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Abstract

An important aspect of the development of image segmentation
algorithms is the availability of mechanisms to evaluate them. This
is necessary in order to estimate how fit a segmentation approach is
for the specific task, validate its performance on data and compare it
against other approaches.

Medical image segmentation is very interesting in this perspective
since there is no established evaluation framework. A commonly ac-
cepted approach is to compare the segmentation output to some ref-
erence results (usually produced with manual segmentation) with a
similarity/difference measure. While most authors rely on such meth-
ods there is still no agreement concerning the measures used. This
is partly because there are no measures that reflect all the important
features of a desirable segmentation and the existing measures do not
discriminate different segmentation results in an acceptable way.

This paper provides a survey of current methods being used for
medical image segmentation evaluation.

1 Introduction

The evaluation of medical image segmentation algorithms is impacted by a
number of factors and conventions specific to this task. The variability of
medical image data quality is one of them and manifests itself in noise level,
artefacts, partial volume effects, limited resolution. Poor quality images are
not only difficult to segment with automated algorithms but also reference
labelling images are not always possible to construct from such data in an
unambiguous way.

1.1 Contrast-enhanced images

Often medical contrast substances are administered prior to image acqui-
sition to enhance the image quality. Depending on the imaging modality
and timing of the acquisition this may cause major organs to have a distinct
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appearance in the images and the segmentation algorithms to perform dif-
ferently on contrast-enhanced images. For instance, minor blood vessels in
a liver which form a part of the organ can be made to appear highlighted in
contrast-enhanced images. Whether and how the inclusion or exclusion of
these from the identified liver region should be penalised is an issue for the
segmentation evaluation to address. However, current evaluation methods
being used do not tackle it in any way.

1.2 Pathological formations

Another issue for the tasks of medical image segmentation and its evaluation
is the presence of pathological tissue in the image. These include cysts, tu-
mours and other lesions and change the anatomical structures in the image
by impacting the intensities, size, spatial extent, shape and other features
of organs. They impose the greatest challenge on medical image segmenta-
tion algorithms with most approaches showing worst results on images with
pathological organs (see Campadelli et al. [4], Section 8: proposed method
obtains a lower score on image set with cancerous livers).

An important problem over which there still seems to be no consen-
sus is whether, in which cases, and to what extent pathological formations
should be labelled as part of the considered regions representing anatomical
structures. For instance, the MICCAI 2007 liver segmentation grand chal-
lenge [21] (see Section 3 for more details) assumed tumours, cysts should
be segmented as part of liver; as a result the segmentation approaches ex-
cluding the lesion region performed poorly and received lower scores. Other
literature suggesting a similar approach includes [11, 14], while some papers
take the opposite perspective [22].

1.3 Intra- and inter-observer variability

A detailed discussion of requirements and format of image segmentation
evaluation frameworks can be found in the paper by Udupa et al. [34].
In practice, most image segmentation algorithms applied to medical im-
age data are evaluated by computing region similarity/difference measures
for machine labelled regions and results of manual segmentation of the same
images by trained operators. Since absolutely accurate reference labellings
are unavailable for this type of data, expert radiologists produce labellings
of the data which are used as ground truth. Such data provides high level
of reliability but is still affected by intra- and inter-observer variability (see
[2] for reported results).

A variety of similarity/difference measures have been suggested and used
in the literature for the task of medical image segmentation evaluation for the
past couple of decades. Today, authors continue to assess the performance of
their segmentation approaches with different measures on data collections
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of variable quality and size. In this paper, we consider the most popular
measures in use for assessing final segmentation results in recent literature on
the topic. Measures used specifically for intra- and inter-observer variability
estimation or evaluation of initial results (recognition, bounding boxes, etc.)
are not observed here. We describe the measures considered, present a
discussion of their features and conduct some experiments to compare and
analyse their performance in recognising reliable segmentation results and
discriminating omnifarious segmentation errors.

2 Measure Type Classification

During the past couple of decades several authors conducted surveys on ex-
isting image segmentation evaluation methods and introduced classifications
and comparisons of those. In a series of papers [42, 43, 44] Zhang discusses
an extensive set of evaluation methods, categorises them based on the ap-
proaches used to assess image segmentation, compares these categories and
reports an empirical comparison of specific evaluation methods. Evalua-
tion methods are grouped into analytical methods which assess segmenta-
tion algorithms by considering their principles, empirical goodness methods
analysing properties of segmented images, and empirical discrepancy meth-
ods which compare segmented images to reference images (gold standard,
ground truth).

The empirical methods are further categorised by the quality measures
they use to assess the segmentation algorithm performance for output im-
ages. The measure groups for empirical goodness methods include intra-
region uniformity, inter-region contrast, region shape, moderate number of
regions. The empirical discrepancy methods employ measures of number of
mis-segmented voxels, position of mis-segmented voxels, number of objects
in the image, feature values of segmented objects, miscellaneous quantities
(region consistency, grey level difference, symmetric divergence) [44]. Also,
a group of evaluation methods with measures, like amount of editing oper-
ations, visual inspection or correlation between original image and bi-level
image are considered special cases, not fitting in any of the groups.

The reviewed methods are compared using criteria of generality, sub-
jective/objective, qualitative/quantitative, complexity, consideration of seg-
mentation applications and requirement for reference images. Additionally,
the performance of several empirical (goodness and discrepancy) methods is
compared on a series of simple synthetic images segmented with threshold-
ing [42] with discrepancy methods showing better sensitivity to threshold
changes.

Zhang, Fritts and Goldman [41] group image segmentation evaluation
methods into five categories: subjective evaluation, when output image is
assessed by human judges, system level evaluation, which analyses the seg-
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mentation algorithm by considering results of systems using the segmenta-
tion, analytical methods (similar to [42]), supervised methods (corresponding
to empirical discrepancy) and unsupervised methods (empirical goodness).
They present a detailed discussion of a range of unsupervised evaluation
methods, analysing the various measures used and their combination meth-
ods. A number of experiments are performed on synthetic and real im-
ages for representative evaluation methods to compare two segmentation
results. The accuracy of these methods is reported as the percentage of
cases when the segmentation result preferred by the evaluation method and
human judges coincide. It is concluded from the findings that although the
unsupervised evaluation methods perform well at comparing different pa-
rameterisations of a single segmentation algorithm, they are not successful
in cases of machine segmentation versus different machine segmentation, or
machine segmentation versus human segmentation comparisons.

The authors suggest using machine learning to combine simple unsuper-
vised evaluation methods [40]. This approach outperforms all the previous
methods on the suggested experiments showing promising results.

3 Evaluation Frameworks

A special algorithm for validating image segmentation, simultaneous truth
and performance level estimation (STAPLE), is introduced by Warfield, Zou
and Wells [36]. This is an expectation-maximization approach for compar-
ison of several (human or machine) segmentations. It gives a probabilistic
estimate of the true segmentation and performance scores for the considered
segmentation approaches. However, this evaluation method is designed to
analyse different segmentation algorithms simultaneously and is not read-
ily applicable to evaluating a single segmentation approach (unless several
reference segmentations are available).

Crum et al. [13] redefine established overlap measures (Jaccard and DSC,
see Section 6 for definitions) for fuzzy segmentation results and generalise
these measures to consider multiple segmentation labels and images. Thus,
a single total fuzzy overlap result can be generated for a series of images
fuzzily segmented using several labels with two different segmentation al-
gorithms. A corresponding distance measure is also introduced. Such gen-
eralisations turn out to be useful when an overall performance measure is
sought across different labels and/or images. However, they still suffer from
the shortcomings of the basic measures being redefined.

As part of MICCAI 2007 conference a competition and workshop called
“3D Segmentation in the Clinic: A Grand Challenge” was organised [21]
which analysed and compared the performance of several state-of-the-art
automatic and semi-automatic liver segmentation algorithms for comput-
erised tomography (CT) images. For evaluation a scoring system was used
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which first calculates 5 different segmentation error measures, calibrates the
results to bring the measures to a unique scale, and finally takes the average
of the results in this scale to get a single score for a segmentation approach
(refer to [21] for details).

Cárdenes et al. [6] define new image segmentation evaluation measures
by introducing position and intensity values of misclassified voxels into the
established overlap-based measures. Two other measures proposed rely on
the connectivity of segmented regions and limiting overlap-based measures
(Jaccard coefficient (see Section 6.4) in this case) to only region boundaries
respectively. Finally, the authors combine these measures into an aggre-
gated multimodal similarity measure. In a series of experiments on real
and synthetic data they reveal that the new measures show more variability
and sensitivity when comparing segmentation algorithms than the classic
measures like Jaccard coefficient.

4 Evaluation Methods

One of the key aspects of a systematic classification of these measures is
experimental data and examples. Crucially, none of the aforementioned
surveys illustrate their findings on concrete examples.

We present a systematic summary of several empirical discrepancy eval-
uation methods frequently used in medical image segmentation applications.
For an object label we consider the machine segmented set of voxels MS,
the ground truth GT , which is commonly acquired with manual segmenta-
tion by human experts, and the image being segmented I. The operator |·|
returns the number of pixels (or voxels in 3D) contained in a region which
is proportional to the physical volume of the considered region.

A voxel in the considered region is said to be on its boundary if at least
one of the neighbouring voxels does not belong to the region. There is no
single consensus for the choice of the neighbourhood; for instance, some
authors consider the 18- [21], others the 26-neighbourhood, etc. We denote
the boundaries of MS and GT as BMS and BGT respectively.

While most medical image segmentation papers present some quantita-
tive evaluation for suggested algorithms, there are also works which rely
solely on qualitative analysis of the results [18, 10, 35, 24]. This is mainly
due to the difficulty of acquiring high quality ground truth segmentations
for medical images. Manual segmentation in a slice-by-slice manner by an
expert radiologist is considered the common source of gold standard seg-
mentations. But this process is extremely time consuming; an operator may
spend several hours segmenting a 3D image volume of a few dozen slices.
In addition, manual segmentation is exposed to intra- and inter-observer
variability.
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It is crucial not to confuse one measure for another despite naming simi-
larities. We try to maintain the original names in order not to introduce
multiple names to same measures (there is quite a lot of naming diversity
in the existing literature).

5 Size Based Methods

5.1 Relative volume difference (RVD)

A very simple measure of dissimilarity of two segmented volumes is their
difference in size as a fraction of the size of the reference:

RVD = ±|MS| − |GT |
|GT |

(1)

Lim, Jeong and Ho [25], Linguraru et al. [26] use formula (1) (referred
as volume error) to compare automatic segmentation results to manually
traced ground truth. In [22] this measure (called volume difference) is used
for inter-observer variability in hand-seeded kidney segmentation along with
statistical measures. In [32, 8, 11] it is used as one of several measures
combined into the MICCAI 2007 scoring system [21].

6 Overlap Based Methods

6.1 Dice’s similarity coefficient (Dice), symmetric volume
difference (SVD)

Dice’s similarity coefficient, originally introduced by Dice [15] for ecological
studies, is one of the most frequently used evaluation measures in medical
image segmentation. The measure quantifies the match of two sets A and B
by normalising the size of their intersection over the average of their sizes:

Dice =
|A ∩B|

1
2 (|A|+ |B|)

=
2 |A ∩B|
|A|+ |B|

(2)

When used for evaluating the results of machine segmentation against
gold standard the coefficient looks like:

Dice =
2 |MS ∩GT |
|MS|+ |GT |

(3)

In an impressive number of medical image segmentation papers [26, 37,
12, 20, 19] the authors present evaluation results using several different mea-
sures but prefer Dice’s similarity coefficient as the main indicator of segmen-
tation algorithm accuracy. In Linguraru et al. [27] Dice results are shown
not only for computer segmentation and manual labelling overlap but also
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for comparing inter-observer measurements. Nguyen and Wu [29] use the
Dice coefficient for simulated (phantom) and real brain images segmentation
evaluation.

In [1, 16, 31, 30] Dice’s similarity coefficient is one of several metrics used
for segmentation algorithm evaluation.

A number of medical image segmentation papers including [14] rely solely
on equation (3) to validate their final segmentation results.

The symmetric volume difference (SVD), provides a symmetric measure
of the difference in volume of the segmentation result and the reference
shape.

SV D = 1−Dice = 1− |MS ∩GT |
1
2 (|MS|+ |GT |)

(4)

The segmentation errors are estimated with SVD by others [33, 23].
The term symmetric volume overlap (SVO) is introduced by Campadelli

et al. [2] to refer to a measure defined as SV O = 1−SV D, thus arriving at
Dice’s similarity coefficient. So, Dice is also used by Campadelli, Casiraghi
and their colleagues [3, 2, 5, 4] as a main similarity measure, but referred to
as SVO, along with other measures.

6.2 True positive (TPVF), true negative (TNVF), false posi-
tive (FPVF) and false negative (FNVF) volume fractions

Udupa et al. [34] consider four evaluation measures — true positive (TPVF),
true negative (TNVF), false positive (FPVF) and false negative (FNVF) vol-
ume fractions — borrowed from statistical decision theory measures (sensi-
tivity and specificity):

TPV F = Sens =
|TP |

|TP + FN |
=
|MS ∩GT |
|GT |

(5)

TNV F = Spec =
|TN |

|TN + FP |
=
|I| − |MS ∪GT |
|I| − |GT |

(6)

FPV F = 1− Spec =
|FP |

|TN + FP |
=
|MS \GT |
|I| − |GT |

(7)

FNV F = 1− Sens =
|FN |

|TP + FN |
=
|GT \MS|
|GT |

(8)

Here TP denotes the set of object voxels labelled as object, FN is the set
of object voxels labelled as non-object, the voxels comprising the non-object
area but labelled as object make up FP and, finally, TN are the non-object
voxels successfully identified as such by the machine segmentation approach
(refer to Figure 1 for an illustration). Only two of the suggested measures
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  Image
  Ground Truth
  Machine Segmented

Figure 1: A graphical illustration of true positive, true negative, false posi-
tive and false negative regions when comparing machine segmentation results
with ground truth.

should be used together (e.gṪPVF and FPVF, but not TPVF and FNVF)
due to the dependence relationships present in (5)-(8).

Some authors [32, 28] give an alternative definition for FPVF by nor-
malising FP over the ground truth GT rather than the rest of the image
I \GT :

FPV FAlter =
|FP |

|TP + FN |
=
|MS \GT |
|GT |

(9)

The TPVF-TNVF pair is used in [20, 16] (referenced as sensitivity and
specificity) and [1] (as TPVF and 1-FPVF), while [9, 7, 8] compute the
TPVF-FPVF pair. Liu et al. [28] (referred as TP and FP ratios), Ruskó
et al. [32] use TPVF, FPVFAlter along with other evaluation measures. Liu
et al. [28] also report FNVF (FN ratio) results although these are easily
inferred from TPVF values.

6.3 Precision and recall

The precision and recall measures reflect the similarities in the volumes of
the automatically detected regions and the ground truth. These are empiri-
cal discrepancy measures based on the number of mis-classified and correctly
classified voxels.

The precision normalises the volume of the correctly segmented region,
MS ∩GT , over the volume of the result of the segmentation, MS:
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Precision =
|MS ∩GT |
|MS|

(10)

The recall normalises MS ∩ GT over the volume of the gold standard,
GT :

Recall =
|MS ∩GT |
|GT |

(11)

We acknowledge that recall and true positive volume fraction (or sensitivity)
are the same measure but redefine it here to emphasise its paired use with
precision.

The precision does not account for under-segmentation errors, while the
over-segmented volumes are not reflected in the recall. The pair of the
measures is used by Campadelli, Casiraghi and their colleagues [3, 2, 5, 4]
(referenced as sensitivity ratio and overlap ratio), Wolz et al. [37].

6.4 Jaccard similarity coefficient (Jaccard), volumetric over-
lap error (VOE)

Another measure used in Liu et al. [28] is Jaccard similarity coefficient (pre-
sented as similarity ratio) defined as the number of common voxels of the
machine segmented and ground truth regions over their union:

Jaccard =
|MS ∩GT |
|MS ∪GT |

(12)

Jaccard is also used in [37, 30, 19].
Volumetric overlap error (VOE) is the corresponding error measure [32]:

V OE = 1− |MS ∩GT |
|MS ∪GT |

(13)

It is one of the measures in the MICCAI 2007 scoring system and has
been used in [8, 11] as part of it.

7 Surface Distance Based Measures

Let a distance measure for a voxel x from a set of voxels A be defined as:

d(x,A) = min
y∈A

d(x, y) (14)

where d(x, y) is the Euclidean distance of the voxels incorporating the real
spatial resolution of the image. A number of segmentation evaluation mea-
sures are based on this distance definition and quantify the dissimilarity of
the machine segmentation from the ground truth. The most popular of these
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are presented below. They are all quantified in millimetres (mm), value of
0 corresponding to perfect match between MS and GT , and greater values
indicating higher errors.

7.1 Average symmetric surface distance (ASD)

The average symmetric surface distance (ASD) is the average of all the
distances from points on the boundary of MS to the boundary of GT and
from points on BGT to BMS , respectively:

ASD =
1

|BMS |+ |BGT |
×

 ∑
x∈BMS

d(x,BGT ) +
∑

y∈BGT

d(y,BMS)

 (15)

It is the third measure in the MICCAI 2007 scoring system, see [21, 32,
8, 11] for numeric results with this measure. Yokota et al. [39] rely only
on ASD while others [23] (as Mean Distance), [26, 31] present results with
several measures including ASD.

7.2 Root mean square symmetric surface distance (RMSD)

The penultimate measure in the MICCAI 2007 challenge evaluation scoring
system is root mean square symmetric surface distance (RMSD) [21] and is
defined as:

RMSD =

√
1

|BMS |+ |BGT |
×
√ ∑

x∈BMS

d2(x,BGT ) +
∑

y∈BGT

d2(y,BMS)

(16)
It is used as part of the scoring system in [32, 8, 11] and as a separate
measure along with others in [26, 23].

7.3 Maximum symmetric surface distance (MSD)

The Hausdorff distance1 of two sets A and B defines the maximal distance
from a point in the first to a nearest point in the other one [17]:

dH(A,B) = max
x∈A

min
y∈B

d(x, y) = max
x∈A

d(x,B) (17)

The symmetric variant of the Hausdorff metric for the boundaries of the
segmented regions is referred to as maximum symmetric surface distance
(MSD) in image segmentation evaluation:

MSD = max {dH(BMS , BGT ), dH(BGT , BMS)} (18)

1We define the Hausdorff metric as the directed asymmetric distance of two sets. Some
literature refers to the symmetric version with the same name.
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For each voxel on the boundary of MS there is guaranteed to be a voxel of
GT in a distance of at most MSD, and vice versa.

This is the last of the five measures used in the MICCAI 2007 chal-
lenge [21] and within that evaluation scheme is used in [32, 8, 11]. Liu et
al. [28] use MSD but refer to it as Hausdorff distance.

8 Discussion and Results

8.1 Summary

The similarity/difference measures which are popular in the literature fail to
capture all the aspects of segmented regions. Size based measures rely only
on the difference in size of the segmented region and the gold standard. As
a result, a segmented region which does not even intersect the gold standard
may receive a highest score as long as it is of the same size.

Overlap based methods account only the number of correctly or mis-
classified voxels without reflecting their spatial distribution. So, a segmen-
tation result which has leaked slightly to neighbouring tissue will be regarded
as equivalently good/bad as a result without leakage but with a separate dis-
connected region (of the same size as the leakage area). Figure 2 illustrates
this.

Image

Ground Truth

Machine Segm.

Figure 2: (a) and (b) get the same size based score; (a) and (c) get the same
overlap based score

The distance based methods discussed take into account only the mini-
mal distance from the boundary of the other region at each boundary point.
Thus, they ignore the actual volume differences of the machine segmented
and gold standard regions as depicted in Figure 3. Another issue of distance
based measures is the value range in units of length which makes it difficult
to compare results for images of different spatial resolution and quality.

We conclude that none of the measures from the literature that we pre-
sented is suitable to act as a reliable measure to reflect all the aspects of
segmentation accuracies and errors. We intend to introduce new simple
measures that overcome these problems, are easy to implement and have a
fixed value range.

Most of the presented measures are very different in nature and authors
are usually encouraged to report results with several measures to allow for
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Image
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Machine Segmented

Image

Ground Truth

Machine Segmented

Figure 3: Segmentation results in the two images get the same score with
the discussed distance based evaluation methods.

easy comparison of results with other literature. Nevertheless, the presented
information can be redundant if there are dependencies between the mea-
sures. One such example is the pair Jaccard-Dice:

Jaccard =
Dice

2−Dice
(19)

Both measures have a value range [0, 1], reach the interval endpoints at
the same time, Dice is always bigger between the endpoints. The quartet of
true positive, true negative, false positive and false negative volume fractions
is another example where the true positive–false negative and true negative–
false positive pairs should not be used together.

One advantage of overlap based measures over the size and surface dis-
tance based measures is their fixed value range [0, 1], sometimes reported as
percentage [0, 100]. This makes the results reported in different experiments
more easily comparable (ignoring the issue of gold standard consistency),
unlike the surface distance based measures with their mm range [0,+∞).
An additional complication with the use of surface distance methods is the
variety of the ways region borders can be defined, depending on the chosen
neighbourhood size.

8.2 Experiments

Below we present results of experiments that we carried out to compare the
performance of the size based and overlap based measures discussed. We
ran the segmentation algorithm described in [38] on 5 different CT image
volumes to label liver and left kidney for which we also produced gold stan-
dard masks. Our dataset contained abdominal CT images of low resolution
(5mm slice thickness, 0.68–0.78mm pixel resolution) between 1 and 21 slices
each, acquired with or without contrast agent administration and covered
both healthy and diseased organs. Visual inspection of the results revealed
that the liver was significantly undersegmented in the first volume (big part
of it missed by the machine segmentation algorithm) and over-segmentation
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Figure 4: Liver results for 5 image volumes with different similarity measures

of kidney took place in the fourth volume (machine segmentation included
a large necrotic tumour into the kidney region).

We considered size and overlap based similarity measures, replacing dis-
similarity measures with the corresponding similarity measures so that we
could compare like with like. Current set of measures includes:

• Dice’s similarity coefficient (DSC)

• Jaccard similarity coefficient (JSC)

• 1 - relative volume difference (RVD)

• true positive volume fraction (TPVF)

• true negative volume fraction (TNVF)

• precision (Prec)

Further experiments will be carried out to include analysis of the behaviour
of the surface distance based measures.

In Figure 4 we report evaluation of the liver segmentation results of five
data volumes (I – V) against the manual labellings measured with the 6
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Figure 5: Left kidney results for 5 image volumes with different similarity
measures

similarity measures. TNVF and Prec give a very high score to the under-
segmented liver results on Volume I. In addition, TNVF shows very little
variability on the 5 volumes. The outcome of left kidney segmentation eval-
uation is presented in Figure 5. The over-segmentation of the left kidney
is missed by TPVF and TNVF. Although 1-RVD does not show extreme
deviations from the average results in both tables, still its curve reveals
inconsistent scoring (see liver score in Volume IV, for instance). This is be-
cause it incorporates only size information of the labelled regions ignoring
the amount of common voxels.

Another experiment performed included a single volume being manu-
ally segmented by two different operators. We compared the inter-observer
(IO) variability results with the 6 measures against machine segmentation
(MS) evaluation outcome. In other words, with each measure we once com-
pared manual segmentation against another manual segmentation and once
against machine segmentation. The outcome is presented in Table 1. The
measures which show bigger difference between the IO and MS results are
more sensitive to machine segmentation errors and should be preferred. This
is because a better agreement is expected between the manual segmentations
than between a manual and a machine segmentation. From that perspective,
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Liver segmentation similarity (%)

DSC JSC 1-RVD TPVF TNVF Prec

IO 97.9 95.9 99.5 97.7 99.9 98.2
MS 94.8 90.1 92.1 91.0 99.9 98.9

Right kidney segmentation similarity (%)

DSC JSC 1-RVD TPVF TNVF Prec

IO 93.9 88.4 98.4 93.1 99.9 94.6
MS 90.8 83.2 89.4 95.7 99.9 86.5

Table 1: Inter-observer (IO) similarity and machine segmentation (MS) re-
sults with different measures for a single image volume

TPVF, TNVF and Prec fail in this experiment.
Finally, we report the IO results for the single volume along with the

mean and standard deviation of the segmentation scores over 5 volumes in
Figure 6. The preferred measures should show an average below the IO score
and a big standard deviation; the results agree with the previous findings.

9 Conclusions and Future Work

To conclude, the results of our current experiments give preference to Dice’s
and Jaccard similarity coefficients over 1-RVD, TPVF, TNVF and Prec.
Taking into account the link between DSC and JSC, only one of those should
be used for segmentation evaluation. Also, we appreciate that the rest of the
measures can still be useful as segmentation evaluation measures, especially
if reported together at the same time. Our main goal in these experiments
was to reveal the goodness of the discussed measures as separate evaluation
methods.

In future we hope to produce a set of simple synthetic images represent-
ing simulated pairs of reference and machine segmented regions and conduct
experiments to assess and compare the performance of the considered evalu-
ation measures. We intend to include a variety of reference shapes to reflect
the diversity of patterns appearing in medical images. The segmentation
result simulations should include errors of varied nature to represent mis-
takes of segmentation algorithms. We want to analyse the performance of
evaluation measures on pairs of these regions and reveal their response to
errors of different nature and scale. Hopefully, this will provide enough data
to introduce some scoring for the discussed measures for the task of medical
image segmentation evaluation.
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Figure 6: A comparison of the inter-observer similarity for liver in a single
volume with segmentation average scores over 5 volumes (and standard
deviation) for different measures.
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[32] László Ruskó, György Bekes, and Márta Fidrich. Automatic segmen-
tation of the liver from multi- and single-phase contrast-enhanced CT
images. Medical Image Analysis, 13(6):871–882, 2009.

[33] Andrea Schenk, Guido Prause, and Heinz-Otto Peitgen. Efficient semi-
automatic segmentation of 3Dobjectsinmedicalimages. In Scott L. Delp,
Anthony M. DiGoia, and Branislav Jaramaz, editors, Medical Image
Computing and Computer-Assisted Intervention, volume 1935 of Lec-
ture Notes in Computer Science, pages 186–195. Springer Berlin Hei-
delberg, 2000.

[34] Jayaram K. Udupa, Vicki R. LeBlanc, Ying Zhuge, Celina Imielin-
ska, Hilary Schmidt, Leanne M. Currie, Bruce E. Hirsch, and James
Woodburn. A framework for evaluating image segmentation algorithms.
Computerized Medical Imaging and Graphics, 30(2):75–87, 2006.

[35] Vladimir Vezhnevets and Vadim Konouchine. “GrowCut” - interactive
multi-label N-D image segmentation by cellular automata. In Proceed-
ings of Graphicon, pages 150–156, 2005.

[36] Simon K. Warfield, Kelly H. Zou, and William M. Wells. Simultaneous
truth and performance level estimation (STAPLE): An algorithm for
the validation of image segmentation. IEEE Transactions on Medical
Imaging, 23(7):903–921, 2004.

20



[37] Robin Wolz, Chengwen Chu, Kazunari Misawa, Kensaku Mori, and
Daniel Rueckert. Multi-organ abdominal CT segmentation using hier-
archically weighted subject-specific atlases. In Nicholas Ayache, Hervé
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