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Abstract
Hedonic games provide a natural model of coali-
tion formation among self-interested agents. The
associated problem of finding stable outcomes in
such games has been extensively studied. In this
paper, we identify simple conditions on expressivity
of hedonic games that are sufficient for the problem
of checking whether a given game admits a stable
outcome to be computationally hard. Somewhat
surprisingly, these conditions are very mild and in-
tuitive. Our results apply to a wide range of stability
concepts (core stability, individual stability, Nash
stability, etc.) and to many known formalisms for
hedonic games (additively separable games, games
withW-preferences, fractional hedonic games, etc.),
and unify and extend known results for these for-
malisms. They also have broader applicability: for
several classes of hedonic games whose computa-
tional complexity has not been explored in prior
work, we show that our framework immediately im-
plies a number of hardness results for them.

1 Introduction
Hedonic games [Drèze and Greenberg, 1980; Banerjee et al.,
2001; Bogomolnaia and Jackson, 2002] provide an elegant
and versatile model of coalition formation among strategic
agents. In such games, each agent has preferences over coali-
tions (subsets of players) that she can be a part of, and an
outcome of the game is a partition of agents into coalitions.
Clearly, the quality of an outcome depends on how well it
reflects the agents’ preferences. In particular, it is desirable to
have outcomes that are stable, i.e., do not offer the agents an
opportunity to profitably deviate. Many different concepts of
stability have been proposed in the hedonic games literature
(see Section 2 for a brief summary, and [Aziz and Savani,
2015] for an in-depth discussion), and for each of them a natu-
ral computational question is whether a given game admits an
outcome that is stable in that sense.

The complexity of this question depends on how the game
is represented: while every hedonic game can be described
by explicitly listing each agent’s preference relation over all
coalitions that may contain her, in recent years there has been
a considerable amount of research on succinct representation

SNS SCR CR NS IS

IRCL of length 6 9 NP-h. NP-c. NP-c. NP-c. NP-c.
Hedonic Coalition Nets NP-h. NP-h. NP-h. NP-c. NP-c.
W-preferences (no ties) (P) (P) NP-c. NP-c.
W-preferences NP-h. NP-c. NP-c. NP-c.
WB-preferences (no ties) (P) (P) NP-c. NP-c.
WB-preferences NP-h. NP-c. NP-c. NP-c.
B- & W-hedonic games NP-h. NP-h. NP-c. NP-c.
Additively separable NP-h. NP-h. NP-h. NP-c. NP-c.
Fractional hedonic games NP-h. NP-h. NP-h. NP-c. NP-c.
Social FHGs NP-h. NP-h. (+) (+)
Median NP-h. NP-h.
Midrange ( 1

2B+ 1
2W) NP-h. NP-h. NP-c. NP-c.

4-Approval NP-h. NP-h. NP-h. NP-c. NP-c.

Table 1: Some of the hardness results implied by our framework
for the problem of identifying hedonic games with stable outcomes.
Gray entries are results that have not appeared in the literature before.
(P) indicates known polynomial-time algorithms, (+) means that a
stable outcome always exists. See Section 6 for details.

formalisms for hedonic games, i.e., ones where a game de-
scription size scales polynomially with the number of agents n.
Typically, such formalisms are not universally expressive, but
capture important classes of hedonic games. For instance, if
the utility that an agent assigns to a coalition is given by the
sum/average/minimum/maximum of the utilities she assigns to
individual members of that coalition, the entire game can be de-
scribed by n(n−1) numbers (such games are known as, respec-
tively, additively separable games [Bogomolnaia and Jackson,
2002], fractional hedonic games [Aziz et al., 2014], and games
withW- and B-preferences [Cechlárová and Hajduková, 2003;
2004b]). There are also representation formalisms that are
universally expressive (and hence exponentially verbose in
the worst case), but provide succinct descriptions of hedo-
nic games that have certain structural properties; examples
include Individually Rational Coalition Lists [Ballester, 2004]
and Hedonic Coalition Nets [Elkind and Wooldridge, 2009].
The complexity of stability-related problems under these and
other representations for hedonic games has been investigated
by a number of researchers (see [Woeginger, 2013a] for a sur-



vey); with a few exceptions, checking whether a game admits
a stable outcome turns out to be computationally hard.

In this paper, we unify and extend several known hardness
results for this family of problems in order to uncover common
causes of complexity of stability-related questions in hedo-
nic games. In their simplest form, our results imply that if
in a given representation formalism, agents are able to rank
coalitions of size two in any way they wish, and if agents are
to some extent averse to the presence of enemies, then the
problem of checking whether a game admits a stable outcome
is NP-hard. The precise meaning of being averse to enemies
depends on the stability concept in question. We also introduce
intuitively appealing conditions on how agents rank coalitions
of size three, which turn out to entail NP-hardness even if the
underlying preferences are strict. Our approach enables us to
automatically derive new hardness results for hedonic games:
instead of coming up with a hardness reduction, one can sim-
ply check whether the representation in question satisfies the
relevant conditions on enemy-aversion and coalitions of size
two or three. By doing so, we answer several questions that
were left open by prior work, and substantially contribute to
the understanding of computational complexity of somewhat
less explored solution concepts: to the best of our knowledge,
we are the first to obtain NP-hardness results for strong Nash
stability (SNS), strict strong Nash stability (SSNS), and strong
individual stability (SIS).

To provide further evidence of the power of our approach,
we also consider several classes of hedonic games whose
complexity has not been investigated before, and derive NP-
hardness results for them using our methodology. Perhaps
the most interesting of them is the class of median games,
proposed by [Hajduková, 2006], where each agent assigns a
utility to every other agent, and her utility for a coalition is the
utility she assigns to the median agent in that coalition.

The complexity results implied by our analysis are sum-
marized in Table 1. However, we believe that the sufficient
conditions for hardness identified in our work are at least as im-
portant as the specific new results we have established. Indeed,
these conditions indicate which additional constraints should
be placed on a representation formalism to avoid the com-
plexity trap, and may guide researchers towards identifying
formalisms that adequately describe their application scenario,
yet admit efficient algorithms for finding stable outcomes.

2 Preliminaries
Given a finite set of agents N = {1, . . . ,n}, a hedonic game is
a pair G = 〈N,(<i)i∈N〉, where <i is a complete and transitive
preference relation overNi = {S⊆N : i∈ S}. We write S�i T
when S <i T , but T 6<i S. A class C of hedonic games is
any collection of hedonic games. We say that a class C is
polynomially representable if there exists a polynomial p(x)
and a poly-time algorithm A such that each 〈N,(<i)i∈N〉 ∈
C can be represented by a binary string of length at most
p(|N|), and, given this string, an agent i ∈ N, and a pair of
coalitions S,T ∈Ni, algorithm A can decide whether S <i T .
For example, additively separable hedonic games mentioned
in Section 1 form a polynomially representable class.

An outcome of a hedonic game is a partition π of N into

disjoint coalitions. We write π(i) for the coalition of π that
contains i. For partitions π and π′, we write π <i π

′ to mean
π(i)<i π

′(i).
We are mainly interested in the stability of a given partition

π of N. We will consider seven stability concepts for hedo-
nic games: two that are based on individual deviations, and
five that are based on group deviations. The former group
comprises Nash stability (NS) and individual stability (IS). A
partition π is NS if no player can benefit from moving to an-
other (possibly empty) coalition S in π, i.e., π(i)<i S∪{i} for
all S ∈ π∪{∅}. Partition π satisfies IS if no player can make
such a beneficial move without making an agent in S worse
off, i.e., for each S ∈ π∪{∅} it holds that π(i)<i S∪{i} or
S� j S∪{i} for some j ∈ S.

The classic solution concept for group deviations is the
core (CR). We say that a non-empty coalition S CR-blocks π
if S �i π(i) for all i ∈ S; it SCR-blocks π if S <i π(i) for all
i ∈ S and, moreover, S�i π(i) for some i ∈ S. If no coalition
CR-blocks π, it is in the core (CR); if no coalition SCR-blocks
it, it is in the strict core (SCR).

SSNS

SNS

NS SIS

SCR

IS

IR

CR

Karakaya [2011] introduced strong
Nash stability (SNS), and Aziz and
Brandl [2012] introduced the derived
notions of strict strong Nash stability
(SSNS) and strong individual stability
(SIS). These solution concepts deal
with deviations where the deviators do
not necessarily form a single coalition.
Given two partitions π, π′, we say that a
coalition H ⊆N can reach π′ from π if for all i, j 6∈H we have
π(i) = π( j) if and only if π′(i) = π′( j). Coalition H SSNS-
blocks π if it can reach some π′ with π′ <i π for all i ∈ H and
π′ �i π for some i ∈ H. If H can reach some π′ with π′ �i π
for all i ∈H then H is said to SNS-block π. If H SNS-blocks π
by reaching π′ and, moreover, for each i∈H and each j ∈ π′(i)
we have π′ < j π, then H is said to SIS-block π. A partition
π is α-stable (where α ∈ {SSNS, SNS, SIS}) if no coalition
α-blocks it. Intuitively, SNS-blocking coalitions allow groups
of agents to swap places with each other. For SIS-blocking
coalitions, agents joined by a deviator must consent to the
changes.

The diagram above shows implication relationships among
these concepts. A partition that is SSNS-stable is also stable un-
der every other solution concept considered here. A coalition
S 3 i is individually rational (IR) for i if S <i {i}. A partition
π is said to be IR if π(i) is IR for all i ∈ N.

3 Properties of Preferences
Our hardness results require a given class C of hedonic games
to be expressive enough to include hard instances. To this end,
agents should have some freedom in how they order small
coalitions. Our results apply to formalisms that enable each
agent i to express arbitrary preferences over coalitions of the
form {i, j}, as well as satisfy a few other constraints. Thus,
in a sense, our results are about the hardness of finding stable
outcomes in hedonic games obtained by lifting preferences
over individual players to preferences over coalitions.

We associate each agent i∈N with a complete and transitive



order >i over N. We interpret >i as i’s preference order over
the set of players. We write j >i k if j >i k but not k >i j,
and we write j ∼i k if both j >i k and k >i j. We call Fi =
{ j 6= i : j >i i} and Ei = { j 6= i : j <i i} the friends and the
enemies of i. In what follows, it will not matter how >i orders
Ei—only its restriction on Fi will be of interest.

We now describe a series of properties that relate i’s prefer-
ences <i over the coalitions in Ni to her preferences >i over
the agents in N. These properties express various ways in
which <i can be said to extend >i. The numerical examples in
brackets aim to illustrate the intuition behind these properties.

Consistent on pairs. For all j,k ∈ Fi∪{i} it holds that {i, j}<i
{i,k} iff j >i k.

Monotone on triangles (‘7+6 > 7+5’). If j, j′,k,k′ ∈ Fi are
such that j >i j′ >i k >i k′, then {i, j,k} �i {i, j′,k′}.

Triangle-appreciating (‘7+5> 7’). Two almost equally good
friends together are preferable to the better friend alone: If
j,k, ` ∈ Fi are ranked j >i k >i ` and they are immediate
successors under >i, then {i, j, `} �i {i, j}.

Only few polynomial-time algorithms for finding stable
outcomes in hedonic games are known, mainly confined to
matching problems and the (structurally similar)W-hedonic
games. Notably these classes of games fail to be triangle-
appreciating, and in view of our results in Section 4 this is a
key reason why they admit easiness results.

The following properties express that agents do not like
coalitions that contain too many enemies.

{a-b}-toxic. If |S∩Fi|= a, but |S∩Ei|> b then {i}<i S.

Strictly {a-b}-toxic. Same as above with {i} �i S.

Weakly {a-b}-toxic. Same as above with {i, j} �i S for all
j ∈ Fi.

Intolerant in triangles. If E ′i ⊆ Ei is non-empty and j,k ∈ Fi
are distinct then {i, j,k} �i {i, j,k}∪E ′i .

We write ‘(strictly/weakly) {a1-b1, . . . ,am-bm}-toxic’ for pref-
erences that are (strictly/weakly) {at -bt}-toxic for t = 1, . . . ,m.

Given a collection (>i)i∈N of orderings, we say that a he-
donic game 〈N,(<i)i∈N〉 satisfies one of the properties above
if each <i satisfies it with respect to >i. We say that the col-
lection is strict if each >i is antisymmetric, so j 6= k implies
j 6∼i k. The collection is mutual if j ∈Fi if and only if i∈Fj for
all i, j. For a mutual collection of orderings, we may consider
the friendship graph with vertex set N, where an (unweighted)
edge connects mutual friends. We will use standard terminol-
ogy of graph theory when talking about hedonic games, and,
in particular, speak of cliques, trees, and cycles of agents.

4 Hardness Results
Let C be a polynomially representable class of hedonic games.
For every stability concept α defined in Section 2, we will
consider the following decision problem associated with C.
α-EXISTENCE FOR C
Instance: Game 〈N,(<i)i∈N〉 from C in its binary encoding.
Question: Is there an α-stable partition π of N?

To avoid difficulties with binary representations that are very
short, we will assume that the binary encoding of 〈N,(<i)i∈N〉
lists the names of agents in N, and hence contains at least |N|
bits. Furthermore, when in the following theorems we assume
that C contains various hedonic games 〈N,(<i)i∈N〉 derived
from orderings (>i)i∈N , we require that such games (i.e., their
binary descriptions) can be constructed in time polynomial
in |N|; this property is necessary for our hardness reductions
to work in polynomial time and is satisfied by all classes of
hedonic games considered in this paper.

Our first result has mild assumptions and applies to a large
number of classes C.
Theorem 1. CR-EXISTENCE FOR C is NP-hard if for all N and
every mutual collection of orderings (>i)i∈N in which each
agent has at most 3 friends, there is a game 〈N,(<i)i∈N〉 ∈ C
that is consistent on pairs, {0-1}-toxic and weakly {1-1,2-2}-
toxic with respect to (>i)i∈N .
REMARK I. Under the same set of conditions SIS-EXISTENCE
FOR C is also NP-hard; we obtain a hardness result for SNS-
EXISTENCE FOR C by strengthening weak {1-1}-toxicity to
{1-1}-toxicity.

Effectively, Theorem 1 says that if agents are allowed to
rank pairs as they wish, and if they do not have to like everyone,
then finding a core-stable outcome is hard.

The assumptions are chosen so as to guarantee
that a game like the pentagon displayed on the
right has empty core. In this game, each agent
has exactly two friends, the clockwise successor
being preferred to the clockwise predecessor. All
other agents are enemies. It can be checked that if agents’
preferences satisfy weak {1-1,2-2}-toxicity then this game
has empty core. We use the 9-player version of this game as a
gadget in our hardness reductions (see Figure 1).

A similar result holds for solution concepts based on indi-
vidual deviations.
Theorem 2. NS- and IS-EXISTENCE FOR C are NP-complete
if for all N and every strict and mutual collection of orderings
(>i)i∈N in which each agent has at most 3 friends, there is a
game 〈N,(<i)i∈N〉 ∈ C that is consistent on pairs and strictly
{0-1,1-1,2-5}-toxic with respect to (>i)i∈N .

In the case of NS-EXISTENCE, the theorem remains true
even if the orderings (>i)i∈N are strict and bipartite (but not
mutual), i.e. the friendship graph is bipartite. Thus, its con-
clusion also applies to NS-EXISTENCE for the stable marriage
problem with unacceptabilities. For the case with ties allowed,
this result is also obtained by Aziz [2013].

The reduction establishing Theorem 1 makes essential use
of indifferences in the underlying orderings (>i)i∈N (this is
also the reason why it does not go through for the strict core).
To cut off this cause of hardness, we need to make use of
conditions on triangles.
Theorem 3. CR- and SCR-EXISTENCE FOR C are NP-hard if
for all N and every collection of strict and mutual orderings
(>i)i∈N in which each agent has at most 4 friends, there is a
game 〈N,(<i)i∈N〉 ∈ C that is consistent on pairs, triangle-
appreciating, monotone on triangles, {0-1}-toxic, weakly
{1-1,2-2,3-3}-toxic, and intolerant in triangles with respect
to (>i)i∈N .



REMARK II. The same result holds for SIS-EXISTENCE FOR C.
It applies to SNS-EXISTENCE FOR C if we add {1-1}-toxicity
and weak {2-1}-toxicity. It applies to SSNS-EXISTENCE FOR C
if we add strict {0-1,1-1}-toxicity and weak {2-1}-toxicity.

5 The Reductions
The proofs of our results are by reduction from a restricted
version of 3SAT. The reduction behind Theorem 1 is in-
spired by an argument of Ronn [1990] showing that STABLE-
ROOMMATES with ties is NP-complete. Theorem 3 introduces
triangles into this reduction to allow strict preferences.

We sketch the proof of Theorem 1 but omit proofs of the
other claims due to space constraints. The omitted arguments
are similar to the one given, but more complicated due to
SNS-like stability concepts imposing little structure. Full
proofs are given in an extended version of this paper, available
on arXiv.org [Peters and Elkind, 2015].

PROOF OF THEOREM 1 (SKETCH). We reduce from (3,B2)-
SAT, which is 3SAT restricted to formulas in which each clause
contains exactly 3 literals, and each variable occurs exactly
twice positively and twice negatively [Berman et al., 2003].

Given an instance formula ϕ with variable set X and clause
set C, we construct the following agent set N:⋃

x∈X{x1,x1,x2,x2,xa,x′a,x
′′
a ,xb,x′b,x

′′
b}∪

⋃
c∈C{c1, . . . ,c9}.

The four occurrences (two positive ones and two negative
ones) of a variable x ∈ X are called x1,x2,x1,x2. respectively.
For a clause c = `1∨`2∨`3, we write c(`1) := c1, c(`2) := c4,
c(`3) = c7. Construct orderings (>i)i∈N as follows:

x1 : xa > x2 > c(x1) xa : x1 ∼ x1 > x′a c1 : `1 > c2 > c9

x2 : xb > x1 > c(x2) xb : x2 ∼ x2 > x′b c4 : `2 > c5 > c3

x1 : xa > x2 > c(x1) x′a : xa > x′′a c7 : `3 > c8 > c6

x2 : xb > x1 > c(x2) x′b : xb > x′′b ci : ci+1 > ci−1

x′′a : x′a x′′b : x′b
For each agent i we have only listed i’s friends Fi, each friend
being strictly better than i. Any agent not mentioned in i’s list
is an enemy, i.e., an element of Ei. Figure 1(a) illustrates the
orderings (>i)i∈N . Note that no agent has more than 3 friends,
and that these orderings are mutual.

By the assumptions of Theorem 1, there is a poly-time
many-one reduction that takes a formula ϕ as input and outputs
the binary encoding of a game G = 〈N,(<i)i∈N〉 ∈ C that is
consistent on pairs, {0-1}-toxic and weakly {1-1,2-2,3-3}-
toxic with respect to the (>i)i∈N given above. We show that ϕ
is satisfiable if and only if G admits a CR-stable partition.

Let A be a satisfying assignment of ϕ. Take the partition
π = {{`,c(`)} : ` a true variable occurrence}
∪{{xa,x1},{xb,x2} : x ∈ X set true in A}
∪{{xa,x1},{xb,x2} : x ∈ X set false in A}
∪{{x′a,x′′a},{x′b,x′′b} : x ∈ X}
∪{{ci,ci+1}, . . . ,{c j} : c ∈C}.

In the last line we partition clause players that are not matched
to true variables into pairs and singletons in some stable way
as in Figure 1(a), see full proof for details.

We show that π is CR-stable in G. Since π is IR, no singleton

blocks. By consistency on pairs, it can be checked that no
coalition of size 2 blocks. Now let S be a coalition with |S|> 3.
Consider the friendship graph on N with friends connected by
an edge. This graph has girth 6 and does not contain a cubic
subgraph. If S contained an isolated agent or a leaf (a member
with at most 1 friend in S), then S is not blocking by {0-1}-
toxicity and weak {1-1}-toxicity. So S contains a cycle and
thus |S|> 6. Since S is not cubic, there is an agent, matched
in π, who has 2 friends in S and so by weak {2-2}-toxicity
is worse off in S, so S does not block. Hence there are no
blocking coalitions and π is in the core.

Let π be a CR-stable partition of G. We sketch an argu-
ment giving a satisfying assignment of ϕ. Because the players
{c1, . . . ,c9} of a clause are unstable on their own (toxicity
limits coalitions within them to size 2, no agent wants to be
clockwise last in a coalition, and the number of members is
odd), stability of π implies that for each clause one of its
players must be in a coalition with the literal connected to it.
Define a propositional assignment A so that all literals in a
coalition with a c-player are set true, and set other variables
arbitrarily. This assignment is well-defined. Indeed, suppose
variable x is to be set both true and false. Then WLOG ei-
ther both x1 and x1 or both x1 and x2 are matched with their
c1. Either {xa,x1} or {x1,x2} will then end up blocking, a
contradiction. Clearly, A satisfies ϕ.

6 Applications
Our NP-hardness results have implications for many well-
known classes of hedonic games. In this section we briefly
describe some of these (see [Aziz and Savani, 2015] for details)
and check which of our conditions they satisfy. In this way,
we recover—and sometimes strengthen—a number of known
hardness results for these games. We also introduce five new
classes of games, and show how our framework allows us to
deduce hardness results for them with ease.

The extended version [Peters and Elkind, 2015] of this paper
gives further details on constructions outlined here.

Individually Rational Coalition Lists (IRCL). Balles-
ter [2004] proposes to represent a hedonic game by listing
the agent preferences <i explicitly from best to worst, but
cutting the list off after the entry {i}. This representation
is complete, but not always succinct. Ballester proves that
for α ∈ {CR,NS,IS} deciding α-EXISTENCE is NP-complete
under this representation. We deduce these results by consid-
ering IRCLs that list the pairs {i, j} for j ∈ Fi. Since Theo-
rems 1 and 2 apply even if each agent has only 3 friends, we
therefore have a hardness result for α ∈ {SNS,SIS,CR,NS,IS}
even if the list of each agent includes at most 3 entries, each
of which is a pair. A similar result is shown by Deineko
and Woeginger [2013]. They prove that CR-EXISTENCE FOR
IRCL is hard even for lists of length 2, with entries being
coalitions of size 3. Theorem 3 applies if we allow lists up
to length 9, which can encode a triangle-appreciating game
where agents have up to 4 friends.

Hedonic Coalition Nets. Elkind and Wooldridge [2009]
study a rule-based representation for hedonic games in which
agents’ preferences are described by weighted boolean for-
mulas. It can be shown that polynomial size nets are suf-
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Figure 1: Graphical presentations of the 3SAT reductions used. Figure (a) is used in Theorem 1, (b) in Theorem 3, and (c) in Theorem 2.
Agents not connected by an edge are enemies. The gray sets of agents indicate a stable partition π in the hedonic game. The 9-gons form
clause gadgets in (a) and (b) and a variable gadget in (c). On their own, these groups of 9 players do not admit a stable outcome. So in (a) and
(b), stability can only occur if for each clause one of its agents can be connected to one of its (true) literals, i.e. if the underlying formula is
satisfiable. In (c), each variable must be set true or false for stability to occur.

ficient to describe, for any collection of orderings (>i)i∈N ,
a game satisfying all our conditions, implying hardness of
α-EXISTENCE for all α considered in this work. This is
perhaps not surprising: while Elkind and Wooldridge only
establish the hardness of CR-EXISTENCE in their work, they
show that one can compile an IRCL representation into a
hedonic coalition net representation with at most polynomial
overhead. Because our hardness results hold even if each
player is only allowed 3 or 4 friends, we can say in addition
that α-EXISTENCE for hedonic coalition nets remains hard
even if we restrict each player’s preferences to be described
by at most 4 or 5 formulas, and even if the weights of these
formulas are given in unary.

Stable Roommates. The reduction behind Theorem 1 is a
modified version of Ronn’s construction showing that CR-
EXISTENCE FOR SRT, the stable roommate problem with
ties, is NP-complete [Ronn, 1990]. It is thus no surprise
that the class of stable roommate problems, considered as
hedonic games in which sets with 3 or more members are
unacceptable, fulfills the conditions of Theorem 1 (but note
that this formulation corresponds to SRTI, not SRT). Indeed,
CR-EXISTENCE FOR SRTI remains hard even if the preference
list of each agent has length at most 3, and by Theorem 2
this is also true of NS- and IS-EXISTENCE. Now, consider a
generalization of STABLE-ROOMMATES where rooms have
capacity 1, 2, or 3, and rooms with capacity 3 are generally
preferred because they are cheaper per person. Then it can be
checked that the conditions of Theorems 2 and 3 are satisfied,
giving hardness of α-EXISTENCE for all α for this model.

Stable Marriages. A version of Theorem 2 implies that NS-
EXISTENCE FOR SMI, the stable marriage problem with
incomplete lists, is NP-complete. This extends the NP-
completeness result for SMTI obtained by [Aziz, 2013].

Aziz also notes that it is possible to embed SMTI into other
classes C of hedonic games, and thus to deduce hardness of
NS-EXISTENCE FOR C; this observation provides an (alterna-
tive) method of deriving hardness results for several classes
of hedonic games.

W-preferences. Cechlárová and Hajduková [2004b] consider
hedonic games where each agent first ranks all other agents
and then compares coalitions based on their worst member
under this ranking. Clearly, the game so obtained is con-
sistent on pairs and strictly {k-1}-toxic for all k. It follows
that (with ties allowed) CR-EXISTENCE is NP-hard by Theo-
rem 1 (a result first obtained by [Cechlárová and Hajduková,
2004b]), and that NS- and IS-EXISTENCE are NP-complete
by Theorem 2, first shown by Aziz et al. [2012]. NS- and
IS-EXISTENCE are hard even if preferences are strict; the
latter result was previously unknown.

WB-preferences. Noting that agents inW-hedonic games are
extremely pessimistic, Cechlárová and Hajduková [2004a]
propose a compromise: Agents still rank coalitions according
to their worst member, but break ties in favor of the coalition
with better best member. Again the game obtained is consis-
tent on pairs and strictly {k-1}-toxic for all k, so CR-, NS-,
and IS-EXISTENCE are hard.

W- and B-hedonic games. In these two classes of games
[Aziz et al., 2012; 2013], agents rank coalitions according
to their worst or best member, but coalitions containing an
enemy are not individually rational. As forW-preferences,
we see that CR-, NS-, and IS-EXISTENCE are hard.

In all of the following classes of games, agents first assign
cardinal utilities vi( j) ∈ R to all agents in N = {1, . . . ,n}, and
then lift these utilities to coalitions (e.g., by computing the



sum or average of the utilities of coalition members).
The following method of constructing integer-valued func-

tions vi : N→ R from orderings (>i)i∈N will be used repeat-
edly: given x,y ∈ Z, we set vi(i) = 0, vi( j) = x for j ∈ Ei and
let y 6 vi( j) 6 y+ n for j ∈ Fi so that for each j,k ∈ Fi we
have vi( j)> vi(k) iff j >i k (this is accomplished by assigning
utility y+ k+1 to friends at the k-th ‘preference level’). We
refer to such utilities as Jx,yK-utilities.

Additively Separable Games (ASGs). In these games, pref-
erences are given by S <i T iff ∑ j∈S vi( j)> ∑ j∈T vi( j). This
class of games satisfies all our theorems, so α-EXISTENCE is
hard for all α we consider. Indeed, given N = {1, . . . ,n} and
(>i)i∈N , we consider the ASG with J−(n2+2n),4K-utilities.
Then a coalition containing an enemy of i is not individually
rational for i, so this game is strictly {k-1}-toxic for all k, and
it is obviously consistent on pairs, triangle-appreciating and
monotone on triangles. α-EXISTENCE remains hard even
if players are allowed at most 3 or 4 friends (depending on
α), so for ASGs, it remains hard even if vi( j) is positive
for at most 3 or 4 agents j. This improves on the reduction
in [Sung and Dimitrov, 2010], where agents have up to 11
friends.

Fractional Hedonic Games (FHGs). This class of games
was recently proposed by Aziz et al. [2014]. Preferences
are given by S <i T iff 1/|S|∑ j∈S vi( j) > 1/|T |∑ j∈T vi( j).
Brandl et al. [2015] have shown hardness of CR-, NS-,
and IS-EXISTENCE. We recover these results and comple-
ment them by showing hardness of SSNS-, SNS-, SIS- and
SCR-EXISTENCE; all these results hold even if the underly-
ing preferences are strict. FHGs with J−(n2+5n),5K-utilities
satisfy all of our properties; choosing y = 5 ensures triangle-
appreciation.

Social FHGs. An FHG is social if agents’ utilities for each
other are non-negative. Theorem 3 applies to the class of
social FHGs. Indeed, given (>i)i∈N we can construct a social
FHG with J0,7nK-utilities. Toxicity follows from vi( j) >
7n for j ∈ Fi, and other properties can be checked as for
FHGs. To ensure that our framework applies to social FHGs,
we carefully crafted our constructions to only require weak
toxicity whenever possible.

The next five classes of hedonic games are based on fairly
intuitive ways of deriving utilities for coalitions from utilities
for individual players; however, to the best of our knowledge
we are the first to consider the computational complexity of
stability-related probems for these games (median games have
been suggested by [Hajduková, 2006] as an interesting topic;
the other four classes appear to be entirely new).

Median Games. Agents evaluate coalitions according to their
median value, which in odd-size coalitions is the middle
element, and in even-size coalitions is the mean of the middle
two elements. Median games with J0,5K-utilities satisfy
Theorem 3. Notice that in this construction vi( j) are non-
negative, so hardness holds even for ‘social median games’
with non-negative underlying utilities. There are various
other ways of defining median games. In particular, we can
use a purely ordinal version by taking the worse of the middle
two players in even-sized coalitions, satisfying Theorem 1;

if agents take either the ordinal or cardinal median of the
coalition S\{i} then both Theorems 1 and 2 apply.

Geometric Mean Games. In these games agents evaluate
coalitions according to the geometric mean |S|

√
∏vi( j) of

member utilities. We obtain the same hardness results as
for FHGs by taking logs.

Nash Product Games. This is the class of games that are
‘multiplicatively separable’; agents evaluate coalitions ac-
cording to ∏ j∈S vi( j). As far as hardness is concerned
these games behave identically to additively separable games,
again by taking logs.

Midrange ( 1
2B+

1
2W). In this case, agents evaluate a coali-

tion by averaging the maximum and minimum utility in it.
With J−3n,1K-utilities, these games are strictly {k-1}-toxic
for all k and consistent on pairs, so Theorems 1 and 2 apply.

r-Approval. Starting with cardinal utilities, sum the (up to)
r highest elements of a coalition. If r > 3, then games
with J−6rn,4K-utilities satisfy the conditions of Theorems 1
and 2. If r > 4, they satisfy the conditions of Theorem 3.

7 Conclusions
We have developed a framework that enables us to prove
NP-hardness of α-EXISTENCE FOR C for many choices of α

and C. Our results show that problems in this family tend to
be hard even for representation formalisms with very limited
expressivity, and, moreover, are unlikely to admit an efficient
parametrized algorithm for many natural choices of parameter
(such as length and coalition size in the IRCL representation
or number of formulas per agent in the hedonic coalition nets
representation). However, they also indicate which features
of hedonic games may lead to tractability of stability-related
problems. In particular, restricting the number of different
‘preference intensities’ (e.g., the range of vi( j) in ASGs, FHGs,
and median games) rules out consistency on pairs, so one may
hope for easiness results when this number is small.

While we focused on the problem of checking whether
a stable partition exists, another important stability-related
problem is checking whether a specific partition is stable.
This problem is in P for IS and NS for all classes of hedonic
games considered here, simply because the number of possible
deviations is polynomially bounded; however, for notions of
stability that are based on group deviations it is often coNP-
complete. It would be interesting to extend our framework to
handle this problem as well.

Since verifying stability is often hard, α-EXISTENCE FOR C
is usually not known to be in NP for stability notions based
on group deviations. Thus most of our hardness results do not
have a tight complexity upper bound. For all representation
formalisms we consider, these problems are in Σ

p
2 , and CR-

EXISTENCE FOR ASGS is known to be complete for this
complexity class [Woeginger, 2013b]. A natural open question
is whether our framework can be extended from NP-hardness
proofs to Σ

p
2 -hardness proofs.
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