

OpenSky: A Swiss Army Knife for Air Traffic Security Research

Martin Strohmeier¹

Matthias Schäfer² Markus Fuchs⁴ Vincent Lenders³ Ivan Martinovic¹

¹ University of Oxford, UK
² University of Kaiserslautern, Germany
³ armasuisse, Switzerland
⁴ SeRo Systems, Germany

September 15, 2015

- Original motivation: Security research into ADS-B
- Basic testing with single sensors in our lab
- Collaboration across countries and labs, sharing of data
- Development of the OpenSky idea: formalisation and development of adequate research and sharing infrastructure
- Registered association since 2014

Who and What is OpenSky?

- A large-scale ADS-B sensor network (online Jan. 2013)
- Cheap ADS-B sensors distributed (mostly) in Europe
- Receivers are connected over the Internet
- Access to raw ADS-B data and PHY-layer information

Bern University of Applied Sciences

Transkom

Powered By IP

University of Ljubljana Faculty of Computer and Information Science

OpenSky Basis

Various off-the-shelf sensors installed by motivated volunteers.

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

OpenSky Frontend

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

OpenSky Backend

- Move from RDMS architecture to big data system
- Four horizontally scalable layers
- Enables real-time processing of all received messages in <20ms, and fast large-scale analysis over all data

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

Current OpenSky Coverage

Example of an OpenSky Dataset

- Contents
 - ID
 - Velocity
 - Position
 - ...
- Meta Data
 - Physical layer data
 - RSS
 - Loss
 - SNR
 - Timestamps
 - Sensor ID

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

ADS-B Channel Analysis with OpenSky

Log-distance Path Loss Model (LDPL)

Doughnut effect: noticeable drop in reception quality of messages sent in close proximity to a receiver.

1090 MHz channel utilization is very high 60 aircraft \rightarrow 40% message loss

Exemplary Security Research with OpenSky

- Aircraft Location Verification
- Secure Track Verification
- Physical Layer Intrusion Detection
- Transponder Fingerprinting
- Event Detection
- For all the details, read the papers on the OpenSky website!

Some Attacker Models

Aircraft Location Verification

Aircraft Location Verification: Multilateration

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

Aircraft Location V

[1] "Lightweight Location Verification in Air Traffic Surveillance Networks." Martin Strohmeier, Vincent Lenders and Ivan Martinovic. In Proceedings of the 1st ACM Workshop on Cyber–Physical System Security (CPSS '15). April, 2015.

Secure Track Verification

Secure Track Verification

- New approach, exploiting the inherent mobility of aircraft
- Use sequences of location claims, measure differences in propagation delay to receivers
- Detect any deviation
- Not dependent on tight synchronisation and hardware

Secure Track Verification

[2] "Secure Track Verification." Matthias Schäfer, Vincent Lenders and Jens B Schmitt. In IEEE Symposium on Security and Privacy (S&P) May 2015.

PHY-Layer Intrusion Detection

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

PHY-Layer Features

Commercial ADS-B transponders use two antennas

Sample Autocorrelations

Anomaly Detection

- One-class classification
- Simulation of different attacker types
 - constant sending strength
 - random sending strength
 - adaptive sending strength

[3] "Intrusion Detection for Airborne Communication using PHY–Layer Information." Martin Strohmeier, Vincent Lenders and Ivan Martinovic. In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA). July, 2015.

Transponder Fingerprinting

Transponder Fingerprinting

- Different ADS-B transponder types / implementations used in the commercial aviation market.
- Several features based on random message inter-arrival times.

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

Transponder Fingerprinting

- 6 main types. With 100 samples, prediction accuracy of 99.91%
- Some special cases with unique feature combinations, making aircraft potentially identifiable, even when using pseudonyms / not broadcasting their ID.

Feature	# Slots	Slot width	Inter-slot width	Missing slots	No width slots	First slot	Last slot
Type 1a	39	$\pm 0.00025 \mathrm{s}$	0.005s	No	No	$0.405 \mathrm{s}$	0.595s
Type 1b	41	$\pm 0.00025 \mathrm{s}$	0.005s	No	Yes	0.40s	0.60s
Type 2	16	$\pm 0.001 s$	0.01s	Yes	No	0.40s	$0.59\mathrm{s}$
Type 3	20	$\pm 0.0005 \mathrm{s}$	0.01s	No	No	0.40s	$0.59\mathrm{s}$
Type 4	16	$\pm 0.0015 \mathrm{s}$	0.125s	No	Yes	0.40s	0.60s
Type 5	26	+0.00016s	0.008s	No	No	0.40s	0.61s

[4] "On Passive Data Link Layer Fingerprinting of Aircraft Transponders." Martin Strohmeier and Ivan Martinovic. In 1st ACM Workshop on Cyber–Physical Systems Security & Privacy (CPS–SPC). October, 2015.

Event Detection

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

Event Detection

- Time series analysis to identify anomalies.
- Combine OpenSky ADS-B sensor data with publicly available databases about 24-bit ICAO identifiers, aircraft types and airline to track various types of activity.
- Data from 2 OpenSky sensors closest to Davos / Zurich:

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

September 15, 2015 Page 25

Event Detection

- >70% increase from mean and 45% increase over previous peaks.
- Pitfalls:
 - Data quality / consistency.
 - Need to take long-term trends into account / compare to recent data.
 - Doesn't tell us what is going on!

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research

September 15, 2015 Page 26

Conclusion

- OpenSky provides a scalable, open, and collaborative architecture for air traffic research.
- Communications security is an important problem in modern aviation.
- Our research using OpenSky proposes and analyses attack detection using several different approaches.
- Security and privacy has been OpenSky's main theme but the data is used for many other applications now.
- Check out <u>http://opensky-network.org</u> if you are interested further in air traffic communication research, security and non-security related.

References

[1] "Lightweight Location Verification in Air Traffic Surveillance Networks", Martin Strohmeier, Vincent Lenders and Ivan Martinovic In Proceedings of the 1st ACM Workshop on Cyber–Physical System Security (CPSS '15). April, 2015.

[2] "Secure Track Verification", Matthias Schäfer, Vincent Lenders and Jens B Schmitt. In IEEE Symposium on Security and Privacy (S&P). May 2015.

[3] "Intrusion Detection for Airborne Communication using PHY–Layer Information", Martin Strohmeier, Vincent Lenders and Ivan Martinovic. In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA). July, 2015.

[4] "On Passive Data Link Layer Fingerprinting of Aircraft Transponders", Martin Strohmeier and Ivan Martinovic. In 1st ACM Workshop on Cyber–Physical Systems Security & Privacy (CPS–SPC). October, 2015.

Questions?

DASC 2015: OpenSky - A Swiss Army Knife for Air Traffic Security Research