Categories of Matroids

Vaia Patta

March 6, 2015
What is a matroid?
A matroid describes dependence.
What is a matroid?

A matroid describes *dependence*.
A matroid describes dependence.
A matroid describes *dependence*.

\[
\begin{align*}
\mathbf{x} &= a_1 x_1 + a_2 x_2 + \ldots
\end{align*}
\]
What is a matroid?

A matroid describes *dependence*.

\[x = ax_1 + bx_2 \]
What is a matroid?

A matroid describes *dependence*.

\[x = ax_1 + bx_2 \quad \text{...etc} \]
Interesting classes of matroids

- **Pointed matroids**: distinguished element ○, where {○} is dependent (i.e. ○ is a loop)

- **Loopless matroids**: ○ is the only loop

- **Simple matroids**: loopless with no minimal dependent sets (circuits) of cardinality 2

- **Representable matroid**: those arising from linear dependence of vectors
Interesting classes of matroids

- **Pointed matroids**: distinguished element \bullet, where $\{\bullet\}$ is dependent (i.e. \bullet is a loop)

- **Loopless matroids**: \bullet is the only loop

- **Simple matroids**: loopless with no minimal dependent sets (circuits) of cardinality 2

- **Representable matroids**: those arising from linear dependence of vectors
Interesting classes of matroids

- **Pointed matroids**: distinguished element ●, where {●} is dependent (i.e. ● is a loop)
- **Loopless matroids**: ● is the only loop
- **Simple matroids**: loopless with no minimal dependent sets (*circuits*) of cardinality 2

Representable matroid: those arising from linear dependence of vectors
Interesting classes of matroids

- *Pointed matroids*: distinguished element •, where \{•\} is dependent (i.e. • is a *loop*)

- *Loopless matroids*: • is the only loop

- *Simple matroids*: loopless with no minimal dependent sets (*circuits*) of cardinality 2

- *Representable matroid*: those arising from linear dependence of vectors
Categories of matroids
What are the morphisms?

- **Rank of a set** X: Size of the largest independent set contained in X.
- **Closed sets** (or *flats*): Maximal sets of a fixed rank r.
- **Strong maps**: Functions between matroids for which the preimage of a closed set is closed.
What are the morphisms?

Rank of a set X: Size of the largest independent set contained in X
What are the morphisms?

Rank of a set X: Size of the largest independent set contained in X

Closed sets (or **flats**): Maximal sets of a fixed rank r
What are the morphisms?

\[\text{Rank of a set } X: \text{ Size of the largest independent set contained in } X \]

\[\text{Closed sets (or flats): Maximal sets of a fixed rank } r \]

\[\text{Strong maps: Functions between matroids for which the preimage of a closed set is closed} \]
Limits and Colimits

Matroids, Matroids Loopless, Simple Simple, Repr. over k Repr. over k
Limits and Colimits

Limits:

Matroids
Matroids Loopless
Simple
Simple
Repr. over k
Repr. over k
Limits and Colimits

Limits:

Products
Limits and Colimits

Limits:

Products
Limits and Colimits

Matroids, Loopless, Simple, Simple, Repr. over k, Repr. over k

Limits:

<table>
<thead>
<tr>
<th></th>
<th>Matroids</th>
<th>Matroids</th>
<th>Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponentials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullbacks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limits and Colimits

Limits:

<table>
<thead>
<tr>
<th>Category</th>
<th>Products</th>
<th>Exponentials</th>
<th>Pullbacks</th>
<th>Equalisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matroids</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Matroids Loopless</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Simple</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Simple Repr. over k</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Repr. over k</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Limits and Colimits

<table>
<thead>
<tr>
<th></th>
<th>Matroids</th>
<th>Matroids</th>
<th>Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Exponentials</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Pullbacks</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Equalisers</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
Limits and Colimits

Limits:

<table>
<thead>
<tr>
<th>Category</th>
<th>Products</th>
<th>Exponentials</th>
<th>Pullbacks</th>
<th>Equalisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matroids</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loopless</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple Loopless</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repr. over k</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repr. over k</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colimits:

<table>
<thead>
<tr>
<th>Category</th>
<th>Products</th>
<th>Exponentials</th>
<th>Pullbacks</th>
<th>Equalisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loopless</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple Loopless</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repr. over k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repr. over k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limits and Colimits

<table>
<thead>
<tr>
<th>Limits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
</tr>
<tr>
<td>Exponentials</td>
</tr>
<tr>
<td>Pullbacks</td>
</tr>
<tr>
<td>Equalisers</td>
</tr>
</tbody>
</table>

| Colimits: |
| Coproducts |
Limits and Colimits

<table>
<thead>
<tr>
<th>Limits:</th>
<th>Products</th>
<th>Exponentials</th>
<th>Pullbacks</th>
<th>Equalisers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>Colimits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coproducts</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Matroids
- Matroids Loopless
- Simple
- Simple
- Repr. over k
- Repr. over k
Limits and Colimits

Limits:

<table>
<thead>
<tr>
<th>Category</th>
<th>Matroids</th>
<th>Matroids</th>
<th>Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exponentials</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pullbacks</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Equalisers</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Colimits:

<table>
<thead>
<tr>
<th>Category</th>
<th>Matroids</th>
<th>Matroids</th>
<th>Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coproducts</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coequalisers</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Limits and Colimits

Limits:

<table>
<thead>
<tr>
<th></th>
<th>Matroids</th>
<th>Matroids Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Exponentials</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Pullbacks</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>Equalisers</td>
<td></td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

Colimits:

<table>
<thead>
<tr>
<th></th>
<th>Matroids</th>
<th>Matroids Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over k</th>
<th>Repr. over k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coproducts</td>
<td></td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Coequalisers</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>
Example text
Limits and Colimits

<table>
<thead>
<tr>
<th>Matroids</th>
<th>Matroids Loopless</th>
<th>Simple</th>
<th>Simple</th>
<th>Repr. over (k)</th>
<th>Repr. over (k)</th>
</tr>
</thead>
</table>

Limits:

- **Products**:
 - Matroids: ✗
 - Matroids Loopless: ✗
 - Simple: ✗
 - Simple: ✗
 - Repr. over \(k \): ✗
 - Repr. over \(k \): ✗

- **Exponentials**:
 - Matroids: ✗
 - Matroids Loopless: ✗
 - Simple: ✗
 - Simple: ✗
 - Repr. over \(k \): ✗
 - Repr. over \(k \): ✗

- **Pullbacks**:
 - Matroids: ✗
 - Matroids Loopless: ✗
 - Simple: ✗
 - Simple: ✗
 - Repr. over \(k \): ✗
 - Repr. over \(k \): ✗

- **Equalisers**:
 - Matroids: ✓
 - Matroids Loopless: ✓
 - Simple: ✓
 - Simple: ✓
 - Repr. over \(k \): ✓
 - Repr. over \(k \): ✓

Colimits:

- **Coproducts**:
 - Matroids: ✓
 - Matroids Loopless: ✓
 - Simple: ✓
 - Simple: ✓
 - Repr. over \(k \): ✓
 - Repr. over \(k \): ✓

- **Coequalisers**:
 - Matroids: ✗
 - Matroids Loopless: ✗
 - Simple: ✗
 - Simple: ✗
 - Repr. over \(k \): ✗
 - Repr. over \(k \): ✗

- **Pushouts**:
 - Matroids: ✗
 - Matroids Loopless: ✗
 - Simple: ✗
 - Simple: ✗
 - Repr. over \(k \): ✗
 - Repr. over \(k \): ✗
Functors and adjunctions

\[\text{Matroids} \rightleftharpoons \text{Geometric Lattices} \]
Functors and adjunctions

Matroids (functor) ⊣ Geometric Lattices (adjunction) → Vect_k

Free matroids: Every set is independent.
Functors and adjunctions

\[\text{Matroids} \Downarrow \text{Geometric Lattices} \Downarrow \text{Vect}_k \]

\textit{Free matroids}: Every set is independent.
Free matroids: Every set is independent.
Functors and adjunctions

\[
\begin{array}{c}
\text{Matroids} \leftarrow \text{Loopless Matroids} \\
\uparrow \quad \quad \downarrow \\
\text{Simple Matroids} \leftarrow \text{Free Matroids}
\end{array}
\]
Functors and adjunctions

\[
\begin{align*}
\text{Matroids} & \quad \text{\smallfrown} \quad \text{Loopless Matroids} \\
\text{Simple Matroids} & \quad \text{\smallfrown} \quad \text{Free Matroids}
\end{align*}
\]
Functors and adjunctions

Matroids as functors:

$$\text{Geometric Lattices} \longrightarrow \text{Sub}$$