). Now S(a,b) by difunctionality,
that is,R(a◦b), soR is closed under composition.

Finally, (b⇔ c) is well-known [10, Proposition 1.2].

Example 4.3. Mal’cev categories were first studied in the context of universal algebra. An algebraic
variety is Mal’cev precisely when it contains an operationp(x,y,z) with p(x,y,y) = p(y,y,x) = x. Hence
the categoriesGp andVectk are regular Mal’cev, as are the categories of Lie algebras, abelian groups,
rings, commutative rings, associative algebras, quasi-groups and Heyting algebras. Any abelian category
such asModR is Mal’cev. The opposite category of any topos is regular Mal’cev.

In a Mal’cev categoryC, the forgetful functorGpd(C)→ Cat(C) is an isomorphism, that is, every
internal category inC uniquely defines an internal groupoid [10, Theorem 2.2]. Moreover,Gpd(C) is
regular whenC is Mal’cev [18, Proposition 3.1 and Theorem 3.2]. In this case Rel(Gpd(C)), which we
now describe, makes sense. By contrast,Rel(Gpd(Set)) is ill-defined.

Lemma 4.4. Let C be a regular category. Subobjects of(A0,A1) in Gpd(C) are subobjectsR֌ A1 in
C that are closed under iddom(−), inverses, and composition.

Proof. Morphismsf = ( f0, f1) : (C0,C1)→ (D0,D1) in Gpd(C) are determined by morphismsf1 : C1→
D1 respecting the groupoid structure, sincef0 can be reconstructed asc 7→ dom( f1(idc)) for c∈C0. Now
K1 = J(x,y)∈C1×C1 | f1(x) = f1(y)K determines a subgroupoidK≤C×C, with f ◦π1 = f ◦π2 : K→D.
If f is monic inGpd(C), thenπ1 = π2 and sof1 is monic inC.

Theorem 4.5. Regular Mal’cev categories are positively regular. Conversely, a positively regular cate-
gory C is Mal’cev if and only if Corollary 3.8 provides equivalences

CP(Rel(C))≃Rel(Gpd(C))≃ Rel(Cat(C)).

Note thatRel(Gpd(C)) andRel(Cat(C)) are ill-defined for general positively regularC.



8 Categories of relations as models of quantum theory

Proof. For the first statement, letR be any reflexive symmetric relation in a regular Mal’cev category.
ThenR is an equivalence relation and hence satisfiesR= R†◦R, making it positive.

Now let C be a positively regular category. By Corollary 3.8,CP(Rel(C)) is equivalent to the cate-
gory of groupoids and relations that respect inverses. By Lemma 4.4 and Proposition 4.2, the forgetful
functor from Rel(Gpd(C)) to this category is (well-defined and) an isomorphism if and only if C is
Mal’cev, in which caseGpd(C) is isomorphic toCat(C).

Example 4.6.We may read the previous theorem as saying that the CP construction, usually taken to add
mixed states and processes to pure quantum theory, can be regarded as a process ofcategorificationin a
broad class of categories of relations. The categoryCat(Gp) of strict 2-groups is equivalent to the cate-
gory CrMod of crossed modules, whenceCP(Rel(Gp))≃ Rel(CrMod ). Similarly, CP(Rel(Vectk)) is
equivalent to the category of relations in 2-vector spaces.

Next we observe that, in any Mal’cev regular category, just as every internal category is in fact a
groupoid, there is also redundancy in the definition of a dagger Frobenius structure.
Theorem 4.7. If C is a regular Mal’cev category, any pair of morphisms: A⊗A→ A , : I →
A in Rel(C) satisfying unitality form the composition and identities of an internal category inC, or
equivalently a dagger special Frobenius structure inRel(C).

= = =⇒ = = =

Proof. Since any internal category inC is a groupoid, the second statement follows from Theorem 3.4.
Let = (M : A×A A) and = (U : I A). Then unitality corresponds to the formulae

(∃x∈U) M(x,a,a′) ⇐⇒ a= a′ (U1)

(∃x∈U) M(a,x,a′) ⇐⇒ a= a′ (U2)

We will first show thatM is single-valued as a relation. Suppose that bothM(a,b,c) andM(a,b,d),
then by (U1)(∃x∈U) M(c,x,c), and applying difunctionality we haveM(c,x,d) and soc= d. In any
regular category, such a relation is represented by a subobject of the form(A×A֋ B m A) in C, where
B= J(a,b) ∈ (A×A) | (∃c∈ A) M(a,b,c)K; see [9, Lemma 2.8]. Write(a,b)↓ for B(a,b). Define the
following relations inC:

S= J(a,x) ∈ A×U | (a,x)↓K : A U (6)

T = J(a,y) ∈ A×U | (y,a)↓K : A U (7)

just as in [20, Definition 2]. NowS is total, by (U2), and single-valued since ifM(a,x,a) andM(a,y,a)
for x, y in U , then since unitality givesM(x,x,x) we haveM(x,y,x) by difunctionality, and sox= y. The
same holds forT, and soS, T correspond to morphismss, t in C defining the data of an internal category

U A A×U A= Bm
s

t

where it remains to show thatB is in fact a pullback ofs andt, i.e. (a,b)↓ if and only if s(a) = t(b).
Suppose that(a,b)↓ ands(a) = x. Then we have(a,b)↓, (a,x)↓, (x,x)↓ and hence(x,b)↓ by difunc-
tionality. Conversely,(x,b)↓, (a,x)↓, and(x,x)↓ implies that(a,b) ↓. Finally, in [10, Theorem 2.2]
it is shown that, in any Mal’cev category, all of the equations required of an internal category follow
automatically wheneverm(a,s(a)) = a, m(t(a),a) = a, ands(x) = x= t(x) for all a∈ A andx∈U .



C. Heunen & S. Tull 9

Note that unitality is a property of alone, since we must have= Ja∈ A | (a,a,a)K .

Example 4.8.Crossed modules are known to have numerous equivalent descriptions, as groups inCat or
Gpd, and as categories or groupoids inGp [25, 3.1] [4]. We can now add that a crossed module is just a
unital morphism in Rel(Gp). Similarly, a 2-vector space is simply a unital morphism inRel(VectK ).

5 Quantum properties of Rel(C)

The categoryRel of sets and relations is compact dagger, likeFHilb , but fails to satisfy many properties
that are seen as typical to quantum theory. This section presents three such properties ofFHilb that fail
in Rel but hold inRel(C) wheneverC is a regular Mal’cev category. In this senseRel(C) is a ‘more
quantum’ model thanRel for regular Mal’cev categoriesC. We conclude by countering this with some
non-quantum features of our mainRel(C) examples not shared byRel.

Heisenberg uncertainty The Heisenberg uncertainty principle states that no information can be ob-
tained from a quantum system without disturbing its state [19, Section 5.2]. To model it categorically,
we need an appropriate notion of quantum system. Following [16], we will takequantum structuresto
be special dagger Frobenius structure of the formB= (A∗⊗A,d ,d−1 ), where the scalard : I → I
is invertible. InFHilb , these correspond to the C*-algebrasMn of n-by-n matrices. InRel(C) for regular
C, these correspond to indiscrete groupoids onA (see Example 3.5). We model the principle contrapos-
itively as follows, abstracting the fact that POVMs on a Hilbert spaceA with n outcomes are precisely
morphismsB→ B⊗C in CP∗[C], whereC is a commutative special dagger Frobenius structure onC

n.

Definition 5.1. A compact dagger category satisfies theHeisenberg uncertainty principlewhen the fol-
lowing holds for any quantum structure(B, , ), any commutative special dagger Frobenius structure
(C, , ), and any completely positive morphismM : B→ B⊗C:

M

B

B

=

B

B

=⇒ (∃ψ : I →C) M

C

B

=
ψ

C

B

(8)

The categoryFHilb satisfies the Heisenberg uncertainty principle [23, Section 6.3].

Lemma 5.2. The categoryRel does not satisfy the Heisenberg uncertainty principle.

Proof. Let A be the indiscrete groupoid on the two-element set{x,y}, and letB be the groupZ2 = {0,1},
regarded as a groupoid. The inverse-respecting relation

M = {(a,a,0)) | a∈ A}∪{((x,x),(x,x),1))} ⊆ A× (A×B).

satisfiesM((x,x),(x,x),1) but notM((y,y),(y,y),1).

Proposition 5.3. Let C be a regular Mal’cev category. ThenRel(C) satisfies the Heisenberg uncertainty
principle for any quantum structure(B, , ) andanyspecial dagger Frobenius structure(C, , ).
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Proof. RegardM as a relationM ֌ (A×A)× (A×A)×C, whereB is the indiscrete groupoid onA.
SupposeM satisfies the left-hand side of (8), so that

(∃x∈C) M((a,a′),(b,b′), iddom(x)) ⇐⇒ (a,a′) = (b,b′). (9)

We wish to show(∃b ∈ A) M((a,a′),(b,b),x) ⇐⇒ a = a′ ∧ψ(x) for someψ ֌ C. Define the new
relationT = J(a,x) ∈ A×C |M((a,a),(a,a),x)K. Then by (9) and closure ofM under iddom and idcod,
we have(∃b ∈ A) M((a,a′),(b,b),x) if and only if (a = a′)∧T(a,x). It suffices to show thatT(a,x)
holds precisely when(∃a′ ∈ A) T(a′,x), because we may then takeψ = Jx∈C | (∃a∈ A) T(a,x)K.

Once more using (9) and closure ofM under iddom and idcod, observe that(∀a,a′ ∈ A) (∃x ∈ C)
such thatT(a,x)∧T(a′,x). Hence ifT(a′,x) holds then(∃y∈C) T(a,y)∧T(a′,y)∧T(a′,x) and so by
difunctionalityT(a,x) holds, as desired.

Broadcasting While statistical mechanics includes its own version of theno-cloning theorem, it has
instead been argued that one of the unique features of classical systems is in their capacity to bebroad-
cast[5]. We now capture this property categorically, following[16].

Definition 5.4. Let C be a compact dagger category. Abroadcasting mapfor an object(A, ) of CP(C)
is a morphismA B A⊗A in CP(C) satisfying:

B

A

A

=

A

A

= B

A

A

Any commutative dagger Frobenius structure inC has a broadcasting map, which can be shown to be
completely positive. We sayC satisfies theno-broadcasting principleif the converse holds.

The categoryFHilb satisfies the no-broadcasting principle [6].

Lemma 5.5. [21] The categoryRel does not satisfy the no-broadcasting principle.

Proof. Let G be a nonabelian group, and regard it as a groupoid(G0,G1). Define a morphismB: G1×
G1→ G1 in Rel by B =

{

(g, iddom(g),g) | g∈G1
}

∪
{

(g,g, iddom(g)) | g∈G1
}

. This relation respects
inverses, so is a morphism ofCP(Rel). It is also a broadcasting map since(∃x∈ G0) B(g, idx,h) ⇐⇒
(∃x∈G0) B(g,h, idx) ⇐⇒ g= h for g,h∈G1.

Proposition 5.6. ForC regular Mal’cev,Rel(C) satisfies the no-broadcasting principle.

Proof. SupposeB֌ A×A×A in CP(Rel(C)) is broadcasting. Then:

(∃x∈ A) B(a, iddom(x),a
′) ⇐⇒ a= a′ ⇐⇒ (∃x∈ A) B(a,a′, iddom(x)) (10)

Use closure ofB under identities and inverses to show that, in any regular category C, (10) implies
(∀a∈ A) dom(a) = cod(a). Now, arguing in the internal logic ofC, let a,a′ ∈ A be such that dom(a) =
dom(a′), so thatB(a, iddom(a),a) andB(a′,a′, iddom(a)). SinceC is Mal’cev,B is closed under composition
in A by Proposition 4.2, and soB(a◦a′ ◦a−1

,a′, iddom(a)). Hencea◦a′ = a′ ◦a by (10).
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Rank The third property we discuss concerns the linear structureof quantum theory. Due to this
structure, morphisms inFHilb come with a notion of rank. Rays, morphisms of rank at most one, are
reflected in the graphical calculus by disconnectedness.

Definition 5.7. We say a monoidal dagger category satisfies thebottleneck principleif morphismsR
factor throughI wheneverR†◦R does so:

(∃ψ ,φ : I → A)
R

R

A

A

=
φ

ψ

A

A

=⇒ (∃φ : I → A,ψ : I → B) R

B

A

=
φ

ψ

A

B

The categoryFHilb clearly satisfies the bottleneck principle, because rank( f †◦ f ) = rank( f ).

Lemma 5.8. The categoryRel does not satisfy the bottleneck principle.

Proof. Let B= {0,1}, and consider the relationR: B B given byR= {(0,0),(0,1),(1,1)}. NowR†◦R
splits as the product relationB×B, butRcannot be written as a product of subsets ofB.

The previous lemma leads to unusual behaviour from a quantumperspective inRel. For example,
taking the partial trace of an entangled stateΨ can result in a pure state:

Ψ Ψ = ψ ψ

which cannot occur for entangled states inFHilb .

Lemma 5.9. The categoryRel(C) satisfies the bottleneck principle for regular Mal’cev categoriesC.

Proof. A relation R: A B disconnecting in the above sense meansR(a,b)∧R(a′,b′)⇒ R(a,b′), in
which caseR(a,b) ⇐⇒ (∃a′ ∈ A)R(a′,b)∧ (∃b′ ∈ B)R(a,b′). SupposeR†◦R splits as in the left-hand
side of Definition 5.7, and assumeR(a,b) and R(a′,b′); we will show thatR(a,b′). It follows from
(R†◦R)(a,a) and(R†◦R)(a′,a′) that(R†◦R)(a,a′), that is,(∃e∈ A) R(a,e)∧R(a′,e). But thenR(a,e),
R(a′,e) andR(a′,b′), and soR(a,b′) holds by difunctionality.

Projections To finish, we show that the modelsRel(C) for regular Mal’cevC, despite the above results,
have some non-quantum features distinguishing them fromFHilb . For example, by Proposition 4.2, any
stateψ : I → (A, ) in CP(Rel(C)) is aprojection[15, Definition 3.1]:

ψ ψ

A

=

ψ

A

=
ψ

A

This is not the case inFHilb , where, up to scalar factors, the projections of a quantum structure are
precisely projections in the usual sense, while states are arbitrary density matrices.
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Unique measurement outcomes Another more striking difference fromFHilb is that many of the
categoriesRel(C) lack distinct classical outcomes of experiments. These outcomes are represented
categorically by states copied by the mapof a commutative Frobenius structure [13].

We call an objectA of a regular categoryC inhabited if J∃a ∈ AK = id1 : 1 ֌ 1, andC entirely
inhabitedwhen this holds for all objects. Equivalently, any subobject of a terminal object 1 is isomorphic
to 1.

Proposition 5.10. Let C be an entirely inhabited regular category. Then any two copyable statesH, T
of a special dagger Frobenius structure(A, ) in Rel(C) are equal.

H
=

H H T
=

T T
=⇒

H
=

T

Proof. Arguing just as inRel(Set), any copyable stateH of an internal groupoid(A, ) is easily seen
to satisfy dom(a) = cod(a′) for all its membersa,a′, and(dom(a) = dom(b))∧H(b) =⇒ H(a) for any
a, b in A. Now by assumptionH ∧T is inhabited, meaning(∃b∈ A) H(b)∧T(b). HenceT(a) implies
that dom(a) = dom(b) with b in H, and soH(a) holds also.

Example 5.11. Any regular category with a zero object is entirely inhabited. This includes any abelian
category, along with our main examples of Mal’cev categories Gp andVectk. Hence these categories
will be unable to model protocols which require distinct copyable states to represent classical bits. An
‘ideal’ choice ofC for a toy model would be Mal’cev regular, while not being entirely inhabited: the
category of quasi-groups provides such an example.
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A Proof of Theorem 3.4 for regular categories

Proof. Let C be regular and let(A, , ) be a special dagger Frobenius structure inRel(C), with =
(M : A×A A), and = (U ֌ A). We already saw how unitality is interpreted as the two regular
formulae (U1), and (U2), while the other equations of Definition (3.1) translate into:

(∃e∈ A) M(a,b,e)∧M(e,c,d) ⇐⇒ (∃e∈ A) M(a,e,d)∧M(b,c,e) (A)

(∃b∈ A)(∃c∈ A) M(b,c,a)∧M(b,c,a′) ⇐⇒ a= a′ (S)

(∃e∈ A) M(a,e,c)∧M(e,d,b) ⇐⇒ (∃e∈ A) M(c,e,a)∧M(e,b,d) (F)

We follow the same proof strategy as in Theorem 4.7. It follows from (S) thatM is single-valued as
a relation and hence corresponds to a subobject of the form(A×A ֋ B m A) in C. Again, we write
(a,b)↓ for B(a,b), so thatM(a,b,c) means that(a,b)↓ andm(a,b) = c, and define relationsS: A U ,
T : A U by (6) and (7), as well as

I = J(a,b) ∈ A×A | (∃x∈U)(∃y∈U) M(a,b,x)∧M(b,a,y)K : A A

It suffices to show these relations are total and single-valued, as they then correspond uniquely to mor-
phismss, t andi in C defining the data of an internal groupoid

U A A×U A= Bm
s

t i

where we must also show thatB is in fact a pullback ofs andt.
From the unit laws (U1), (U2) and associativity (A), deduce that elements ofU only compose when

they are equal, and then that if(a,x)↓ and(a,y)↓ we have(x,y)↓ by associativity, and sox= y. HenceS
is total and single-valued, as isT similarly. The special case of (F) in whichb= s(a), c= t(a) andd = a
shows thatI is total:

(∃e∈ A) M(a,e,s(a))∧M(e,a, t(a)),

that is, ‘every morphism has an inverse’. Uniqueness of inverses then follows as for any category, once
we have shown that the compositionm is associative. Writinga−1 for any inverse ofa, associativity (A)
givesm(a−1

,a) = s(a), and it follows thata andb are composable whenevers(a) = t(b). Conversely,
whena andb are composable,m(a,b) = m(m(a,s(a)),b) = m(a,m(s(a),b)) by (A) and sos(a) = t(b).
HenceB is indeed the pullback ofsandt.

It remains to verify that these morphisms satisfy the equations defining an internal groupoid. Asso-
ciativity of m only requires further that(a,b)↓ and(b,c)↓ imply (m(a,b),c)↓. From (A) we find that
(m(a,b),s(b))↓ whenevera andb compose, and hences(m(a,b)) = s(b) as desired. Finally, that inverses
behave as expected follows from the definition ofI .

Thus any dagger special Frobenius structure inRel(C) defines an internal groupoid inC. Note also
that this is the only possible choice ofs, t andi compatible withM andU since any groupoid operations
must satisfy the formulae definingS, T andI .

Conversely, given any internal groupoid(C0,C1,m,s, t,u, i) in C, we must show thatM = =
(m: C1×C1 C1) andU = = (u: C0 ֌C1) satisfy the formulae (S), (A), (U1), (U2), and (F). Special-
ity (S) simply states that the relation is single-valued and surjective, which holds sincem(a,s(a)) = a
for any a in C1. Equation (A) follows from associativity of compositionm. Unitality (U1) and (U2)
follows from the equations satisfied byu, s andt. Finally, the Frobenius law (F) simply amounts to the
statement thatm(a−1

,c) = m(b,d−1) if and only if m(c−1
,a) = m(d,b−1).
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B The category CP(C)

Proposition B.1. The categoryCP(C) is well-defined.

Proof. It inherits identities and composition fromC. What we have to show is that composition is
well-defined. Suppose that the Choi matrices of both morphisms (A, , ) f (B, , ) g (C, , ) are
positive, say with square roots

√
f and

√
g. Theng◦ f also has a positive Choi matrix:

g◦ f

C

A C

A

=
f

g

A

CA

C

=

√
f

√
f

√
g

√
g

A

A

C

C

A monoidal dagger category ispositively monoidalwhen endomorphismsf : A→ A are positive
as soon asf ⊗ idA is positive. For such categories, one can prove Stinespring’s theorem [16, Proposi-
tion 3.4], showing that the morphismsf : A→ B are precisely those such thatf ⊗ idE sends completely
positive mapsI → A⊗E to completely positive mapsI → B⊗E for all special dagger Frobenius struc-
turesE. It follows thatCP(C) is equivalent toCP∗(C) [16]. In particular,CP(FHilb ) is the category of
finite-dimensional C*-algebras and completely positive maps. However, this is irrelevant to this paper;
for more details, see the forthcoming [22].

Proposition B.2. The categoryRel(C) is positively monoidal for any regular categoryC.

Proof. If a relationR: A A satisfiesR⊗ idA = S† ◦S for some relationS: A×A X, thenR is equal
to T†◦T whereT = J(a,x) ∈ A×X | (∃c∈ A) S(a,c,e)K and hence is positive.
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