
Evaluating Conjunctive and Graph
Queries over the EL Profile of OWL 2

Giorgio Stefanoni

St Catherine’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2015

A Frieda ed Enrico, i miei genitori.

Abstract

OWL 2 EL is a popular ontology language that is based on the EL family of description

logics and supports regular role inclusions—axioms that can capture compositional prop-

erties of roles such as role transitivity and reflexivity. In this thesis, we present several

novel complexity results and algorithms for answering expressive queries over OWL 2 EL

knowledge bases (KBs) with regular role inclusions.

We first focus on the complexity of conjunctive query (CQ) answering in OWL 2 EL

and show that the problem is PSpace-complete in combined complexity, the complexity

measured in the total size of the input. All the previously known approaches encode the

regular role inclusions using finite automata that can be worst-case exponential in size, and

thus are not optimal. In our PSpace procedure, we address this problem by using a novel,

succinct encoding of regular role inclusions based on pushdown automata with a bounded

stack. Moreover, we strengthen the known PSpace lower complexity bound and show that

the problem is PSpace-hard even if we consider only the regular role inclusions as part

of the input and the query is acyclic; thus, our algorithm is optimal in knowledge base

complexity, the complexity measured in the size of the KB, as well as for acyclic queries.

We then study graph queries for OWL 2 EL and show that answering positive, converse-

free conjunctive graph queries is PSpace-complete. Thus, from a theoretical perspective,

we can add navigational features to CQs over OWL 2 EL without an increase in complexity.

Finally, we present a practicable algorithm for answering CQs over OWL 2 EL KBs

with only transitive and reflexive composite roles. None of the previously known approaches

target transitive and reflexive roles specifically, and so they all run in PSpace and do not

provide a tight upper complexity bound. In contrast, our algorithm is optimal: it runs in

NP in combined complexity and in PTime in KB complexity. We also show that answering

CQs is NP-hard in combined complexity if the query is acyclic and the KB contains one

transitive role, one reflexive role, or nominals—concepts containing precisely one individual.

Acknowledgements

This thesis would not have been possible without the help of my supervisors Prof. Boris

Motik and Prof. Ian Horrocks. I am particularly grateful to Boris for always being patient

and never loosing faith in me, in spite of my many oddities. I thank Ian for making it

possible for me to come to Oxford in the first place, and for always being there for me

when I needed him. Furthermore, I wish to express my sincere gratitude to two exceptional

examiners, Prof. Frank Wolter and Dr Egor V. Kostylev.

I would also like to thank all the members of the KRR group. I can’t name you all, but

because of you each one of my working days at the department has been remarkable.

I am also very grateful to St. Catherine’s College for providing a warm environment

where I met so many wonderful people that I now can proudly call my friends.

I would like to extend my gratitude to the people in the KRDB group at the Free

University of Bolzano, and the people in the KBS group at the Technische Universität

Wien, who have inspired my interest in the field of knowledge representation.

I wish to thank all my friends and relatives in Bolzano, who have always supported me

and cared for me. I cannot put into words how much I am grateful to my parents: all that

I have achieved would not have been possible without your support.

I have had the fortune to share the journey that has led to this thesis with Marta.

Amore, thank you for caring so much about me and for always making me smile. I feel

extremely lucky to have you in my life.

My doctorate was supported by a joint studentship by the Engineering and Physical

Sciences Research Council (EPSRC) and Alcatel-Lucent Labs. I am particularly grateful

to Peter, Chris, and Aidan from Alcatel-Lucent who have taken good care of me during my

visits in Dublin.

Contents

1 Introduction 1

1.1 Representing Knowledge in Description Logics 1

1.2 The Profiles of OWL 2 . 3

1.3 Querying Description Logic Knowledge Bases 4

1.3.1 Relational Query Languages . 5

1.3.2 Navigational Query Languages . 6

1.4 Querying the EL Profile of OWL 2 . 7

1.5 Contributions . 9

2 Preliminary Notions 15

2.1 Automata and Language Theory . 15

2.1.1 Finite Automata . 15

2.1.2 Context-Free Grammars and Pushdown Automata 16

2.2 Rules and Queries . 19

2.2.1 First-Order Logic with Equality . 19

2.2.2 First-Order Rules . 21

2.2.3 Instance and Conjunctive Queries 22

2.2.4 Chase and Universal Interpretations 23

2.3 Complexity Theory . 25

3 The EL Profile of OWL 2 27

3.1 The EL Family of DLs . 27

3.1.1 The DL ELRO+
⊥ . 27

3.1.2 The Other Members of the Family 31

3.2 CQ Answering in the EL family of DLs . 31

3.2.1 Decidability of CQ answering over ELRO+
⊥ via Regularity 32

3.2.2 Normalising Knowledge Bases . 33

4 The CQ Answering Algorithms at a Glance 37

4.1 Existing Approaches to Answering CQs . 41

4.2 Overview of our Approach . 48

i

5 Translating Knowledge Bases into Datalog 51

5.1 Translating Knowledge Bases into Rule Bases 51

5.2 Translating Rule Bases into Datalog . 56

5.3 Proof of Correctness . 58

5.3.1 Correctness of the Translation into Rule Bases 59

5.3.2 Structural Properties of the Universal Interpretations of K 60

5.3.3 Correctness of the Translation into Datalog 65

6 Answering CQs over ELHO+
⊥ KBs 79

6.1 Intuition . 79

6.1.1 Filtering without Transitive and Reflexive Roles 80

6.1.2 Filtering with Transitive and Reflexive Roles 83

6.2 Formalisation . 89

6.3 Lower Bound for Checking the Soundness of Answers 96

6.4 Proof of Correctness . 100

6.4.1 Soundness . 100

6.4.2 Completeness . 107

7 Proof of Concept 113

7.1 Test Setting and Benchmarks . 113

7.2 Testing the Size of Materialisations . 115

7.3 Testing the Filtering Procedure . 116

8 Encoding Regular RBoxes Using Bounded-Stack PDAs 121

8.1 Formalisation . 123

8.2 Proof of Correctness . 127

8.2.1 Soundness and Stack Boundedness 128

8.2.2 Completeness . 140

9 Answering CQs over ELRO+
⊥ KBs 143

9.1 Intuition . 144

9.2 Formalisation . 150

9.3 Proof of Correctness . 159

9.3.1 Correctness of existRI . 159

9.3.2 Correctness of the Datalog Encoding of Generalised PDAs 161

9.3.3 Soundness . 162

9.3.4 Completeness . 166

10 Acyclic Conjunctive Queries 171

10.1 Acyclic and Arborescent Queries . 172

10.2 Arborescent Queries over ELHO⊥ KBs . 174

ii

10.3 Lower Bounds for Acyclic Queries . 180

11 Navigational Queries 195

11.1 Graph XPath Queries . 195

11.2 Positive, Converse-Free CGXQ over ELRO+
⊥ KBs 198

12 The OWL 2 DL Regularity Restriction 203

12.1 The Existing Regularity Restrictions . 204

12.2 A Revised Regularity Restriction for OWL 2 DL 207

13 Outlook 213

13.1 The Complexity of Query Answering in OWL 2 EL 216

13.2 Future Work . 217

Bibliography 217

iii

iv

Chapter 1

Introduction

The Web Ontology Language OWL 2 is the W3C standard for authoring ontologies on the

Web [23]. OWL 2 ontologies represent a domain of discourse by describing the relevant en-

tities and the relationships that exist among them, and they have been successfully applied

in modelling domains in a variety of disciplines such as biomedicine [91], geography [42], as-

tronomy [27], agriculture [69], computer security [104], web services [57], and e-science [49].

One of the defining characteristics of OWL 2 is that it is formally underpinned by description

logics (DLs) [6], a family of logic-based knowledge representation languages.

1.1 Representing Knowledge in Description Logics

Description logics describe a domain of interest using three types of entities—individuals,

atomic concepts, and roles—that correspond to constants, unary predicates, and binary

predicates of first-order logic, respectively. Individuals provide names for objects in the

domain, atomic concepts represent sets of objects, and roles represent binary relationships

among objects; for example, the individual frieda might be used to represent a particular

person whose name is Frieda; the concept Woman might be used to represent the set of all

women, and the role isMotherOf might be used to represent the binary relationship between

mothers and their children.

Description logic knowledge bases (KBs) correspond to OWL 2 ontologies, and model

a domain of interest by relating individuals, concepts, and roles using logical axioms. In

1

a knowledge base, one usually distinguishes between three types of axioms: assertional

(ABox) axioms, terminological (TBox) axioms, and relational (RBox) axioms. Each type

of axiom describes a different aspect of the domain of interest.

Assertional axioms describe the known properties of individuals in the domain using as-

sertions. For example, we can state that the individual frieda is the mother of the individual

giorgio, and that frieda is a woman using the following role and concept assertions.

isMotherOf(frieda, giorgio) (1.1)

Woman(frieda) (1.2)

Terminological axioms relate different concepts using concept inclusions. For example,

we can state that every woman is a human using the following concept inclusion.

Woman v Human (1.3)

Relational axioms complement TBox axioms by relating different roles using role inclu-

sions. For example, we can state that, if x is the mother of y, then x is a parent of y using

the following role inclusion.

isMotherOf v isParentOf (1.4)

In contrast to other knowledge representation formalisms such as semantic networks [89]

and frame-based systems [76], each DL/OWL knowledge base has a well-defined semantics.

Hence, one can infer implicit information from the explicit axioms in the knowledge base

using principled logical reasoning. For example, we can combine assertion (1.2) and axiom

(1.3) to infer that frieda is a human.

Reasoning is the act of computing information that logically follows from the axioms

in a knowledge base. Three standard reasoning tasks have historically received particular

attention from the DL community: consistency checking amounts to checking whether

the axioms in the knowledge base are not contradictory, subsumption checking amounts

to determining whether one concept is more general than another concept, and instance

2

checking amounts to checking whether an individual is an instance of a concept.

In their seminal work, Levesque and Brachman [68] identified a trade-off between the

expressivity of a description logic and the complexity of reasoning with it. Since then, a

substantial body of research was dedicated to classifying description logics based on the

complexity of their reasoning tasks as well as on developing automatic tools that can effi-

ciently solve these problems.

1.2 The Profiles of OWL 2

OWL 2 is a family of ontology languages that originates from the large body of research

in description logics. The most prominent member of the family, OWL 2 DL, is logically

underpinned by the expressive description logic SROIQ [53]. The expressivity of OWL 2

DL is not only reflected by the number of complex domains this ontology language can

capture, but also by the complexity of the associated reasoning tasks, which are doubly

exponential in knowledge base size.

Since many application domains can be represented using only a small fragment of the

features offered by OWL 2 DL, the W3C standard complements OWL 2 DL with three

sublanguages: the RL, the QL, and the EL profiles of OWL 2. All these profiles share a

common design rationale: they trade expressive power in favour of tractability of reasoning.

The RL profile of OWL 2 is inspired by research in combining description logics with

rule-based knowledge representation languages [43], and its defining characteristic is that

reasoning can be implemented using optimised techniques from deductive databases [1]. The

QL profile of OWL 2 is based on the DL-Lite family of DLs [14], and it can capture many

of the features available in popular conceptual models such as UML class diagrams and ER

diagrams. Although their expressivity is sufficient in many practical applications, the RL

and QL profiles cannot capture large and widely used biomedical knowledge bases, such

as the Gene Ontology1, the National Cancer Institute thesaurus2, and SNOMED CT [91].

These prominent knowledge bases, however, can be captured by the EL profile of OWL 2,

which is based on the EL family of DLs [4] and was designed to allow for representing

1http://geneontology.org
2http://ncit.nci.nih.gov

3

http://geneontology.org
http://ncit.nci.nih.gov

complex domains while ensuring tractability of the standard reasoning tasks.

1.3 Querying Description Logic Knowledge Bases

In recent years, DLs and OWL 2 have been steadily gaining in popularity because they

provide the developers of modern information systems with a flexible graph-like data model

that is convenient in application areas such as the Semantic Web [45], social network analysis

[32], and network traffic analysis [8], to name just a few. In addition to the standard

reasoning tasks, in these data-intensive applications it is natural to consider more expressive

languages for querying DL knowledge bases such as the languages commonly used to query

relational and graph databases. In particular, answering queries over DL knowledge bases

has been the core reasoning task in applications as diverse as monitoring financial products

within the Italian Ministry of Economy and Finance [25], accessing real-time diagnostic

data of turbines [35], and integrating configuration data of air traffic control systems [16].

While queries over relational and graph databases are answered only against the explic-

itly stated assertions, queries over DL knowledge bases are answered by taking into account

the explicit assertions plus the assertions that can be inferred using the terminological and

relational axioms in the knowledge base. Hence, query answers that implicitly follow from

the knowledge base can be made explicit using suitably tailored query answering algorithms,

thus potentially addressing incompleteness in the data. For example, the query asking for

each object that is human and is the parent of someone will return an empty result over

the database containing assertions (1.1) and (1.2), but will return frieda over the knowledge

base that complements these two assertions with axioms (1.3) and (1.4).

Motivated by the practical interest in developing efficient query answering systems for

DL knowledge bases, in recent years a lot of work has been focused on determining the

computational properties of query answering over DL knowledge bases. In the literature,

instead of studying the complexity of computing all the query answers that are entailed by

a knowledge base, it has become common to study the associated decision problem called

the recognition problem, which decides whether a given query answer can be inferred from

the knowledge base; in other words, whether the given answer is a certain answer to the

4

query over the knowledge base. Moreover, the size of the query is typically several order

of magnitude smaller than the size of the knowledge base, in particular of the size of the

ABox; thus, to analyse the influence that various parts of the input have on the complexity

of the problem, one customarily studies three complexity measures: combined complexity

measures the complexity in terms of the combined size of the query and the KB, knowledge

base complexity measures the complexity in terms of the size of the KB (i.e., the query is

considered to be fixed), and data complexity measures the complexity in terms of the size

of the assertions (i.e., the query, the TBox and RBox axioms are considered to be fixed).

In contrast to relational and graph databases where the complexity of the query an-

swering problem is determined uniquely by the expressivity of the query language at hand,

the computational properties of query answering over DL knowledge bases depend on the

expressivity of both the constructs used in the knowledge base and the query language used.

A variety of query languages have been considered for querying description logics knowledge

bases and they can be classified in two main groups depending on whether they originate

from relational or graph databases.

1.3.1 Relational Query Languages

Languages for querying relational databases are centred around the class of first-order

queries [1]. While first-order queries provide the foundations for SQL and can be effi-

ciently answered over relational databases, they permit asking for negative information.

For example, a first-order query can ask for all the objects in a knowledge base that are hu-

man but are not women. Unfortunately Rosati [87] and Gutiérrez-Basulto et al. [46] have

shown that negation in the query language easily causes the undecidability of the query

answering problem, even for inexpressive description logics.

To regain decidability, one usually considers positive fragments of first-order queries, in

particular conjunctive queries (CQs) have received a lot of attention as they correspond

to the well-known select-project-join fragment of SQL. For expressive knowledge bases for-

mulated in OWL 2 DL, CQ answering is at least exponential in combined and knowledge

base complexities [36, 71] and intractable in data complexity [13, 82], thus suggesting that

efficiently answering CQs can be challenging over large OWL 2 DL knowledge bases.

5

In contrast, the data complexity of CQ answering becomes tractable for all the profiles

of OWL 2, which suggests that conjunctive queries can be efficiently answered even over

large knowledge bases. In addition, for the RL and the QL profiles of OWL 2, many worst-

case optimal, highly optimised CQ answering algorithms have been proposed and have been

shown to work well in practice [14, 85, 99, 60, 83, 37, 101, 79].

1.3.2 Navigational Query Languages

Relational query languages cannot express recursive properties such as reachability [1],

and so their expressivity is often insufficient in applications that exploit the graph-like data

model underlying OWL 2 knowledge bases and thus require exploring connections in graphs.

As the popularity of graph databases is on the rise, a number of navigational languages for

querying graph-like data have been proposed.

Regular path queries (RPQs) [22, 7] are capable of describing connections between graph

vertices using regular expressions [56], allowing users to ‘navigate’ inside a graph. For

example, the RPQ

isPartOf∗ · hasLocation (1.5)

retrieves all pairs of vertices connected via zero or more isPartOf edges followed by one

hasLocation edge.

Inspired by the XPath query language for XML [26], graph XPath queries (GXQs) have

been recently proposed for querying graph databases [70] and DL knowledge bases [61, 11].

They extend RPQs by allowing for backward navigation using the converse operator, nega-

tion on regular expressions, and checking properties of vertices using Boolean combinations

of node tests—that is, concepts or existential quantifications over paths. For example, the

graph XPath query

isPartOf∗ · test(Cell ∧ ¬〈hasSpeciality〉) · hasLocation (1.6)

refines (1.5) by requiring that the node between the isPartOf edges and the hasLocation edge

satisfies the concept Cell and does not have an outgoing hasSpecialty edge.

6

While the computational properties of RPQs have been extensively studied for the mem-

bers of the OWL 2 family [15, 83, 9, 17], there are comparatively fewer works on studying the

complexity of graph XPath queries over DL knowledge bases. Kostylev et al. [61] observed

that GXQs are closely related to propositional dynamic logic with full negation [48], which

shows that answering GXQs over DL knowledge bases is undecidable even with respect to

the empty knowledge base. Several GXQ fragments were proposed as a possible solution

to this problem, among them positive GXQs prohibit negation over path expressions and

concepts. Answering positive GXQs is tractable in data complexity for the RL, QL, and

EL profiles of OWL 2 [70, 11, 61], which makes positive GXQs an appealing language for

querying the profiles of OWL 2.

1.4 Querying the EL Profile of OWL 2

Motivated by the popularity of the EL profile of OWL 2 in important disciplines such as

biology and medicine, and by the increasing interest in answering expressive queries over

OWL 2 knowledge bases, in this thesis we study the problem of answering conjunctive and

graph queries over OWL 2 EL knowledge bases.

One of the reasons for the popularity of the EL profile of OWL 2 is that it supports role

inclusions of the form R1 · · ·Rn v R, sometimes called complex role inclusions, that can

express both the hierarchical and the compositional properties of roles. These axioms are

useful in many applications because they allow for axiomatising part-whole relations—for

example, the complex role inclusions in (1.7)–(1.9) state that isPartOf is a reflexive and

transitive role, and that, if x is located in y and y is strictly part of z, then x is part of z.

ε v isPartOf (1.7)

isPartOf · isPartOf v isPartOf (1.8)

hasLocation · isStrictPartOf v isPartOf (1.9)

While they are an important distinguishing feature of OWL 2 EL, complex role inclu-

sions have already been singled out as a source of undecidability in expressive description

7

logics prior to the introduction of the EL family of DLs. Complex role inclusions loosely cor-

respond to context-free grammars: if each role inclusion R1 · · ·Rn v R in a knowledge base

is seen as a production rule R→ R1 · · ·Rn, then the knowledge base induces a context-free

language L(R) for each role R. Using this correspondence, Wessel [105] showed that check-

ing consistency in knowledge bases formulated in a fragment of OWL 2 DL with complex

role inclusions is undecidable. To regain decidability, Horrocks and Sattler [51] proposed

a syntactic regularity restriction on role inclusions ensuring that each language L(R) is

regular and can thus be recognised using a finite automaton (FA). The OWL 2 DL profile

of OWL 2 supports complex role inclusions and thus incorporates an extended version of

the regularity restriction by Horrocks and Sattler [51] into its definition.

Even with unrestricted role inclusions, all standard reasoning problems for members

of the EL family of DLs can be solved in polynomial time [4]. Using the correspon-

dence between role inclusions and context-free grammars, however, Krisnadhi and Lutz

[63], Krötzsch et al. [66], and Rosati [86] independently proved that answering CQs over

EL knowledge bases with unrestricted role inclusions is undecidable; furthermore, Krötzsch

et al. [66] also showed that checking concept subsumptions over EL knowledge bases with

inverse roles and unrestricted role inclusions is undecidable.

OWL 2 EL inherits the regularity restriction from OWL 2 DL, and so the undecidability

proofs of CQ answering do not apply to OWL 2 EL. In fact, Krötzsch et al. [66] showed that

answering CQs over EL knowledge bases extended with regular role inclusions is PSpace-

hard in combined complexity, and they proposed a CQ answering algorithm for a fragment

of OWL 2 EL with regular role inclusions, but without reflexive roles. This algorithm,

however, runs in PSpace in combined and knowledge base complexities only if, for each

role R, language L(R) can be represented using an automaton of polynomial size; however,

Kazakov [54] showed that, in some cases, the size of this automaton is necessarily exponential

in the size of the knowledge base. Hence, the algorithm by Krötzsch et al. [66] does not

provide us with a matching PSpace upper bound for the problem. Ortiz et al. [83] proposed

a different algorithm for answering CQs over OWL 2 EL knowledge bases (with regular role

inclusions and without any restriction on the usage of other features). Similarly to the

approach by Krötzsch et al. [66], the algorithm by Ortiz et al. [83] also encodes regular role

8

inclusions using finite automata; moreover, both procedures use automata techniques that

are not practicable due to extensive don’t-know nondeterminism. Hence, while both of these

algorithms run in time polynomial in the size of the data and thus settle the question of data

complexity, they do not settle the question of knowledge base and combined complexities

and do not provide a practicable approach to answering conjunctive queries over OWL 2

EL knowledge bases.

When the complex role inclusions in an OWL 2 EL knowledge bases express only tran-

sitive and reflexive roles, each language L(R) induced by the knowledge base can be recog-

nised using finite automaton of polynomial size. Thus, the algorithm by Krötzsch et al. [66]

provides a PSpace upper bound for CQ answering over EL knowledge bases with transi-

tive roles. This algorithm, however, does not handle this restricted form of complex role

inclusions specifically, so it is not clear whether the upper bound is optimal for combined

and knowledge base complexities. This is interesting because transitive roles are a known

source of complexity of CQ answering over knowledge bases [28, 36, 39] and, together with

reflexive roles, suffice to express simple graph properties such as reachability, thus bridging

the gap between conjunctive and navigational queries. For example, in the knowledge base

that contains role inclusions (1.7) and (1.8), the RPQ in (1.5) can be equivalently expressed

as the following conjunctive query which asks for all pairs of objects x and z for which an

object y exists such that x is part of y, and y is located in z.

q = ∃y. partOf(x, y) ∧ hasLocation(y, z) (1.10)

1.5 Contributions

In this thesis, we present several novel complexity results and algorithms for answering

conjunctive and graph queries over knowledge bases formulated in (fragments of) OWL 2

EL. All our algorithms are worst-case optimal in combined, knowledge base, and data

complexities and are based on a number of original results, which we summarise next.

In Chapter 5, we present a translation of OWL 2 EL knowledge bases into datalog

programs. Our translation can be applied to any fragment of OWL 2 EL, and the translation

9

preserves both knowledge base consistency and answers to instance queries—conjunctive

queries that consist of a single unary atom. Moreover, the models of the datalog program

are models of the knowledge base, and so each answer to a CQ over the knowledge base

is also an answer to the CQ over the datalog program. In contrast, the converse does not

necessarily hold, so evaluating conjunctive queries over the datalog program may produce

unsound answers.

Based on our datalog translation, in Chapter 6 we present a procedure for answering CQs

over ELHO+
⊥ knowledge bases—the fragment of OWL 2 EL in which complex role inclusions

express only transitive and reflexive roles. Our algorithm runs in nondeterministic polyno-

mial time in combined complexity, but is tractable in data and knowledge base complexities;

thus, we close the long-standing open questions about the combined and knowledge base

complexities of CQ answering in EL variants with transitive roles. Our procedure gener-

alises the combined approach for the ELH⊥ fragment of OWL 2 EL by Lutz et al. [72].

To answer a CQ, we evaluate the query over the datalog translation of the knowledge base

to obtain candidate answers, and then we filter out unsound candidate answers using an

external filtering procedure. Our filtering procedure runs in nondeterministic polynomial

time, and we prove that this is worst-case optimal—that is, checking whether a candidate

answer is sound is an NP-hard problem. To obtain a goal-directed filtering procedure, we

developed optimisations that reduce the number of nondeterministic choices. Finally, our

filtering procedure runs in NP only for candidate answers that depend on both existen-

tial information in the knowledge base, and transitive or reflexive roles. In other words,

our filtering procedure has pay-as-you-go behaviour—in particular, filtering can be done in

polynomial time for knowledge bases formulated in the fragment of ELHO+
⊥ obtained by

disallowing transitive and reflexive roles.

To experimentally validate the feasibility of our method for answering CQs over ELHO+
⊥

knowledge bases, we have implemented a new query answering system called EOLO. In

Chapter 7, we present the results of our preliminary evaluation which suggests that, while

some queries can be challenging, our approach provides a practical basis for answering

conjunctive queries over a large fragment of OWL 2 EL.

Towards obtaining a worst-case optimal CQ answering algorithm for OWL 2 EL, in

10

Chapter 8 we present a novel succinct encoding of the languages induced by regular role

inclusions using pushdown automata (PDAs)—that is, FAs extended with a stack. We show

that, for each role R, we can construct in polynomial time a PDA that accepts language

L(R) and whose computations use a stack of size linear in the number of role inclusions

in the knowledge base. Bounded-stack PDAs [3] recognise precisely the class of regular

languages and can be exponentially more succinct than finite automata [34]. Apart from

allowing us to obtain a worst-case optimal CQ answering algorithm for OWL 2 EL, the

tableau algorithm by Horrocks et al. [53] used in popular reasoners for OWL 2 DL such as

Pellet [93] and FaCT++ [98] can be straightforwardly modified to use bounded-stack PDAs

instead of FAs, which could eliminate a potential source of inefficiency in practice.

Building upon the succinct encoding of regular role inclusions based on PDAs, in Chap-

ter 9 we present a procedure for answering conjunctive queries over ELRO+
⊥ knowledge

bases—the DL logically underpinning OWL 2 EL. Our algorithm runs in PSpace in both

combined and knowledge base complexities, but is tractable in data complexity; thus, we

also close the open question about the complexity of answering CQs over OWL 2 EL knowl-

edge bases. The procedure extends and refines the CQ answering algorithm for ELHO+
⊥

from Chapter 6. Regular role inclusions, however, increase the complexity of the filtering

step: unlike the filtering procedure for ELHO+
⊥, the filtering procedure for ELRO+

⊥ runs

in PSpace. This is worst-case optimal as Krötzsch et al. [66] showed that CQ answering

over ELRO+
⊥ knowledge bases is PSpace-hard. Furthermore, we show that our algorithm

runs in nondeterministic polynomial time if the role inclusions are considered fixed, and in

polynomial time if both the query and the role inclusions are fixed, which suggests that role

inclusions are the main source of complexity in answering CQs over OWL 2 EL.

Motivated by the high combined complexity of answering CQs over OWL 2 EL knowl-

edge bases, in Chapter 10 we investigate the computational properties of acyclic queries—

an important class of Boolean CQs for which query answering is tractable in relational

databases [106]. We start by introducing a new class of arborescent queries—tree-shaped

acyclic CQs in which all roles point towards the parent; then, we improve the known PSpace

lower bound by Krötzsch et al. [66] and show that CQ answering over ELRO+
⊥ knowledge

11

bases is PSpace-hard even when the query is arborescent and just the role inclusions are

considered as part of the input (i.e., the query and all other parts of the knowledge base

are fixed). This novel result thus shows that our algorithm from Chapter 9 is optimal also

in knowledge base complexity. Moreover, we show that answering arborescent queries is

NP-hard even for very simple knowledge bases that contain either a single transitive role

or a single reflexive role, which shows that complex role inclusions immediately cause the

intractability of acyclic query answering over OWL 2 EL knowledge bases. This is inter-

esting because Bienvenu et al. [10] showed that answering acyclic queries is tractable over

the ELH⊥ fragment of OWL 2 EL obtained by disallowing complex role inclusions and

nominals, concepts that contain precisely one individual. Finally, we show that, although

answering arborescent queries is tractable over the fragment of OWL 2 EL with nominals

but without complex role inclusions, the problem becomes intractable for arbitrary acyclic

queries. Hence, our results suggest that ELH⊥ is the maximal member of the EL family of

DLs for which acyclic CQ answering is tractable.

In Chapter 11, we study the complexity of graph XPath queries and their extensions to

conjunctive graph XPath queries (CGXQ) over ELRO+
⊥ knowledge bases, and we show that

positive, converse-free CGXQs can be answered over ELRO+
⊥ knowledge bases in PSpace

using the CQ answering algorithm from Chapter 9. In particular, ELRO+
⊥ (and thus also

OWL 2 EL) supports role inclusions, self restrictions, and reflexive roles, and we use these

expressive features to polynomially reduce answering a CGXQ to answering a CQ over

an extended knowledge base. We also show that answering positive, converse-free GXQs

can be done in time polynomial in the input size. These results are interesting because

Bienvenu et al. [11] proved that answering positive GXQs over ELH⊥ knowledge bases is

ExpTime-complete; hence, adding the converse operator increases the complexity of graph

XPath queries. Our results thus show that answering GXQs and CGXQs is as difficult

as instance checking and answering conjunctive queries, respectively which, at least from

a theoretical perspective, makes positive, converse-free GXQs and CGXQs appealing as

navigational query languages for OWL 2 EL knowledge bases.

Finally, in Chapter 12 we analyse the different syntactic conditions that have been

12

proposed to ensure the regularity of the languages induced by OWL 2 knowledge bases

with complex role inclusions. Even though the original regularity condition by Horrocks

and Sattler [51] ensures that each language induced by a knowledge base is regular, this

restriction can be unnecessarily restrictive—even a knowledge base that does not contain

complex role inclusions can violate it. While designing the OWL 2 specification, Motik

et al. [78] generalised the regularity restriction by Horrocks and Sattler [51] to capture a

wider spectrum of knowledge bases. Unfortunately, we show that the regularity restriction

in the OWL 2 specification is incorrect because it does not ensure that each language

L(R) induced by a knowledge base is regular. To address this problem, we propose a

revised version of the syntactic condition on role inclusions for OWL 2 that generalises

the condition by Horrocks and Sattler [51], correctly ensures that each language L(R) is

regular, and captures each knowledge base that does not contain complex role inclusions.

All the query answering algorithms that we present in this thesis support knowledge bases

with complex role inclusions that satisfy our revised regularity condition.

In this thesis, we present in a unified framework a number of results that have already

been published.

• A preliminary version of the CQ answering algorithm for ELHO+
⊥ without transitive

and reflexive roles was presented at the 27th AAAI conference on Artificial Intelli-

gence [95].

• The CQ answering algorithm for ELHO+
⊥, and the complexity results for acyclic CQs

were presented at the 29th AAAI conference on Artificial Intelligence [94].

• The CQ answering algorithm for ELRO+
⊥, the encoding of the languages induced

by regular role inclusions using PDAs, and the complexity results for graph XPath

queries were presented in the Journal of Artificial Intelligence Research [96].

13

14

Chapter 2

Preliminary Notions

In this chapter, we recapitulate the basic definitions of finite and pushdown automata,

context-free grammars, rules and queries; and, we present some non-standard complexity

classes. In the rest of this thesis, we denote with [i..j] the set containing each natural

number k ∈ N such that i ≤ k ≤ j.

2.1 Automata and Language Theory

In the following, we use the standard notions of alphabets, words, word concatenation, Kleene

operators, and languages from formal language theory [50]. We assume that alphabets do

not contain the special symbol ε, which we use to label transitions in automata that do not

consume input symbols. Furthermore, ε is the empty word. Finally, for w and w′ words,

|w| is the number of symbols occurring in w, and w − w′ is the unique word w′′ ∈ Σ∗ such

that w = w′′ · w′ if such w′′ exists, otherwise w − w′ is undefined.

2.1.1 Finite Automata

A finite automaton (FA) is a tuple F = 〈Q,Σ, δ, i, f〉 where Q is a finite set of states, Σ

is a finite input alphabet, δ : Q× (Σ ∪ {ε})→ 2Q is a transition function, i ∈ Q is the start

state, and f ∈ Q is the final state. Such F is deterministic if |δ(λ, ε)| = 0 and |δ(λ, c)| ≤ 1

for each λ ∈ Q and each c ∈ Σ; otherwise, F is nondeterministic.

An instantaneous description of F is a pair 〈λ,w〉 consisting of a state λ ∈ Q and a word

15

w ∈ Σ∗. The derivation relation ` for F is the smallest relation such that, for all states λ

and λ′ in Q, each symbol c ∈ Σ, and each word w ∈ Σ∗, we have that

• λ′ ∈ δ(λ, c) implies that 〈λ, c · w〉 ` 〈λ′, w〉; and

• λ′ ∈ δ(λ, ε) implies that 〈λ,w〉 ` 〈λ′, w〉.

Let `∗ be the reflexive-transitive closure of `. Then, the language accepted by F is defined

as L(F) = {w ∈ Σ∗ | 〈i, w〉 `∗ 〈f, ε〉}. A language L is regular if and only if an FA F exists

such that L = L(F).

2.1.2 Context-Free Grammars and Pushdown Automata

A context-free grammar (CFG) is a tuple G = 〈V,Σ,Θ, S〉 where V is a finite set of non-

terminal symbols, Σ is a finite input alphabet such that V ∩ Σ = ∅, Θ is a finite set of

production rules of the form T → γ such that T ∈ V and γ is a word over (V \ {S}) ∪ Σ,

and S ∈ V is the start symbol.

The derivation relation =⇒ for G is the smallest relation such that, for all words γ1

and γ2 in (V ∪ Σ)∗ and each production rule T → γ ∈ Θ, we have γ1 · T · γ2 =⇒ γ1 · γ · γ2.

Let =⇒∗ be the reflexive-transitive closure of =⇒. Then, L(G) = {w ∈ Σ∗ | S =⇒∗ w} is the

language generated by G. A language L is context-free if and only if a context-free grammar

G exists such that L = L(G).

A context-free grammar G is in normal form if each production rule in Θ is in one of

the following forms: T → T1 · T2, T → c, or S → ε, where T , T1, and T2 are non-terminal

symbols of G, c ∈ Σ, and S is the start symbol of G. Each CFG can be normalised in

polynomial time without affecting the language it generates [50].

A pushdown automaton (PDA) is a tuple P = 〈Q,Σ,Γ, δ, i, I, f, F 〉 where Q is a finite

set of states; Σ is a finite input alphabet ; Γ is a finite stack alphabet ; δ is a transition function

mapping each state λ ∈ Q, each symbol c ∈ (Σ ∪ {ε}), and each stack symbol X ∈ Γ to a

finite subset δ(λ, c,X) ⊆ Q× Γ∗; i ∈ Q is the start state; I ∈ Γ∗ is the start stack ; f ∈ Q is

the final state; and F ∈ Γ∗ is the final stack.

An instantaneous description of P is a triple 〈λ,w, γ〉 such that λ ∈ Q, w ∈ Σ∗, and

γ ∈ Γ∗. We read the stack content γ from left to right; hence the leftmost symbol in γ is

16

the top of the stack. The derivation relation ` for P is the smallest relation such that, for

all states λ and λ′ in Q, each symbol c ∈ Σ, each word w ∈ Σ∗, each stack symbol X ∈ Γ,

and all words γ and γ′ in Γ∗, we have

• 〈λ′, γ′〉 ∈ δ(λ, c,X) implies that 〈λ, c · w,X · γ〉 ` 〈λ′, w, γ′ · γ〉; and

• 〈λ′, γ′〉 ∈ δ(λ, ε,X) implies that 〈λ,w,X · γ〉 ` 〈λ′, w, γ′ · γ〉.

Let `∗ be the reflexive-transitive closure of relation `. The language accepted by P is defined

as L(P) = {w ∈ Σ∗ | 〈i, w, I〉 `∗ 〈f, ε, F 〉}.

Our definitions of a PDA P and of a language L(P) are somewhat non-standard. The

literature typically considers a Hopcroft PDA [50] Ph that differs from our definition in that

Ph does not contain the final stack F and the initial stack I of Ph is a symbol from Γ (rather

than a word over Γ). Moreover, Hopcroft et al. [50] define the language accepted by Ph

as Lh(Ph) = {w ∈ Σ∗ | ∃γ ∈ Γ∗ : 〈i, w, I〉 `∗ 〈f, ε, γ〉}. Hopcroft et al. [50] also show that

we can construct in polynomial time a CFG G such that Lh(Ph) = L(G); thus Hopcroft

PDAs accept precisely the context-free languages. Next, we show that our definitions are

equivalent to the usual ones by Hopcroft et al. [50].

Proposition 2.1. The following three properties hold.

(1) For each PDA P, one can compute in polynomial time a Hopcroft PDA Ph such that

L(P) = Lh(Ph).

(2) For each Hopcroft PDA Ph, one can compute in polynomial time a PDA P such that

Lh(Ph) = L(P).

(3) For each PDA P, one can construct in polynomial time a normalised CFG G such

that L(P) = L(G).

Proof (Sketch). Please note that property (3) follows immediately from property (1) and

the results presented by Hopcroft et al. [50]; so in the following we first prove property (1),

and then property (2).

Property (1). We show how to transform in polynomial time an arbitrary PDA P into

a Hopcroft PDA Ph such that L(P) = Lh(Ph). Such Ph uses a fresh initial state i′ and

17

fresh stack symbols Z0 and ⊥ not occurring in Γ. Symbol Z0 is the start stack symbol of

Ph; furthermore, Ph has a new ε-transition that moves the PDA from state i′ to the initial

state i of P by replacing Z0 with I · ⊥, where I is the start stack of P. At this point, Ph

simulates P, always leaving ⊥ at the bottom of the stack until it reaches the final state

f of P. Next, Ph uses fresh states λ1, . . . , λ|F | and fresh ε-transitions that move Ph from

state f to λ|F | by reading F from the stack. Finally, from λ|F |, PDA Ph ε-moves to a fresh

final state f ′ if the top-most symbol on the stack is ⊥, thus accepting the input whenever

P reaches f with F on its stack. Automata P and Ph clearly accept the same languages.

Property (2). We show how to transform in polynomial time an arbitrary Hopcroft PDA

Ph into a PDA P such that Lh(Ph) = L(P). PDA P uses a fresh stack symbol ⊥, its initial

stack is I ·⊥ where I is the initial stack symbol of Ph, and its final stack is the empty word.

Then P simulates Ph, always leaving ⊥ at the bottom of the stack until it reaches the final

state f of Ph. Next, P ε-moves to a fresh final state f ′ and pops the topmost symbol off the

stack. Finally, P takes further ε-transitions to empty its stack, eventually reaching its final

state with the empty stack. Automata P and Ph clearly accept the same languages.

For k a natural number, the k-bounded language accepted by P is the set Lk(P) contain-

ing each word w ∈ Σ∗ for which a derivation 〈λ0, w0, γ0〉 ` · · · ` 〈λn, wn, γn〉 exists where

• λ0 and λn are the start and the final state of P, respectively,

• w0 = w and wn = ε,

• γ0 and γn are the start and the final stack of P, respectively, and

• |γi| ≤ k for each i ∈ [0..n].

Then, P has a k-bounded stack if L(P) = Lk(P). As the stack of P is bounded by a

constant, PDA P can be simulated by an FA that encodes the stack contents using its

states, and so L(P) is regular, but translating P into an FA may require space exponential

in k [34]. In contrast, the following proposition shows that a PDA Pk exists such that

L(Pk) = Lk(P) and the size of Pk is polynomial in the size of P and k.

Proposition 2.2. For each PDA P and each natural number k ∈ N, one can compute in

polynomial time a PDA Pk such that L(Pk) = Lk(P).

18

Proof. Let P = 〈Q,Σ,Γ, δ, i, I, f, F 〉 be a PDA and let k ∈ N be a natural number. Let

Pk = 〈Qk,Σ,Γ, δk, ik, I, fk, F 〉 where set Qk, relation δk, and states ik and fk are as follows.

• Qk = Q× [0..k].

• δk is the smallest transition function such that, for each ` ∈ [0..k], each symbol

c ∈ {ε} ∪ Σ, all states λ, λ′ ∈ Q, and each word γ ∈ Γ∗ with 〈λ′, γ〉 ∈ δ(λ, c,X) and

`+ |γ| − 1 ≤ k, we have that 〈〈λ′, `+ |γ| − 1〉, γ〉 ∈ δk(〈λ, `〉, c,X).

• ik = 〈i, |I|〉 and fk = 〈f, |F |〉.

Clearly, Pk can be computed in time polynomial in the size of P and k. Let ` and `k be

the derivation relations for P and Pk, respectively. By the definitions of δk and ik, we have

that 〈〈λ, `〉, w, γ〉 `k 〈〈λ′, j〉, w′, γ′〉 if and only if 〈λ,w, γ〉 ` 〈λ′, w′, γ′〉, |γ| = ` and |γ′| = j,

and max(`, j) ≤ k. Thus, we have Lk(P) = L(Pk), as required.

2.2 Rules and Queries

In this section, we start by recapitulating the definition of function-free first-order logic

with equality, which provides us with a logical framework that encapsulates both rules and

queries. Then, we present the notions of first-order rule bases, and instance and conjunctive

queries. Finally, we introduce a special version of the oblivious chase [2, 74, 12], and we

describe the so-called universal interpretation that our chase variant produces for a given

rule base. In the following, we often identify a conjunction with the set of its conjuncts.

2.2.1 First-Order Logic with Equality

A first-order signature consists of countably infinite and mutually disjoint sets ΦP , ΦC , and

ΦV of predicates, constants, and variables, respectively. Each predicate is associated with a

nonnegative arity n ∈ N. We assume that ΦP does not contain the equality symbol ≈.

A term is a constant or a variable. An equality is an expression of the form t1 ≈ t2

where t1 and t2 are terms. An atom is an expression of the form P (t1, . . . , tn) where P is

an n-ary predicate and each ti is a term. An atomic formula is either an equality or an

atom. For α a term or an atomic formula, α is ground if it does not contain variables.

19

The set F of first-order formulas is the smallest set that contains each atomic formula,

and such that the following three properties hold.

• For each formula ϕ ∈ F , set F contains ¬ϕ (negation).

• For all formulas ϕ and ψ in F , set F contains ϕ ∧ ψ (conjunction), ϕ ∨ ψ (disjunction),

and ϕ→ ψ (implication).

• For each formula ϕ ∈ F and each variable x ∈ ΦV , set F contains ∀x.ϕ (universal

quantification) and ∃x.ϕ (existential quantification).

A variable x in a formula ϕ is free if it does not occur within the scope of a quantifier. We

sometimes write ϕ(~x) to emphasise that the free variables of ϕ are precisely those listed in

~x. A formula that does not contain free variables is a sentence. A first-order theory is a

finite set of sentences.

The semantics of first-order logic with equality is defined in terms of interpretations.

A first-order interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set of domain

elements, called the domain of I, and ·I is an interpretation function that maps each

constant c ∈ ΦC to an element cI ∈ ∆I , each predicate P ∈ ΦP of arity n to a relation

P I ⊆ (∆I)n, and the equality symbol ≈ to the identity relation ≈I on ∆I . According to

this definition, the interpretation function can map distinct constants c and d to the same

domain element—that is, we do not make unique name assumption.

An assignment ν is a mapping of variables to elements in ∆I ; for convenience, we

extend each assignment ν by setting ν(c) = cI for each constant c ∈ ΦC . For a variable

x, assignment νx is an x-variant of ν if νx(y) = ν(y) for each variable y ∈ dom(ν) with

y 6= x. The notion of satisfaction of a formula ϕ in a first-order interpretation I w.r.t. an

assignment ν, written I |=ν ϕ, is defined inductively as follows.

• I |=ν P (t1, . . . , tn) if and only if 〈ν(t1), . . . , ν(tn)〉 ∈ P I .

• I |=ν t1 ≈ t2 if and only if ν(t1) = ν(t2).

• I |=ν ¬ϕ if and only if I 6|=ν ϕ.

• I |=ν ϕ ∧ ψ if and only if I |=ν ϕ and I |=ν ψ.

20

• I |=ν ϕ ∨ ψ if and only if I |=ν ϕ or I |=ν ψ.

• I |=ν ϕ→ ψ if and only if I 6|=ν ϕ or I |=ν ψ.

• I |=ν ∃x.ϕ if and only if an x-variant νx of ν exists such that I |=νx ϕ.

• I |=ν ∀x.ϕ if and only if, for each x-variant νx of ν, we have that I |=νx ϕ.

When ϕ is a sentence, the satisfaction of ϕ in I does not depend on the choice of the

assignment ν, so we simply write I |= ϕ.

An interpretation I is a first-order model of a theory T if I |= ϕ for each sentence

ϕ ∈ T . A theory T is first-order consistent if a first-order model of T exists, otherwise T is

first-order inconsistent.

2.2.2 First-Order Rules

In this thesis, we consider two types of rules. An existential rule is a formula of the form

∀~x ∀~y. ϕ(~x, ~y)→ ∃~z. ψ(~x, ~z) (2.1)

where ϕ and ψ are non-empty conjunctions of atoms. An equality rule is a formula of the

form

∀~x. ϕ(~x, ~y)→ s ≈ t (2.2)

where ϕ is a non-empty conjunction of atoms and s and t are terms with variables in ~x. In

the rest of this thesis, we typically omit writing universal quantifiers in front of rules.

A rule base Σ is a first-order theory that consists only of rules and ground atoms. Such

a rule base Σ is a datalog program if ~z = ∅ for each rule of the form (2.1) occurring in Σ.

Note that Σ is always consistent as we do not make the unique name assumption, rules do

not contain negation, and our definition of first-order logic does not include the primitives

> and ⊥ representing true and false, respectively. Finally, the set of consequences of Σ

contains each ground atomic formula ϕ such that I |= ϕ for each first-order model I of Σ.

21

2.2.3 Instance and Conjunctive Queries

A conjunctive query (CQ) is a formula q = ∃~y. ψ(~x, ~y) where ψ is a non-empty conjunction

of atoms. The free variables ~x in q are the answer variables of q. Let var(q) = ~x ∪ ~y and

let term(q) be the set of all terms occurring in q. When ~x is empty, we call q = ∃~y. ψ(~y) a

Boolean CQ. An instance query is a CQ of the form q = A(x) where x is a variable and A

is a unary predicate.

A substitution τ is a partial mapping of variables to terms; dom(τ) and rng(τ) are the

domain and the range of τ , respectively. Moreover, τ |V is the restriction of τ to a set of

variables V ⊆ ΦV . For convenience, we extend each substitution τ by setting τ(c) = c for

each constant c ∈ ΦC .

Let τ be a substitution and let q = ∃~y. ψ(~x, ~y) be a CQ. The result of applying τ to q

is the CQ τ(q) = ∃~yτ . ψτ where ~yτ and ψτ are defined as follows.

• ~yτ is obtained from ~y by first removing each variable y ∈ ~y such that τ(y) is a ground

term, and then by replacing each remaining variable y with τ(y) ∈ ΦV .

• ψτ is the result of simultaneously replacing each variable x occurring in ψ with τ(x).

When dom(τ) = ~x and each element of rng(τ) is a constant, τ(q) is the Boolean CQ obtained

by replacing each variable x ∈ ~x with τ(x) ∈ ΦC . Example 2.1 shows that our definition of

τ(q) is somewhat non-standard because variables that are not free in q can also be replaced.

Example 2.1. Consider the following CQ q and substitution τ .

q = ∃y1∃y2∃y3. R(y1, y2) ∧ T (y1, y3) (2.3)

τ = {y2 7→ a, y3 7→ y4} (2.4)

Then we have τ(q) = ∃y1∃y4. R(y1, a) ∧ T (y1, y4).

Let Σ be a rule base and let q = ∃~y.ψ(~x, ~y) be a CQ. A substitution π is a certain answer

to q over Σ, written Σ |= π(q), if dom(π) = ~x, each element in rng(π) is a constant occurring

in Σ, and I |= π(q) for each first-order model I of Σ. When q is a Boolean CQ, π being a

certain answer to q over Σ implies that π = ∅ and π(q) = q; so we simply write Σ |= q.

22

2.2.4 Chase and Universal Interpretations

We present our version of the oblivious chase and describe the so-called universal inter-

pretation of a rule base Σ that our chase produces. For the rest of this section, we fix an

arbitrary rule base Σ.

Our chase variant is based on a countably infinite set ΦN of labelled nulls pairwise

disjoint with ΦC , ΦP , and ΦV , and on a total order < on ΦC ∪ ΦN such that c < w for

each constant c ∈ ΦC and each labelled null w ∈ ΦN . In the rest of this thesis, we extend

the notion of terms to allow for labelled nulls. Hence, a term is a constant, a variable, or a

labelled null; a ground term is a constant or a labelled null. Furthermore, we extend each

substitution τ by setting τ(w) = w for each labelled null w ∈ ΦN , and we call τ ground if

rng(τ) contains only ground terms. This allows atoms to contain labelled nulls, which we

will use to represent assertions whose existence is implied by existential rules in Σ.

Let be a fresh binary predicate not occurring in Σ. An instance is a set I = instI ∪ eqI

where instI is a set of atoms over the predicates that occur in Σ, and eqI is a set of atoms

of the form w w′. A ground term w is irreducible in I if, for each term w′, we have that

w w′ 6∈ I. Relation ∗I is the smallest reflexive and transitive relation on ground terms

such that w ∗I w
′ for each w w′ ∈ I. For each ground term w, let ‖w‖I = w′ where w′

is the <-smallest irreducible term occurring in I such that w ∗I w
′. For a formula ϕ, ‖ϕ‖I

is obtained by replacing each ground term w occurring in ϕ with ‖w‖I . For a sequence

ρ = R1 · · ·Rm of binary predicates and terms w and w′, we write ρ(w,w′) ∈ instI if terms

w = w0, . . . , wm = w′ exist such that Ri(wi−1, wi) ∈ instI for each i ∈ [1..m].

We next present the notion of a trigger [81] for an instance I and, in analogy with rules,

we define both existential and equality triggers. Let I be an instance. An existential trigger

for I is a pair 〈r, σ〉 where r ∈ Σ is an existential rule of the form r = ϕ(~x, ~y)→ ∃~z.ψ(~x, ~z)

and σ is a ground substitution with dom(σ) = ~x ∪ ~y such that σ(‖ϕ‖I) ⊆ instI . The result

of applying an existential trigger 〈r, σ〉 to I is the instance J where

• κ is the substitution that maps each variable x ∈ ~x according to σ, and each variable

z ∈ ~z to the smallest, fresh labelled null κ(z) ∈ ΦN that is <-larger than all terms

occurring in I,

23

• instJ = instI ∪ κ(‖ψ‖I), and

• eqJ = eqI .

Each fresh labelled null occurring in J is said to be generated by rule r. An equality trigger

for I is a pair 〈r, σ〉 where r ∈ Σ is an equality rule of the form r = ϕ(~x, ~y)→ s ≈ t and σ is a

ground substitution with dom(σ) = ~x ∪ ~y such that σ(‖ϕ‖I) ⊆ instI and ‖σ(s)‖I 6= ‖σ(t)‖I .

The result of applying an equality trigger 〈r, σ〉 to I is the instance J where

• w and w′ are the <-largest and <-smallest terms in {‖σ(s)‖I , ‖σ(t)‖I}, respectively,

• instJ is obtained from I by replacing each occurrence of term w with w′, and

• eqJ = eqI ∪ {w w′}.

A chase sequence for Σ w.r.t. < is a sequence of triples 〈I1, r1, σ1〉, 〈I2, r2, σ2〉, . . . indexed

by a (possibly empty) set S = {1, 2, . . .} of positive natural numbers, where I0 is the instance

containing each ground atom in Σ and, for each i ∈ S, the following hold:

• 〈ri, σi〉 is a trigger for Ii−1 and Ii is the result of 〈ri, σi〉 on Ii−1, and

• no index j ∈ S exists such that j < i and 〈rj , σj〉 = 〈ri, σi〉.

This sequence must be fair : for each i ∈ S and each trigger 〈r, σ〉 for Ii−1, either an index

j ∈ S exists such that 〈rj , σj〉 = 〈r, σ〉, or an index k ∈ S with k ≥ i exists such that 〈r, σ〉

is not a trigger for Ik. Instance I =
⋃
i∈S

⋂
j≥i Ij is a universal interpretation of Σ.

Our chase variant differs from the standard notion of oblivious chase [12, 81] in that

we do not make the unique name assumption. Hence, the application of equality rules can

replace constants, as well as labelled nulls, and our chase procedure never fails.

Let I be a universal interpretation of Σ. Set instI contains the atoms required to satisfy

the rules in Σ; in contrast, set eqI is ‘auxiliary’ and we use it to keep record on how terms

have been identified during the chase sequence producing I. Please note that, for each

term w occurring in instI , we have that ‖w‖I = w. Also, owing to the fairness of the chase

sequence, instance I is closed under Σ—that is, for each trigger 〈r, σ〉 for I, an index i ≥ 0

exists such that Ii+1 is the result of applying 〈r, σ〉 to Ii. Furthermore, for each universal

24

interpretation J of Σ, we have that instI is homomorphically equivalent to instJ and, if Σ

is a datalog program, then instI equals instJ ; however, I and J may disagree on the atoms

over predicate [81]. Finally, it is well known [1, 31, 12] that instI can be homomorphically

embedded into any first-order model of Σ; hence, I can be used to answer CQs over Σ.

Theorem 2.3 (Adapted from [12]). For each CQ q = ∃~y. ψ(~x, ~y), and each substitution

π, Σ |= π(q) if and only if a ground substitution π∗ with dom(π∗) = ~x ∪ ~y exists such that

π = π∗|~x, each element in rng(π∗|~x) is a constant occurring in Σ, and ‖π∗(q)‖I ⊆ instI .

2.3 Complexity Theory

In this thesis, we provide several complexity results for decision problems related to an-

swering conjunctive queries over a specific form of logical theories, called description logic

knowledge bases, which we formally introduce in the next chapter. We next recapitulate

several relevant notions from the theory of computational complexity; for more details, we

refer the reader to the textbook by Papadimitriou [84].

The complexity of a decision problem is typically measured in terms of the resources,

time or space, a Turing machine (TM) uses to solve the problem w.r.t. the size of the input.

For α a conjunctive query or a knowledge base, the size |α| of α is the number of symbols

that is required to write α on the tape of a TM whose input alphabet Σ contains the binary

digits 0 and 1 and all logical symbols occurring in α, but Σ’s size is independent of α. To

this end, we assume a suitable binary encoding of predicates, constants, and variables such

as the encoding by Abiteboul et al. [1].

Complexity classes group decision problems based on the amount of resources a TM

uses to solve the problem. The class NL contains each decision problem that can be solved

by a nondeterministic TM using logarithmic space. The class PTime (resp. NP) contains

each decision problem that can be solved on a deterministic (resp. nondeterministic) TM

using polynomial time. The class PSpace (resp. NPSpace) contains each decision problem

that can be solved on a deterministic (resp., nondeterministic) TM using polynomial space;

Savitch [90] showed that PSpace equals NPSpace.

In the following, we will infer complexity bounds using log-space many-one reductions.

25

26

Chapter 3

The EL Profile of OWL 2

OWL 2 EL is one of the three profiles of OWL 2 and is based on the EL family of DLs [4].

We next present the DL ELRO+
⊥ that logically underpins OWL 2 EL, as well as other

members of the EL family of DLs, and formally introduce the problem of answering CQs

over knowledge bases. In the rest of this chapter, we fix a first-order signature consisting of

sets ΦP , ΦC , and ΦV of unary and binary predicates, constants, and variables, respectively.

3.1 The EL Family of DLs

We start by introducing the DL ELRO+
⊥ that logically underpins OWL 2 EL, and subse-

quently we specialise the definition of ELRO+
⊥ to obtain the other members of the family.

3.1.1 The DL ELRO+
⊥

Our definition of ELRO+
⊥ is based on three countably infinite and mutually disjoint sets

NC ⊆ ΦP , NR ⊆ ΦP , and NI ⊆ ΦC of unary predicates, binary predicates, and constants.

In DL parlance, unary predicates are called atomic concepts, binary predicates are called

roles, and constants are called individuals. We assume that {>c,⊥c} ⊆ NC, where >c is the

top concept and ⊥c is the bottom concept ; similarly, we assume that {>r,⊥r} ⊆ NR, where

>r is the top role (universal role) and ⊥r is the bottom role.

A role chain ρ is a word over the alphabet of roles; for |ρ| = 0, we call ρ the empty role

chain and we write it as ε. The set C of ELRO+
⊥ concepts is the smallest set that contains

27

Table 3.1: Interpreting ELRO+
⊥ concepts, role chains, and axioms in an interpretation I = 〈∆I , ·I〉

Syntax Semantics

Concepts:

atomic concept A AI ⊆ ∆I

top concept >c ∆I

bottom concept ⊥c ∅
nominal {a} {aI}
conjunction C uD CI ∩DI

self-restriction ∃R.Self {x ∈ ∆I | 〈x, x〉 ∈ RI}
existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ CI : 〈x, y〉 ∈ RI}
Role chains:

role R RI ⊆ ∆I ×∆I

top role >r ∆I ×∆I

bottom role ⊥r ∅
empty role chain ε {〈x, x〉 | x ∈ ∆I}
non-empty role chain R1 · · ·Rn RI1 ◦ · · · ◦RIn
TBox axioms:

concept inclusion C v D CI ⊆ DI

range restriction range(R,C) RI ⊆ ∆I × CI

key key(C,R1 . . . Rn) For all x, y, z1, . . . , zn in ∆I such

that individuals a, b, c1, . . . , cn in NI

exist with x = aI , y = bI , and

zi = cIi for 1 ≤ i ≤ n,

x = y holds whenever {x, y} ⊆ CI and

{〈x, zi〉, 〈y, zi〉} ⊆ RIi for 1 ≤ i ≤ n.

RBox axioms:

role inclusion ρ v R ρI ⊆ RI

ABox axioms:

concept assertion A(a) aI ∈ AI

role assertion R(a, b) 〈aI , bI〉 ∈ RI

28

each atomic concept A ∈ NC such that the following four properties hold.

• For each individual a ∈ NI, set C contains {a} (nominal).

• For all concepts C and D in C, set C contains C uD (conjunction).

• For each role R ∈ NR, set C contains ∃R.Self (self-restriction).

• For each role R ∈ NR and each concept C ∈ C, set C contains ∃R.C (existential

restriction).

We next define the axioms that can occur in ELRO+
⊥ KBs and, as usual, we distinguish

between assertional (ABox), terminological (TBox), and relational (RBox) axioms.

An assertion is an expression of the form A(a) or R(a, b) where A is an atomic concept,

R is a role, and a and b are individuals; an ABox A is a finite set of assertions. Furthermore,

a concept inclusion is an expression of the form C v D where C and D are concepts; a range

restriction is an expression of the form range(R,C) where R is a role and C is a concept;

a key is an expression of the form key(C,R1, . . . , Rn) where C is a concept and each Ri

is a role; and a TBox T is a finite set of concept inclusions, range restrictions, and keys.

Finally, a role inclusion is an expression ρ v R where ρ is a role chain and R is a role. An

RBox R is a finite set of role inclusions; such R is a role hierarchy if, for each role inclusion

ρ v R in R, we have that |ρ| ≤ 1 or ρ = R ·R.

For a set of axioms Φ, we define

conΦ = {>c,⊥c} ∪ {A ∈ NC | A occurs in Φ},

rolΦ = {>r,⊥r} ∪ {R ∈ NR | R occurs in Φ}, and

indΦ = {a ∈ NI | a occurs in Φ}

Let R be an RBox. For a role R ∈ rolR, R is transitive in R if R ·R v R ∈ R, and R is

reflexive in R if ε v R ∈ R. A role R is composite in R if a role inclusion ρ v R ∈ R exists

such that |ρ| > 1. The subrole relation v∗R for R is the smallest reflexive and transitive

relation on rolR such that

• S v∗R R for each role inclusion S v R ∈ R, and

29

• S v∗R >r for each role S ∈ rolR.

A role R is simple in R if, for each role S ∈ rolR with S v∗R R, we have that S 6∈ {>r,⊥r},

and S is not composite in R.

An ELRO+
⊥ knowledge base is a finite set K = T ∪ R ∪A where T is a TBox, R is an

RBox, and A is an ABox such that the following holds.

• For each concept ∃R.Self occurring in T , role R is simple in R.

• For each R1 · · ·Rn v R ∈ R with n ≥ 1 and each range(R′, C) ∈ T with R v∗R R′, a

role R′n exists such that Rn v∗R R′n and range(R′n, C) ∈ T .

The semantics of ELRO+
⊥ is defined using interpretations. A description logic interpre-

tation is a pair I = 〈∆I , ·I〉 where ∆I is a non-empty set of domain elements, the domain

of I, and ·I is the interpretation function that maps each individual a ∈ NI to an ele-

ment aI ∈ ∆I , each atomic concept A ∈ NC \ {>c,⊥c} to a set AI ⊆ ∆I , and each role

R ∈ NR \ {>r,⊥r} to a binary relation RI ⊆ ∆I × ∆I . Function ·I is extended to role

chains and concepts as shown in the upper part of Table 3.1, where A ∈ NC, R(i) ∈ NR,

a ∈ NI, C and D are concepts, and ◦ denotes composition of binary relations.

Although DL interpretations are closely related to first-order interpretations as defined

in Section 2.2, they differ in one key respect. Each DL interpretation interprets >c and ⊥c,

and >r and ⊥r as shown in Table 3.1; in contrast, in our definition of first-order logic >c

and ⊥c, and >r and ⊥r are just standard predicates without any predetermined meaning.

In other words, first-order interpretations do not ascribe a predetermined meaning to >c

and ⊥c, and >r and ⊥r. Hence, each DL interpretation is a first-order interpretation, but

the converse does not necessarily hold.

A DL interpretation I is a description logic model of K if I satisfies all axioms occurring

in K as shown at the bottom of Table 3.1. Moreover, K is consistent if a DL model of K

exists, otherwise K is inconsistent. Knowledge base consistency can be decided in time

polynomial in |K| [4, 64].

Finally, we associate each role R occurring in an RBox R with the language L(R)

induced by the role inclusions in R. The rewrite relation =⇒ for R is the smallest relation

on role chains such that the following holds for all role chains ρ1 and ρ2.

30

• ρ1 ·R · ρ2 =⇒ ρ1 · ρ · ρ2 for each axiom ρ v R ∈ R.

• ρ1 · >r · ρ2 =⇒ ρ1 · ρ · ρ2 for each role chain ρ ∈ (rolR)∗.

Then, relation =⇒∗ is the reflexive and transitive closure of =⇒ and, for each role R ∈ rolR,

L(R) = {ρ ∈ (rolR)∗ | R =⇒∗ ρ} is the language induced by RBox R. When R is a role

hierarchy, for all roles S and R in rolR, we have S ∈ L(R) if and only if S v∗R R.

3.1.2 The Other Members of the Family

Other important members of the EL family of DLs can be characterised by restricting the

shape of an ELRO+
⊥ knowledge base K = T ∪ R ∪A as follows.

• K is in ELHO+
⊥ if R is a role hierarchy.

• K is in ELHO⊥ if K is in ELHO+
⊥ and K does not contain the top and bottom role,

the TBox T does not contain keys and concept inclusions involving self-restrictions,

and each role inclusion ρ v R ∈ R is such that |ρ| = 1.

• K is in ELH⊥ if K is in ELHO⊥ and the TBox T does not contain range restriction

and concept inclusions involving nominals.

• K is in EL if K is in ELH⊥ and K does not contain the bottom concept, and R = ∅.

3.2 CQ Answering in the EL family of DLs

We next define the problem of answering CQs over knowledge bases formulated in the EL

family of DLs, which is the basic problem studied in this thesis.

Let K = T ∪ R ∪A be an ELRO+
⊥ KB and let q = ∃~y. ψ(~x, ~y) be a CQ. Then q is over

K if q uses only the atomic concepts in conK, the roles in rolK, and the individuals in indK.

A substitution π is a certain answer to q over K, written K |=DL π(q), if dom(π) = ~x, each

element in rng(π) is an individual in indK, and I |= π(q) for each DL model I of K. When

q is a Boolean CQ, π being a certain answer to q over K implies that π = ∅ and π(q) = q;

so we simply write K |=DL q.

31

Instead of using the standard logical consequence symbol |=, we use the symbol |=DL to

stress that the certain answers to q over K are defined in terms of description logic models.

In contrast, the certain answers to q over a rule base Σ are defined in terms of first-order

models, and so we write Σ |= π(q).

Answering q over K amounts to computing the set of all certain answers to q over

K. As stated, CQ answering is a function problem; in this thesis, however, we study the

complexity of the associated decision problem, called the recognition problem, which decides

whether K |=DL π(q). When q is an instance query, the recognition problem is also known

as instance checking. Following Vardi [100], both q and K are considered as part of the input

for the combined complexity, only K is considered as part of the input for the knowledge base

complexity, and only the ABox A is considered as part of the input for the data complexity.

3.2.1 Decidability of CQ answering over ELRO+
⊥ via Regularity

When the RBox component is not restricted to a role hierarchy, Krisnadhi and Lutz [63],

Krötzsch et al. [66], and Rosati [86] independently showed that CQ answering over ELRO+
⊥

KBs is undecidable. Intuitively, unrestricted role inclusions can ‘simulate’ derivations in

context-free grammars; thus, a CQ can check whether two context-free languages have a

non-empty intersection, which is known to be undecidable [50]. To regain decidability, we

next recapitulate the definition of so-called regular RBoxes by Horrocks and Sattler [51].

Let R be an ELRO+
⊥ RBox and let ≺ be the smallest transitive relation on rolR such

that, for each role inclusion R1 · · ·Rn v R ∈ R with R 6= >r and each i ∈ [1..n] with Ri 6= R,

we have that Ri ≺ R. RBox R is regular if ≺ is irreflexive and each role inclusion ρ v R in

R with R 6= >r is of the form

(t1) ε v R,

(t2) R ·R v R,

(t3) R1 · · ·Rn ·R v R where n ≥ 0 and Ri 6= R for each i ∈ [1..n],

(t4) R1 · · ·Rn v R where n ≥ 1 and Ri 6= R for each i ∈ [1..n], or

(t5) R ·R1 · · ·Rn v R where n ≥ 0 and Ri 6= R for each i ∈ [1..n].

32

By induction on ≺, we next define the level lv(R) of each role R ∈ rolR as follows: lv(R) = 0

if no role S ∈ rolR exists such that S ≺ R; otherwise, lv(R) = 1 + max{lv(S) | S ≺ R}.

Clearly, lv(R) can be computed in time polynomial in |R|.

Horrocks and Sattler [51] showed that, for each regular RBox R and each role R ∈ rolR,

the language L(R) is regular. Hence, the undecidability results by Krisnadhi and Lutz [63],

Krötzsch et al. [66], and Rosati [86] do not apply to CQ answering over ELRO+
⊥ knowledge

bases with regular RBoxes. In particular, Ortiz et al. [83] showed that the problem is in

2ExpTime in combined complexity. Role hierarchies are generally not regular RBoxes, so

this result does not immediately transfer to ELHO+
⊥. Nevertheless, Ortiz et al. [83] also

showed that CQ answering over ELHO+
⊥ knowledge bases is decidable and in ExpTime in

combined complexity.

The EL profile of OWL 2 imposes a syntactic restriction on role inclusions that extends

the regularity restriction by Horrocks and Sattler [51]. Unfortunately, in Chapter 12 we

show that the regularity condition in the OWL 2 specification is flawed: it does not ensure

the regularity of the languages induced by role inclusions. For this reason, in the rest of

this thesis, we consider only knowledge bases in which the RBox component is regular.

In Chapter 12, we then propose a revised version of the syntactic restriction for OWL 2

and present so-called weakly regular RBoxes which generalise regular RBoxes and extend

to role hierarchies. We also show that each knowledge base with a weakly regular RBox

can be transformed in polynomial time into a knowledge base with a regular RBox without

affecting the answers to CQs; thus, all our results carry over to knowledge bases in which

the RBox is weakly regular, including role hierarchies.

3.2.2 Normalising Knowledge Bases

All the CQ answering algorithms that we present in this thesis require that each knowledge

base K = T ∪ R ∪A is normalised, which is the case if the following conditions hold.

33

Table 3.2: Rewrite rules for ELRO+
⊥ TBoxes and RBoxes

key(C,R1, . . . , Rn) 7→ {C v XC , key(XC , R1, . . . , Rn)}
range(R,C) 7→ {range(R,XC), XC v C}
C v D 7→ {C v XC , XC v D}
E u {a} v A 7→ {X{a}(a), E uX{a} v A}
C uA1 v A 7→ {C v XC , XC uA1 v A}
A v C uD 7→ {A v C, A v D}
∃R.C v A 7→ {C v XC , ∃R.XC v A}
A v ∃R.C 7→ {A v ∃R.XC , XC v C}

(t3) R1 · · ·Rn ·R v R 7→ {S ·R v R, R1 · · ·Rn v S}
(t4) R1 · · ·Rn v R 7→ {S ·Rn v R, R1 · · ·Rn−1 v S}
(t5) R ·R1 · · ·Rn v R 7→ {R · S v R, R1 · · ·Rn v S}

(n1) Each axiom in T is in one of the following forms, for A(i) ∈ NC, a ∈ NI, and R ∈ NR.

A1 v A A1 uA2 v A ∃R.A1 v A ∃R.Self v A

A1 v {a} A1 v ∃R.A A1 v ∃R.Self key(A,R1, . . . , Rn)

(n2) Each role in T ∪ A also occurs in R, each role inclusion ρ v R ∈ R is such that |ρ| ≤ 2

and R 6= >r, and R does not contain role inclusions of the form R v R.

(n3) ABox A is non-empty.

Note that normalised knowledge bases do not contain range restriction. We next show

that each ELRO+
⊥ knowledge base can be normalised in linear time without affecting the

regularity of the RBox component or the answers to CQs.

Proposition 3.1. For each ELRO+
⊥ KB K = T ∪ R ∪A where R is a regular RBox, one

can compute in linear time a normalised KB K′ = T ′ ∪R′ ∪ A′ such that

• R′ is regular, and

• for each CQ q over K and each substitution π, K |=DL π(q) if and only if K′ |=DL π(q).

Proof. Let K = T ∪ R ∪A be an ELRO+
⊥ KB K where R is a regular RBox, let q be a CQ

over K, and let π be a substitution.

34

We satisfy property (n1) in two steps. First, we construct a KB K1 such that each

TBox axiom in K1 is either in normal form or a range restriction of the form range(R,A)

with R ∈ NR and A ∈ NC. To this end, for each concept C occurring in K, let XC be

a fresh atomic concept uniquely associated with C. Then, KB K1 is obtained from K

by exhaustively decomposing each TBox axiom in K that is not already in normal form

using the rewrite rules shown in the upper part Table 3.2, where A(i) ∈ NC, a ∈ NI, E is

a possibly empty conjunction of concepts, C and D are concepts, and R(i) ∈ NR. It is

well-known [4, 64] that only linearly many rewrite steps are required to compute K1 and

that K |=DL π(q) if and only if K1 |=DL π(q).

Next, for each role R ∈ rolK1 and each atomic concept A ∈ conK1 , let XR,A be a fresh

atomic concept uniquely associated with R and A. Then K2 is obtained from K1 by carrying

out the following operations for each axiom range(S,B) ∈ K1 and each role R with R v∗R S:

• replace each axiom of the form A1 v ∃R.A ∈ K1 with three axioms A1 v ∃R.XR,A,

XR,A v A, and XR,A v B in K2;

• for each axiom A1 v ∃R.Self ∈ K1, add an axiom A1 v B ∈ K2;

• if ε v R ∈ K1 or R = >r, add an axiom >c v B ∈ K2;

• remove the range restriction range(S,B) from K2.

The resulting KB K2 satisfies (n1) and can be computed in time linear in |K1|. Baader

et al. [5, Lemma 1] showed that K1 |=DL π(q) if and only if K2 |=DL π(q).

We next satisfy property (n2). Let K3 be the result of exhaustively decomposing each

role inclusion ρ v R with |ρ| > 2 occurring in K2 using the rewrite rules (t3)–(t5) in the

lower part of Table 3.2, where each Ri 6= R and each occurrence of role S is fresh. Only

linearly many rewrite steps are required to satisfy (n2), and the resulting RBox is regular.

Furthermore, each model of K3 is also a model of K2 and each model I of K2 can be

expanded to a model J of K3 by interpreting each fresh role S occurring in K3 \ K2 as

(S)J = (ρS)J , where ρS is the unique role chain such that ρS v S occurs in K3. Thus, we

have K2 |=DL π(q) if and only if K3 |=DL π(q).

35

Next, let K4 be the result of removing all axioms of the forms ρ v >r and R v R in K3;

all removed axioms are tautologies, so we have K3 |=DL π(q) if and only if K4 |=DL π(q).

KB K5 is the result of adding an axiom ⊥r v R, for each role R that occurs in K4 but

does not occur in its RBox component. The axioms in K5 \ K4 preserve regularity and are

tautologies, so K4 |=DL π(q) if and only if K5 |=DL π(q).

Finally, we satisfy property (n3). For a′ a fresh individual not occurring in K5, let K′

be the result of adding >c(a′) to K5. Assertion >c(a′) is a tautology, so K5 |=DL π(q) if

and only if K′ |=DL π(q), as required.

36

Chapter 4

The CQ Answering Algorithms at

a Glance

In this thesis, we present novel complexity results, as well as novel algorithms for answering

expressive queries over knowledge bases expressed in important members of the EL family

of DLs. In particular, in Chapters 6 and 9, we introduce two novel worst-case optimal

algorithms for answering conjunctive queries over ELHO+
⊥ and ELRO+

⊥ knowledge bases,

respectively. The two algorithms are conceptually similar, so in this chapter we present the

intuitions underlying the two procedures.

Each ELRO+
⊥ knowledge base K can be translated into an equivalent rule base. Hence,

a conjunctive query q over K can be answered by evaluating q over a so-called universal

interpretation—a possibly infinite set of assertions that, when seen as an interpretation,

can be homomorphically embedded into any other model of K. Universal interpretations

are usually obtained by applying one of the many adaptations of the chase procedure [2,

74, 75, 12]. In this thesis, we first translate K into a rule base ΞK and then obtain universal

interpretations of K by using our variant of the oblivious chase.

Each universal interpretation I of ΞK can be viewed as a directed graph that contains an

edge 〈w,w′〉 labelled by role R for each binary assertion R(w,w′) occurring in I. Moreover,

each labelled null occurring in I can be uniquely associated with an axiom of the form

A1 v ∃R.A that was used to generate it, and we call the pair R,A the element’s type.

37

Our translation of K into a rule base ΞK is slightly unusual because the rules in ΞK not

only capture the axioms in K, but also capture additional consequences that describe the

structural properties of K. We use these consequences to distinguish between three types

of edges in the directed graph associated with I.

The first type of edges, called direct edges, are those edges of I that either point to named

individuals from NI, or are obtained using axioms of the form A1 v ∃R.A from K. In our

transformation, we identify direct edges obtained using an axiom of the form A1 v ∃R.A

by associating each role R with the direct predicate DR for R, and then by transforming

A1 v ∃R.A into the existential rule A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z). As direct edges

can be propagated by simple role inclusions, we also add a rule DS(x, y)→ DR(x, y) for

each axiom S v R in K. Then, an edge 〈w,w′〉 labelled by role R is a direct edge in I if w′

is a named individual or DR(w,w′) occurs in I. When one restricts I to only those edges

that are direct for some role R, interpretation I resembles a family of directed trees whose

roots are the individuals in K and whose (direct) edges point from parents to children or

to the individuals in K.

The second type of edges, called self edges, are the loops in I that either connect named

individuals to themselves, or are obtained using self-restrictions or reflexive roles in K.

We identify the edges obtained using self-restrictions or reflexive roles by associating each

role R with a self predicate SR for R, and then by transforming each axiom of the form

A v ∃R.Self into the rule A1(x)→ R(x, x) ∧ SR(x) and each axiom ε v R into the rule

>c(x) → R(x, x) ∧ SR(x). We also add a rule SS(x)→ SR(x) for each axiom S v R in K;

hence, the definition of self edges propagates through simple role inclusions. Then, a loop

〈w,w〉 labelled by role R is a self edge in I if w is a named individual or SR(w) occurs in I.

The third type of edges, called composite edges, are those labelled edges in I that are

neither direct nor self edges. Then, an edge 〈w,w′〉 labelled by role R is a composite edge in

I if w′ is a labelled null, DR(w,w′) does not occur in I, and w = w′ implies that SR(w) does

not occur in I. It follows that each composite edge must be obtained using a role inclusion

R1 · · ·Rn v R with n > 1 occurring in K.

Examples 4.1 and 4.2 illustrate the direct, self, and composite edges of a universal

interpretation of ΞK.

38

a

1 2

4 5

T,CS,C

S T

R,E

T,S,R

R,E

R,S,T
S T

P P

A, Aa b

3 P,D

P
T

T

T

B

Figure 4.1: The universal interpretation for the KB in Example 4.1

Example 4.1. Consider the knowledge base K whose ABox A contains two unary assertions

A(a) and B(b), and whose TBox T consists of the following axioms.

A v ∃S.C B v ∃P.D

A v ∃T.C D v ∃P.D

C v ∃R.E D v ∃T.Aa

E v ∃P.Self Aa v {a}

Furthermore, the RBox R of K contains the following role inclusions.

R v S (4.1)

S · S v S (4.2)

R v T (4.3)

T · T v T (4.4)

Figure 4.1 shows a universal interpretation I of K. Atoms involving >c and >r are not

shown for clarity. Each labelled null is represented using a number; the element’s type

is shown in red. Direct edges are black, self edges are purple, and composite edges are

orange. Axiom D v ∃P.D in T makes I infinite; in the figure, we encode the infinitely

many successor of 3 of type P,D using a black dotted edge. Each such successor has a T -

labelled direct edge to a, and two T -labelled composite edges to 2 and 5, respectively. Since

39

a b

1

R

A B Ab

R,C

R

R
R

R

Figure 4.2: The universal interpretation for the KB in Example 4.2

I is infinite, a terminating algorithm cannot materialise I and then evaluate CQs in it.

Example 4.2. Consider the knowledge base K whose ABox A contains A(a), B(b), and

R(a, b), whose RBox contains R ·R v R, and whose TBox T contains the following axioms.

B v ∃R.C C v ∃R.Ab Ab v {b}

Figure 4.2 shows a universal interpretation I of K. The notation is as explained in Example

4.1; edges that are both self and direct are shown using a black and purple solid line.

Edges R(b, 1) and R(1, b) are obtained by applying the axioms in the TBox T , and so

their are direct and labelled with the direct predicate DR. Edges R(a, b) and R(b, b) point

towards named individuals from NI, and so their are also direct. Moreover, edge R(b, b)

loops on a named individual, so it is also a self edge. Finally, R(a, 1) is the only edge that

points to a labelled null and is neither self nor direct; that is, R(a, 1) is the only composite

edge. Thus, the direct and self predicates allow us to partition the edges in I that point to

labelled nulls into direct, self, and composite edges. In contrast, the edges in I that point

to named individuals can either be direct or self edges, or both.

In Section 4.1, we review the existing approaches to answering CQs over DL knowledge

bases and discuss why these techniques cannot be easily adapted to obtain worst-case op-

timal and practical procedures for answering CQs over EL knowledge bases that contain

nominals and role inclusions. Then, in Section 4.2 we discuss the intuitions behind our

approach to answering conjunctive queries which we will formalise in Chapters 5, 6, and 9.

40

4.1 Existing Approaches to Answering CQs

Techniques for answering CQs over DL knowledge bases developed thus far can be broadly

classified into the following four groups.

The first group consists of automata-based approaches for DLs such as Horn-SHIQ

and Horn-SROIQ [83], SH [29], and the fragment of ELRO+
⊥ obtained by disallowing

the universal role, reflexive roles, and self-restrictions [66]. All these approaches, however,

require constructing automata whose size can be exponential in the knowledge base size,

and are not practicable due to extensive don’t-know nondeterminism.

The second group consists of rewriting-based approaches. Such techniques rewrite the

query and/or the TBox into another formalism, usually a union of CQs or a datalog program;

the relevant answers can then be obtained by evaluating the rewriting over the ABox seen as

a first-order interpretation. Rewriting-based algorithms were initially proposed for members

of the DL-Lite family [14, 20, 88, 55, 102], and later such algorithms have also been developed

for the DLs ELH⊥ [86], ELHIO⊥ [85, 77] and Horn-SHIQ [30], members of the datalog±

family [103], and existential rules [58], to name just a few. No rewriting approach, however,

supports both nominals and (complex) role inclusions. Moreover, a common shortcoming

is that rewritings can be exponential in the query and/or TBox size, so these approaches

may also use exponential space. Although this is often not a problem in practice, such

approaches are not worst-case optimal. An exception is the algorithm by Rosati [86] that

rewrites an ELH⊥ TBox into a datalog program of polynomial size; however, the algorithm

also uses a nondeterministic step to transform the CQ into a tree-shaped one, and it is not

clear how to implement this step in a goal-directed manner.

The third group consists of hybrid approaches for answering CQs over knowledge bases

expressed in Horn-SROIQ [107] and SROIQ [108, 97]—the DLs underpinning OWL 2

DL [53]. These approaches combine fully fledged OWL 2 DL reasoners with more efficient

reasoners for the EL, QL, and RL profiles of OWL 2. Query evaluation is then delegated

as much as possible to the reasoners for the profile at hand, while the heavy-weight OWL 2

DL reasoner is only used to ensure completeness by checking those answers that depend on

constructs not in the relevant profile. No existing profile reasoner can answer conjunctive

41

queries over knowledge bases that contain all the constructs of ELHO+
⊥ and ELRO+

⊥; hence,

these techniques require the use of computationally expensive OWL 2 DL reasoners, which

can use space exponential in the size of the knowledge base and are usually not optimised

for handling large ABoxes.

The fourth group consists of the so-called combined approaches. These techniques are

based on a particular interpretation of K that we call the compact interpretation. The

compact interpretation can be materialised in time polynomial in |K|, and it can be used

to test the consistency of, and answer instance queries over K [4, 67, 60]. Moreover, each

CQ that maps onto the universal interpretation maps onto the compact interpretation as

well; however, the converse does not necessarily hold as the compact interpretation finitely

approximates the possibly infinite models of K. As a remedy, combined approaches evaluate

the CQ in the compact interpretation, but filter the results to eliminate unsound answers.

Such approaches have been developed for members of the DL-Lite [59, 60, 73] and the EL

[72] families of DLs, and the datalog± family [41] of rule-based languages. These approaches

differ on how they implement the filtration step. Lutz et al. [72], Kontchakov et al. [60], and

Gottlob et al. [41] rewrite in polynomial time the conjunctive query into a first-order query

such that evaluating the rewritten query over the compact interpretation does not produce

unsound answers. In contrast, Lutz et al. [73] first evaluate the conjunctive query over the

compact interpretation to obtain candidate answers, and then purge unsound candidate

answers using a filtering procedure.

Apart from the combined approach by Lutz et al. [72] that is applicable to the ELH⊥

fragment of ELRO+
⊥, all other techniques are applicable to DLs and rule-based formalisms

that are orthogonal to the EL family of DLs; so in the rest of this section we focus on the

former. Example 4.3 illustrates the compact interpretation for K and shows that evaluating

conjunctive queries over this interpretation may produce unsound answers.

Example 4.3. Consider the KB K whose RBox R is empty, whose ABox A contains three

42

a b c

1 2R,A R,A

R R
R R

a b c

oR,A

R R

A1 A1

R

R

Universal interpretation I Compact interpretation J

R R

6 7R,A R,A

R R

RR

A1 A1Ab Ab

Figure 4.3: The universal and compact interpretations for the KB in Example 4.3

assertions A1(a), A1(c), and R(b, c), and whose TBox T contains the following axioms.

A1 v ∃R.A A v ∃R.Ab

A v ∃R.A Ab v {b}

Furthermore, let q1, q2, and q3 be the following BCQs.

q1 = ∃x. R(x, b) (4.5)

q2 = ∃x. R(a, x) ∧R(c, x) (4.6)

q3 = ∃x, y. R(x, y) ∧R(y, x) (4.7)

The left part of Figure 4.3 shows a universal interpretation of K; the notation is as explained

in Example 4.1. The compact interpretation for K is shown in the right part of Figure 4.3.

It finitely approximates the universal interpretation by using so-called auxiliary constants

of the form oR,A to represent all labelled nulls of type R,A occurring in I. Now query q1

can be mapped onto both the compact and the universal interpretation, while queries q2 and

q3 can be mapped only onto the compact interpretation. Thus, evaluating q2 and q3 over the

compact interpretation produces unsound answers.

To solve this problem, Lutz et al. [72] rewrite a CQ q over K into a first-order query

q∗ such that evaluating q∗ over the compact interpretation generates the certain answers

43

to q over K. The rewriting q∗ is obtained by extending q with additional conditions that

filter out unsound answers. Example 4.4 illustrates the different types of filtering conditions

embedded in q∗ using the queries from Example 4.3.

Example 4.4. In their approach, Lutz et al. [72] incorporate two kinds of filtering condi-

tions into the rewritten query which correspond to the two reasons why mapping CQs onto

the compact interpretation may produce unsound answers.

The first reason is best explained using CQ q2 from Example 4.3. Atoms R(a, x) ∧R(c, x)

in q2 form a ‘fork’—that is, two binary atoms that connect distinct terms with the same

existential variable. Moreover, this ‘fork’ can only be satisfied in the compact interpretation

by mapping the atoms to edges pointing towards auxiliary constant oR,A. Constant oR,A,

however, represents the two labelled nulls 1 and 2 in I of type R,A that are connected via

direct edges to a and c, respectively. The direct edges in I induce a forest-shaped interpre-

tation; so, if we embed q2 onto the universal interpretation by mapping x to, say, labelled

null 1, then individuals a and c must be the unique predecessor of this element in I—that

is, a and c must be equal in I. This condition is incorporated into the CQ by asserting that

‘if x is mapped to an auxiliary constant, then a equals c’; so the resulting rewritten query

q∗2 cannot be mapped onto the compact interpretation.

The second reason is best explained using query q3 from Example 4.3. This query con-

tains two atoms R(x, y) ∧R(y, x) that form a cycle. The compact interpretation contains

a loop over auxiliary constant oR,A which allows us to embed q3 into this interpretation by

mapping both x and y to oR,A. In contrast, the labelled nulls of type R,A that oR,A repre-

sents do not form loops in the universal interpretation. This condition is incorporated into

the CQ by asserting that ‘variables x and y cannot be mapped to auxiliary constants’; thus

the resulting rewritten query q∗3 cannot be mapped onto the compact interpretation.

The knowledge base K from Example 4.3 contains nominals, a construct that is not

supported in ELH⊥. Example 4.5 shows that nominals can interact with the filtering step

by Lutz et al. [72]; so their approach is not directly applicable to ELHO+
⊥ and ELRO+

⊥

knowledge bases.

44

Example 4.5. Let K be as in Example 4.3, and let q4 and q5 be as follows.

q4 = ∃x, y, z. R(a, y) ∧R(c, z) ∧R(y, x) ∧R(z, x)

q5 = ∃x, y, z. R(x, y) ∧R(y, z) ∧R(z, x)

Although queries q4 and q5 contain a ‘fork’ and a cycle, respectively, these queries can

be mapped onto both the compact and the universal interpretations by mapping some of

their atoms on the edges that connect labelled nulls with individuals in K. These edges are

obtained using the axiom Ab v {b}, an axiom involving a nominal. Nominals are not in

ELH⊥, so the filtering conditions on ‘forks’ and cycles by Lutz et al. [72] prohibit mapping

queries q4 and q5 onto the compact interpretation and the results for these queries are thus

incomplete.

To better explain how nominals interact with the filtering conditions on ‘forks’, we use

query q4. The rewriting procedure by Lutz et al. [72] extends this query with the following

two constraints γ1 and γ2.

γ1 = if x is mapped to auxiliary constant, then y = z

γ2 = if y is mapped to auxiliary constant, then a = c

Constraint γ1 is due to the fact that R(y, x) ∧R(z, x) is a ‘fork’, while constraint γ2 is de-

rived from a property specific to universal interpretations of ELH⊥ knowledge bases: that is,

all edges in a universal interpretation of the KB are direct and either point from individuals

to individuals, or from parents to children. Then, if y is mapped to an auxiliary constant,

variable x is also mapped to an auxiliary constant, due to atom R(y, x) in the query. But

then, constraint γ1 implies that y = z; so R(a, y) ∧R(c, z) is also a fork, and thus individ-

uals a and c must be equal in I. The resulting first-order rewriting q∗4 = q4 ∧ γ1 ∧ γ2 cannot

be mapped onto the compact interpretation, and so the result for this query is incomplete.

Roughly speaking, the reason for this is that nominals generate a new type of edge in the

universal interpretation connecting labelled nulls with individuals, and these edges intro-

duce dependencies between the filtering conditions: constraint γ2 must to be applied only if

45

a

1 2

4 5

T,CS,C

S T

R,E

T,S,R

R,E

R,S,T
S T

P P

a

oS,C oT,C

oR,E

S T

T,S,R R,S,T

S T

P

Universal interpretation I Compact interpretation J

b

3 P,D

P
T

T

T

b

oP,D

PT

T

T

B B

P

A, Aa A, Aa

Figure 4.4: The universal and compact interpretations for the KB in Example 4.1

variable x is also mapped to an auxiliary constant.

To explain how nominals interact with the filtering conditions on cycles, we use query

q5. Variables x, y, and z participate in a cycle in q5; so the rewriting procedure by Lutz

et al. [72] incorporates the following constraint γ3 into the query.

γ3 = variables x, y, and z cannot be mapped to auxiliary constants

The rewriting q∗5 = q5 ∧ γ3 cannot be mapped onto the compact interpretation, and so

the result for this query is also incomplete. This is because the edges in the universal

interpretation obtained using nominals can form cycles involving labelled nulls, and so the

filtering condition in γ3 is too restrictive.

In addition to nominals, Example 4.6 shows that transitive roles can also interact with

the filtering conditions by Lutz et al. [72]; so their technique is unsuitable for knowledge

bases that contain transitive roles, or more general forms of regular role inclusions.

Example 4.6. Let K be as in Example 4.1; Figure 4.4 shows the universal and compact

interpretations for K. The universal interpretation is the same as the one shown in Figure

4.1, whereas the compact interpretation is obtained from the universal one by merging all

labelled nulls of types R,E and P,D using auxiliary constants oR,E and oP,D, respectively.

Because K contains transitive roles, we next show that the technique by Lutz et al. [72]

46

can be unsound using the following conjunctive query q6 over K.

q6 = ∃x. S(a, x) ∧ T (a, x)

Using Figure 4.4, one can see that query q6 can be mapped solely onto the compact inter-

pretation by mapping atoms S(a, x) and T (a, x) onto edges obtained using the transitivity

of roles S and T . Moreover, query q6 does not contain ‘forks’ and cycles, and so the rewrit-

ing step by Lutz et al. [72] does not incorporate filtering conditions into the query; so the

rewritten query maps onto the compact interpretation thereby generating an unsound an-

swer. This problem can be intuitively understood as follows. By ‘unfolding’ the query by

(4.2) and (4.4), query q6 essentially asks whether role chains ρ1 ∈ L(S) and ρ2 ∈ L(T) exist

that label a path of direct edges in the universal interpretation I of K starting at a. In the

compact interpretation, this is satisfied by ρ1 = S · S and ρ2 = T · T when x is mapped to

constant oR,E. Constant oR,E, however, represents distinct labelled nulls 4 and 5 from I;

hence, although 4 is connected to a via ρ1 and 5 is connected to a via ρ2, role chains ρ1

and ρ2 do not satisfy query q6. In other words, the compact interpretation is ‘too small’ to

represent the relevant conditions.

We next show that the technique by Lutz et al. [72] can also be incomplete using the

following conjunctive query q7 over K.

q7 = ∃x, y.R(x, y) ∧ S(a, y)

As opposed to query q6, query q7 can be mapped onto both the compact and the universal

interpretation. Atoms R(x, y) ∧ S(a, y), however, constitute a ‘fork’; hence, the rewriting

step by Lutz et al. [72] incorporates into the query a filtering condition asserting that ‘if y

is mapped to an auxiliary constant, then x = a’. The resulting rewritten query q∗7 cannot be

mapped onto the compact interpretation; so the result for this query is incomplete.

47

4.2 Overview of our Approach

None of the existing combined query answering approaches support self-restrictions, nomi-

nals, transitive and reflexive roles, and more general forms of regular role inclusions. In our

work, we bridge this gap and present two combined approaches for ELHO+
⊥ and ELRO+

⊥

KBs, respectively. Our techniques differ from the approach for ELH⊥ by Lutz et al. [72] in

that we implement filtering using an external procedure à la Lutz et al. [73]: to answer a

CQ, we first evaluate the query over the compact interpretation to obtain candidate answers

and then filter out unsound candidate answers using a filtering procedure.

Following Krötzsch et al. [67], instead of directly materialising the compact interpre-

tation, we capture this interpretation using a datalog program. In a similar way as with

the translation of K into rules, we extend the known encoding by Krötzsch et al. [67] by

capturing structural information about the knowledge base using direct and self predicates.

Our encoding can be applied to any fragment of ELRO+
⊥ and the resulting datalog program

can be directly used to test the consistency of the KB, as well as to answer instance queries.

Even though seemingly just a stylistic issue, a datalog specification of the compact

interpretation may be beneficial in practice: one can either materialise all consequences of

the program bottom-up in advance and obtain candidate answers by evaluating the CQ over

the materialised compact interpretation, or one can use a top-down technique to compute

candidate answers using only the part of the compact interpretation relevant for the query

at hand. The latter can be particularly useful in informations systems that have read-only

access to the data, or where data changes frequently.

After evaluating CQs over the datalog program, our algorithms use filtering procedures

to filter out unsound candidate answers. Even though we present two separate filtering

procedures for ELHO+
⊥ and ELRO+

⊥ knowledge bases, the checks these procedures use to

determine the soundness of a candidate answer are conceptually the same.

Given a candidate answer, we check in polynomial time whether the answer satisfies an

extended version of the filtering conditions on ‘forks’ and cycles by Lutz et al. [72]. Unlike

the previously known conditions, our extended conditions account for nominals and regular

role inclusions in the knowledge base. For candidate answers that do not map variables to

48

auxiliary constants, or are independent of the regular role inclusions in K, these filtering

conditions are sufficient to determine whether the candidate answer is sound.

For all other candidate answers, we nondeterministically construct a structure, called a

skeleton, that finitely represents the infinitely many ways in which the candidate answer can

be translated into a substitution mapping the query’s variables to elements in the universal

interpretation of K.

The substitutions that the skeleton represents, however, are not guaranteed to satisfy

those binary atoms in the CQ that the candidate answer maps onto edges obtained using

role inclusions. So, we enrich the skeleton with additional constraints that express how

these atoms need to be unfolded via role inclusions onto the universal interpretation. These

constraints precisely capture the conditions for the soundness of the candidate answer: if

the skeleton represents at least one substitution that satisfies the constraints, then the

candidate answer is sound. Finally, we determine the existence of such a substitution using

entailment checking over the direct and self predicates occurring in the datalog program.

Although the two filtering procedures implement similar checks, they differ in the way

in which they formulate the constraints on the skeleton that express how binary atoms need

to be unfolded via role inclusions. For ELHO+
⊥, we formulate these constraints directly

on the roles occurring in the KB; for ELRO+
⊥, we instead encode the languages associated

with each role in the KB using a bounded-stack PDA, and then we formulate the relevant

constraints on these PDA. This difference is also reflected in the worst-case complexity

of filtering: while the filtering procedure for ELHO+
⊥ runs in nondeterministic polyno-

mial time, the procedure for ELRO+
⊥ can be implemented to use polynomial space. This

is worst-case optimal: checking whether a candidate answer is sound is NP-complete and

PSpace-complete for ELHO+
⊥ and ELRO+

⊥, respectively. Moreover, to obtain goal-directed

filtering, our procedures implement optimisations that reduce the number of nondetermin-

istic choices to consider. Finally, both procedures exhibit pay-as-you-go behaviour: they

run in polynomial time if the knowledge base is in ELHO⊥.

In Chapter 5, we present the datalog program that captures the compact interpretation

of K. In Chapters 6 and 9, we present the filtering procedures for ELHO+
⊥ and ELRO+

⊥,

respectively; the latter procedure uses the PDA encoding of role inclusions from Chapter 8.

49

50

Chapter 5

Translating KBs into Datalog

The consequences of an ELRO+
⊥ knowledge base K that are relevant to determining the

consistency of K and answering instance queries over K can be captured using a so-called

compact interpretation of K. Although this interpretation is a model of K, it cannot be

homomorphically embedded into every model of K; hence, evaluating CQs on this interpre-

tation can produce unsound answers. In this chapter, we present a datalog program DK

that captures the compact interpretation of K. We obtain DK by first translating K into a

rule base ΞK, whose universal interpretations can be used to evaluate conjunctive queries

over K, and then, following Krötzsch et al. [67], we translate ΞK into a datalog program

DK. Our translations differ from the existing ones in that we use the rules in ΞK and in

DK to capture the structural properties of K using so-called direct and self predicates. We

use the direct and self predicates in ΞK to emphasise that the universal interpretations of

K resemble a forest-shaped structure, whereas in Chapters 6 and 9 we use the direct and

self predicates in DK to develop filtering procedures that determine whether the answers

obtained by evaluating CQs over DK are sound. For the rest of this chapter, we fix an

ELRO+
⊥ KB K = T ∪ R ∪A.

5.1 Translating Knowledge Bases into Rule Bases

We next show how to translate K into a rule base ΞK. As well as being a first step towards

transforming K into datalog, we use this translation to provide an alternative semantics

51

of K based on the universal interpretations of ΞK—interpretations which can be obtained

using our chase variant from Section 2.2. Hence, in the rest of this thesis, we identify the

universal interpretations of K with those of ΞK.

Our translation of K into rules is unusual in two respects.

First, we introduce an auxiliary unary predicate C and we uniquely associate each role

R ∈ rolR with a direct predicate DR and a self predicate SR. We use these predicates

in our translation to capture the structural properties of K; thus emphasising that each

universal interpretation I of K resembles a family of directed trees as described in Chapter

4. In particular, the unary predicate C captures the individuals occurring in K, the direct

predicates allow us to identify those direct edges in I that point to labelled nulls, and the

self predicates allow us to identify the self edges in I. Please note that, while the direct

predicates label only the direct edges in I that point to labelled nulls, the self predicates

label all self edges in I, including those pointing to named individuals; this allows us to

translate axioms of the form ∃R.Self v A into the first-order rule SR(x)→ A(x).

Second, in our definition of first-order logic, we consider >c and ⊥c, and >r and ⊥r as

standard predicates, and so they are not assigned any predetermined meaning. In contrast,

each DL interpretation interprets these predicates as shown in Table 3.1. We solve this

semantic mismatch by directly axiomatising in ΞK the intended meaning of these predicates

using additional datalog rules. This explicit axiomatisation of >c and ⊥c, and >r and ⊥r

into ΞK will provide practical benefits: the datalog translation DK of K inherits these

additional rules from ΞK, so we can evaluate DK using an arbitrary datalog engine without

making any additional assumption on the engine’s internal interpretation of these predicates.

Definition 5.1. Let C be a fresh unary predicate and, for each R ∈ rolR, let SR and DR be

a fresh unary predicate and a fresh binary predicate uniquely associated with R. Set ΞT ,R

contains the translation of each axiom in T ∪ R into a rule as shown in Table 5.1, and clK

contains the atoms and the rules in (5.1)–(5.8). The rule base for K is ΞK = ΞT ,R ∪ clK ∪ A.

C(a) ∀a ∈ indK (5.1)

C(x) ∧R(x, x)→ SR(x) ∀R ∈ rolK (5.2)

52

Table 5.1: Translating ELRO+
⊥ axioms into first-order rules

Axiom Rule

(1) A1 v A A1(x) → A(x)

(2) A1 uA2 v A A1(x) ∧A2(x) → A(x)

(3) A1 v {a} A1(x) → x ≈ a
(4) A1 v ∃R.A A1(x) → ∃z.R(x, z) ∧ DR(x, z) ∧A(z)

(5) ∃R.A1 v A R(x, y) ∧A1(y) → A(x)

(6) A v ∃R.Self A(x) → R(x, x) ∧ SR(x)

(7) ∃R.Self v A SR(x) → A(x)

(8) key(A,R1, . . . , Rn)
A(x) ∧A(y) ∧ C(x) ∧ C(y)∧ → x ≈ y∧
i C(zi) ∧Ri(x, zi) ∧Ri(y, zi)

(9) ε v R >c(x) → R(x, x) ∧ SR(x)

(10) R1 · · ·Rn v R R1(x0, x1) ∧ . . . ∧Rn(xn−1, xn) → R(x0, xn)

SS(x)→ SR(x) ∀S v R ∈ R (5.3)

DS(x, y)→ DR(x, y) ∀S v R ∈ R (5.4)

A(x)→ >c(x) ∀A ∈ {C} ∪ conK (5.5)

R(x, y)→ >c(x) ∧ >c(y) ∀R ∈ rolK (5.6)

>c(x) ∧ >c(y)→ >r(x, y) (5.7)

⊥r(x, y)→ ⊥c(x) (5.8)

Example 5.1 shows that, due to axioms of type (4) from Table 5.1, rule base ΞK is not

necessarily a datalog program.

Example 5.1. Let K be the knowledge base from Example 4.1 on page 39. Then, the axioms

in the TBox T of K are translated into rules as follows.

A(x)→ ∃z.S(x, z) ∧ DS(x, z) ∧ C(z) E(x)→ P (x, x) ∧ SP (x)

A(x)→ ∃z.T (x, z) ∧ DT (x, z) ∧ C(z) Aa(x)→ x ≈ a

C(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧ E(z)

B(x)→ ∃z.P (x, z) ∧ DP (x, z) ∧D(z)

D(x)→ ∃z.P (x, z) ∧ DP (x, z) ∧D(z)

D(x)→ ∃z.T (x, z) ∧ DT (x, z) ∧Aa(z)

53

a

1 2

4 5

T,CS,C

S T

R,E

T,S,R

R,E

R,S,T
S T

P P

a

oS,C oT,C

oR,E

S T

T,S,R R,S,T

S T

P

Universal interpretation I Universal interpretation J

b

3 P,D

P
T

T

T

b

oP,D

PT

T

T

B B

P

A, Aa A, Aa

Figure 5.1: The universal interpretation I and J of ΞK and DK for the KB in Example 4.1

Rule base ΞK contains all the above rules and is thus not a datalog program. The left part

of Figure 5.1 shows a universal interpretation I of ΞK obtained using our chase variant

described in Section 2.2; atoms involving C, >c, and >r are not shown for clarity; notation

is as explained in Example 4.1.

While our definition of ΞK differs from the usual translation of K into first-order logic [6],

Proposition 5.2 shows that we can use ΞK to check the consistency of K and answer CQs

over K. When K is consistent, by Theorem 2.3 we can answer CQs over K by evaluating

them in a universal interpretation of ΞK. The proof of this result is given in Section 5.3.

Proposition 5.2. ΞK satisfies the following properties for each CQ q = ∃~y. ψ(~x, ~y) over K

and each substitution π such that dom(π) = ~x and each element in rng(π) occurs in indK.

(1) K is inconsistent if and only if ΞK |= ∃y. ⊥c(y).

(2) K |=DL π(q) if and only if K is inconsistent or ΞK |= π(q).

We next formally characterise the structural properties of a universal interpretation

I of K that we intuitively described in Chapter 4. To this end, please recall that each

labelled null w occurring in I can be uniquely associated with an existential rule of the

form A1(x)→ ∃z. R(x, z) ∧ DR(x, z) ∧A(z) that was used to generate it, and that w’s type

54

is R,A. Moreover, we let dirI be the following relation on the terms occurring in instI .

dirI = {〈w,w′〉 | ∃R ∈ rolK, ∃A ∈ conK : DR(w,w′) ∈ instI ∧ w′ ∈ ΦN is of type R,A}

Hence, relation dirI contains each edge 〈w,w′〉 of I such that 〈w,w′〉 is direct for some role

R and w′ is a labelled null.

In Lemma 5.3 we then show that relation dirI is a forest rooted in the individuals

occurring in ΞK, which proves that the direct edges in I induce a forest-shaped structure in

which all edges either point from parents to children or to the individuals in K. Moreover,

in property (2) we show that each atom R(w,w′) in I can be unfolded via the role inclusions

in K into a path that consists only of direct and self edges. Finally, in properties (3) and

(4) we focus on simple roles, the roles of K that cannot be expanded into role chains using

role inclusions, and we show that each edge 〈w,w′〉 with w′ ∈ ΦN in I that is labelled by a

simple role is either a self or a direct edge. The proof of this lemma is given in Section 5.3.

Lemma 5.3. Interpretation I satisfies the following properties for all terms w and w′

occurring in I and each role R ∈ rolK.

(1) Relation dirI is a forest rooted in NI.

(2) R(w,w′) ∈ instI implies that a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with

ρ ∈ L(R) and terms w0, . . . , wm with w0 = w and wm = w′ exist such that

(a) for each i ∈ [1..m], either wi ∈ NI, or wi is a labelled null of type Ri, Ai and

DRi(wi−1, wi) ∈ instI .

(b) for each i ∈ [1..m], we have that Ri(wi−1, wi) ∈ instI ; and

(c) for each i ∈ [0..m] and each role S occurring in role chain χi, we have that

{S(wi, wi), SS(wi)} ⊆ instI .

(3) R(w,w) ∈ instI , R is simple, and w ∈ ΦN imply that SR(w) ∈ instI .

(4) R(w,w′) ∈ instI , R is simple, w′ ∈ ΦN , and w 6= w′ imply that 〈w,w′〉 ∈ dirI .

55

5.2 Translating Rule Bases into Datalog

To translate K into datalog, we approximate those rules in ΞK that contain existential

quantifiers using the technique by Krötzsch et al. [67]: for each role R ∈ rolR and each

atomic concept A ∈ conK, we introduce a globally fresh and unique auxiliary constant oR,A,

which represents all the labelled nulls in the universal interpretation I of K of type R,A. In

addition, unlike the existing datalog encoding by Krötzsch et al. [67], our datalog program

DK inherits from ΞK the direct and self predicates which capture information about the

structure of K.

Definition 5.4. Set Naux contains a fresh constant oR,A not occurring in NI for each role

R and each atomic concept A. Datalog program DT ,R contains the translation of each axiom

in T ∪ R of type other than (4) into a rule as shown in Table 5.1; furthermore, for each

axiom A1 v ∃R.A in T , set DT ,R contains A1(x)→ R(x, oR,A) ∧ DR(x, oR,A) ∧A(oR,A).

Then DK = DT ,R ∪ clK ∪ A is the datalog program for K.

As for the universal interpretations of ΞK, we view each universal interpretation J of DK

as a directed graph that contains an edge 〈u, u′〉 labelled by role R for each binary assertion

R(u, u′) ∈ J . The direct and self predicates occurring in DK allow us to distinguish between

direct, self, and composite edges in J . An edge 〈u, u′〉 labelled by role R in J is a direct edge

if u′ ∈ NI or DR(u, u′) ∈ J , it is a self edge if u = u′ and SR(u) ∈ J , and it is a composite edge

if u′ is an auxiliary constant and the edge is neither direct nor self. Whenever two constants

u and u′ are connected by a direct predicate in J , we say that u is directly connected to u′.

Example 5.2 illustrates the different types of edges in a universal interpretation J of DK.

Example 5.2. The TBox axioms in the knowledge base K from Example 4.1 are translated

56

into datalog as follows.

A(x)→ S(x, oS,C) ∧ DS(x, oS,C) ∧ C(oS,C) E(x)→ S(x, x) ∧ SS(x)

A(x)→ T (x, oT,C) ∧ DT (x, oT,C) ∧ C(oT,C) Aa(x)→ x ≈ a

C(x)→ R(x, oR,E) ∧ DR(x, oR,E) ∧ E(oR,E)

B(x)→ P (x, oP,D) ∧ DP (x, oP,D) ∧D(oP,D)

D(x)→ P (x, oP,D) ∧ DP (x, oP,D) ∧D(oP,D)

D(x)→ T (x, oP,Aa) ∧ DT (x, oP,Aa) ∧Aa(oP,Aa)

The right part of Figure 5.1 shows a universal interpretation J of DK; atoms involving C,

>c, and >r are not shown for clarity. We use the notation from Example 4.1 to distinguish

between direct, self, and composite edges in J . Note that auxiliary constants oT,Aa is ‘merged’

in J with individuals a, since DK |= oT,Aa ≈ a.

By Definition 5.4, it is clear that we can compute the datalog program DK in time linear

in the size of K. Moreover, because we assume that K is normalised, each role inclusion

ρ v R ∈ K is such that |ρ| ≤ 2. Hence, each rule in DK contains a fixed number of variables,

and so we can compute the set of all consequences of DK in time polynomial in the size of

K [24]. Proposition 5.5 summarises these results.

Proposition 5.5. Program DK can be computed in time linear in |K|; furthermore, the set

of consequences of DK can be computed in time polynomial in |K|.

Example 5.2 shows that, due to equality rules, auxiliary constants in DK may be equal

to individuals from NI, thus not representing labelled nulls of I. Hence, in Definition 5.6,

we introduce two sets: set auxDK provides us with all auxiliary constants that are not equal

to an individual from NI, and set r-indDK provides us with a canonical representative for

each individual from NI occurring in DK.

Definition 5.6. Let < be a total order on constants such that a < oR,A for each individual

a ∈ NI and each oR,A ∈ Naux. Set auxDK contains each constant u occurring in DK for

which no individual a ∈ NI exists such that DK |= u ≈ a. Furthermore, for each constant

57

u occurring in DK, let u≈ = u if u ∈ auxDK; otherwise, let u≈ be the <-smallest individual

a ∈ NI such that DK |= u ≈ a. Set r-indDK contains a≈ for each individual a ∈ indK.

The next proposition shows that the datalog program DK can be used to test the con-

sistency of, and answer instance queries over K. By Proposition 5.5, both tasks can be done

using polynomial time in the size of K. The proof of Proposition 5.7 is given in Section 5.3.

Proposition 5.7. Datalog program DK satisfies the following two properties for each atomic

concept A ∈ conK and each individual a ∈ indK.

• K is inconsistent if and only if DK |= ∃y.⊥c(y).

• K |=DL A(a) if and only if K is inconsistent or DK |= A(a).

Datalog program DK can be seen as a strengthening of K: all axioms of the form

A1 v ∃R.A in K are satisfied in a universal interpretation J of DK using a single auxiliary

constant oR,A. So, while we can use DK to compute the answers to instance queries over K,

evaluating a CQ q in J produces a set of candidate answers, ground substitutions that map

all of q’s variables to constants and embed q in J . For each certain answer π to q over K, a

candidate answer τ to q over DK exists such that π ⊆ τ . The converse, however, does not

necessarily hold; so in Definition 5.8 we call a candidate answer τ sound if it corresponds

to a certain answer to q over K.

Definition 5.8. A substitution τ is a candidate answer to a CQ q = ∃~y. ψ(~x, ~y) over DK

if dom(τ) = ~x ∪ ~y, each element of rng(τ) is a constant occurring in DK, and DK |= τ(q).

Such a candidate answer τ is sound if K |=DL τ |~x(q).

In Chapters 6 and 9, we present two filtering procedures for ELHO+
⊥ and ELRO+

⊥,

respectively, that check whether a candidate answer τ to a CQ q over DK is sound.

5.3 Proof of Correctness

In this section, we prove the technical results presented in this chapter. For convenience,

in the rest of this thesis, we shall assume w.l.o.g. that each instance of the chase procedure

presented in Section 2.2 is parametrised with the total order < specified in Definition 5.6,

58

and that a < w for each individual a ∈ NI and each labelled null w ∈ ΦN . Also, we let I

and J be arbitrary universal interpretations of ΞK and DK, respectively. Next, in Section

5.3.1 we prove the correctness of our encoding of K into rule bases, in Section 5.3.2 we

formally characterise the structural properties of the universal interpretations of K, and in

Section 5.3.3 we show the correctness of our encoding of K into datalog.

5.3.1 Correctness of the Translation into Rule Bases

We show that our translation of K into a rule base ΞK preserves both knowledge base

consistency and the answers to conjunctive queries.

Proposition 5.2. ΞK satisfies the following properties for each CQ q = ∃~y. ψ(~x, ~y) over K

and each substitution π such that dom(π) = ~x and each element in rng(π) occurs in indK.

(1) K is inconsistent if and only if ΞK |= ∃y. ⊥c(y).

(2) K |=DL π(q) if and only if K is inconsistent or ΞK |= π(q).

Proof. To prove the proposition, we show that, for each CQ q = ∃~y. ψ(~x, ~y) over K and each

substitution π where dom(π) = ~x and each element in rng(π) occurs in indK, we have that

K 6|=DL π(q) if and only if ΞK 6|= ∃y. ⊥c(y) and ΞK 6|= π(q). Since K is consistent if and only

if K 6|=DL ∃y. ⊥c(y), this shows that properties (1) and (2) hold. For the rest of this proof,

let q and π be an arbitrary CQ and an arbitrary substitution as specified above.

(⇒) Assume that K 6|=DL π(q); hence, a description logic model I of K exists such

that I 6|= π(q). Please recall that every description logic interpretation is also a first-order

interpretation. We next expand I to a first-order interpretation J of ΞK by interpreting

each fresh predicate occurring in ΞK as follows.

(C)J = {aJ ∈ ∆I | a ∈ indK}

(SR)J = {o ∈ ∆I | 〈o, o〉 ∈ RI} ∀R ∈ rolK

(DR)J = (R)I ∀R ∈ rolK

Because I is a description logic model of K, interpretation J satisfies each rule in ΞT ,R and

each rule of the form (5.5)–(5.8) in clK. By the definition of (C)J and (SR)J , interpretation

59

J also satisfies each rule of the form (5.1) and (5.2). Finally, J also satisfies each rule of

the form (5.3) and (5.4) in clK, because for each role inclusion S v R ∈ R, we have that

SI ⊆ RI ; so (SS)J ⊆ (SR)J and (DS)J ⊆ (DR)J . Therefore, J is a first-order model of ΞK

such that (⊥c)J = ∅ and J 6|= π(q), as required.

(⇐) Assume that ΞK 6|= ∃y. ⊥c(y) and ΞK 6|=DL π(q); we show that K 6|=DL π(q). Recall

that I is the universal interpretation of ΞK; then I satisfies the following properties.

(a) By Theorem 2.3, for each term w, we have that ⊥c(w) 6∈ instI , and ‖π(q)‖I 6⊆ instI .

(b) Due to rules (5.5)–(5.8) in clK, for all terms w and w′ occurring in instI , we have that

{>c(w),>r(w,w′)} ⊆ instI and ⊥r(w,w′) 6∈ instI .

(c) By our translation of axioms of types (6) and (9) and due to rule (5.2) in clK, for

each simple role R ∈ rolK and each term w, we have that SR(w) ∈ instI if and only if

R(w,w) ∈ instI .

We next associate with I the first-order interpretation I = 〈∆I , ·I〉, where ∆I contains

each term w occurring in instI and ·I is specified as follows.

• For each individual a ∈ indK, let aI = ‖a‖I ; for each individual a ∈ (NI \ indK), let

aI be an arbitrary term in ∆I .

• For each atomic concept A ∈ NC, let AI = {w ∈ ∆I | A(w) ∈ instI}.

• For each role R ∈ NR, let RI = {〈w,w′〉 ∈ ∆I ×∆I | R(w,w′) ∈ instI}.

Since K is normalised, the ABox A is non-empty; hence, ∆I is non-empty as well. By

properties (a) and (b), we have that I is a description logic interpretation and I 6|= π(q).

Clearly, interpretation I satisfies each assertion of K and each axiom of type other (7) of

K. By property (c), interpretation I also satisfies each axiom of type (7). Hence, I is a

description logic model of K such that I 6|= π(q); that is, K 6|=DL π(q).

5.3.2 Structural Properties of the Universal Interpretations of K

We next prove the structural properties of the universal interpretation I of K.

60

Lemma 5.3. Interpretation I satisfies the following properties for all terms w and w′

occurring in I and each role R ∈ rolK.

(1) Relation dirI is a forest rooted in NI.

(2) R(w,w′) ∈ instI implies that a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with

ρ ∈ L(R) and terms w0, . . . , wm with w0 = w and wm = w′ exist such that

(a) for each i ∈ [1..m], either wi ∈ NI, or wi is a labelled null of type Ri, Ai and

DRi(wi−1, wi) ∈ instI .

(b) for each i ∈ [1..m], we have that Ri(wi−1, wi) ∈ instI ; and

(c) for each i ∈ [0..m] and each role S occurring in role chain χi, we have that

{S(wi, wi), SS(wi)} ⊆ instI .

(3) R(w,w) ∈ instI , R is simple, and w ∈ ΦN imply that SR(w) ∈ instI .

(4) R(w,w′) ∈ instI , R is simple, w′ ∈ ΦN , and w 6= w′ imply that 〈w,w′〉 ∈ dirI .

Proof. We first prove properties (1) and (2), later we prove properties (3) and (4).

Properties (1) and (2). Let I0 be the instance that contains each ground atom occurring

in ΞK, and let 〈I1, r1, σ1〉, 〈I2, r2, σ2〉 . . . , be the chase sequence used to construct I. In the

following, we assume w.l.o.g. that, for each 〈In, rn, σn〉 where rn = >c(x) ∧ >c(y)→ >r(x, y)

and σn(y) is a labelled null, we have that >r(σn(x), wp) ∈ In−1 for each edge 〈wp, σn(y)〉 in

dirIn−1 . Note that each chase sequence can be extended to a sequence that satisfies this prop-

erty: it suffices to ensure that the sequence is saturated by rule >c(x) ∧ >c(y)→ >r(x, y)

before applying an existential rule of the form A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z).

We prove by induction on n ∈ N that each instance In satisfies properties (1) and (2).

Base case. Consider instance I0. Then instI0 does not contain labelled nulls, and so

dirI0 = ∅ and property (1) vacuously holds. Consider an arbitrary atom R(w,w′) ∈ instI0 .

Then, {w,w′} ⊆ NI, and property (2) holds for w0 = w, w1 = w′, χ0 = ε, and ρ = χ0 ·R.

Inductive step. Consider an arbitrary n ∈ N and assume that In satisfies properties (1)

and (2). Then, instance In+1 is the result of applying trigger 〈rn+1, σn+1〉 to In. Next, by

61

considering each rule r ∈ ΞK that derives binary atoms and each ground substitution σ, we

assume that 〈r, σ〉 = 〈rn+1, σn+1〉 and and we show that properties (1) and (2) hold for all

fresh atoms in In+1.

Axioms of Type (3). Consider a rule r of the form A(x)→ x ≈ a in ΞK and consider an

arbitrary term w1. Let σ be the substitution with σ(x) = w1, and assume that In+1 is the

result of applying 〈r, σ〉 to In. Let wr and w′r be the <-larger and <-smaller terms between

w1 and ‖a‖In . By the definition of < and due to ‖a‖In ∈ NI, we have that w′r ∈ NI. Then,

instance instIn+1 is the result of replacing each occurrence of wr with w′r. We next consider

the various atoms that get replaced by the application of 〈r, σ〉 to In and show that the

properties hold.

• R(w,w′) ∈ In and either w = wr or w′ = wr. By the inductive hypothesis, there

exist a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with ρ ∈ L(R), and terms

w0, . . . , wm with w0 = w and wm = w′ that satisfy property (2). Then, property (2)

holds for role chain ρ and terms ‖w0‖In+1 , . . . , ‖wm‖In+1 .

• DR(w,wr) ∈ In. Since w′r ∈ NI, we have that 〈w,w′r〉 6∈ dirIn+1 , and property (1)

vacuously holds.

• DR(wr, w
′) ∈ In and w′ is a labelled null of type R,A. Hence, we have 〈wr, w′〉 ∈ dirIn .

By the inductive hypothesis, we have that wr 6= w′ and wr is the unique term in In

such that 〈wr, w′〉 ∈ dirIn . Since w′r ∈ NI, we have dirIn+1 is a forest rooted in NI.

Axioms of Type (8). Consider a rule r in ΞK of the following form.

r = A(x) ∧A(y) ∧ C(x) ∧ C(y) ∧
∧

1≤i≤k
C(zi) ∧Ri(x, zi) ∧Ri(y, zi)→ x ≈ y

Furthermore, consider arbitrary terms wx, wy, w1, . . . , wk occurring in I and let σ be the

following substitution.

σ(x) = wx σ(y) = wy σ(zi) = wi 1 ≤ i ≤ k

Assume that In+1 is the result of applying 〈r, σ〉 to In. Let wr and w′r be the <-larger and

62

<-smaller terms between wx and wy. Since {C(x),C(y)} ⊆ ϕ, we have that wr and w′r are

individuals from NI. Then, instance instIn+1 is the result of replacing each occurrence of wr

with w′r. Similarly as for the case of axioms of type (3), one can show that the properties

are preserved for all atoms in In that are replaced by applying 〈r, σ〉 to In.

Axioms of Type (4). Consider a rule r of the form A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z)

in ΞK and an arbitrary term w. Let σ be the substitution with σ(x) = w, and assume that

In+1 is the result of applying 〈r, σ〉 to In. Then, we have that instance instIn+1 extends instIn

with {R(w,w′),DR(w,w′), A(w′)}, where w′ is the <-smallest labelled null not occurring in

In and the type of w′ is R,A. By the inductive hypothesis, we have that dirIn is a forest

rooted in NI. Since w′ is fresh and dirIn+1 extends dirIn with 〈w,w′〉, property (1) holds.

Moreover, property (2) holds for w0 = w, w1 = w′, χ0 = ε, and ρ = χ0 ·R.

Axioms of Type (6) and (9). Consider a rule r of the form A1(x)→ R(x, x) ∧ SR(x) in

ΞK, and consider an arbitrary term w. Let σ be the substitution such that σ(x) = w, and

assume that In+1 is the result of applying 〈r, σ〉 to In. Then, instIn+1 extends instIn with

{R(w,w),SR(w)}. Property (1) holds by the inductive hypothesis, and property (2) holds

for w0 = w, χ0 = R, and ρ = χ0.

Axioms of Type (10). Consider a rule r of the form
∧k
i=1Ri(xi−1, xi)→ R(x0, xk) in ΞK

and consider arbitrary terms w0, . . . , wk. Let σ be the substitution such that σ(xi) = wi for

each i ∈ [0..k], and assume that In+1 is the result of applying 〈r, σ〉 to In. Then, for each

i ∈ [1..k], we have that Ri(wi−1, wi) ∈ instIn , and instIn+1 extends instIn with R(w0, wk).

Then, property (1) holds by the inductive hypothesis. For property (2), by the inductive

hypothesis, for each i ∈ [1..k], terms wi0, . . . , w
i
mi

with wi0 = wi−1 and wimi
= wi and a non-

empty role chain ρi with ρi ∈ L(Ri) exist that satisfy property (2); note that w1
0 = w0 = w,

that wkmk
= wm = w′, and that wimi

= wi+1
0 for each i ∈ [1..k − 1]. By the definition of

L(R), then ρ1 · · · ρk ∈ L(R), and so property (2) holds for role chain ρ1 · · · ρk and terms

w0, w
1
1, . . . , w

1
m1
, . . . , wk1 , . . . , w

k
mk

.

Rules of the form (5.4). Consider a rule r of the form DS(x, y)→ DR(x, y) in ΞK and

consider arbitrary terms w and w′. Let σ be the substitution such that σ(x) = w and

σ(y) = w′, and assume that In+1 is the result of applying 〈r, σ〉 to In. Then, property (1)

63

and (2) hold by the inductive hypothesis.

Rule (5.7). Consider the rule r = >c(x) ∧ >c(y)→ >r(x, y) in ΞK, and consider arbi-

trary terms w and w′. Let σ be the substitution with σ(x) = w and let σ(y) = w′, and

assume that In+1 is the result of applying 〈r, σ〉 to In. Then, instIn+1 extends instIn

with >r(w,w′). Property (1) holds by the inductive hypothesis. For property (2), in

case w′ ∈ NI, the property holds for w0 = w, w1 = w′, χ0 = ε, and ρ = χ0 · >r. Hence,

in the following, we consider the case in which w′ ∈ ΦN . By the form of the existen-

tial rules occurring in ΞK, term w′ must have been generated by the application of a

rule of the form A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z); thus, a term wp exists such that

{R(wp, w
′),DR(wp, w

′)} ⊆ instIn . By the initial assumption on the chase sequence, we have

>r(w,wp) ∈ instIn . By the inductive hypothesis, a non-empty role chain ρ with ρ ∈ L(>r)

and terms w0, . . . , wm with w0 = w and wm = wp exist that satisfy property (2). By the

definition of L(>r), we then have that ρ ·R ∈ L(>r). Since R(wp, w
′) ∈ instIn , property (2)

holds for role chain ρ ·R and terms w0, . . . , wm, w
′.

Property (3). Consider an arbitrary role R ∈ rolK that is simple in R and an arbitrary

labelled null w ∈ ΦN . Assume that R(w,w) ∈ instI ; we show that SR(w) ∈ instI . By

property (2), a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with ρ ∈ L(R) and terms

w0, . . . , wm with w0 = w and wm = w exist that satisfy the conditions in property (2).

Moreover, because R is simple and ρ is non-empty, we have |ρ| = 1. We distinguish two

cases.

• χ0 = ∅ and ρ = R1. Since w ∈ ΦN , we have that DR1(w,w) ∈ instI . Hence, we have

that 〈w,w〉 ∈ dirI , which contradicts property (1).

• χ0 = S and ρ = χ0. Then, we have S ∈ L(R) and SS(w) ∈ instI . Since S ∈ L(R)

and R is simple in R, we have that roles R0, . . . , Rk with R0 = S and Rk = R exist

such that Ri−1 v Ri ∈ R for each i ∈ [1..k]. Due to rules of the form (5.3) in ΞK and

because I is closed under ΞK, we have SR(w) ∈ instI and property (3) holds.

Property (4). Consider an arbitrary role R ∈ rolK that is simple in R, and consider

arbitrary terms w and w′ such that w 6= w′ and w′ ∈ ΦN . Assume that R(w,w′) ∈ instI , we

64

show that 〈w,w〉 ∈ dirI . By property (2), a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm

with ρ ∈ L(R) and terms w0, . . . , wm with w0 = w and wm = w′ exist that satisfy all the

conditions in (2). Because R is a simple role, we have |ρ| = 1; moreover, due to w 6= w′, we

also have that χ0 = ∅ and ρ is of the form ρ = R1. Since DR1(w,w′) ∈ instI and w′ ∈ ΦN ,

we have that 〈w,w′〉 ∈ dirI and property (4) holds.

5.3.3 Correctness of the Translation into Datalog

Finally, we prove Proposition 5.7. Towards this goal, we show that, for each atomic concept

A ∈ conK and each individual a ∈ indK, we have that

(a) ‖A(a)‖I ∈ instI if and only if ‖A(a)‖J ∈ instJ .

Please note that, by Proposition 5.2 and Theorem 2.3, property (a) implies Proposition 5.7.

We next define a function ι that maps each term w occurring in I to a term ι(w) as

follows.

ι(w) =


w if w ∈ NI,

oR,A if w ∈ ΦN and the type of w is R,A.

Lemma 5.9 shows that ι is an homomorphism from instI to instJ modulo the replacements

of individuals due to equality rules, and that whenever a term w is replaced by w′ in I,

then ι(w) and ι(w′) are represented by the same canonical representative in J .

Lemma 5.9. Function ι satisfies the following three properties for all terms w and w′, each

A ∈ {C} ∪ conK ∪ {SS | S ∈ rolK}, and each R ∈ rolK ∪ {DS | S ∈ rolK}.

(1) A(w) ∈ instI implies that ‖A(ι(w))‖J ∈ instJ .

(2) R(w,w′) ∈ instI implies that ‖R(ι(w), ι(w′))‖J ∈ instJ .

(3) w w′ ∈ eqI implies that ‖ι(w)‖J = ‖ι(w′)‖J .

Proof. Let 〈I1, r1, σ1〉, 〈I2, r2, σ2〉, . . . be the chase sequence used to construct I and let I0

be the instance that contains each ground atom in ΞK. We show by induction on n ∈ N

that each instance In satisfies these three properties.

65

Base case. Consider instance I0. Then, instI0 contains precisely the atoms occurring in

ΞK, whereas eqI0 = ∅. Hence, property (3) holds vacuously; furthermore, for each term w

occurring in I0, we have that w ∈ NI and ι(w) = w. For properties (1) and (2), consider an

arbitrary atom φ ∈ instI0 . By the definition of DK, we have that φ ∈ DK and so DK |= φ.

By Theorem 2.3, we then have that ‖φ‖J ∈ instJ , as required.

Inductive step. Consider an arbitrary n ∈ N and assume that the instance In satisfies

properties (1)–(3).

We first prove that In satisfies the following auxiliary property for all terms w and w′

occurring in In.

(4) ‖w‖In = w′ implies that ‖ι(w)‖J = ‖ι(w′)‖J .

Consider arbitrary terms w and w′ occurring in In, and assume that ‖w‖In = w′. Then,

terms w0, . . . , wk with w0 = w and wk = w′ exist such that wi−1 wi ∈ eqIn for each

i ∈ [1..k]. Since In satisfies property (3) by the inductive hypothesis, for each i ∈ [1..k],

we have ‖ι(wi−1)‖J = ‖ι(wi)‖J ; therefore, we have ‖ι(w)‖J = ‖ι(w′)‖J .

Instance In+1 is the result of applying trigger 〈rn+1, σn+1〉 to In. Next, by considering

each rule r ∈ ΞK and each ground substitution σ, we assume that 〈r, σ〉 = 〈rn+1, σn+1〉 and

show that properties (1)–(3) hold for all fresh atoms in In+1.

(Datalog Rule) Consider a rule r of the form ϕ(~x, ~y)→ ψ(~x) in ΞK and a substitution σ

with dom(σ) = ~x ∪ ~y, and assume that In+1 is the result of applying 〈r, σ〉 to In. Then, we

have σ(‖ϕ‖In) ⊆ instIn , and instIn+1 = instIn ∪ σ(‖ψ‖In) and eqIn+1
= eqIn . Let σ′ be the

substitution with σ′(z) = ι(σ(z)) for each z ∈ ~x ∪ ~y. By the inductive hypothesis, we have

‖σ′(ϕ)‖J ⊆ instJ . Since r ∈ DK and J is closed under DK, we have that ‖σ′(ψ)‖J ⊆ instJ .

(Existential Rule) Consider a rule r of the form A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z)

in ΞK and a substitution σ = {x 7→ w}, and assume that In+1 is the result of applying 〈r, σ〉

to In. Then, we have A(w) ∈ instIn , and instIn+1 = instIn ∪ {R(w,w′),DR(w,w′), A(w′)}

and eqIn+1
= eqIn , where w′ ∈ ΦN is the <-smallest labelled null not occurring in In.

Then w′ is generated by rule r and ι(w′) = oR,A. By the inductive hypothesis, we have

‖A1(ι(w))‖J ∈ J . Since DK contains the rule A1(x)→ R(x, oR,A) ∧ DR(x, oR,A) ∧A(oR,A)

66

and J is closed under DK, ‖R(ι(w), ι(w′)) ∧ DR(ι(w), ι(w′)) ∧A(ι(w′))‖J ⊆ J , as required.

(Equality Rule) We distinguish between two types of equality rules.

First, consider an equality rule r of the form A(x)→ x ≈ a in ΞK and a substitution

σ = {x 7→ w1}, and assume that In+1 is the result of applying 〈r, σ〉 to In. Then, we have

A(w1) ∈ instIn and w1 6= ‖a‖In . By the inductive hypothesis, we have ‖A(ι(w1))‖J ∈ J .

Since r ∈ DK and J is closed under DK, we have ‖ι(w1)‖J = ‖a‖J . We next consider two

cases, and in each case we define terms w and w′ such that w > w′ and ‖ι(w)‖J = ‖ι(w′)‖J .

• w1 > ‖a‖In . Let w = w1 and let w′ = ‖a‖In Due to w′ = ‖a‖In and property (4), we

have ‖ι(w′)‖J = ‖a‖J . Since ‖ι(w1)‖J = ‖a‖J , we have ‖ι(w)‖J = ‖ι(w′)‖J .

• ‖a‖In > w1. Let w = ‖a‖In and let w′ = w1. Due to w = ‖a‖In and property (4), we

have ‖ι(w)‖J = ‖a‖J . Since ‖ι(w1)‖J = ‖a‖J , we have ‖ι(w′)‖J = ‖ι(w)‖J .

In either cases, we then have ‖ι(w)‖J = ‖ι(w′)‖J . Hence, the instance In+1—obtained from

In by replacing each occurrence of term w in instIn with w′, and by extending eqIn with

w w′—satisfies properties (1)–(3).

Second, consider a rule r = ϕ→ x ≈ y in ΞK, where ϕ is of the form

ϕ = A(x) ∧A(y) ∧ C(x) ∧ C(y) ∧
∧

1≤i≤k
C(zi) ∧Ri(x, zi) ∧Ri(y, zi).

Moreover, consider a ground substitution σ, and assume that In+1 is the result of applying

〈r, σ〉 to In. Then, we have σ(ϕ) ⊆ instIn and σ(x) 6= σ(y). Let σ′ be the substitution such

that σ′(z) = ι(σ(z)) for each variable z occurring in ϕ. By the inductive hypothesis, we have

‖σ′(ϕ)‖J ⊆ instJ . Since r ∈ DK and J is closed under DK, we have ‖σ′(x)‖J = ‖σ′(y)‖J .

Let w and w′ be the <-larger and <-smaller terms in {σ(x), σ(y)}, respectively. Due to

‖σ′(x)‖J = ‖σ′(y)‖J , we also have that ‖ι(w)‖J = ‖ι(w′)‖J ; so the instance In+1—obtained

from In by replacing each occurrence of term w in instIn with w′, and by extending eqIn

with w w′—satisfies properties (1)–(3).

In Lemma 5.10 we prove a similar result for the other direction—that is, we show how

ι can be used to map atoms in instJ to atoms in instI modulo renaming of terms—in

67

particular, property (5) shows that each direct edge in J corresponds to many direct edges

in I all of which are labelled by the same direct predicates. Please recall that, given two

constants u and u′, we say that u is directly connected to u′ in J if a role S exists such that

DS(u, u′) ∈ instJ .

Lemma 5.10. Function ι satisfies the following properties for all terms w and w′ occurring

in I, each constant oP,B ∈ Naux, each concept A ∈ {C} ∪ conK, and each role R ∈ rolK.

(1) A(ι(w)) ∈ instJ implies that ‖A(w)‖I ∈ instI .

(2) SR(ι(w)) ∈ instJ implies that ‖SR(w) ∧R(w,w)‖I ∈ instI .

(3) R(ι(w), ι(w′)) ∈ instJ , and >r ∈ L(R) or ι(w′) ∈ NI imply that ‖R(w,w′)‖I ∈ instI .

(4) R(ι(w), ι(w′)) ∈ instJ , >r 6∈ L(R), and ι(w′) 6∈ NI imply that a term w′′ occurring in

I exists such that ι(w′′) = ι(w′) and ‖R(w,w′′)‖I ∈ instI .

(5) ι(w) is directly connected to oP,B in J implies that a term w∗ exists in I such that

• ι(w∗) = oP,B and ‖P (w,w∗) ∧ DP (w,w∗)‖I ⊆ instI , and

• for each role S ∈ rolK, DS(ι(w), oP,B) ∈ instJ implies that P v∗R S.

(6) For each constant u occurring in J , a term wu exists such that ι(wu) = u.

(7) ι(w) ι(w′) ∈ eqJ implies that ‖w‖I = ‖w′‖I .

Proof. Let 〈J1, r1, σ1〉, 〈J2, r2, σ2〉, . . . be the chase sequence for DK used to construct J and

let J0 be the instance that contains all ground atoms in DK. Please note that, by the

definition of clK and the form of equality rules in DK, for each n ∈ N and all constants u

and u′ occurring in Jn, we have that

• C(u) ∈ instJn implies that u ∈ NI, and

• u u′ ∈ eqJn implies that u′ ∈ NI.

Next, we prove by induction on n ∈ N that each instance Jn satisfies properties (1)–(7).

Base case. Consider instance J0. Then, instJ0 contains precisely the ground atoms oc-

curring in DK, whereas eqJ0 = ∅. Moreover, all atoms in instJ0 are constructed using the

68

individuals from indK and the predicates in {C} ∪ conK ∪ rolK. Thus, for each constant u

occurring in J0, we have that ι(u) = u; furthermore, properties (2) and (4)–(7) hold vacu-

ously. For the remaining properties, consider an arbitrary atom φ ∈ J0. By the definition

of DK, we have φ ∈ ΞK and so ΞK |= φ. By Theorem 2.3, we then have that ‖φ‖I ∈ instI .

Inductive step. Consider an arbitrary n ∈ N and assume that Jn satisfies (1)–(7).

We first show that Jn satisfies the following auxiliary property for each term w and each

individual a occurring in I:

(8) ‖ι(w)‖Jn = a implies that ‖w‖I = ‖a‖I .

Consider an arbitrary term w and an arbitrary individual a occurring in I, and assume

that ‖ι(w)‖Jn = a. Then, terms w0, . . . , wk with w0 = w and wk = a exist in I such that

ι(wi−1) ι(wi) ∈ eqJn for each i ∈ [1..k]. Since Jn satisfies property (7), by the inductive

hypothesis, for each i ∈ [1..k], we have that ‖wi−1‖I = ‖wi‖I ; and so ‖w‖I = ‖a‖I .

Instance Jn+1 is the result of applying trigger 〈rn+1, σn+1〉 to Jn. Next, by considering

each rule r ∈ DK and each ground substitution σ, we assume that 〈r, σ〉 = 〈rn+1, σn+1〉 and

show that properties (1)–(7) hold for all fresh atoms in Jn+1.

Axioms of Type (1), (2), and (7) and Rule of the form (5.5). Consider a rule r of the form∧k
i=1Ai(x)→ A(x) in DK where each A(i) ∈ {C} ∪ conK, and consider an arbitrary term w

occurring in I. Let σ be the substitution with σ(x) = ι(w) and assume that Jn+1 is the result

of applying 〈r, σ〉 to Jn. Then, for each i ∈ [1..k], we have Ai(ι(w)) ∈ instJn ; furthermore,

we have that instJn+1 = instJn ∪ {A(ι(w))} and eqJn+1
= eqJn . By the inductive hypothesis,

for each i ∈ [1..k], we have ‖Ai(w)‖I ∈ instI . As r ∈ ΞK and I is closed under ΞK, we have

‖A(w)‖I ∈ instI .

Axioms of Type (3). Consider a rule r of the form A(x)→ x ≈ a and an arbitrary term

w1 occurring in I. Let σ be the substitution with σ(x) = ι(w1), and assume that Jn+1 is

the result of applying 〈r, σ〉 to Jn. Then, we have that A(ι(w1)) ∈ instJn and ι(w1) 6= ‖a‖Jn .

By the inductive hypothesis, we have ‖A(w1)‖I ∈ instI . Since r ∈ ΞK and I is closed under

ΞK, we have ‖w1‖I = ‖a‖I . We next consider two cases, and in each case we define terms

w and w′ such that ι(w) > ι(w′), ι(w′) ∈ NI, and ‖w‖I = ‖w′‖I .

69

• ι(w1) > ‖a‖Jn . Let w = w1 and let w′ = ‖a‖Jn . Then, we have that w′ ∈ NI, and so

ι(w′) = ‖a‖Jn . By property (8), we then have ‖w′‖I = ‖a‖I . Since ‖w1‖I = ‖a‖I and

w = w1, we have ‖w‖I = ‖w′‖I .

• ‖a‖Jn > ι(w1). Let w = ‖a‖Jn and let w′ = w1. Then, we have ι(w′) ∈ NI and, due

to w = ‖a‖Jn , we also have w ∈ NI and ι(w) = ‖a‖Jn . By property (8), we then have

‖w‖I = ‖a‖I . Since w1 = w and ‖w1‖I = ‖a‖I , we have ‖w′‖I = ‖w‖I .

Then, Jn+1 is obtained from Jn by replacing each occurrence of ι(w) in instJn with ι(w′),

and by extending eqJn with ι(w) ι(w′). Due to ‖w‖I = ‖w′‖I , properties (6) and (7),

as well as (1) and (2) hold. We next show that properties (3) and (4) hold for each fresh

binary atom in Jn+1.

Consider an arbitrary atom R(ι(wr), ι(w
′
r)) ∈ instJn that is replaced by the application

of trigger 〈r, σ〉. In the following, we consider only the case in which R 6∈ L(>r) and

ι(w′r) 6∈ NI; in all other cases, properties (3) and (4) are preserved because Jn+1 satisfies

property (7). Then, one of the following must hold.

• ι(wr) = ι(w) and ι(w′r) = ι(w). By the inductive hypothesis, a term w′′ exists such

that ι(w′′) = ι(w′r) and ‖R(wr, w
′′)‖I ∈ instI . Since ι(wr) = ι(w) and ι(w′′) = ι(w), by

property (7) we have ‖wr‖I = ‖w′‖I and ‖w′′‖I = ‖w′‖I ; thus ‖R(w′, w′)‖I ∈ instI .

• ι(wr) = ι(w) and ι(w′r) 6= ι(w). By the inductive hypothesis, a term w′′ exists such

that ι(w′′) = ι(w′r) and ‖R(wr, w
′′)‖I ∈ instI . Since ι(wr) = ι(w), by property (7), we

have that ‖wr‖I = ‖w′‖I ; thus ‖R(w′, w′′)‖I ∈ instI .

• ι(wr) 6= ι(w) and ι(w′r) = ι(w). By the inductive hypothesis, a term w′′ exists such

that ι(w′′) = ι(w′r) and ‖R(wr, w
′′)‖I ∈ instI . By property (7) and since ι(w′′) = ι(w),

we have ‖w′′‖I = ‖w′‖I ; thus ‖R(wr, w
′)‖I ∈ instI .

For property (5), consider an arbitrary term wr and an arbitrary auxiliary constant oP,B

such that ι(wr) is directly connected to oP,B in Jn. We distinguish two alternative cases.

• ι(wr) = ι(w) and ι(w) 6= oP,B. By the inductive hypothesis, a term w∗ exists such that

ι(w∗) = oP,B and ‖P (wr, w
∗) ∧ DP (wr, w

∗)‖I ⊆ instI . Since ι(wr) = ι(w), by property

(7), we have ‖wr‖I = ‖w′‖I , and so ‖P (w′, w∗) ∧ DP (w′, w∗)‖I ⊆ instI .

70

• ι(w) = oP,B. Given that ι(w′) ∈ NI, the property vacuously holds.

Axioms of Type (4). Consider a rule r ∈ DK of the form

r = A1(x)→ R(x, oR,A) ∧ DR(x, oR,A) ∧A(oR,A)

and consider an arbitrary term w occurring in I. Let σ be the substitution with σ(x) = ι(w),

and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have A1(ι(w)) ∈ instJn ,

as well as eqJn+1
= eqJn and

instJn+1 = instJn ∪ ‖R(ι(w), oR,A) ∧ DR(ι(w), oR,A) ∧A(oR,A)‖Jn .

By the inductive hypothesis, we have that ‖A1(w)‖I ∈ instI . Furthermore, ΞK contains a

rule A1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z). Since I is closed under ΞK, a term w∗ exists

in I such that ι(w∗) = oR,A and ‖R(w,w∗) ∧ DR(w,w∗) ∧A(w∗)‖I ⊆ instI . We next show

that the properties the are satisfied by considering two alternative cases.

• ‖oR,A‖Jn = oR,A. Then, due to ι(w∗) = oR,A, property (6) is satisfied; furthermore, as

R v∗R R, property (5) is also satisfied. Next, we consider an arbitrary term w′ with

ι(w′) = oR,A and show that properties (1) and (3)–(4) are satisfied by the fresh atoms

in instJn+1 . By the definition of ΞK and I, term w′ must have been generated by a

rule in ΞK of the form A′1(x)→ ∃z.R(x, z) ∧ DR(x, z) ∧A(z); thus ‖A(w′)‖I ∈ instI

and property (1) holds. For properties (3) and (4), we consider two cases.

– >r ∈ L(R). Since ‖A1(w) ∧A(w′)‖I ⊆ instI , ΞK contains rules (5.5) and (5.7),

and I is closed under ΞK, we have that ‖>r(w,w′)‖I ∈ instI . As >r ∈ L(R) and

I is closed under ΞK, we have that ‖R(w,w′)‖I ∈ instI and property (3) holds.

– >r 6∈ L(R). Then property (4) is satisfied by term w′′ = w∗.

• ‖oR,A‖Jn 6= oR,A. Hence, auxiliary constant oR,A occurs already in Jn and property

(6) holds by the inductive hypothesis. Next, we consider an arbitrary term w′ with

ι(w′) = ‖oR,A‖Jn and show that properties (1) and (3) hold. Then, we have that

71

ι(w′) ∈ NI and ι(w′) = ‖ι(w∗)‖Jn . By property (8), we have ‖w′‖I = ‖w∗‖I ; thus

‖R(w,w′) ∧A(w′)‖I ⊆ instI and the properties hold.

Axioms of Type (5). Consider a rule r of the form R(x, y) ∧A1(y)→ A(x) in DK, and

two arbitrary terms w and w′ occurring in I. Let σ be the substitution with σ(x) = ι(w) and

σ(y) = ι(w′), and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have

that {R(ι(w), ι(w′)), A1(ι(w′))} ⊆ instJn , eqJn+1
= eqJn , and instJn+1 = instJn ∪ {A(ι(w)}.

We distinguish two cases.

• >r ∈ L(R) or ι(w′) ∈ NI. Then, by the inductive hypothesis, we immediately have

that ‖R(w,w′) ∧A1(w′)‖I ⊆ instI .

• >r 6∈ L(R) and ι(w′) 6∈ NI. By the inductive hypothesis, a term w′′ exists with

ι(w′′) = ι(w′) and ‖R(w,w′′) ∧A1(w′′)‖I ⊆ instI .

In either cases, since r ∈ ΞK and I is closed under ΞK, we have ‖A(w)‖I ∈ instI .

Axioms of Type (6) and (9). Consider a rule r of the form A1(x)→ R(x, x) ∧ SR(x)

in DK and consider two arbitrary terms w and w′ occurring in I with ι(w) = ι(w′). Let

σ be the substitution with σ(x) = ι(w), and assume that Jn+1 is the result of applying

〈r, σ〉 to Jn. Then, we have that {A1(ι(w)), A1(ι(w))} ⊆ instJn , as well as eqJn+1
= eqJn

and instJn+1 = instJn ∪ {SR(ι(w)), R(ι(w), ι(w′))}. Since ι(w) = ι(w′), by the inductive hy-

pothesis, we have that ‖A1(w) ∧A1(w′)‖I ⊆ instI . Since r ∈ ΞK and I is closed under ΞK,

we have that ‖SR(w) ∧ SR(w′)‖I ⊆ instI and ‖R(w,w) ∧R(w′, w′)‖I ⊆ instI ; thus property

(2) holds. We show that properties (3) and (4) hold by distinguishing three cases.

• >r ∈ L(R). As ‖A1(w) ∧A1(w′)‖I ⊆ instI , ΞK contains rules (5.5) and (5.7), I is

closed under clK, we have ‖>r(w,w′)‖I ∈ instI . As >r ∈ L(R) and I is closed under

ΞK, we have ‖R(w,w′)‖I ∈ instI .

• >r 6∈ L(R) and ι(w′) ∈ NI. By the definition of ι and since ι(w) = ι(w′), we have

that w = w′. Thus, we have ‖R(w,w′)‖I ∈ instI .

• >r 6∈ L(R) and ι(w′) 6∈ NI. Then, by setting w′′ = w, we have that ι(w′′) = ι(w′) and

‖R(w,w′′)‖I ∈ instI .

72

Axioms of Type (8). Consider a rule r ∈ DK of the following form.

r = A(x) ∧A(y) ∧ C(x) ∧ C(y) ∧
∧

1≤i≤k
C(zi) ∧Ri(x, zi) ∧Ri(y, zi)→ x ≈ y

Furthermore, consider arbitrary terms wx, wy, w1, . . . , wk occurring in I and let σ be the

following substitution.

σ(x) = ι(wx) σ(y) = ι(wy) σ(zi) = ι(wi) 1 ≤ i ≤ k

Assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have that σ(ϕ) ⊆ instJn

and σ(x) 6= σ(y). Let w and w′ be the <-larger and <-smaller terms between wx and wy;

then Jn+1 is obtained from Jn by replacing each occurrence of ι(w) in instJn with ι(w′), and

by extending eqJn with ι(w) ι(w′). Please note that for each variable z occurring in ϕ,

we have that C(z) ∈ ϕ; thus {wx, wy, w1, . . . , wk} ⊆ NI. Then, by the inductive hypothesis

and because ι is the identity on NI, we have that ‖σ(ϕ)‖I ⊆ instI . Since r ∈ ΞK and I is

closed under ΞK, we have that ‖wx‖I = ‖wy‖I . By the definition of w and w′, we also have

that ‖w‖I = ‖w′‖I , and property (7) holds. Similarly as for the case of axioms of type (3),

one can show that the properties are preserved by all the atoms in Jn that are replaced by

the application of this rule.

Axioms of Type (10). Consider a rule r of the form
∧k
i=1Ri(xi−1, xi)→ R(x0, xk) in DK.

Furthermore, for each i ∈ [0..k], let wi be an arbitrary term and let σ be the substitution

with σ(xi) = wi. Assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, for

each i ∈ [1..k], we have that Ri(ι(wi−1), ι(wi)) ∈ instJn ; furthermore, we have eqJn+1
= eqJn

and instJn+1 = instJn ∪ {R(ι(w0), ι(wk))}. Let w′′0 = w0. By the inductive hypothesis, for

each i ∈ [1..k], a term w′′i exists such that ι(w′′i) = ι(wi) and ‖Ri(w′′i−1, w
′′
i)‖I ∈ instI . We

distinguish three alternative cases.

• ι(wk) ∈ NI. As ι(wk) = ι(w′′k), we have that wk = w′′k . Since r ∈ ΞK and I is closed

under ΞK, we have ‖R(w0, wk)‖I ∈ instI .

• >r ∈ L(R) and ι(wk) 6∈ NI. Then, term wk must have been generated by the ap-

plication of a rule of the form A1(x)→ ∃z.S(x, z) ∧ DS(x, z) ∧A(z) in ΞK, and so

73

‖A(wk)‖I ∈ instI . Since ‖R(w0, w
′′
1)‖I ∈ instI , ΞK contains rules (5.5)–(5.7), and I is

closed under ΞK, we have that ‖>r(w0, wk)‖I ∈ instI . Since >r ∈ L(R) and I is closed

under ΞK, we also have ‖R(w0, wk)‖I ∈ instI

• >r 6∈ L(R) and ι(wk) 6∈ NI. Because r occurs in ΞK and I is closed under ΞK, we

have that ‖R(w0, w
′′
k)‖I ∈ instI and property (4) holds.

Rules of the form (5.2). Consider a rule r of the form C(x) ∧R(x, x)→ SR(x) in

DK, and consider an arbitrary term w occurring in I. Let σ be the substitution with

σ(x) = ι(w), and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have

that {C(ι(w)), R(ι(w), ι(w))} ⊆ instJn . Since ι(w) satisfies C, we have ι(w) ∈ NI and, by

the inductive hypothesis, we have ‖C(w) ∧R(w,w)‖I ⊆ instI . As r ∈ ΞK and I is closed

under ΞK, we have ‖SR(w)‖I ∈ instI .

Rules of the form (5.3). Consider a rule r of the form SS(x)→ SR(x) in DK, and consider

an arbitrary term w occurring in I. Let σ be the substitution with σ(x) = ι(w), and assume

that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have SS(ι(w)) ∈ instJn . By the

inductive hypothesis, we have ‖SS(w) ∧ S(w,w)‖I ⊆ instI . By the definition of clK, rule

base ΞK contains a rule r′ of the form S(x, y)→ R(x, y). Since ΞK contains also rule r and

I is closed under ΞK, we have that ‖SR(w) ∧R(w,w)‖I ⊆ instI .

Rules of the form (5.4). Consider a rule r of the form DS(x, y)→ DR(x, y) in DK,

and consider an arbitrary term w occurring in I and an arbitrary auxiliary constant oP,B.

Let σ be the substitution with σ(x) = ι(w) and σ(y) = oP,B, and assume that Jn+1 is

the result of applying 〈r, σ〉 to Jn. Then, we have that DS(ι(w), oP,B) ∈ instJn . By the

inductive hypothesis, we have that P v∗R S, and a term w∗ exists such that ι(w∗) = oP,B

and ‖P (w,w∗) ∧ DP (w,w∗)‖I ⊆ instI . By the definition of clK, we have that S v R ∈ R;

thus P v∗R R.

Rules of the form (5.6). Consider a rule r of the form R(x, y)→ >c(x) ∧ >c(y) in DK,

and consider arbitrary terms w and w′ occurring in I. Let σ be the substitution with

σ(x) = ι(w) and σ(y) = ι(w′), and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn.

Then, we have that R(ι(w), ι(w′)) ∈ instJn , eqJn+1
= eqJn , and instJn+1 extends instJn with

74

>c(ι(w)) and >c(ι(w′)). We distinguish two cases.

• >r ∈ L(R) or ι(w′) ∈ NI. By the inductive hypothesis, we have ‖R(w,w′)‖I ∈ instI .

Since r ∈ ΞK and I is closed under I, we have that ‖>c(w) ∧ >c(w′)‖I ⊆ instI .

• >r 6∈ L(R) and ι(w′) 6∈ NI. Hence, ι(w′) is of the form oP,B. By the induc-

tive hypothesis, a term w′′ exists such that ι(w′′) = oP,B and ‖R(w,w′′)‖I ∈ I.

Since ΞK contains rule r and I is closed under ΞK, we have that ‖>c(w)‖I ∈ instI .

We are left to show that the same holds for w′. To this end, please note that

term w′ must have been generated by the application of a rule in ΞK of the form

A′1(x)→ ∃z.P (x, z) ∧ DP (x, z) ∧B(z); thus ‖B(w′)‖I ∈ instI ; furthermore, ΞK con-

tains the rule B(x)→ >c(x). Since I is closed under ΞK, we have ‖>c(w′)‖I ∈ instI .

Rule of the form (5.7). Consider the rule r of the form >c(x) ∧ >c(y)→ >r(x, y) in

DK, and consider arbitrary terms w and w′ occurring in I. Let σ be the substitution with

σ(x) = ι(w) and σ(y) = ι(w′), and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn.

Then, we have {>c(ι(w)),>c(ι(w′))} ⊆ instJn , eqJn+1
= eqJn , and instJn+1 extends instJn

with >r(ι(w), ι(w′)). By the inductive hypothesis, we have ‖>c(w) ∧ >c(w′)‖I ⊆ instI .

Since r ∈ ΞK and I is closed under ΞK, we have that ‖>r(w,w′)‖I ∈ instI .

Rule of the form (5.8). Consider a rule r of the form ⊥r(x, y)→ ⊥c(x) in DK, and

consider arbitrary terms w and w′ occurring in I. Let σ be the substitution with σ(x) = ι(w)

and σ(y) = ι(w′), and assume that Jn+1 is the result of applying 〈r, σ〉 to Jn. Then, we have

that ⊥r(ι(w), ι(w′)) ∈ instJn , eqJn+1
= eqJn , and instJn+1 extends instJn with ⊥c(ι(w)). We

distinguish two cases.

• >r ∈ L(⊥r) or ι(w′) ∈ NI. By the inductive hypothesis, we have ‖⊥r(w,w′)‖I ∈ instI .

• >r 6∈ L(⊥r) and ι(w′) 6∈ NI. By the inductive hypothesis, a term w′′ exists such that

ι(w′′) = ι(w′) and ‖R(w,w′′)‖I ∈ I.

Since r ∈ ΞK and I is closed under ΞK, in either cases we have that ‖⊥c(w)‖I ∈ instI .

Equality rules occurring in ΞK and DK can only replace terms with individuals from NI;

more formally, for each w w′ ∈ I ∪ J , we have w′ ∈ NI. Thus, together property (3) of

75

Lemma 5.9 and property (7) of Lemma 5.10 imply the following result.

Lemma 5.11. For each term w occurring in I and each individual a ∈ NI,

(e1) ‖w‖I = a if and only if ‖ι(w)‖J = a, and

(e2) ‖w‖I = w if and only if ‖ι(w)‖J = ι(w).

This result together with properties (1) and (2) of Lemma 5.9 imply that ι is an homo-

morphism from instI to instJ .

Lemma 5.12. Function ι satisfies the following three properties for all terms w and w′,

each A ∈ {C} ∪ conK ∪ {SS | S ∈ rolK}, and each R ∈ rolK ∪ {DS | S ∈ rolK}.

(h1) A(w) ∈ instI implies that A(ι(w)) ∈ instJ .

(h2) R(w,w′) ∈ instI implies that R(ι(w), ι(w′)) ∈ instJ .

In addition, Lemma 5.11 together with properties (1)–(6) of Lemma 5.10 imply that

ι establishes a tight connection from instJ to instI , as shown by Lemma 5.13. Note that,

as I is closed under ΞK, for all roles P and S, and all term w and w′, we have that

{P (w,w′),DP (w,w′)} ⊆ instI and P v∗R S imply that {S(w,w′),DS(w,w′)} ⊆ instI . Thus,

property (d5) follows from property (5) of Lemma 5.10 and Lemma 5.11.

Lemma 5.13. Function ι satisfies the following properties for all terms w and w′ occurring

in I, each constant oP,B ∈ Naux, each concept A ∈ {C} ∪ conK, and each role R ∈ rolK.

(d1) A(ι(w)) ∈ instJ implies that A(w) ∈ instI .

(d2) SR(ι(w)) ∈ instJ implies that SR(w) ∧R(w,w) ∈ instI .

(d3) R(ι(w), ι(w′)) ∈ instJ , and >r ∈ L(R) or ι(w′) ∈ NI imply that R(w,w′) ∈ instI .

(d4) R(ι(w), ι(w′)) ∈ instJ , >r 6∈ L(R), and ι(w′) 6∈ NI imply that a term w′′ occurring in

I exists such that ι(w′′) = ι(w′) and R(w,w′′) ∈ instI .

(d5) ι(w) is directly connected to oP,B in J implies that a term w∗ exists in I such that

• ι(w∗) = oP,B, and

76

• {S(w,w∗),DS(w,w∗)} ⊆ instI for each role S ∈ rolK with DS(ι(w), oP,B) ∈ instJ .

(d6) For each constant u occurring in J , a term wu exists such that ι(wu) = u.

Finally, property (a) follows immediately from Lemmas 5.11, 5.12, and 5.13.

77

78

Chapter 6

Answering CQs over ELHO+
⊥ KBs

While the datalog program DK for an ELHO+
⊥ knowledge base K can be directly used to

answer instance queries, answering a conjunctive query q over DK can produce unsound

answers. In this chapter, we present an NP filtering procedure that checks whether a

candidate answer τ to q over DK is sound. Towards this goal, in Section 6.1 we discuss

the intuitions behind our filtering procedure; and in Section 6.2 we introduce the procedure

formally and show that it runs in nondeterministic polynomial time in the combined size

of K, q, and τ . We also prove that the procedure runs in nondeterministic polynomial time

only for candidate answers that map query variables to auxiliary constants, and depend on

transitive or reflexive roles—in particular, filtering can be done in polynomial time if K is

in ELHO⊥. Then, we show how to use our filtering procedure to obtain the first worst-case

optimal algorithm for answering conjunctive queries over ELHO+
⊥ knowledge bases that

runs in NP in combined complexity and in polynomial time in knowledge base complexity,

thus we settle the open questions of the complexity of CQ answering for EL variants with

transitive roles. Finally, in Section 6.3 we prove that our filtering procedure is worst-case

optimal, whereas in Section 6.4 we prove the procedure’s correctness.

6.1 Intuition

Algorithm 1 on page 93 specifies a procedure isSoundTR(q,DK, τ) that checks whether can-

didate answer τ to q over DK is sound. In step 1, our procedure uses an auxiliary procedure

79

cb y1

y3y2

RRR

R

y4

RR

Query q

cb

y2

RR

R

y4

R

Normalised query q~

a b c

1 2R,A R,A

R R
R R

a b c

oR,A

R R

A1 A1

R

R

Universal interpretation I Universal interpretation J

R R

6 7R,A R,A

R R

RR

A1 A1
Ab Ab

Figure 6.1: The universal interpretations I and J of ΞK and DK for the KB K from Example
4.3, and the query q and the normalised query q∼

isDSound(q,DK, τ) that checks in polynomial time necessary conditions for the soundness

of τ . When τ does not map the variables of q to auxiliary constants, or does not depend on

transitive and reflexive roles, step 1 suffices to determine whether τ is sound. For all other

cases, the procedure uses additional steps to determine the soundness of τ .

6.1.1 Filtering without Transitive and Reflexive Roles

We first discuss the intuitions behind the auxiliary procedure isDSound(q,DK, τ) using the

ELHO⊥ knowledge base from Example 4.3 on page 42, and the query q and the candidate

answer τ from Example 6.1.

Example 6.1. Let K be the ELHO⊥ KB from Example 4.3 and let q and τ be the following

80

Boolean CQ and substitution, respectively.

q = ∃~y. R(b, y1) ∧R(y1, y2) ∧R(y2, b) ∧R(c, y3) ∧R(y2, y4) ∧R(y3, y4)

τ = {y1 7→ c, y2 7→ oR,A, y3 7→ oR,A, y4 7→ oR,A}

The upper part of Figure 6.1 shows the universal interpretations I and J of ΞK and DK,

respectively. Please note that both interpretations contain only direct edges. Moreover, the

lower left part of Figure 6.1 shows the query q. One can easily check that DK |= τ(q).

We next show how isSoundTR(q,DK, τ) decides that τ is sound—that is, that a sub-

stitution π mapping the variables in q to elements in I exists such that π(q) ⊆ I. The

knowledge base K does not contain transitive and reflexive roles, so the soundness of τ can

be determined using solely the auxiliary procedure isDSound(q,DK, τ).

We use substitution τ to restrict the possible form of π. Variable y1 must be mapped by π

to individual c, since τ(y1) = c; in contrast, substitution π must map variables y2, y3, and y4

to an arbitrary labelled null of type R,A occurring in I, since τ(y2) = τ(y3) = τ(y4) = oR,A.

Each such substitution π is guaranteed to satisfy all unary atoms of q, all binary atoms

of q that contain a role that is implied by the top role, all binary atoms of q that τ maps to

edges pointing towards (non-auxiliary) individuals from NI, and all binary atoms of q that

contain a single variable and that τ maps to self edges in J . We call each atom of q that

satisfies at least one of these conditions good. In our example, atoms R(b, y1) and R(y2, b)

are good because τ maps them onto edges pointing towards individuals from NI; hence, to

show that τ is sound, we must demonstrate that a substitution π exists that satisfies the

non-good atoms of q in I.

Function isDSound(q,DK, τ) implements a revised version of the ‘fork’ and ‘acyclicity’

checks by Lutz et al. [72] described in Section 4.1. To guarantee completeness, we consider

only those binary atoms in q that contain simple roles, and thus cannot be expanded into

role chains using complex role inclusions, and that τ maps onto direct edges in J pointing

towards auxiliary constants. We call these atoms aux-simple as they can be mapped onto

the direct edges in I pointing towards labelled nulls; apart from atoms R(b, y1) and R(y2, b)

which are good, all other atoms of q are aux-simple.

81

The checks in step 1 are based on computing equality constraints of the form s ∼ t

over the terms in the query. Such a constraint asserts that τ must map terms s and t to

equal constants in DK—that is, DK |= τ(s) ≈ τ(t). Example 6.2 explains how to derive the

equality constraints for q and τ using the ‘aux-simple forks’ in the query.

Example 6.2. The equality constraints for q and τ are as follows.

y2 ∼ y3 (6.1)

y1 ∼ c (6.2)

Atoms R(y2, y4)∧R(y3, y4) in q form a ‘fork’ that involves only aux-simple atoms. Moreover,

substitution τ maps variable y4 to auxiliary constant oR,A; this constant represents the

labelled nulls of type R,A in I. Because these atoms are aux-simple, each substitution π

must map these atoms onto direct edges in I pointing towards labelled nulls. However, the

direct edges that point towards labelled nulls in I induce a forest-shaped structure, so y2 and

y3 must be mapped to the same element (in both I and J). This is captured by the equality

constraint (6.1). Equality constraints, moreover, need to be propagated further down in the

query. In our example, due to (6.1), atoms R(y1, y2) ∧R(c, y3) also constitute a ‘fork’ since

τ maps y2 and y3 to auxiliary constants; so we derive equality constraint (6.2) as well.

Then, in step 1 we compute a new query q∼ by ‘applying’ the equality constraints

to q; Figure 6.1 shows the resulting query q∼ in which variables y1 and y3 are replaced

with individual c and variable y2, respectively. Finally, function isDSound checks that (i)

substitution τ satisfies the derived equality constraints, and (ii) query q∼ is ‘aux-acyclic’—

that is, q∼ does not contain cycles consisting only of aux-simple atoms. In our example,

substitution τ clearly satisfies the equality constraints (6.1) and (6.2) since τ(y2) = τ(y3)

and τ(y1) = c. Moreover, atoms R(b, c) ∧R(c, y2) ∧R(y2, b) form a cycle in q∼, but this

cycle involves good atoms; hence, function isDSound(q,DK, τ) returns t. Because q contains

only good and aux-simple atoms, substitution τ is sound. For example, using Figure 6.1,

one can check that the following substitution embeds q into I.

π = {y1 7→ c, y2 7→ 2, y3 7→ 2, y4 7→ 7}

82

a

y3

y1

S T

Query q

Universal interpretation I Universal interpretation J

D

y4

T

P
y2

R

a

1 2

4 5

T,CS,C

S T

R,E

T,S,R

R,E

R,S,T
S T

P P

a

oS,C oT,C

oR,E

S T

T,S,R R,S,T

S T

P

b

3 P,D

P
T

T

T

b

oP,D

PT

T

T

B B

P

A, Aa A, Aa

Figure 6.2: The universal interpretations I and J of ΞK and DK for the knowledge base
from Example 4.1, and the query q

6.1.2 Filtering with Transitive and Reflexive Roles

The auxiliary procedure isDSound(q,DK, τ) cannot determine the soundness of τ when q

contains atoms that are neither good nor aux-simple. In this case, the filtering procedure

isSoundTR(q,DK, τ) uses steps 3–21 to ensure that a substitution π exists that embeds all

atoms of q into the universal interpretation of K. We next discuss the intuitions behind

these additional steps using the ELHO+
⊥ knowledge base from Example 4.1 on page 39, and

the query q and the candidate answer τ from Example 6.3.

Example 6.3. Let K be the ELHO+
⊥ KB from Example 4.1, and let q and τ be the following

83

Boolean CQ and substitution, respectively.

q = ∃~y. S(a, y3) ∧R(y2, y3) ∧ T (a, y4) ∧ P (y4, y4) ∧ T (y1, y4) ∧D(y1)

τ = {y1 7→ oP,D, y2 7→ oS,C , y3 7→ oR,E , y4 7→ oR,E}

The upper part of Figure 6.2 shows the universal interpretations I and J of ΞK and DK,

respectively. The lower part of Figure 6.2 shows the CQ q; one can check that DK |= τ(q).

We next show how isSoundTR(q,DK, τ) decides that τ is sound—that is, that a substi-

tution π mapping the variables in q to the elements in I exists such that π(q) ⊆ I. We

again use τ to restrict the search space for such a substitution π. In particular, π must

map variable y1 to term 3 or one of its successors in I because τ(y1) = oP,D, variable

y2 to term 1 because τ(y2) = oS,C , and variables y3 and y4 to one of 4 and 5 because

τ(y3) = τ(y4) = oR,E .

The good atoms of q will be satisfied by any such substitution π. In our example, atom

D(y1) is good because it is unary, whereas atom P (y4, y4) is good because it contains a single

variable and it is mapped to the self edge in J . We are left to show that a substitution π

exists that satisfies all of the other atoms of q.

Step 1 of Algorithm 1 checks that the aux-simple atoms of q can be mapped onto the

direct edges pointing towards labelled nulls occurring in I. We first use the ‘aux-simple forks’

in q to compute equality constraints; then, we check that these constraints are satisfied by

q and τ , we apply the constraints to obtain a new query q∼, and we check that q∼ does not

contain cycles consisting only of aux-simple atoms. The query in our example contains a

single aux-simple atom R(y2, y3), so q∼ = q and the auxiliary procedure isDSound(q,DK, τ)

returns t. Atoms S(a, y3), T (a, y4), and T (y1, y4) are neither good nor aux-simple, so we

proceed to step 3.

A substitution π that embeds q∼ into I can map distinct variables of q∼ to the same

labelled null of I, if τ also maps these variables to the same auxiliary constant in J . In step

3, we take this into account and guess a renaming σ for the variables in q∼; so in the rest

of Algorithm 1 we consider σ(q∼) instead of q∼. In our example, we guess σ to be identity,

84

Labelled SkeletonSkeleton

a p1

y2 y1y4

(y1, T)
a p1

y2 y1y4

TS

y3 y3

S, R

Figure 6.3: The skeleton S for σ(q∼)

so σ(q∼) = q∼.

In step 4, we guess a skeleton S for σ(q∼), which is a finite structure that finitely

describes the (possibly infinite) set of all substitutions π mapping the variables in σ(q∼) to

distinct labelled nulls of I. The vertices of S are the individuals occurring in σ(q∼), the

variables of σ(q∼) that τ maps to auxiliary constants, and a special placeholder variable pi for

each variable yi occurring in σ(q∼). We use the placeholder variables to compactly represent

individuals occurring in I that do not occur in the query. The skeleton’s vertices are

arranged in a forest whose roots are the individuals occurring in σ(q∼) and the placeholder

variables. Figure 6.3 shows the skeleton S for our example query; the roots of S that do

not have any descendants are not shown for clarity. Such S represents those substitutions

π that map

(1) each placeholder variable pi to some named individual from NI;

(2) variable y1 to a labelled null of I under named individual π(p1);

(3) variables y2 and y4 to labelled nulls under individual a; and,

(4) variable y3 to a labelled null of I under labelled null π(y2).

The constraints expressed by the skeleton S, however, do not sufficiently describe the sub-

stitutions that map onto I the binary atoms of σ(q∼) that are neither good nor aux-simple.

85

For example, skeleton S represents substitution

π1 = {p1 7→ b, y1 7→ 3, y2 7→ 1, y3 7→ 4, y4 7→ 4}

but T (π1(y1), π1(y4)) 6∈ I.

To eliminate such substitutions, we refine the skeleton’s constraints in steps 5–15 of

Algorithm 1. We guess for each binary atom in σ(q) that is neither good nor aux-simple

how to unfold it as a sequence of direct edges in I using the transitive roles in K. The direct

paths in I can be of two types: anonymous paths consist only of direct edges pointing

to labelled nulls, whereas nominal paths contain at least one direct edge pointing to an

individual. For example, edge S(a, 4) can be unfolded into the anonymous path ρS = S · S

connecting a with 1 and 1 with 4. In contrast, edge T (3, 5) can be unfolded into the nominal

path ρT = T · T · T connecting 3 with individual a, a with 2, and 2 with 5.

The skeleton already constrains the relative positions of query terms; so we unfold

binary atoms in accordance with these positions. In particular, binary atoms whose terms

are reachable in S will be unfolded using an anonymous path, whereas binary atoms whose

terms are not reachable in S will be unfolded using a nominal path. We represent the

unfolding of each binary atom by labelling each edge 〈v, v′〉 ∈ S with a set of roles L(v, v′),

and each root vr of S with a set L(vr) of pairs 〈s, P 〉 consisting of a term s and of a role P ;

after these steps, S represents those substitutions π that satisfy the following two properties.

(5) For each role P ∈ L(v, v′), a non-empty role chain ρ ∈ L(P) exists labelling an

anonymous path in I from π(v) to π(v′).

(6) For each pair 〈s, P 〉 ∈ L(vr), an edge from π(s) to π(vr) in I exists that is labelled by

role P .

We next illustrate how to label the skeleton so that all substitutions represented by S

satisfy the binary atoms of σ(q∼).

In step 6, the aux-simple atoms in σ(q∼) are used to label the skeleton. The query in our

example contains a single aux-simple atom R(y2, y3), so we label the skeleton edge 〈y2, y3〉

with role R. Next, we proceed to step 7–15 and show how the other binary atoms of σ(q∼)

86

contribute to the labelling of S.

For atom S(a, y3), we must ensure that, for each substitution π represented by S, a

role chain ρS ∈ L(S) exists connecting a to π(y3) using only direct edges. Now, individual

a reaches variable y3 in S via variable y2, so ρS must connect a to π(y2), and π(y2) to

π(y3) without going through individuals. Hence, in step 8 we guess a transitive role P

such that P v∗R S and ρS ∈ L(P). In steps 10–11 we then ‘split’ atom P (a, y3) into atoms

P (a, y2) and P (y2, y3): atom P (a, y2) captures the anonymous subpath of ρS connecting

a with π(y2), whereas atom P (y2, y3) captures the anonymous subpath of ρS connecting

π(y2) with π(y3). We do not know to which elements of I we should map variables y2 and

y3 to, so we cannot check the existence of the required subpaths independently. Therefore,

we add in step 15 role P as constraints on edges 〈a, y2〉 and 〈y2, y3〉 in S. Each skeleton

edge 〈v, v′〉 thus ‘accumulates’ all constraints that the anonymous path connecting π(v) to

π(v′) must satisfy. Later we shall explain how in steps 18–27 we check these constraints

and, if this check passes, how we know that we can map y2 and y3 to labelled nulls below

individual a. Because S is a transitive role, in our example we can guess P = S.

For atom T (y1, y4), we must ensure that, for each substitution π represented by S, a role

chain ρT ∈ L(T) exists connecting π(y1) to π(y4) using only direct edges. Since the relative

positions of π(y1) and π(y4) in I are determined by S as shown in Figure 6.3, such a path

must connect π(y1) with a and then connect a with π(y4). In addition, we can assume that

the subpath from a to π(y4) is anonymous: if a path from π(y1) to π(y4) involves individuals

other than a or if it visits a more than once, we can ‘absorb’ all such path segments into the

subpath from π(y1) to a. Hence, in step 8 we guess a transitive role P such that P v∗R T

and ρT ∈ L(P). In steps 10–11 we ‘split’ atom P (y1, y4) into atoms P (y1, a) and P (a, y4):

atom P (y1, a) captures the nominal subpath of ρT connecting π(y1) with a, whereas atom

P (a, y4) captures the anonymous subpath of ρT connecting a with π(y4). In step 14, we

add pair 〈y1, P 〉 as a constraint on the individual a; thus the roots of S ‘accumulate’ all

constraints that the nominal paths from labelled nulls to individuals must satisfy. In step

15, we instead add P as a constraint on edge 〈a, y4〉. Because T is a transitive role, in our

example we can again guess P = T . Finally, as a is not connected to π1(y4) via a sequence

87

of T edges, adding T as constraint on edge 〈a, y4〉 ensures that substitution π1 does not

satisfy property (5).

Finally, for atom T (a, y4), we must ensure that, for each substitution π represented by S,

a role chain ρT ∈ L(T) exists connecting a to π(y4) using only direct edges. Since a directly

reaches y4 in S, such a path must connect a with π(y4) without going through individuals.

Hence, in step 8 we guess a transitive role P such that P v∗R T and ρT ∈ L(P). In steps

10–11, no splitting is necessary because a and y4 are directly connected in S—that is, we

use atom P (a, y4) to represent the anonymous path ρT connecting a with π(y4). In step

15, we then add P as a constraint on edge 〈a, y4〉. Because T is a transitive role, in our

example we can guess P = T .

After the for-loop in steps 7–15, the labelled skeleton S shown in Figure 6.3 represents

all substitutions satisfying properties (5) and (6). Although each such substitution maps

σ(q∼) onto I, we must still show that at least one such substitution π can be realised by

the universal interpretation I. However, a terminating algorithm cannot materialise the

universal interpretation I, so we exploit a property of our datalog program DK: an element

w is connected to an element w′ in I using a direct edge labelled by R if and only if

DK |= DR(u, u′) where u and u′ are the datalog constants representing elements w and w′

of I, respectively. Therefore, a substitution π satisfies properties (5) and (6) if and only if

the following two properties hold for each edge 〈v, v′〉 and each root vertex vr of S.

(a) For each role P ∈ L(v, v′), a non-empty role chain ρ ∈ L(P) exists labelling a path

from u to u′ in J consisting only of direct edges pointing to auxiliary constants, where

u and u′ are the constants representing π(v) and π(v′) in J , respectively.

(b) For each 〈s, P 〉 ∈ L(vr), there exists an edge labelled by P from us to ur in J , where

us and ur are the constants representing π(s) and π(vr) in J , respectively.

These properties provide us with an effective way of checking the skeleton’s constraints by

applying the procedure checkTR from Definition 6.9 to each skeleton vertex v ∈ V. We check

property (b) directly in function checkTR by testing entailments over DK. In contrast, we

check property (a) by applying the auxiliary function existTR from Definition 6.8 to each

88

edge 〈v, v′〉 in S. Using the direct predicates in DK, function existTR finds in polynomial

time the required directed paths in J .

Finally, in steps 16–20, we check that a substitution π that maps the placeholder vari-

ables in S to the named individuals in I, and that maps all the other vertices of S to labelled

nulls in I exists such that the relevant constraints expressed by the skeleton are satisfied.

Using Figures 6.2 and 6.3, one can check that substitution

π = {p1 7→ b, y1 7→ 3, y2 7→ 1, y3 7→ 4, y4 7→ 5}

satisfies the constraints imposed by S; hence, isSoundTR returns t, indicating that candidate

answer τ is sound.

6.2 Formalisation

We now formalise the intuitions we have just presented. In the rest of this section, we fix a

consistent ELHO+
⊥ KB K = T ∪ R ∪A, a conjunctive query q′, and a candidate answer τ

to q′ over DK. Finally, given a term t ∈ term(q′), we let the canonical representative τ(t)≈,

and sets auxDK and r-indDK be as specified in Definition 5.6 on page 57.

Due to equality rules, distinct constants can be identified by DK; hence, to avoid deal-

ing with equal constants while checking whether τ is sound, we replace in q′ each term

t ∈ term(q′) that τ does not map to constants in auxDK with the canonical representative

τ(t)≈; this replacement produces CQ q. Since q is obtained by replacing equals by equals, we

have DK |= τ(q); moreover, by Proposition 5.5, CQ q can be computed in time polynomial

in the size of q and K. Our filtering procedure uses q to check whether τ is sound.

Definition 6.1. Conjunctive query q is obtained from q′ by replacing each term t ∈ term(q′)

such that τ(t) 6∈ auxDK with τ(t)≈.

Next, we define good and aux-simple binary atoms w.r.t. substitution τ .

Definition 6.2. Let R ∈ rolK be a role and let s, t ∈ term(q) be terms. Atom R(s, t) is

good if at least one of the following conditions holds:

89

• >r ∈ L(R),

• τ(t) ∈ NI, or

• s = t and DK |= SR(τ(s)).

Atom R(s, t) is aux-simple if all of the following conditions hold:

• s 6= t and τ(t) ∈ auxDK,

• R is a simple role, and

• τ(s) = τ(t) implies that DK 6|= SR(τ(s)).

Since R is a role hierarchy, for each role R ∈ rolR, we have that >r ∈ L(R) if and

only if >r v∗R R; thus, by Proposition 5.5, we can then check whether R(s, t) is good or

aux-simple in time polynomial in K. Note that, if R(s, t) is not good, then t is a variable

that τ maps to auxDK . Furthermore, for each simple role R ∈ rolR, we have that >r 6v∗R R,

and thus an atom cannot be at same time good and aux-simple. Moreover, each aux-simple

atom R(s, t) is such that R is simple and τ does not map the atom onto a self edge; hence,

τ maps the atom onto a direct edge and, because direct edges propagate through simple

role inclusions, we have that DK |= DR(τ(s), τ(t)). Finally, if K is in ELHO⊥, each atom

R(s, t) is either good or aux-simple, as K contains neither self-restrictions, reflexive roles,

nor transitive roles.

We next show how to compute the equality constraints for q by starting from the ‘aux-

simple forks’ in q and by propagating the constraints further down the query. In addition,

we define the query q∼ that is obtained by ‘applying’ the equality constraints to query q.

Definition 6.3. Relation ∼ ⊆ term(q)× term(q) for q and τ is the smallest reflexive, sym-

metric, and transitive relation closed under the fork rule.

s′ ∼ t′(fork) R(s, s′) and P (t, t′) are aux-simple atoms in q w.r.t. τ
s ∼ t

CQ q∼ is obtained from q by replacing each term t ∈ term(q) with an arbitrary, but fixed

representative of the equivalence class of ∼ containing t.

90

To check whether q∼ is ‘aux-acyclic’, we next introduce the connection graph cg for q and

τ that contains a set Es of edges 〈v, v′〉 for each aux-simple atom R(v, v′) ∈ q∼. In addition,

cg also contains a set Et of edges 〈v, v′〉 that we later use to reduce the nondeterminism in

guessing a skeleton for σ(q∼).

Definition 6.4. The set Ψq of placeholders for q contains a fresh variable pz uniquely

associated with each variable z ∈ var(q∼). Then cg = 〈V,Es, Et〉 is the connection graph

for q and τ where V = term(q∼) ∪Ψq and Es, Et ⊆ V × V are the smallest sets of edges

satisfying the following conditions.

• Es contains 〈s, t〉 for all s, t ∈ term(q∼) for which a role R exists such that R(s, t) is

an aux-simple atom in q∼.

• Et contains

– 〈p, z〉 for each p ∈ Ψq and each z ∈ var(q∼), and

– 〈s, t〉 for all s, t ∈ term(q∼) for which roles R1, . . . , Rn and constants u0, . . . , un

in auxDK with n > 0 exist where u0 = τ(s), un = τ(t), and DK |= DRi(ui−1, ui)

for each i ∈ [1..n].

By the definition of aux-simple atoms, we have that Es ⊆ Et; furthermore, each edge

〈s, t〉 ∈ Et is such that t ∈ var(q∼) and τ(t) ∈ auxDK .

Function isDSound(q,DK, τ) from Definition 6.5 ensures that τ satisfies the constraints

in ∼, and that q∼ does not contain cycles consisting only of aux-simple atoms.

Definition 6.5. Function isDSound(q,DK, τ) returns t if and only if the two following

conditions hold.

(1) For all s, t ∈ term(q), if s ∼ t, then τ(s) = τ(t).

(2) 〈V,Es〉 is a directed acyclic graph.

We next define the notion of a variable renaming σ for q and τ . Condition (2) in

Definition 6.6 ensures that such a variable renaming σ does not identify variables that

cannot be mapped to the same element in I, whereas condition (4) ensures that σ(q∼) does

not contain aux-simple forks or cycles.

91

Definition 6.6. A substitution σ is a variable renaming for q and τ if

(1) dom(σ) = V ∩ var(q∼) and rng(σ) ⊆ V ∩ var(q∼),

(2) for each v ∈ dom(σ), we have τ(v) = τ(σ(v)),

(3) for each v ∈ rng(σ), we have σ(v) = v, and

(4) directed graph 〈σ(V), σ(Es)〉 is a forest.

We next define the notion of a skeleton S for q and a variable renaming σ. We use the

edges in σ(Et) to ensure that, for each edge 〈v, v′〉 ∈ S with v 6∈ Ψq, a path from τ(v) to

τ(v′) in J exists that consists only of direct edges pointing to auxiliary constants.

Definition 6.7. A skeleton for q and a variable renaming σ is a directed graph S = 〈V, E〉

with V = σ(V) such that σ(Es) ⊆ E ⊆ σ(Et) and 〈V, E〉 is a forest whose roots are the

individuals and the placeholders in V.

In Definition 6.8, we present function existTR that checks whether one can satisfy prop-

erty (a) on page 88 for each edge 〈v, v′〉 ∈ S that is labelled by a set L of roles.

Definition 6.8. Given two constants u and u′ from DK, and a finite set of roles L, function

existTR(u, u′, L) returns t if and only if constants u1, . . . , un in auxDK with n > 0 and un = u′

exist where

• if S ∈ L exists such that S is not transitive in R, then n = 1, and

• u0 = u and DK |= DR(ui−1, ui) for each R ∈ L and each i ∈ [1..n].

Finally, function checkTR in Definition 6.9 uses function existTR and entailment checking

over DK to determine whether one can satisfy properties (a) and (b) for each vertex v ∈ V.

Definition 6.9. Given a skeleton vertex v, a constant u from DK, and a function L that

maps each skeleton edge to a finite set of roles and each skeleton root to a finite set of pairs

of the form 〈s, P 〉 where s is a skeleton vertex and P is a role, function checkTR(v, u, L)

returns t if and only if the following two conditions hold.

(a) Function existTR(u, τ(v′), L(v, v′)) returns t for each skeleton edge 〈v, v′〉 ∈ S.

92

Algorithm 1: isSoundTR(q,DK, τ)

1 if isDSound(q,DK, τ) = f then return f
2 return t if each R(s, t) ∈ q∼ is good or aux-simple
3 guess a variable renaming σ for q and τ
4 guess a skeleton S = 〈V, E〉 for q, σ, and τ
5 foreach v ∈ V, let L(v) = ∅; foreach 〈v, v′〉 ∈ E , let L(v, v′) = ∅
6 foreach aux-simple atom R(s, t) ∈ σ(q∼), add R to L(s, t)
7 foreach neither good nor aux-simple R(s, t) ∈ σ(q∼) do
8 guess a role P ∈ NR \ {>r,⊥r} with DK |= P (τ(s), τ(t)) and P v∗R R
9 if 〈s, t〉 6∈ E and P is not transitive then return f

10 if s reaches t in S then
11 let v0, . . . , vn be the path from s to t in S
12 else
13 let v0 be the root that reaches t in S via v0, . . . , vn
14 add 〈s, P 〉 to L(v0)

15 foreach i ∈ [1..n], add P to L(vi−1, vi)

16 foreach v ∈ V do
17 if v ∈ Ψq then
18 return f if no individual a ∈ r-indDK exists such that checkTR(v, a, L) = t
19 else
20 return f if checkTR(v, τ(v), L) = f

21 return t

(b) DK |= P (τ(s), u) holds for each pair 〈s, P 〉 ∈ L(v).

Theorem 6.10 shows that the candidate answer τ for q′ over DK is sound if and only

if the nondeterministic filtering procedure isSoundTR(q,DK, τ) from Algorithm 1 returns t.

The proof of this result is given in Section 6.4.

Theorem 6.10. For each substitution π, K |=DL π(q′) if and only if a candidate answer τ

to q′ over DK exists such that τ |~x = π and the following conditions hold:

(1) for each x ∈ ~x, τ(x) ∈ NI, and

(2) a nondeterministic computation exists such that isSoundTR(q,DK, τ) returns t.

Finally, we determine the complexity of the algorithm isSoundTR. Towards this goal, we

first determine the complexity of the auxiliary function isDSound.

Lemma 6.11. Function isDSound(q,DK, τ) runs in time polynomial in the input size.

Proof. We next show that conditions (1) and (2) in the definition of isDSound(q,DK, τ) can

be implemented to run in polynomial time.

93

Condition (1). We argue that we can compute relation ∼ in time polynomial in the

input size. More specifically, by Proposition 5.5 we can evaluate in polynomial time the

precondition of the (fork) rule. In addition, the size of relation ∼ is bounded by |term(q)|2,

the rules used to compute it are monotonic, and each inference can be applied in polynomial

time, so the claim follows.

Condition (2). We first argue that we can compute the connection graph for q in

polynomial time. Given terms s and t from q∼, we can test in polynomial time whether

〈s, t〉 ∈ Et holds by checking whether τ(t) is reachable from τ(s) in the graph containing an

edge 〈u, u′〉 for each u ∈ {τ(s)} ∪ auxDK and each u′ ∈ auxDK for which a role R exists such

that DK |= DR(u, u′). Therefore, the connection graph cg = 〈V,Es, Et〉 can be computed

in polynomial time. We can check in linear time whether 〈V,Es〉 is a acyclic by searching

for a topological ordering of its vertices [21], so condition (2) in Definition 6.5 of function

isDSound(q,DK, τ) can be implemented to run in polynomial time in the input size.

The next lemma shows that function existTR can be decided in polynomial time as well.

Lemma 6.12. Function existTR(u, u′, L) runs in time polynomial in the input size.

Proof. Let u and u′ be constants and let L be a set of roles. We consider the two cases in

Definition 6.8 separately.

If a role S ∈ L exists that is not transitive, then we simply check whether DK |= DR(u, u′)

holds for each role R ∈ L. By Proposition 5.5, this check can be done in polynomial time.

Otherwise, if L contains only transitive roles, we check that u′ is reachable from u in the

directed graph that contains an edge 〈c, c′〉 for all constants c ∈ {u} ∪ auxDK and c′ ∈ auxDK

such that DK |= DR(c, c′) for each R ∈ L. By Proposition 5.5, such a graph can be computed

in time polynomial in the size of |K|, so all of these checks run in polynomial time.

We are now ready to establish the complexity of the filtering procedure isSoundTR; in

Section 6.3 we will show that our function is worst-case optimal.

Theorem 6.13. Function isSoundTR(q,DK, τ) can be implemented so that

(1) it runs in nondeterministic polynomial time,

94

(2) if each binary atom in q∼ is either good or aux-simple w.r.t. τ , it runs in polynomial

time, and

(3) if the query q is fixed, it runs in polynomial time in the size of K.

Proof. By Lemma 6.11, the check in line 1 can be implemented to run in polynomial time.

Hence, if each binary atom in q∼ is either good or aux-simple, function isSoundTR runs in

time polynomial in the input size, and property (2) holds.

By Lemma 6.12 and Proposition 5.5, function checkTR can also be decided in polynomial

time, and so the for-loop in lines 16–20 takes polynomial time as well. Since all other

operations in lines 3–15 can clearly be implemented to run in nondeterministic polynomial

time in the input size, property (1) holds.

For property (3), assume that the query q is fixed. Given that the number of variables

occurring in q is fixed, the number of guessing steps required in lines 3 and 4 is fixed; also,

the number of alternatives for these steps is linear in the size of K. Thus, lines 3 and 4

require polynomial time. Moreover, the maximum number of iterations of the for-loop in

lines 7–15 is fixed and the number of alternatives for the guessing steps in line 8 is linear

in the size of K. Thus, lines 7–15 require time polynomial in the size of K. All other steps

can be implemented in time polynomial in the size of K, so property (3) holds.

By Propositions 5.5 and 5.7, we can check whether an ELHO+
⊥ knowledge base is in-

consistent using polynomial time; hence, by Theorem 6.10 we can check whether π is a

certain answer to q over K using nondeterministic polynomial time in combined complex-

ity (i.e., when the ABox, the RBox, the TBox, and the query are all part of the input),

and in polynomial time in knowledge base complexity (i.e., when the query is fixed). Fur-

thermore, when the query is not fixed, CQ answering is NP-hard already over relational

databases [18]; and Calvanese et al. [13] showed that instance checking over EL knowledge

bases is PTime-hard in data complexity. The following theorem summarises these results.

Theorem 6.14. Given a substitution π, checking whether K |=DL π(q′) is

• PTime-complete in data and KB complexities, and

• NP-complete in combined complexity.

95

6.3 Lower Bound for Checking Candidate Answer Soundness

Even though our filtering procedure isSoundTR runs in nondeterministic polynomial time

in the general case, Theorem 6.13 shows that the procedure runs in polynomial time if K

does not contain self-restrictions, and transitive and reflexive roles. In Theorem 6.15, we

show that this complexity increase is unavoidable: if K contains transitive roles, checking

whether a candidate answer τ to q′ over DK is sound is an NP-hard problem. We prove

our claim by reducing the NP-hard problem of checking satisfiability of a 3CNF formula

ϕ [33]. Towards this goal, we define an ELHO+
⊥ KB Kϕ and a Boolean CQ qϕ such that ϕ

is satisfiable if and only if Kϕ |=DL qϕ. Furthermore, we define a substitution τϕ and show

that τϕ is a unique candidate answer to qϕ over the datalog program Dϕ for Kϕ.

Theorem 6.15. Checking whether a candidate answer is sound is NP-hard.

Proof. The proof is by reduction from the NP-hard problem of checking the satisfiability

of a 3CNF formula [33]. Let ϕ =
∧m
j=1Cj be a 3CNF formula over variables {v1, . . . , vn},

where each Cj is a set of three literals Cj = {lj,1, lj,2, lj,3}. A sequence µ = lj1,k1 , . . . , lj`,k`

of literals from ϕ is consistent if {vi,¬vi} 6⊆ µ for each i ∈ [1..n]. Such µ is a truth sequence

for ϕ if for each j ∈ [1..m], a literal l ∈ µ exists such that l = lj,k for some k ∈ [1..3]. Then

ϕ is satisfiable if and only if there exists a consistent truth sequence for ϕ.

Let ϕ be a 3CNF formula. We proceed in three steps. We first define an ELHO+
⊥ KB

Kϕ and a Boolean CQ qϕ such that Kϕ |=DL qϕ if and only if there exists a consistent truth

sequence for ϕ. Then, we construct a substitution τϕ and show that τϕ is a candidate answer

to qϕ over the datalog program Dϕ for Kϕ. Finally, we show that τϕ is the only candidate

answer to τϕ; thus Kϕ |=DL qϕ if and only if τϕ is sound.

Construction of Kϕ and qϕ. In our construction of Kϕ, we use a fresh individual

aε, fresh concepts A and G, fresh roles R and T , a fresh concept Lj,k and a fresh role

Sj,k uniquely associated with each literal lj,k, a fresh concept Cj uniquely associated with

each clause Cj , and fresh roles Pi, Ni, and Ti uniquely associated with each variable vi.

Moreover, we associate each sequence µ = lj1,k1 , . . . , lj`,k` of literals from ϕ with the role

chain ρµ = R · Sj1,k1 ·R · Sj2,k2 · · ·R · Sj`,k` ·R.

96

We will present our construction of Kϕ in four stages, and at each stage we will describe

how the additional axioms affect the universal interpretation I of Kϕ—that is, the possibly

infinite set of assertions obtained by applying our chase variant to the rule base for Kϕ.

The first part of Kϕ contains atom (6.3) and axioms (6.4)–(6.7). Then, for each sequence

µ of literals from ϕ, a term wµ exists such that G(wµ) ∈ I and ρµ(aε, wµ) ∈ I.

A(aε) (6.3)

A v ∃R.Cj ∀j ∈ [1..m] (6.4)

A v ∃R.G (6.5)

Cj v ∃Sj,k.Lj,k ∀j ∈ [1..m] ∀k ∈ [1..3] (6.6)

Lj,k v A ∀j ∈ [1..m] ∀k ∈ [1..3] (6.7)

The second part of Kϕ contains role inclusions (6.8)–(6.9). Consider an arbitrary literal

lj,k and arbitrary terms w and w′ such that Sj,k(w,w
′) ∈ I. Then, for each i ∈ [1..n], we

have that (a) Pi(w,w
′) ∈ I if and only if the sequence of literals vi, lj,k is consistent, and

(b) Ni(w,w
′) ∈ I if and only if the sequence of literals ¬vi, lj,k is consistent.

Sj,k v Pi ∀j ∈ [1..m]∀k ∈ [1..3]∀i ∈ [1..n] with lj,k 6= ¬vi (6.8)

Sj,k v Ni ∀j ∈ [1..m]∀k ∈ [1..3]∀i ∈ [1..n] with lj,k 6= vi (6.9)

The third part of Kϕ contains role inclusions (6.10)–(6.13). It should be clear that, for

each sequence µ of literals from ϕ and each i ∈ [1..n], we have that (c) Pi(aε, wµ) ∈ I if and

only if the sequence of literals µ, vi is consistent, and (d) Ni(aε, wµ) ∈ I if and only if the

sequence of literals µ,¬vi is consistent.

R v Pi ∀i ∈ [1..n] (6.10)

R v Ni ∀i ∈ [1..n] (6.11)

Pi · Pi v Pi ∀i ∈ [1..n] (6.12)

Ni ·Ni v Ni ∀i ∈ [1..n] (6.13)

97

The fourth part of Kϕ contains role inclusions (6.14)–(6.16). It should be clear that, for

each sequence µ of literals from ϕ and each i ∈ [1..n], we have Ti(aε, wµ) ∈ I if and only if

both vi and ¬vi do not occur in µ. Moreover, for each j ∈ [1..m], a term wj exists such that

Cj(wj) ∈ I and T (wj , wµ) ∈ I if and only if an index k ∈ [1..3] exists such that lj,k ∈ µ.

Pi v Ti ∀i ∈ [1..n] (6.14)

Ni v Ti ∀i ∈ [1..n] (6.15)

Ti v T ∀i ∈ [1..n] (6.16)

Query qϕ is given in (6.17), where y and ~z = z1, . . . , zm are fresh variables. Then

Kϕ |=DL qϕ if and only if a sequence µ of literals from ϕ exists such that, for each i ∈ [1..n],

we have Ti(aε, wµ) ∈ I and, for each j ∈ [1..m], a term wj exists such that Cj(wj) ∈ I and

T (wj , wµ) ∈ I. Hence, we have Kϕ |=DL qϕ if and only if there exists a consistent truth

sequence µ for ϕ.

qϕ = ∃y ∃~z. G(y) ∧
n∧
i=1

Ti(aε, y) ∧
m∧
j=1

Cj(zj) ∧ T (zj , y) (6.17)

Construction of candidate answer τϕ. The datalog program Dϕ for Kϕ contains

all the atoms and the translation of all axioms in Kϕ into rules as specified in Table 5.1,

apart from axioms (6.4)–(6.6) which are replaced by the datalog rules (6.18)–(6.20).

A(x)→ R(x, oR,Cj) ∧ DR(x, oR,Cj) ∧ Cj(oR,Cj) (6.18)

A(x)→ R(x, oR,G) ∧ DR(x, oR,G) ∧G(oR,G) (6.19)

Cj(x)→ Sj,k(x, oSj,k,Lj,k
) ∧ DSj,k

(x, oSj,k,Lj,k
) ∧ Lj,k(oSj,k,Lj,k

) (6.20)

Then let τϕ be the substitution in (6.21).

τϕ(y) = oR,G τϕ(zj) = oR,Cj ∀j ∈ [1..m] (6.21)

We next show that Dϕ |= τϕ(qϕ).

98

We first show that Dϕ |= G(τϕ(y)) and Dϕ |= Ti(aε, τϕ(y)) for each i ∈ [1..n]. By atom

(6.3) and by rule (6.19), we have Dϕ |= R(aε, τϕ(y)) and Dϕ |= G(τϕ(y)). But then, for each

i ∈ [1..n], we have Dϕ |= Ti(aε, τϕ(y)) due to axioms (6.10)–(6.11) and (6.14)–(6.15).

We next show that Dϕ |= T (τϕ(zj), τϕ(y)) and Dϕ |= Cj(τϕ(zj)) for each j ∈ [1..m]. Con-

sider an arbitrary clause Cj ; then, due to (6.3) and (6.18), we have Dϕ |= Cj(τϕ(zj)).

By rule (6.20) and axiom (6.7), for each literal lj,k, an individual u exists such that

Dϕ |= Sj,k(τϕ(zj), u) ∧A(u). Then, by rule (6.19) we have Dϕ |= R(u, τϕ(y)); therefore,

by axioms (6.10)–(6.16), we have that Dϕ |= T (τϕ(zj), τϕ(y)), and so Dϕ |= τϕ(qϕ).

Uniqueness of τϕ. To prove the theorem, we are left to show that τϕ is unique.

Consider an arbitrary candidate answer ξ for qϕ and Dϕ. Since G(y) is an atom in q and

only rule (6.19) derives atoms over G, we must have ξ(y) = oR,G. Furthermore, for each

j ∈ [1..m], due to atom Cj(zj) in q and because only rule (6.18) derives assertions over

concept Cj , we must have ξ(zj) = oR,Cj . Thus, ξ = τϕ, as required.

This hardness result, however, is specific to our datalog encoding DK of K, and we leave

it open whether one can construct in polynomial time an interpretation J ′ of K such that

the candidate answers to a CQ over J ′ can be filtered in polynomial time.

Recently, Gottlob et al. [40] showed that increasing the number of consequences captured

by the datalog program DK is not the only way for achieving polynomial filtering. Assuming

that each DK contains a small number of special constants not occurring in K, we can extend

the input query with a polynomial number of fresh existential variables ranging over the

special constants in DK and encode the nondeterministic guesses in Algorithm 1 directly in

the query. Hence, each candidate answer encapsulates the nondeterministic guesses required

by our filtering procedure isSoundTR; so filtering can be done in polynomial time. Although

this solution would reduce the worst-case complexity of filtering, it is unlikely that it would

prove beneficial in practice: the nondeterministic guesses are only ‘moved’ from the filtering

to the query evaluation phase.

99

6.4 Proof of Correctness

In this section, we prove Theorem 6.10. We first prove that the filtering procedure isSoundTR

from Algorithm 1 is sound, after which we prove that isSoundTR is complete.

Many of the auxiliary results that we will prove in this section will also be used in

Chapter 9 to show the correctness of the filtering procedure for ELRO+
⊥ knowledge bases.

For this reason, in the rest of this chapter, we fix a consistent ELRO+
⊥ knowledge base K,

a CQ q′, and a candidate answer τ to q′ over DK. Furthermore, we let I and J be universal

interpretations of ΞK and DK, respectively, and we let ι be the function mapping the terms

occurring in I to terms occurring in J as specified in Section 5.3; finally, we let q be the

CQ obtained from q′ as specified in Definition 6.1 on page 89. Unless otherwise stated, all

the results that we prove in this section hold for ELHO+
⊥ as well as for ELRO+

⊥ KBs.

6.4.1 Soundness

Assume that τ(x) ∈ NI for each x ∈ ~x and a nondeterministic computation exists such that

isSoundTR(q,DK, τ) returns t; we show that K |=DL τ |~x(q′).

By Definition 5.8 of τ , we have that DK |= τ(q); furthermore, by Theorem 2.3, we have

that ‖τ(q′)‖J ⊆ instJ . Moreover, by Definition 6.1 of q, we have ‖τ(q)‖J ⊆ instJ and, for

each term t ∈ term(q), we have ‖τ(t)‖J = τ(t); thus τ(q) ⊆ instJ . To prove the soundness

claim, we will construct a ground substitution ν that maps the variables of q to terms in I

such that ν(q) ⊆ instI and ν satisfies the following notion of congruence.

Definition 6.16. A substitution ν is congruent with τ if

(C) ι(ν(t)) = τ(t) for each term t ∈ term(q).

The following lemma shows that finding such a substitution ν suffices to prove the

soundness claim.

Lemma 6.17. Each substitution ν that is congruent with τ satisfies the following three

properties for all terms s, t ∈ term(q), each A ∈ conK, and each R ∈ rolK.

(1) A(τ(s)) ∈ instJ implies that A(ν(s)) ∈ instI .

100

(2) R(τ(s), τ(t)) ∈ instJ and R(s, t) is good imply that R(ν(s), ν(t)) ∈ instI .

(3) ν(q) ⊆ instI implies that K |=DL τ |~x(q′).

Proof. Let ν be a substitution that is congruent with τ .

Property (1). Consider an atom A(s) with s ∈ term(q), and assume that A(τ(s)) ∈ instJ .

By property (d1) of Lemma 5.13, for each term w with ι(w) = τ(s), we have A(w) ∈ instI .

Since ν is congruent with τ , this holds in particular for w = ν(s), and so A(ν(s)) ∈ I.

Property (2). Consider an atom R(s, t) with s, t ∈ term(q), and assume that R(s, t)

is good and that R(τ(s), τ(t)) ∈ instJ holds. By the definition of good atoms, one of the

following holds.

• >r ∈ L(R) or τ(t) ∈ NI. By property (d3) of Lemma 5.13, for all terms w and w′ with

ι(w) = τ(s) and ι(w′) = τ(t), we have that R(w,w′) ∈ instI . Since ν is congruent with

τ , this holds in particular for w = ν(s) and w′ = ν(t), and so R(ν(s), ν(t)) ∈ instI .

• s = t and SR(τ(t)) ∈ instJ . By property (d2) of Lemma 5.13, for each term w with

ι(w) = τ(t), we have that R(w,w) ∈ instI . Since ν is congruent with τ , this holds in

particular for w = ν(t), and so we also have that R(ν(t), ν(t)) ∈ instI .

Property (3). Assume that ν(q) ⊆ instI ; we show that a substitution π∗ exists such that

τ |~x ⊆ π∗ and ‖π∗(q′)‖I ⊆ instI . By Proposition 5.2, this shows that K |=DL τ |~x(q′).

Let γ be the mapping from term(q′) to term(q) such that q is obtained by replacing

each t ∈ term(q′) with γ(t). Furthermore, let π∗ be the substitution such that, for each

term t ∈ term(q′), we have π∗(t) = ν(t) if γ(t) = t, and otherwise, π∗(z) is an arbitrary term

w such that ι(w) = τ(t). By the construction π∗ and because ν is congruent with τ , for

each term t ∈ term(q′), we have ι(π∗(t)) = τ(t). Since τ(x) ∈ NI for each x ∈ ~x and ι is the

identity on NI, we have τ |~x ⊆ π∗.

We are left to show that ‖π∗(q′)‖I ⊆ instI . To this end, we show that, for each term

t ∈ term(q′), we have that ‖π∗(t)‖I = ν(γ(t)). By the definition of π∗, the property holds

for each term t ∈ term(q′) with γ(t) = t. Consider an arbitrary term t ∈ term(q′) such

that γ(t) 6= t. By the definition of γ, we have γ(t) = ‖τ(t)‖J and γ(t) ∈ NI. By Lemma

5.11, for each term w occurring in I with ι(w) = τ(t), we have ‖w‖I = γ(t). Because ν is

101

congruent with τ , this holds in particular for w = ν(t). By the definition of π∗, we then

have ‖π∗(t)‖I = γ(t) = ν(γ(t)). Since ν(q) ⊆ instI , we have ‖π∗(q′)‖I ⊆ instI .

Next, we consider the case in which each binary atom in q∼ is either good or aux-simple,

and we construct a substitution ν that is congruent with τ such that ν(q) ⊆ instI .

Soundness of isDSound

Assume that each atom R(s, t) ∈ q∼ is either good or aux-simple. Since isDSound(q,DK, τ)

returns t, directed graph 〈V,Es〉 is acyclic. Next, we show that 〈V,Es〉 is also a forest, and

later we construct ν by induction on 〈V,Es〉.

Lemma 6.18. Directed graph 〈V,Es〉 is a forest.

Proof. By Definition 6.4 of cg = 〈V,Es, Et〉, Es is a binary relation on term(q∼). Since

〈V,Es〉 is acyclic, we are left to show that for each t ∈ term(q∼), at most one term s exists

such that 〈s, t〉 ∈ Es. Assume the opposite; hence, terms s1, s2, and t exist in term(q∼)

such that s1 6= s2 and {〈s1, t〉, 〈s2, t〉} ⊆ Es. Then, roles R and P exist such that R(s1, t)

and P (s2, t) are aux-simple atoms in q∼ and τ(t) ∈ auxDK . By the definition of ∼, we have

s1 ∼ s2; and, by the construction of q∼, we have s1 = s2, which is a contradiction.

We next construct substitution ν that is congruent with τ , and satisfies the two following

properties.

(a) For all terms s, t ∈ term(q) with s ∼ t, we have that ν(s) = ν(t).

(b) For each aux-simple atom R(v, v′) of q∼, we have R(ν(v), ν(v′)) ∈ instI .

We define ν by structural induction on the forest 〈V,Es〉; later we show that ν(q) ⊆ instI .

Base case. Consider a root v ∈ V . We distinguish two cases.

• v ∈ V \Ψq, hence we have that v ∈ term(q∼). Fix an arbitrary term w such that

ι(w) = τ(v). By Lemmas 5.11 and 5.13, such a term w exists and ‖w‖I = w. For each

term s ∈ term(q) with s ∼ v, let ν(s) = w. By condition (1) in Definition 6.5, we have

τ(s) = τ(v). Thus, property (C) in Definition 6.16, and property (a) hold.

102

• v ∈ V ∩Ψq. Let ν(v) be an arbitrary individual in r-indDK . As v ∈ Ψq, properties (C)

in Definition 6.16, and (a) vacuously hold.

Inductive step. Consider an arbitrary 〈v, v′〉 ∈ Es with ν(v) defined and ν(v′) undefined

and let R be an arbitrary role such that R(v, v′) is an aux-simple atom in q∼. By the

definition of Es, such a role R exists. Furthermore, by Definition 6.2 of aux-simple atoms,

we have that DR(τ(v), τ(v′)) ∈ instJ and τ(v′) is of the form oP,B. Moreover, we have

that {v, v′} ⊆ term(q∼) ⊆ term(q). By property (d5) of Lemma 5.13, for each term w with

ι(w) = τ(v), a term w∗ exists such that R(w,w∗) ∈ instI and ι(w∗) = τ(v′). Since ν is

congruent with τ , this holds in particular for w = ν(v). Then, for each term s ∈ term(q)

with s ∼ v′, let ν(s) = w∗. Properties (a) and (b) immediately hold. By condition (1) in

Definition 6.5, we have τ(s) = τ(v), and so property (C) in Definition 6.16 holds as well.

Lemma 6.19. Substitution ν satisfies ν(q) ⊆ instI .

Proof. We show that ν(q) ⊆ instI holds by considering the various atoms of q.

Consider an atom A(s) in q. Because ν is congruent with τ , by property (1) of Lemma

6.17 we have that A(ν(s)) ∈ I.

Consider an atom R(s′, t′) in q. By Definition 6.3 of q∼, an atom R(s, t) occurs in q∼

such that s′ ∼ s and t′ ∼ t. By condition (1) in Definition 6.5, we have τ(s′) = τ(s) and

τ(t′) = τ(t). By assumption, we have R(τ(s′), τ(t′)) ∈ instJ and so R(τ(s), τ(t)) ∈ instJ as

well. By property (a) of ν, it suffices to show that R(ν(s), ν(t)) ∈ instI . Given that our

algorithm returns t in line 2, one of the following holds.

• R(s, t) is good. Because ν is congruent with τ , by property (2) of Lemma 6.17 we

have R(ν(s), ν(t)) ∈ instI .

• R(s, t) is aux-simple. By property (a) of ν, we have that R(ν(s), ν(t)) ∈ instI .

Then, by property (3) of Lemma 6.17 we obtain the following result that holds even

when K is in ELRO+
⊥.

Lemma 6.20. If isDSound(q,DK, τ) returns t and each binary atom of q∼ is either good or

aux-simple, then K |=DL τ |~x(q′).

103

Soundness of isSoundTR

We are left to construct substitution ν in case q∼ contains a binary atom that is neither

good nor aux-simple, and so isSoundTR returns t in line 21. For the rest of this soundness

proof, we assume that K is in ELHO+
⊥.

We next construct substitution ν that is congruent with τ , and satisfies the following

properties.

(i) For all terms s, t ∈ term(q) such that s ∼ t or σ(s) = t, we have that ν(s) = ν(t).

(ii) For each edge 〈v, v′〉 ∈ E and each role R ∈ L(v, v′), we have R(ν(v), ν(v′)) ∈ instI .

By the definition of a skeleton for q and σ, graph S is a forest rooted in the individuals and

the placeholders occurring in V. Next, we define ν by structural induction on S; later we

show that ν(q) ⊆ instI .

Base case. Consider a root v ∈ V. We distinguish two cases.

• v ∈ V \Ψq and therefore v ∈ r-indDK . Given that each element in rng(σ) is a variable,

no term s ∈ term(q) exists such that σ(s) = v. Then, for each term s ∈ term(q) with

s ∼ v, let ν(s) = v. By condition (1) in Definition 6.5, we have τ(s) = τ(v). Thus,

properties (C) in Definition 6.16, and (i) are satisfied.

• v ∈ V ∩ Ψq. By the definitions of relation ∼ and variable renaming σ, no term

s ∈ term(q) exists such that s ∼ v or σ(s) = v. Then let ν(v) be an arbitrary individual

a ∈ r-indDK such that function checkTR(v, a, L) returns t. Because the condition in

line 18 is not satisfied, such an individual exists. Properties (C) in Definition 6.16

and (i) vacuously hold.

Inductive step. Consider 〈v, v′〉 ∈ E such that ν(v) has been defined, but ν(v′) has not.

Let w0 = ν(v); and let u0 = τ(v), if v 6∈ Ψq, otherwise let u0 = ν(v). Note that, in ei-

ther case, we have that ι(w0) = u0. Because the checks in lines 18 and 20 fail, function

existTR(u0, τ(v′), L(v, v′)) returns t. Hence, auxiliary constants u1, . . . , un with n > 0 and

un = τ(v′) exist in auxDK such that, for each i ∈ [1..n] and each R ∈ L(v, v′), we have

DR(ui−1, ui) ∈ instJ . By property (d5) of Lemma 5.13, for each i ∈ [1..n], a term wi exists

104

such that ι(wi) = ui and, for each R ∈ L(v, v′), we have R(wi−1, wi) ∈ instI . Then, for each

term s ∈ term(q) with s ∼ v′ or σ(s) = v′, let ν(s) = wn. Property (i) is clearly satisfied.

Property (C) in Definition 6.16 is also satisfied, since σ(s) = v′ implies that τ(s) = τ(v′),

by construction of σ, and s ∼ v′ implies that τ(s) = τ(v′), by condition (1) in Definition

6.5. For property (ii) we distinguish two cases.

• A role S ∈ L(v, v′) exists such that S is not transitive in R. By Definition 6.8 of func-

tion existTR, we have that n = 1. Therefore, we have that ν(v) = w0 and ν(v′) = w1,

and R(ν(v), ν(v′)) ∈ instI for each R ∈ L(v, v′).

• For each role R ∈ L(v, v′), we have that R is transitive inR. Since no rule is applicable

to I and R(wi−1, wi) ∈ instI for each i ∈ [1..n], we have that R(w0, wn) ∈ instI , and

so R(ν(v), ν(v′)) ∈ instI .

Lemma 6.21. Substitution ν satisfies ν(q) ⊆ instI .

Proof. We next show that ν(q) ⊆ instI holds by considering the atoms occurring in q.

Consider an atom A(s) in q. Because ν is congruent with τ , by property (1) of Lemma

6.17 we have A(ν(s)) ∈ I.

Consider an atom R(s′, t′) in q. By Definition 6.3 of q∼, terms s′′ and t′′ occur in q∼

such that s′ ∼ s′′, t′ ∼ t′′, and R(s′′, t′′) is an atom in q∼. By condition (1) in Definition 6.5,

we have τ(s′) = τ(s′′) and τ(t′) = τ(t′′). Therefore, R(τ(s′′), τ(t′′)) ∈ instJ . By definition

of σ(q∼), terms s and t occur in σ(q∼) such that σ(s′′) = s, σ(t′′) = t, and R(s, t) is an

atom in σ(q∼). By Definition 6.6 of σ, we have τ(t′′) = τ(t) and τ(s′′) = τ(s); and so

R(τ(s), τ(t)) ∈ instJ as well. By property (i) in the definition of ν, it suffices to show that

R(ν(s), ν(t)) ∈ instI . Towards this goal, we consider three distinct cases.

R(s, t) is good. Because ν is congruent with τ , by property (2) of Lemma 6.17 we have

R(ν(s), ν(t)) ∈ instI .

R(s, t) is aux-simple. By the definition of E , we have 〈s, t〉 ∈ E ; moreover, by line 6, we

also have R ∈ L(s, t). By property (ii) in the definition of ν, we have R(ν(s), ν(t)) ∈ instI .

R(s, t) is neither good nor aux-simple. Let P and v0, . . . , vn be as determined in steps

8–15 when Algorithm 1 considers atom R(s, t). Please note that vn = t. By line 8 we

105

have that P v∗R R, whereas by line 15, for each i ∈ [1..n], we have P ∈ L(vi−1, vi); thus,

by property (ii), we have P (ν(vi−1), ν(vi)) ∈ instI . Due to the check in line 9, one of the

following holds.

• 〈s, t〉 ∈ E . Then, we have that n = 1, v0 = s, and v1 = t; thus P (ν(s), ν(t)) ∈ instI .

• s reaches t in E and P is transitive. Since I is closed under ΞK, v0 = s, and vn = t,

we have P (ν(s), ν(t)) ∈ instI .

• s does not reach t in E and P is transitive. Therefore, v0 is the root that reaches t

in S and 〈s, P 〉 ∈ L(v0). Since I is closed under ΞK, we have P (ν(v0), ν(t)) ∈ instI .

We next show that P (ν(s), ν(v0)) ∈ instI , which shows that P (ν(s), ν(t)) ∈ instI , by

considering two alternative cases.

– v0 ∈ V \Ψq and therefore v0 is an individual from NI. Because the condition

in line 20 is not satisfied, function checkTR(v0, τ(v0), L) returns t. Then, by

Definition 6.9 of function checkTR, we have that P (τ(s), τ(v0)) ∈ instJ . Be-

cause ν is congruent with τ , by property (d3) of Lemma 5.13, for each term

w with ι(w) = τ(s), we have that P (w, ν(v0)) ∈ instI . In particular, this holds

for w = ν(s). Since v0 ∈ NI, we have ν(v0) = τ(v0), and so P (ν(s), ν(v0)) ∈ instI .

– v0 ∈ V ∩Ψq. By the construction of ν, we have ν(v0) = a for some individual

a ∈ r-indDK such that function checkTR(v0, a, L) returns t. Then, by Definition

6.9 of function checkTR, we have that P (τ(s), a) ∈ instJ . Because ν is congruent

with τ , by property (d3) of Lemma 5.13, for each term w with ι(w) = τ(s),

we have that P (w, a) ∈ instI . In particular, this holds for w = ν(s). Because

ν(v0) = a, we then have P (ν(s), ν(v0)) ∈ instI .

In all these cases, we have that P (ν(s), ν(t)) ∈ instI . Since P v∗R R and I is closed under

ΞK, we have that R(ν(s), ν(t)) ∈ instI .

By property (2) of Lemma 6.17, the above lemma shows that our filtering function

isSoundTR is correct when K is in ELHO+
⊥.

106

6.4.2 Completeness

Let π be a substitution where dom(π) = ~x and each element in rng(π) is an individual from

indK, and assume that K |=DL π(q′); we show that a candidate answer τ to q′ over DK and

a nondeterministic computation exist such that π ⊆ τ and isSoundTR(q,DK, τ) returns t. In

the following, let dirI be the relation over the terms occurring in instI defined just before

Lemma 5.3 on page 55. Recall that this relation contains each edge 〈w,w′〉 with w′ ∈ ΦN

occurring in I that is direct for some role R.

Because K is consistent, by Proposition 5.2, we have that ΞK |= π(q′); furthermore,

by Theorem 2.3, a substitution π∗ with dom(π∗) = var(q′) exists such that π ⊆ π∗ and

‖π∗(q′)‖I ⊆ instI . We next define substitution τ .

Definition 6.22. Substitution τ is defined as follows.

τ(z) = ι(π∗(z)) ∀z ∈ var(q′) (6.22)

Please note that, because ι is the identity on NI and π∗(x) ∈ indK for each x ∈ ~x, we

have that τ(x) = π∗(x) = π(x). By Lemmas 5.11 and 5.12, we have ‖τ(q′)‖J ⊆ instJ , and

so DK |= τ(q′); that is, τ is a candidate answer to q′ over DK. Furthermore, by Definition

6.1 of q, we have τ(q) ⊆ instJ and, since τ(t) = ι(π∗(t)) for each term t ∈ term(q′), we have

π∗(q) ⊆ instI due to Lemma 5.11.

We are left to show that a nondeterministic computation exist such that filtering function

isSoundTR(q,DK, τ) returns t. To this end, Lemma 6.23 shows that π∗ maps each aux-simple

atom to a direct edge in I, while Lemma 6.24 shows that isDSound(q,DK, τ) returns t.

Lemma 6.23. For each role R ∈ rolK and all terms s, t ∈ term(q), R(π∗(s), π∗(t)) ∈ instI

and R(s, t) is aux-simple imply that 〈π∗(s), π∗(t)〉 ∈ dirI .

Proof. Consider an arbitrary aux-simple atom R(s, t) such that R(π∗(s), π∗(t)) ∈ instI .

Then, we have that role R is simple, s 6= t and τ(t) ∈ auxDK , and τ(s) = τ(t) implies

that SR(τ(t)) 6∈ instJ . By Lemma 5.12 and the definition of τ , we have π∗(t) ∈ ΦN and

π∗(s) = π∗(t) implies that SR(π∗(t)) 6∈ I. By property (3) of Lemma 5.3, we have that

π∗(s) 6= π∗(t). But then, by property (4) of of Lemma 5.3, we have 〈π∗(s), π∗(t)〉 ∈ dirI .

107

Lemma 6.24. Function isDSound(q,DK, τ) returns t and π∗(q∼) ⊆ instI .

Proof. We show that the two conditions of Definition 6.5 are satisfied.

Condition (1). We prove that, for each s ∼ t, we have τ(s) = τ(t) and π∗(s) = π∗(t).

Note that, by the definition of q∼, this also implies that π∗(q∼) ⊆ instI . We proceed by

induction on the number of steps required to derive s ∼ t. For the base case, the empty

relation ∼ clearly satisfies the two properties. For the inductive step, consider an arbitrary

relation ∼ obtained in n steps that satisfies these constraints; we show that the same holds

for all constraints derivable from ∼. We focus on the (fork) rule, as the derivation of s ∼ t

due to reflexivity, symmetry, or transitivity clearly preserves the required properties. Let

s′1, s2, s′2, and s2 be arbitrary terms in term(q) such that s′1 ∼ s′2 is obtained in n steps and

let R1 and R2 be arbitrary roles such that atoms R1(s1, s
′
1) and R2(s2, s

′
2) occur in q and

are aux-simple. By the inductive hypothesis, we have τ(s′1) = τ(s′2) and π∗(s
′
1) = π∗(s

′
2).

Due to π∗(q) ⊆ instI , by Lemma 6.23, we have {〈π∗(s1), π∗(s
′
1)〉, 〈π∗(s2), π∗(s

′
2)〉} ⊆ dirI . As

π∗(s
′
1) = π∗(s

′
2) and because property (1) of Lemma 5.3 states that dirI is a forest rooted in

NI, we have π∗(s1) = π∗(s2). By the construction of τ , we finally have that τ(s1) = τ(s2).

Condition (2). We show that graph 〈V,Es〉 is acyclic. Assume the opposite; hence,

vertices v0, . . . , vm with vm = v0 exist in V such that m > 0 and 〈vi−1, vi〉 ∈ Es for each

i ∈ [1..m]. By the definition of Es, for each i ∈ [0..m], we have that τ(vi) ∈ auxDK . Consider

an arbitrary i ∈ [1..m] and the edge 〈vi−1, vi〉 ∈ Es. By the definition of Es, a role Ri exists

such that Ri(vi−1, vi) is an aux-simple atom in q∼. Due to π∗(q∼) ⊆ instI , by Lemma 6.23,

we have 〈π∗(vi−1), π∗(vi)〉 ∈ dirI . As vm = v0, relation dirI is not a forest, which contradicts

property (1) of Lemma 5.3.

We are left to show that isSoundTR(q,DK, τ) returns t. To this end, we first define the

variable renaming σ for q and τ , and the skeleton S = 〈V, E〉 for q, σ, and τ .

Definition 6.25. For V the vertices of the connection graph for q and τ , substitution σ

maps each variable z ∈ V ∩ var(q∼) to an arbitrary, but fixed variable z′ ∈ V ∩ var(q∼) such

that π∗(z) = π∗(z
′).

Then, for all terms s, t ∈ term(σ(q∼)) such that s 6= t, we have that π∗(s) 6= π∗(t). Also,

108

since π∗(q∼) ⊆ instI , we have that π∗(σ(q∼)) ⊆ instI .

Definition 6.26. Let V = σ(V), let dir+
I be the transitive closure of dirI , and let IV be

the set containing each individual a ∈ r-indDK for which a variable z ∈ var(σ(q∼)) exists

such that a 6∈ V and 〈a, π∗(z)〉 ∈ dir+
I . Let ν be an arbitrary, but smallest substitution such

that π∗ ⊆ ν and, for each individual a ∈ IV , a unique placeholder p ∈ Ψq exists such that

ν(p) = a. The skeleton is given by S = 〈V, E〉 where E ⊆ V × V is the smallest relation

containing 〈v, v′〉 ∈ E for all vertices v, v′ ∈ V such that 〈ν(v), ν(v′)〉 ∈ dir+
I and no vertex

v′′ ∈ V exists such that 〈ν(v), ν(v′′)〉 ∈ dir+
I and 〈ν(v′′), ν(v′)〉 ∈ dir+

I .

Since π∗ ⊆ ν, we clearly have that ν(σ(q∼)) ⊆ instI . Furthermore, consider an arbitrary

edge 〈v, v′〉 ∈ E . Due to 〈ν(v), ν(v′)〉 ∈ dir+
I , we have that terms w0, . . . , wk, roles R1, . . . , Rk,

and concepts A1, . . . , Ak exist such that w0 = ν(v), wk = ν(v′), and for each i ∈ [1..k] we

have that wi’s type is Ri, Ai and DR(wi−1, wi) ∈ instI . Note that all of these are uniquely

defined by the edge.

Next, we show that σ and S are indeed a variable renaming and a skeleton, respectively.

Lemma 6.27. Substitution σ is a variable renaming for q and τ , and directed graph S is

a skeleton for q, σ, and τ .

Proof. We first prove that S is a skeleton, later we show that σ is a variable renaming.

S is a skeleton. By property (1) of Lemma 5.3, relation dirI is a forest, so the graph

S = 〈V, E〉 is a forest rooted in the individuals and the placeholders occurring in V. We are

left to prove that σ(Es) ⊆ E ⊆ σ(Et).

We first show that σ(Es) ⊆ E . Consider an edge 〈v, v′〉 ∈ σ(Es). By the definition of Es,

an aux-simple atom R(s, t) ∈ q∼ exists such that σ(s) = v and σ(t) = v′. By Lemma 6.24,

we have that π∗(q∼) ⊆ instI ; furthermore, by Lemma 6.23, we have that 〈π∗(s), π∗(t)〉 ∈ dirI .

By the definition of σ and ν, we have that π∗(s) = π∗(v) = ν(v), and π∗(t) = π∗(v
′) = ν(v′).

Thus, 〈v, v′〉 ∈ E .

We next show that E ⊆ σ(Et). Consider an edge 〈v, v′〉 ∈ E . By the definition of E ,

we have that 〈ν(v), ν(v′)〉 ∈ dir+
I and v′ ∈ var(σ(q∼)). If v ∈ Ψq, then 〈v, v′〉 ∈ σ(Et) by the

definition of Et; so in the following we consider the case in which v 6∈ Ψq. Let w0, . . . , wk be

109

the terms, let R1, . . . , Rk be the roles, and let A1, . . . , Ak be the concepts uniquely associated

with 〈v, v′〉 ∈ E . By Lemma 5.12, we have that DRi(ι(wi−1), ι(wi)) ∈ J and ι(wi) ∈ auxDK

for each i ∈ [1..k]. By the definition of τ , we also have that ι(w0) = τ(v) and ι(wk) = τ(v′).

Thus, 〈v, v′〉 ∈ σ(Et).

σ is a variable renaming. Clearly, σ satisfies conditions (1)–(3) in Definition 6.6. We

are left to show that σ satisfies condition (4) in the definition. Since σ(Es) ⊆ E , V = σ(V),

and 〈V, E〉 is a forest, graph 〈σ(V), σ(Es)〉 is a forest as well, as required.

Finally, we are ready to prove completeness.

Lemma 6.28. If K is in ELHO+
⊥, then a nondeterministic computation exists such that

filtering procedure isSoundTR(q,DK, τ) returns t.

Proof. By Lemma 6.24, the condition in step 1 in Algorithm 1 is not satisfied; furthermore,

we have that π∗(q∼) ⊆ instI . If each binary atom R(s, t) occurring in q∼ is either good

or aux-simple, then our algorithm returns t in step 2; hence, in the rest of this proof, we

assume that this is not the case.

Let variable renaming σ be as specified in Definition 6.25, and let substitution ν and

skeleton S = 〈V, E〉 be as specified in Definition 6.26.

Consider an edge 〈v, v′〉 ∈ E , and let w0, . . . , wk be the terms, let R1, . . . , Rk be the roles,

and let A1, . . . , Ak be the concepts uniquely associated with the edge 〈v, v′〉. Then a role P

is existTR-compatible with the edge 〈v, v′〉 if

• if P is not transitive in R, then k = 1, and

• for each i ∈ [1..k], we have DP (ι(wi−1), ι(wi)) ∈ instJ .

To prove the lemma, we will show that the following two properties hold for each v ∈ V.

(♦) For each edge 〈v, v′〉 ∈ E and each role P ∈ L(v, v′), we have that P is existTR-

compatible with the edge 〈v, v′〉.

(♥) For each pair 〈s, P 〉 ∈ L(v), we have P (τ(s), ν(v)) ∈ instJ .

110

Please note that, by lines 13–14 in Algorithm 1, we have that 〈s, P 〉 ∈ L(v) implies that

v is a root of S. Hence, either v ∈ r-indDK and τ(v) = ν(v), or v ∈ Ψq and ν(v) ∈ r-indDK .

Therefore, by the definition of function existTR (Definition 6.8) and the above definition of

existTR-compatibility, properties (♥) and (♦) imply that

• for each v ∈ V ∩Ψq, we have that checkTR(v, ν(v), L) returns t in line 18, and

• for each v ∈ V \Ψq, we have that checkTR(v, τ(v), L) returns t in line 20.

For the loop in line 6, consider an arbitrary atom R(s, t) in σ(q∼) that is aux-simple.

By Definition 6.2 of aux-simple atom, we have DR(τ(s), τ(t)) ∈ instJ . By the definition of

τ , we have ι(ν(s)) = τ(s) and ι(ν(t)) = τ(t), so role R is compatible with the edge 〈s, t〉.

For the loop in lines 7–15, consider an arbitrary atom R(s, t) in σ(q∼) that is neither

good nor aux-simple. We next determine the nondeterministic choices that preserve (♥)

in line 14, (♦) in line 15, and that satisfy the conditions in lines 8 and 9. By assumption,

we have R(ν(s), ν(t)) ∈ instI ; so a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with

ρ ∈ L(R) and terms w0, . . . , wm with w0 = ν(s) and wm = ν(t) exist that satisfy property

(2) of Lemma 5.3. Since R is a role hierarchy, for each role T occurring in ρ ∈ L(R), we

have that T v∗R R.

We next show that m ≥ 1. Assume that m = 0; hence, we have that ν(s) = ν(t) and

ρ = χ0. By the definition of variable renaming σ, we have that s = t. Furthermore, ρ

is not empty so χ0 contains at least one role S such that SS(ν(s)) ∈ instI . Since S v∗R R,

ΞK contains rules (5.3), and I is closed under ΞK, we have that SR(ν(s)) ∈ instI . Because

ι(ν(s)) = τ(s), by Lemma 5.12 we have that SR(τ(s)) ∈ instJ and R(s, t) is a good atom,

which contradicts our assumption.

In line 8, let P be an arbitrary role such that ρ ∈ L(P), P v∗R R, and m > 1 implies

that P is transitive. Since K is consistent, R is a role hierarchy, and >r 6v∗R R, such

a role P exists and P 6∈ {>r,⊥r}. Furthermore, for each role T occurring in ρ, we have

that T v∗R P . Then, since ρ(ν(s), ν(t)) ∈ instI and I is closed under ΞK, we also have that

P (ν(s), ν(t)) ∈ instI . Because ι(ν(s)) = τ(s) and ι(ν(t)) = τ(t), by Lemma 5.12, we then

have P (τ(s), τ(t)) ∈ instJ ; thus the conditions in line 8 are satisfied.

111

Next, consider the case in which 〈s, t〉 6∈ E . Then either a vertex v′′ ∈ V exists such that

〈ν(s), ν(v′′)〉 ∈ dir+
I and 〈ν(v′′), ν(t)〉 ∈ dir+

I , or 〈ν(s), ν(t)〉 6∈ dir+
I . In either cases, we have

that m > 1, and so P is transitive; hence the condition in line 9 is not satisfied.

Next, let v0 = s, if s reaches t in S; otherwise, let v0 be the root that reaches t in S.

Furthermore, let `0 be the largest index in [0..m] such that w`0 = ν(v0) and let v0, . . . , vn be

the unique path connecting v0 to t in S. By the form of the terms w`0+1, . . . , wm, for each

j ∈ [`0 + 1..m], we have that DRj (wj−1, wj) ∈ instI , as well as ν(v0) = w`0 and ν(vn) = wm.

Furthermore, for each i ∈ [1..n], a unique index `i ∈ [`0 + 1..m] exists such that ν(vi) = w`i .

Now, let ρ0 = χ0 · · ·R`0 · χ`0 and for each i ∈ [1..n], let ρi = R`i−1+1 · · ·R`i . By property

(h2) of Lemma 5.12, for each j ∈ [`i−1 + 1..`i] we have that DRj (ι(wj−1), ι(wj)) ∈ instJ .

Since Rj v∗R P , DK contains rules (5.4), and J is closed under DK, we also have that

DP (ι(wj−1), ι(wj)) ∈ instJ . Finally, if P is not transitive, then m = 1. Therefore, role P is

compatible with 〈vi−1, vi〉 ∈ E and property (♦) is satisfied in line 15.

We are left to show that property (♥) is satisfied in line 14. Then, assume that

s does not reach t in S, thus P is transitive, v0 is the root that reaches t in S, and

ν(v0) ∈ r-indDK . Since ρ ∈ L(P), we also have ρ0 ∈ L(P). By the form of the terms

w0, . . . , w`0 , we have that ν(s) = w0 and ν(v0) = w`0 ; furthermore, for each i ∈ [1..`0],

we have Ri(wi−1, wi) ∈ instI ; moreover, for each i ∈ [0..`0 − 1] and each role S occurring in

χi, we have S(wi, wi) ∈ instI . By property (h2) of Lemma 5.12 and by the construction of

ν and τ , we have that ρ0(τ(s), ν(v0)) ∈ instJ . Since ρ0 ∈ L(P) and J is closed under DK,

we also have P (τ(s), ν(v0)) ∈ instJ and property (♥) is satisfied.

112

Chapter 7

Proof of Concept

To gain insight into the feasibility of our method for CQ answering, we implemented our

algorithm for answering CQs over ELHO+
⊥ KBs in a prototypical system called EOLO. We

believe that the practicability of our approach is mainly determined by three factors:

• the number of consequences captured by the datalog program DK,

• the number of unsound answers obtained by evaluating CQs over DK, and

• the time and the nondeterminism required by our filtering procedure.

Our experiments show that the overhead caused by materialising the consequences of DK

is reasonably small in typical cases. Furthermore, even without transitive and reflexive

roles, some queries can be challenging for our system. These queries, however, have been

artificially designed to stress test combined approaches by generating large numbers of

unsound answers, so it is not clear whether these queries are representative of information

requests in typical applications. Nevertheless, our system can efficiently deal with the vast

majority of the queries that we have tested, thus suggesting that our algorithm provides a

practical basis for answering conjunctive queries in an expressive fragment of OWL 2 EL.

7.1 Test Setting and Benchmarks

We implemented EOLO in Java and ran our experiments on a Mid 2010 MacBook Pro

with 4GB of RAM and an Intel Core 2 Duo 2.4 GHz processor. Our prototype uses the

113

Table 7.1: Statistics on the knowledge bases used in the experiments

Concepts
Roles

Nominals
TBox RBox

Individuals
Unary Binary

(transitive) axioms axioms atoms atoms

L5
132 32 (1) 9 235 7

100,848 169,079 296,941
L10 202,387 339,746 598,695
L20 426,144 714,692 1,259,936

SEM 60 16 (0) 4 209 0 17,945 47,248 65,193

RDFox [79, 80] system to materialise all consequences of the datalog program DK. We used

two different benchmarks for our experiments, which we present next.

We used a slightly modified version of the LSTW benchmark [73] to test our system with

knowledge bases and queries that contain transitive roles. The LSTW benchmark consists

of an OWL 2 QL version of the LUBM terminology [44], queries ql1, . . . , q
l
11, and a data

generator. The LSTW TBox extends the standard LUBM terminology with several axioms

of type (4) (see Table 5.1 on page 53). To obtain an ELHO+
⊥ TBox, we first removed inverse

roles and datatypes, thus obtaining an ELH⊥ terminology. Then, we added one axiom of

type (2) (see Table 5.1), and 11 axioms using nine freshly introduced nominals. These

additional axioms were designed to test the overhead caused by equality in the datalog

program. Finally, we extended the resulting TBox by making the role subOganizationOf

transitive, and by adding an axiom of type (4) and (10) over this role, thus obtaining an

ELHO+
⊥ terminology. We used the data generator provided by LSTW to generate KBs L5,

L10, and L20 of 5, 10, and 20 universities, respectively. The upper part of Table 7.1 shows

statistics about these KBs. From the 11 LSTW queries, we did not consider queries ql4,

ql6, and ql11 because their result sets were empty: ql4 relies on existential quantification over

inverse roles, and the other two are empty already w.r.t. the original LSTW terminology.

Query ql2 contains a ‘fork’ and was designed to produce only unsound answers and thus

stress the system. Finally, only queries ql3 and ql7 from the LSTW benchmark use transitive

roles, so we have manually created four additional queries ql12, . . . , q
l
15 which are shown in

the upper part of Figure 7.1.

We also used a variant of the SEMINTEC benchmark to evaluate the performance of our

system over knowledge bases that contain neither transitive nor reflexive roles, but require

114

ql12 = ∃~y. Professor(x1) ∧ teacherOf(x1, y1) ∧ GraduateCourse(y1)

∧ takesCourse(x2, y1) ∧memberOf(x2, y2) ∧ subOrganizationOf(y2, y3)

ql13 = ResearchGroup(x1) ∧ subOrganizationOf(x1, x2) ∧ Organization(x2)

ql14 = ∃y. ResearchGroup(x1) ∧ subOrganizationOf(x1, y) ∧ University(y)

∧ subOrganizationOf(x2, y) ∧ Department(x2) ∧ affiliatedOrganizationOf(x1, y)

ql15 = ∃~y. subOrganizationOf(y1, y2) ∧memberOf(x, y1) ∧ Professor(x)

∧ subOrganizationOf(y3, y2) ∧memberOf(x, y3)

qs6 = ∃~y. hasLoan(x1, y1) ∧ hasLoan(x2, y2) ∧ Loan(y1) ∧ Loan(y2)

∧ hasLoanStatusValue(y1, y3) ∧ hasLoanStatusValue(y2, y3)

qs7 = ∃y. isOwnerOf(x1, x2) ∧ Account(x2) ∧ hasSexValue(x1, y) ∧MaleSex(y)

qs8 = ∃y. Account(x) ∧ hasOwner(x, y1) ∧ hasAgeValue(y1, y2)

Figure 7.1: Our conjunctive queries ql12–ql15 and qs6–qs9

equality reasoning due to nominals. The SEMINTEC benchmark consists of an ALCOIF

knowledge base about financial services and acyclic queries qs1–qs5 developed within the

SEMINTEC project at the University of Poznan.1 The SEMINTEC ABox consists of

approximately 65,000 assertions concerning 18,000 individuals. We obtained an ELHO⊥

knowledge base by first removing inverse roles, role functionality axioms, and universal

restrictions from the original terminology, and then by adding nine axioms of type (4) (see

Table 5.1), and six axioms using four freshly introduced nominals. The lower part of Table

7.1 shows structural information about the resulting ELHO⊥ knowledge base. Moreover,

we manually crafted three additional queries qs6–qs8 that are shown in the lower part of

Figure 7.1. Queries qs6–qs8 were designed to retrieve large number of candidate answers, thus

stressing our filtering procedure. In particular, query qs6 resembles query ql2 from LSTW.

The test data, the queries, and the prototype system are all available online.2

7.2 Testing the Size of Materialisations

One of the aspects that, in our opinion, determines the practicability of our approach

is the number of consequences of DK, which should not be ‘too large’. Table 7.2 shows

1http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
2http://www.cs.ox.ac.uk/isg/tools/EOLO/

115

http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
http://www.cs.ox.ac.uk/isg/tools/EOLO/

Table 7.2: Size of the materialisations

Individuals Unary atoms Binary atoms Total atoms
(% in auxDK) (% over auxDK) (% in auxDK) (Ratio)

L5 before 100,848 169,079 296,941 466,020
after 100,873 (0.02) 511,115 (0.02) 1,343,848 (68.30) 1,854,963 (3.98)

L10 before 202,387 339,746 598,695 938,441
after 202,412 (0.01) 1,026,001 (0.01) 2,714,214 (68.37) 3,740,215 (3.98)

L20 before 426,144 714,692 1,259,936 1,974,628
after 426,169 (0.01) 2,157,172 (0.01) 5,720,670 (68.40) 7,877,842 (3.99)

SEM before 17,945 17,945 47,248 65,193
after 17,953 (0.1) 61,510 (0.04) 153,227 (57.45) 214,737 (3.29)

the materialisation results for our two benchmarks: the first column shows the number of

individuals before and after materialisation and the percentage of individuals in auxDK , the

second column shows the number of unary atoms before and after materialisation and the

percentage of atoms involving individuals in auxDK , the third column does the same for

binary atoms, and the fourth column shows the total number of atoms before and after

materialisation and the ratio between the two. As one can see, for each input knowledge

base, the materialisation step introduces few auxiliary individuals and the total number of

atoms grows at most by a factor of four, which we believe is acceptable in most practical

scenarios. The number of unary facts involving an auxiliary individual does not change

with the size of the ABox, whereas the number of such binary facts increases by a constant

factor. This is because, in axioms of type (4), atoms A(oR,A) do not contain a variable,

whereas atoms R(x, oR,A) and DR(x, oR,A) do. Finally, materialisation can be done in about

10 seconds for the largest knowledge base L20 of the LSTW benchmark, and in less than 1

second for the SEMINTEC knowledge base.

7.3 Testing the Filtering Procedure

Another important aspect that determines the feasibility of our CQ answering method is

the ‘practical hardness’ of our filtering procedure, which can be evaluated by measuring the

number of unsound answers obtained by evaluating CQs over DK, and the time and the

nondeterminism required by our filtering procedure. Tables 7.3a, 7.3b, and 7.3c show the

116

Table 7.3: The evaluation results for the LSTW and SEMINTEC benchmark, where column
(C) shows the total number of candidate answers, column (U) shows the percentage of
unsound candidate answers, column (F) shows the average time in ms required to filter
each candidate answer, and column (N) shows the average number of nondeterministic
choices required for each candidate answer.

(a) LSTW results for queries that do not use transitive roles

ql1 ql2 ql5 ql8 ql9 qt10
C U F N C U F N C U F N C U F N C U F N C U F N

L5 111.9K 4.0 0.009 0 3.6M 100 0.010 0 27.9K 0 0.003 0 9.6K 0 0.002 0 1.1K 0 0.003 0 3.2K 0 0.001 0
L10 223.5K 4.2 0.009 0 32.0M 100 0.009 0 57.4K 0 0.002 0 19.4K 0 0.002 0 2.2K 0 0.005 0 6.4K 0 0.001 0
L20 487.3K 4.3 0.006 0 170.3M 100 0.009 0 121.2K 0 0.002 0 41.2K 0 0.002 0 4.8K 0 0.007 0 13.7K 0 0.001 0

(b) LSTW results for queries that use transitive roles

ql3 ql7 ql12 ql13 ql14 ql15
C U F N C U F N C U F N C U F N C U F N C U F N

L5 10 0 0.001 0 19K 0 2.845 5.8 73K 12 1.71 7.55 3K 0 0.01 0 157K 66 1.07 8.6 30K 63 2.44 10.9
L10 22 0 0.001 0 38K 0 2.808 5.8 149K 12 1.68 7.54 6K 0 0.01 0 603K 81 1.20 9.6 61K 63 2.44 10.9
L20 43 0 0.001 0 82K 0 2.800 5.8 313K 12 1.66 7.55 12K 0 0.01 0 2.6M 90 1.28 10.3 129K 63 2.44 10.9

(c) SEMINTEC results

qs1 qs2 qs3 qs4 qs5 qs6 qs7 qs8
C U F N C U F N C U F N C U F N C U F N C U F N C U F N C U F N

SEM 7 0 0.001 0.0 53 0 0.01 0 16 0 0.125 0 12 0 0.001 0 31 0 0.096 0 838K 55 0.004 0 2.2K 0 0.006 0 13K 0 0.004 0

117

results of our experiments for the queries in the LSTW and SEMINTEC benchmarks. Each

table provides the following information for each query and each knowledge base.

• Column (C) shows the total number of candidate answers.

• Column (U) shows the percentage of candidate answers that are unsound.

• Column (F) shows the average time in ms required to filter candidate answers—that

is, the total time required to filter all the candidate answers divided by the total

number of candidate answers.

• Column (N) shows the average number of nondeterministic choices required to check

the soundness of candidate answers—that is, we tally the total number of choices for

the independent guesses in Algorithm 1 required to filter all the candidate answers,

and then we divide this total number by the number of candidate answers.

As one can see from Table 7.3a, among the queries that do not use transitive roles in the

LSTW benchmark, only query ql2 retrieves a significant percentage of unsound candidate

answers. This query has proven to be challenging for our system due to the large number of

candidate answers, with an evaluation time of about 50 minutes over the largest knowledge

base (L20). All other queries were evaluated over the largest knowledge base in less than

12 seconds. Furthermore, testing soundness of a candidate answer can typically be done in

as few as several microseconds, and the test does not involve nondeterministic guessing.

Among the queries that use transitive roles in the LSTW benchmark, Table 7.3b shows

that queries ql14 and ql15 retrieve a significant percentage of unsound candidate answers.

As one can see from Figure 7.1 both these queries contain ‘forks’, hence the large rate of

unsound answers. With an evaluation time of about 52 minutes over L20, only query ql14

challenged our system due to the percentage of unsound candidate answers increasing with

the size of the ABox and the overall large number of candidate answers to filter. For all

the other queries, the percentage of unsound candidate answers does not increase with the

the size of the ABox and the queries can be evaluated in less than 8 minutes over L20. In

all cases, the soundness of a candidate answer can typically be tested in as few as several

milliseconds, and the test involves a manageable number of nondeterministic choices.

118

For the SEMINTEC benchmark, Table 7.3c shows that only query qs6 retrieve a sig-

nificant percentage of unsound candidate answers. This query, however, did not challenge

our system with an evaluation time of about 8 seconds. All other queries can be evaluated

in less than 0.5 seconds. Moreover, similarly as for the queries without transitive roles in

LSTW, testing soundness of a candidate answer can typically be done in few microseconds,

and the test does not involve nondeterministic guessing.

Therefore, while some queries may be challenging, our experiments suggest that our

CQ answering method can be practicable in many cases. Moreover, we believe that the

performance of our system for queries that retrieve large numbers of unsound candidate

answers can be further improved. In our experiments, we observed that, for a given query,

the candidate answers that are unsound tend to share common regular patterns. So, while

answering queries, one could cache unsound candidate answers, and then check whether a

given candidate answer matches the pattern of a cached unsound answers, thus avoiding

filtering similar candidate answers multiple times.

119

120

Chapter 8

Encoding Regular RBoxes

Succinctly Using Bounded-Stack

PDAs

Each reasoning algorithm for a DL with regular role inclusions known to us uses a step that

checks whether ρ ∈ L(R) holds for an arbitrary role chain ρ and a role R. For example,

to check whether K |=DL R(a, b) holds, an algorithm must ensure that, in each model of

K, a role chain ρ ∈ L(R) exists connecting the elements interpreting a and b. Although

role inclusions characterise languages L(R), they do not lend themselves well to language

recognition, so all algorithms known to us transform role inclusions into another, more

manageable form. This is analogous to the fact that, while regular expressions charac-

terise regular languages, the former are routinely transformed into FAs in order to facilitate

language recognition.

Horrocks and Sattler [51] showed that, for each regular RBox R and each role R occur-

ring in R, one can construct an FA FR such that L(FR) = L(R). These FAs are used in

a tableau decision procedure for SROIQ. Given a SROIQ knowledge base, the tableau

procedure tries to construct a finite graph representing a model of the KB, in which edges

are labelled by roles, and vertices are labelled by concepts. The aforementioned FAs are

used to ensure that the universal restrictions ∀R.C labelling nodes obey the constraints im-

121

iR0 fR0 iR0 fR0 iR0 fR0 iR0 fR0

iR1 fR1 iR1 fR1

iR2start fR2

R2

ε

R1

ε

R1

ε

ε ε

R0 R0 R0 R0

ε
ε

ε
ε

Figure 8.1: The FA FR2 as constructed following Horrocks and Sattler [51]

posed by role inclusions; roughly speaking, this is obtained by running FR over the graph

produced by the tableaux algorithm while updating the current state of FR along the path,

and by labelling each reachable vertex in which the state of FR is final with concept C.

Simanč́ık [92] optimised the tableau procedure by simulating FAs on-the-fly, rather than

precomputing them in advance.

Horrocks and Sattler [51] observed that their FAs can contain exponentially many states.

Kazakov [54] proved that this is unavoidable in some cases: for the regular RBox Rn

containing axioms (8.1), the size of each FA F with L(F) = L(Rn) is exponential in n.

Ri−1 ·Ri−1 v Ri ∀i ∈ [1..n] (8.1)

This blowup in the number of states is caused by the simple model of computation underly-

ing FAs, where the behaviour of the automaton is determined solely by the current state. In

the example above, we have ρ ∈ L(Rn) whenever ρ consists of Ri repeated j times for some

i ∈ [0..n] with j = 2n−i. Thus, while recognising such ρ, the FA recognising L(Rn) must

‘remember’ the number of occurrences of Ri it has already seen, which can be achieved only

by using a different state for each number between 0 and 2n. Figure 8.1 shows the FA FR2

constructed by Horrocks and Sattler [51]: to ‘remember’ the current state, FR2 contains

two copies of automaton FR1 , and each copy of FR1 contains two copies of automaton FR0 .

This blowup means that all the existing procedures for answering conjunctive queries

over ELRO+
⊥ knowledge bases run in ExpTime in the worst-case. Our goal, however, is

to show that the problem is PSpace-complete, and so we must devise a more succinct

representation for the languages induced by role inclusions. Towards this goal, we note that

122

role inclusions are closely related to context-free grammars, and that context-free languages

can be efficiently recognised using pushdown automata [50]—that is, FAs extended with an

infinite stack for storing contextual information. Thus, given a regular RBox R and a role

R occurring in R, we construct a PDA PR that accepts L(R). Unlike the finite automaton

shown in Figure 8.1 that ‘remembers’ contextual information using states, PDA PR uses the

stack to ‘remember’ the current status of the computation and determine how to proceed.

We show that the number of states in PR is polynomial in the size of R, and that PR can

recognise L(R) by using a stack of size linear in the size of R; thus, PR provides us with

the required succinct encoding of FR.

8.1 Formalisation

We next formalise the intuitions that we have just presented and show how to associate

each role R occurring in a regular RBox R with a PDA PR that succinctly encodes L(R).

In our construction of PR, only the initial and final states and stacks of PR depend on the

role R, while the derivation relation and all other components of PR depend solely on the

RBox R. In the rest of this chapter, we fix an arbitrary regular RBox R such that, for each

role inclusion ρ v R in R, we have that |ρ| ≤ 2, ρ 6= R, and R 6= >r. For each role R ∈ rolR,

we next define the PDA PR.

Definition 8.1. For R ∈ rolR a role, PR = 〈QR, rolR,ΓR, δR, iR,⊥, fR,⊥〉 is the PDA

where QR = {iT , fT | T ∈ rolR} is the set of states, ΓR = QR ∪ {⊥} is the stack alphabet,

and δR is the smallest transition function that satisfies the following conditions for each

stack symbol X ∈ ΓR.

(r) For each T ∈ rolR \ {>r}, we have 〈fT , X〉 ∈ δR(iT , T,X).

(t1) For each ε v T ∈ R, we have 〈fT , X〉 ∈ δR(iT , ε,X).

(t2) For each T · T v T ∈ R, we have 〈iT , X〉 ∈ δR(fT , ε,X).

(t3) For each T1 · T v T ∈ R, we have 〈iT1 , iT ·X〉 ∈ δR(iT , ε,X).

123

iR2start fR2

iR1 fR1

iR0 fR0

i>r f>r

S,X/X

ε,X/X

ε,X/X

R2, X/X

ε,X/iR1 · fR2 ·X R1, X/X

ε,X/iR0 · fR1 ·X R0, X/X

Figure 8.2: The PDA PR2 corresponding to FR2 where X ∈ ΓR and S ∈ rolR

iRstart fR

iT fTiP

fP

i>r f>r

S,X/X

ε,X/X

ε,X/X

T,X/X
ε,X/iT ·X

ε,X/X

R,X/X

ε,X/i>r · fR ·X ε,X/fR ·X

P,X/Xε,X/X

Figure 8.3: The PDA PR for the RBox in Example 8.2 where X ∈ ΓR and S ∈ rolR

(t4) For each T1 v T ∈ R, we have 〈iT1 , fT ·X〉 ∈ δR(iT , ε,X), and

for each T1 · T2 v T ∈ R, we have 〈iT1 , iT2 · fT ·X〉 ∈ δR(iT , ε,X).

(t5) For each T · T2 v T ∈ R, we have 〈iT2 , fT ·X〉 ∈ δR(fT , ε,X).

(ur) For each T ∈ rolR, we have 〈f>r , X〉 ∈ δR(i>r , T,X).

(u1) 〈f>r , X〉 ∈ δR(i>r , ε,X).

(u2) 〈i>r , X〉 ∈ δR(f>r , ε,X).

(p) For each T ∈ rolR and each λ ∈ QR, we have 〈λ, ε〉 ∈ δR(fT , ε, λ).

In the following examples, we present the PDA that succinctly encodes the FA FR2

shown in Figure 8.1, and we explain the different types of transitions in Definition 8.1, and

how the content of the stack influences the computation of PDAs.

124

Example 8.1. Consider the RBox R2 = {R0 · R0 v R1, R1 · R1 v R2}. Figure 8.1 shows

the FA FR2 that recognises L(R2), whereas Figure 8.2 shows the PDA PR2 corresponding

to FR2. A transition 〈λ′, γ〉 ∈ δR(λ, c,X) is shown as λ
c,X/γ−−−−→ λ′, where X/γ indicates that

the transition replaces the top-most stack symbol X with word γ; moreover, transitions of

the form (p) from Definition 8.1 are not shown in the figure for the sake of clarity. As one

can see from the figure, unlike in FA FR2, there is no copying of states in PDA PR2.

Example 8.2. To explain the different types of transitions in Definition 8.1 and how the

stack is used in the computation of a PDA, we use the regular RBox R containing role

inclusions (8.2)–(8.6). Figure 8.3 shows PDA PR using the notation from Example 8.1.

ε v P (8.2)

T · T v T (8.3)

P · >r v R (8.4)

R · T v R (8.5)

P · T v T (8.6)

Each role T is associated with states iT and fT , and moving from the former to the

latter ensures that the PDA reads a role chain ρ ∈ L(T). A transition of type (r) allows

the PDA to read T in state iT . An ε-transition of type (t1) from iT to fT is added if T

is reflexive, and it allows the PDA to read the empty role chain; in our example, axiom

(8.2) introduces the ε-transition from iP to fP . Moreover, an ε-transition of type (t2) from

fT to iT is added if T is transitive, and it allows the PDA to read any sequence of role

chains ρ1, . . . , ρn ∈ L(T); in our example, axiom (8.3) introduces the ε-transition from fT

to iT . Transitions of types (ur), (u1), and (u2) analogously reflect the properties of >r:

(ur) allows the PDA to read an arbitrary role, and (u1) and (u2) reflect the reflexivity and

transitivity of >r, respectively. None of these transitions affect the PDA’s stack.

To illustrate transitions of type (t4), we next show how, for ρ1 = P · R, PDA PR

determines that ρ1 ∈ L(R); the latter is ensured by axiom (8.4). Assume that PDA PR is

in state iR with ⊥ on its stack. Due to axiom (8.4), PR can make an ε-transition of type

125

(t4) to state iP , pushing i>r · fR on the stack. Since the new state is iP , the PDA will next

need to read P ; furthermore, the stack content signals to the PDA that, after it finishes

reading P , it should move to state i>r to read >r and then to state fR to finish reading

R. Indeed, PR can then make a transition of type (r) to state fP to read P , followed by

an ε-transition of type (p) to state i>r popping i>r off the stack; next, the PDA can make

a transition of type (ur) to state f>r reading R, followed by an ε-transition of type (p) to

state fR popping fR off the stack. At this point, the PDA accepts the input.

To illustrate transitions of types (t3) and (t5), we next show how, for ρ2 = R · P · T ,

PDA PR determines that ρ2 ∈ L(R); the latter is ensured by axioms (8.5) and (8.6). Again,

assume that PDA PR is in state iR with ⊥ on its stack. PDA PR can then make a transition

of type (r) to state fR, reading R and leaving the stack unchanged; next, due to axiom (8.5),

PR can make an ε-transition of type (t5) to state iT , pushing fR on the stack. Due to axiom

(8.6), PDA PR can next make an ε-transition of type (t3) to state iP , pushing iT on the

stack; at this point, the stack contains iT · fR · ⊥. Next, the PDA can make a transition of

type (r) to state fP reading P , and then an ε-transition of type (p) to state iT popping iT

off the stack; furthermore, in an analogous way, the PDA can move to state fT reading T

and leaving fR · ⊥ on the stack. Finally, the PDA can make an ε-transition of type (p) to

state fR popping fR off the stack. At this point, the PDA accepts the input.

To understand the benefit of using PDAs rather than FAs, note that PR reaches state

iP while recognising both ρ1 and ρ2. Role P occurs in axioms (8.4) and (8.6), so when PR

moves into state iP in order to read an occurrence of P , it must ‘remember’ which of the two

axioms caused the move so that it knows how to continue after reading P : for ρ1, PR must

must continue reading >r, whereas for ρ2, it must continue reading T . Unlike the FAs by

Horrocks and Sattler [51] that remember this information by copying states, PR remembers

this information on its stack: for ρ1, it reaches iP with i>r · fR · ⊥ on its stack, whereas for

ρ2, PR reaches iP with iT · fR · ⊥ on its stack. Thus, the stack of PR is analogous to stacks

in programming languages: stack symbols correspond to return addresses, and transitions of

type (p) correspond to ‘return’ statements.

The following result is immediate from the definition of PDA PR.

126

Proposition 8.2. PDA PR can be computed in time polynomial in |R|.

The following theorem states that PDA PR accepts L(R) and that PR has stack bounded

by the size of R. The proof of this result is given in Section 8.2.

Theorem 8.3. For each role R ∈ rolR and each role chain ρ,

1. ρ ∈ L(PR) if and only if ρ ∈ L(R), and

2. PR has stack bounded by 2 · lv(R) + 1.

Theorem 8.3 gives rise to the following notion of the depth of RBox R, which provide

us with a global bound on the stack size of the PDAs encoding R.

Definition 8.4. The depth of the RBox R is dR = maxR∈rolR(2 · lv(R) + 1).

Finally, we outline how our bounded-stack encoding of regular RBoxes can reduce the

space used by the tableau algorithm for SROIQ. Since ELRO+
⊥ does not support inverse

roles, Definition 8.1 does not directly provide us with an encoding of the languages induced

by SROIQ RBoxes. Nevertheless, we can extend the construction above by ‘completing’

RBox R so that inv(Rn) · · · inv(R1) v inv(R) ∈ R for each role inclusion R1 · · ·Rn v R in

the RBox, where inv(·) maps each role to its inverse. One can check that, for each (inverse)

role R, the PDA PR constructed using the completed RBox R encodes FR. Therefore, we

can modify the portion of the tableau algorithm responsible for checking the satisfaction

of universal restrictions by running a bounded-stack PDA over the graph constructed by

the tableau procedure. Roughly speaking, for each universal restriction ∀R.C labelling a

vertex, we run PR over the graph while updating the current state and the stack of PR,

and we label each reachable vertex in which the current state and stack of PR are final with

concept C. Since PR and its stack are of size polynomial in |R|, this requires polynomial

space, unlike the FAs by Horrocks and Sattler [51] and the optimised encoding by Simanč́ık

[92], which may require exponential space.

8.2 Proof of Correctness

In this section, we prove Theorem 8.3. To this end, let ` be the derivation relation for the

transition function δR; furthermore, for each derivation step 〈λ, ρ, γ〉 ` 〈λ′, ρ′, γ′〉, we write

127

〈λ, ρ, γ〉 `x 〈λ′, ρ′, γ′〉 if 〈λ′, ρ′, γ′〉 can be obtained from 〈λ, ρ, γ〉 by applying a transition of

the form (x) from Definition 8.1 with x ∈ {r, t1, . . . , t5, ur, u1, u2, p}.

8.2.1 Soundness and Stack Boundedness

Next, we prove that, for each role R ∈ rolR and each role chain ρ ∈ (rolR)∗,

(1) ρ ∈ L(PR) implies that ρ ∈ L(R), and

(2) PR has stack bounded by 2 · lv(R) + 1.

To this end, we first show that PDA PR satisfies the following liveness property : if during

its computation PR pushes a state λ ∈ QR on the stack, then PR will eventually pop λ off

the stack. Then, we show that each derivation of PR moving from state iR to state fR takes

one of five forms; we call such derivations regular. Finally, we show that regular derivations

satisfy properties (1) and (2).

We start by showing that each PDA PR satisfies the following liveness property.

Lemma 8.5. Let 〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λn, ρn, γn · γ〉 be an arbitrary derivation such that

λ0 = iR, λn = fR, and γ0 = ε for some role R ∈ rolR and some word γ ∈ Γ∗R. Then, for

each role T such that lv(T) < lv(R) and each i ∈ [0..n] such that λi ∈ {iT , fT } and γi = λ′i · γ′i

with λ′i ∈ QR, an index j ∈ [i..n] exists such that, for each k ∈ [i..j], we have that

(a) λj = fT and γj = γi;

(b) word γk is of the form γk = γ′′k · γi for some γ′′k ∈ Γ∗R; and,

(c) λj+1 = λ′i, γj+1 = γ′i, and ρj+1 = ρj.

Proof. Let 〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λn, ρn, γn · γ〉 be as above, and for each i ∈ [0..n− 1], let

xi ∈ {r, t1, . . . , t5, ur, u1, u2, p} be the form of derivation step i—that is, we fix xi (arbitrarily

if there is more than one possibility) such that 〈λi, ρi, γi · γ〉 `xi 〈λi+1, ρi+1, γi+1 · γ〉 holds.

Furthermore, for each role T such that lv(T) < lv(R), let IT be the set containing each

index i ∈ [0..n] such that λi ∈ {iT , fT } and γi is of the form γi = λ′i · γ′i with λ′i ∈ QR.

Note that, for each index i ∈ IT , due to lv(T) < lv(R), λi ∈ {iT , fT }, and λn = fR, we have

that i < n—that is, 〈λi, ρi, γi · γ〉 ` 〈λi+1, ρi+1, γi+1 · γ〉 occurs in our derivation. Next, by

128

induction on m ∈ N, we show that, for each role T with m = lv(T) < lv(R) and each i ∈ IT ,

some j ∈ [i..n] exists satisfying properties (a)–(c).

Base case (♦). Consider a role T ∈ rolR with 0 = lv(T) < lv(R). We consider the

interesting case in which IT 6= ∅; otherwise, properties (a)–(c) hold vacuously. Given that

lv(T) = 0 and λi ∈ {iT , fT }, we have that xi ∈ {r, t1, t2, ur, u1, u2, p}. By reverse-induction

on IT (i.e., by induction starting from the maximal element), we next show that each index

i ∈ IT satisfies the required properties.

Base case. Let i = max IT . Note that, if xi ∈ {r, t1, t2, ur, u1, u2}, then λi+1 ∈ {iT , fT }

and γi+1 = γi; thus, we have that i+ 1 ∈ IT , which contradicts the maximality of i. The

only remaining possibility is xi = p, and so λi = fT , λi+1 = λ′i, γi+1 = γ′i, and ρi+1 = ρi;

but then, j = i satisfies properties (a)–(c).

Inductive step. Consider an arbitrary index i ∈ IT such that properties (a)–(c) hold

for each ` ∈ IT with ` > i. If xi ∈ {r, t1, t2, ur, u1, u2}, then λi+1 ∈ {iT , fT } and γi+1 = γi;

hence, ii+1 ∈ IT so, by the inductive hypothesis, an index j exists satisfying properties

(a)–(c). Otherwise, if xi = p, then λi = fT , λi+1 = λ′i, γi+1 = γ′i, and ρi+1 = ρi, so j = i

satisfies properties (a)–(c).

Inductive Step (♦). Consider an arbitrary m ∈ N such that properties (a)–(c) hold for

each role P ∈ rolR with lv(P) ≤ m and lv(P) < lv(R) and each index in IP . Furthermore,

consider an arbitrary role T such that m+ 1 = lv(T) < lv(R). We consider the interest-

ing case where IT 6= ∅; otherwise, properties (a)–(c) hold vacuously. Recall that for each

ρ v R′ ∈ R we have R′ 6= >r, so lv(>r) = 0 and T 6= >r. Thus, each i ∈ IT is such that

xi 6∈ {ur, u1, u2}. By reverse-induction on IT , we next show that each index i ∈ IT satisfies

the required properties.

Base case (♥). Let i = max IT . If xi ∈ {r, t1, t2}, then λi+1 ∈ {iT , fT } and γi+1 = γi;

thus, we have i+ 1 ∈ IT , which contradicts the maximality of i. If xi ∈ {t3, t4, t5}, then

λi+1 ∈ {iP , fP } for some role P such that lv(P) < lv(T) and lv(P) < lv(R); furthermore, we

have that γi+1 is of the form γi+1 = γ′′i+1 · λT · γi where λT ∈ {iT , fT } and γ′′i+1 is a sequence

of zero or one states. Each state γ occurring in γ′′i+1 is such that γ ∈ {iS , fS} for some role

S of level less than T . But then, by the inductive hypothesis (♦), an index ` > i exists such

129

that λ` = λT and γ` = γi, which contradicts the maximality of i. Finally, if xi = p, then

λi = fT , λi+1 = λ′i, γi+1 = γ′i, and ρi+1 = ρi, so j = i satisfies properties (a)–(c).

Inductive step (♥). Consider an arbitrary index i ∈ IT such that properties (a)–(c) hold

for each index ` ∈ IT with ` > i, and consider the possible forms of xi.

• xi ∈ {r, t1, t2}. Then, λi+1 ∈ {iT , fT } and γi+1 = γi, so i+ 1 ∈ IT . By the inductive

hypothesis (♥), an index j exists satisfying properties (a)–(c).

• xi = t3. Then, λi+1 = iT1 and γi+1 = iT · γi for some role T1 with lv(T1) < lv(T).

Thus, i+ 1 ∈ IT1 . By the inductive hypothesis (♦), an index ` ∈ [i+ 1..n] exists such

that λ` = fT1 and γ` = γi+1; furthermore, for each k ∈ [i+ 1..`], we have that γk is of

the form γk = γ′′k · γi+1 for some word γ′′k ∈ Γ∗R; finally, λ`+1 = iT and γ`+1 = γi. By

the definition of IT , we have that `+ 1 ∈ IT . By the inductive hypothesis (♥), an

index j exists satisfying properties (a)–(c).

• xi = t4. Then, λi+1 = iT1 and one of the following two cases holds.

– γi+1 = fT · γi and a role T1 with lv(T1) < lv(T) exists such that λi+1 = iT1 . Thus,

i+ 1 ∈ IT1 . By the inductive hypothesis (♦), an index ` ∈ [i+ 1..n] exists such

that λ` = fT1 and γ` = γi+1; moreover, for each k ∈ [i..`], we have that γk is of

the form γk = γ′′k · γi+1 for some word γ′′k ∈ Γ∗R; finally, λ`+1 = fT and γ`+1 = γi.

By the definition of IT , we have that `+ 1 ∈ IT . By the inductive hypothesis

(♥), an index j exists satisfying properties (a)–(c).

– γi+1 6= fT · γi and role T1 and T2 with lv(T1) < lv(T) and lv(T2) < lv(T) exist

such that λi+1 = iT1 and γi+1 = iT2 · fT · γi. Thus, i+ 1 ∈ IT1 . By the inductive

hypothesis (♦), an index `1 ∈ [i+ 1..n] exists such that λ`1 = fT1 and γ`1 = γi+1;

moreover, for each k ∈ [i..`1], we have that γk is of the form γk = γ′′k · γi+1

for some word γ′′k ∈ Γ∗R; finally, λ`1+1 = iT2 and γ`1+1 = fT · γi. Consequently,

`1 + 1 ∈ IT2 . Again, by the inductive hypothesis (♦), an index `2 ∈ [`1 + 1..n]

exists such that λ`2 = fT2 and γ`2 = γ`1+1; furthermore, for each k ∈ [`1 + 1..`2],

we have that γk is of the form γk = γ′′k · γ`1+1 for some word γ′′k ∈ Γ∗R; finally,

λ`2+1 = fT and γ`2+1 = γi. By the definition of IT , we have that `2 + 1 ∈ IT . By

130

the inductive hypothesis (♥), an index j exists satisfying properties (a)–(c).

• xi = t5. Then, λi+1 = iT2 and γi+1 = fT · γi for some role T2 with lv(T2) < lv(T).

Then, i+ 1 ∈ IT2 . By the inductive hypothesis (♦), an index ` ∈ [i+ 1..n] exists

such that λ` = fT2 and γ` = γi+1; for each k ∈ [i..`], we have that γk is of the form

γk = γ′′k · γi+1 for some word γ′′k ∈ Γ∗R; finally, λ`+1 = fT and γ`+1 = γi. By the defi-

nition of IT , we have that `+ 1 ∈ IT . So, by the inductive hypothesis (♥), an index

j exists satisfying properties (a)–(c).

• xi = p. Then, λi = fT , λi+1 = λ′i, γi+1 = γ′i, and ρi+1 = ρi. Therefore, j = i satisfies

properties (a)–(c).

Next, for each role R ∈ rolR, we define the notion of regular derivations of PR.

Definition 8.6. The set of regular derivations of P>r is inductively defined as follows, for

each role T ∈ rolR, each role chain ρi ∈ (rolR)∗, and each γ ∈ Γ∗R.

sur 〈i>r , T · ρ0, γ〉 `ur 〈f>r , ρ0, γ〉 is a regular derivation of P>r .

su1 〈i>r , ρ0, γ〉 `u1 〈f>r , ρ0, γ〉 is a regular derivation of P>r .

su2 If 〈i>r , ρ0, γ〉 ` · · · ` 〈f>r , ρk, γ〉 and 〈i>r , ρk, γ〉 ` · · · ` 〈f>r , ρn, γ〉 are regular deriva-

tions of P>r , then the following is also a regular derivation of P>r .

〈i>r , ρ0, γ〉 ` · · · ` 〈f>r , ρk, γ〉 `u2 〈i>r , ρk, γ〉 ` · · · ` 〈f>r , ρn, γ〉

Next, consider an arbitrary natural number m ∈ N and assume that regular derivations of

PT have already been defined for T = >r and each role T ∈ rolR such that lv(T) ≤ m. Then,

for each role R ∈ rolR with lv(R) = m+ 1, regular derivations of PR are defined as follows,

for each R(i) ∈ rolR, each ρi ∈ rol∗R, and each γ ∈ Γ∗R.

sr 〈iR, R · ρ0, γ〉 `r 〈fR, ρ0, γ〉 is a regular derivation of PR.

st1 If ε v R ∈ R, then 〈iR, ρ0, γ〉 `t1 〈fR, ρ0, γ〉 is a regular derivation of PR.

131

st2 If R ·R v R ∈ R and

〈iR, ρ0, γ〉 ` · · · ` 〈fR, ρk, γ〉 and 〈iR, ρk, γ〉 ` · · · ` 〈fR, ρn, γ〉

are regular derivations of PR, then the following is also a regular derivation of PR.

〈iR, ρ0, γ〉 ` · · · ` 〈fR, ρk, γ〉 `t2 〈iR, ρk, γ〉 ` · · · ` 〈fR, ρn, γ〉

st3 If R1 · R v R ∈ R, 〈iR1 , ρ0, iR · γ〉 ` · · · ` 〈fR1 , ρk, iR · γ〉 is a regular derivation of

PR1, and 〈iR, ρk, γ〉 ` · · · ` 〈fR, ρn, γ〉 is a regular derivation of PR, then the following

is also a regular derivation of PR.

〈iR, ρ0, γ〉 `t3

〈iR1 , ρ0, iR · γ〉 ` · · · ` 〈fR1 , ρk, iR · γ〉 `p

〈iR, ρk, γ〉 ` · · · ` 〈fR, ρn, γ〉

st4 If R1 v R ∈ R and 〈iR1 , ρ0, fR · γ〉 ` · · · ` 〈fR1 , ρk, fR · γ〉 is a regular derivation of

PR1, then the following is also a regular derivation of PR.

〈iR, ρ0, γ〉 `t4

〈iR1 , ρ0, fR · γ〉 ` · · · ` 〈fR1 , ρk, fR · γ〉 `p

〈fR, ρk, γ〉

If R1 · R2 v R ∈ R, 〈iR1 , ρ0, iR2 · fR · γ〉 ` · · · ` 〈fR1 , ρk, iR2 · fR · γ〉 is a regular

derivation of PR1, and 〈iR2 , ρk, fR · γ〉 ` · · · ` 〈fR2 , ρn, fR · γ〉 is a regular derivation

132

of PR2, then the following is also a regular derivation of PR.

〈iR, ρ0, γ〉 `t4

〈iR1 , ρ0, iR2 · fR · γ〉 ` · · · ` 〈fR1 , ρk, iR2 · fR · γ〉 `p

〈iR2 , ρk, fR · γ〉 ` · · · ` 〈fR2 , ρn, fR · γ〉 `p

〈fR, ρn, γ〉

st5 If R · R2 v R ∈ R, 〈iR, ρ0, γ〉 ` · · · ` 〈fR, ρk, γ〉 is a regular derivation of PR, and

〈iR2 , ρk, fR · γ〉 ` · · · ` 〈fR2 , ρn, fR · γ〉 is a regular derivation of PR2, then the follow-

ing is a regular derivation of PR.

〈iR, ρ0, γ〉 ` · · · ` 〈fR, ρk, γ〉 `t5

〈iR2 , ρk, fR · γ〉 ` · · · ` 〈fR2 , ρn, fR · γ〉 `p

〈fR, ρn, γ〉

We are left to show that each derivation of PR that moves the PDA from the start

state iR to the final state fR is regular and that regular derivations satisfy the required

properties. In the following lemma, we show that derivations which leave a particular word

γ at the bottom of the stack are regular and satisfy properties (1) and (2). Later, we will

show that each accepting derivation of PR is of this form.

Lemma 8.7. For each role R ∈ rolR, each word γ ∈ Γ∗R, and each derivation of the form

〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λn, ρn, γn · γ〉 with λ0 = iR, λn = fR, and γ0 = ε,

(i) the derivation is regular for PR;

(ii) for each i ∈ [0..n], we have that |γi| ≤ 2 · lv(R); and

(iii) R =⇒∗ ρ0 − ρn.

Proof. We prove the claim by induction on n ∈ N+.

Base case. For n = 1, consider an arbitrary role R ∈ rolR, word γ ∈ Γ∗R, and sequence

〈iR, ρ0, γ0 · γ〉 ` 〈fR, ρ1, γ1 · γ〉. By Definition 8.1, only transitions from cases (r), (t1),

133

(ur), and (u1) move PR from state iR to state fR. These transitions leave the stack un-

touched, so γ1 = ε = γ0 and property (ii) holds. For properties (i) and (iii), we next consider

the four different forms that the sequence may take.

• 〈iR, R · ρ1, γ0 · γ〉 `r 〈fR, ρ1, γ1 · γ〉. Then R 6= >r, so this is a regular derivation of

PR by case sr and (i) holds. Finally, ρ0 − ρ1 = R, which implies R =⇒∗ ρ0 − ρ1, and

so (iii) holds.

• 〈iR, ρ0, γ0 · γ〉 `t1 〈fR, ρ0, γ1 · γ〉. Then R 6= >r, so this is a regular derivation of PR

by case st1 and (i) holds. Finally, ρ0 − ρ1 = ε; moreover, by case t1 of Definition 8.1,

we have ε v R ∈ R, so R =⇒∗ ε; hence, R =⇒∗ ρ0 − ρ1 and (iii) holds.

• 〈iR, T · ρ1, γ0 · γ〉 `ur 〈fR, ρ1, γ1 · γ〉. Then R = >r and T ∈ rolR, so this is a regular

derivation of P>r by case sur and (i) holds. Finally, ρ0 − ρ1 = T ∈ rolR, which implies

R =⇒∗ ρ0 − ρ1, and so (iii) holds.

• 〈iR, ρ0, γ0 · γ〉 `u1 〈fR, ρ0, γ1 · γ〉. Then R = >r, so this is a regular derivation of P>r

by case su1 and property (i) holds. Finally, ρ0 − ρ1 = ε; hence, R =⇒∗ ε, and so (iii)

holds.

Inductive step. Consider an arbitrary n ∈ N+ and assume that (i)–(iii) hold for each

role R′ ∈ rolR, each word γ′ ∈ Γ∗R, and each derivation 〈λ′0, ρ′0, γ′0 · γ′〉 ` · · · ` 〈λ′c, ρ′c, γ′c · γ′〉

of length at most n and of the form required by this lemma. Furthermore, consider an

arbitrary role R ∈ rolR, an arbitrary word γ ∈ Γ∗R, and an arbitrary derivation

〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λn+1, ρn+1, γn+1 · γ〉 (8.7)

of length n + 1 such that λ0 = iR, γ0 = ε, and λn+1 = fR. For each i ∈ [0..n− 1], let

xi ∈ {r, t1, . . . , t5, ur, u1, u2, p} be the form of derivation step i—that is, we fix xi (arbitrarily

if there is more than one possibility) such that 〈λi, ρi, γi · γ〉 `xi 〈λi+1, ρi+1, γi+1 · γ〉 holds.

We next consider the possible forms the sequence might have, and we show that properties

(i)–(iii) hold in each case.

134

Case 1. R = >r. We start by considering the form of the first derivation step;

that is, the form of 〈λ0, ρ0, γ0 · γ〉 `x0 〈λ1, ρ1, γ1 · γ〉. Given that λ0 = i>r , we have that

x0 ∈ {t1, t3, t4, ur, u1}. As R is normalised, each role inclusion ρ v R′ ∈ R is such that

R′ 6= >r, so x0 ∈ {ur, u1} and we have λ1 = f>r and γ1 = ε = γ0. Since n > 1, derivation

step 〈λ1, ρ1, γ1 · γ〉 `x1 〈λ2, ρ1, γ2 · γ〉 occurs in the sequence with x1 ∈ {t2, t5, u2, p}. Since

λ1 = f>r and R is normalised, we have x1 ∈ {u2, p}; furthermore, since γ1 = ε and by our

assumption on the form of (8.7), we have x1 6= p. Hence, the only remaining possibility is

that x1 = u2. By case (u2) in Definition 8.1, we have λ2 = i>r , ρ2 = ρ1, and γ2 = γ1. We

next prove that properties (i)–(iii) hold.

(i) By sur and su1 in Definition 8.6, we have that 〈λ0, ρ0, γ0 · γ〉 `x0 〈λ1, ρ1, γ1 · γ〉 is a

regular derivation of P>r . By the inductive hypothesis, we also have that derivation

〈λ2, ρ2, γ2 · γ〉 ` · · · ` 〈λn+1, ρn+1, γn+1 · γ〉 is regular derivation for PR. By the defini-

tion of regular derivations, we have γn = γ2 = ε. But then, (8.7) is a regular derivation

of PR by case su2.

(ii) Words γ0, γ1, γ2 are all empty. By the inductive hypothesis, we have |γ`| ≤ 2 · lv(>r)

for each ` ∈ [2..n+ 1]. Thus, |γi| ≤ 2 · lv(>r) holds for each i ∈ [0..n+ 1].

(iii) By the inductive hypothesis, we have >r =⇒∗ ρ2 − ρn+1. By cases (ur) and (u1), either

ρ0 − ρ2 = ε or ρ0 − ρ2 = T ∈ rolR. But then, >r =⇒∗ ρ0 − ρn+1 holds.

Case 2. R 6= >r and an index k ∈ [0..n] exists such that λk = fR and the k-th derivation

step is of the form 〈λk, ρk, γk · γ〉 `t2 〈λk+1, ρk+1, γk+1 · γ〉. Then, by case (t2) in Definition

8.1, we have R ·R v R ∈ R, λk+1 = iR, ρk+1 = ρk, and γk+1 = γk. We next prove that

properties (i)–(iii) hold.

(i) By the inductive hypothesis, 〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λk, ρk, γk · γ〉 is a regular deriva-

tion of PR. By the definition of regular derivations, we have γk = γ0 = ε. As λk+1 = iR

and γk+1 = γk = ε, we have 〈λk+1, ρk+1, γk+1 · γ〉 ` · · · ` 〈λn+1, ρn+1, γn+1 · γ〉 is of

the form shown in (8.7) and it is shorter than n + 1 so, by the inductive hypothesis,

it is a regular derivation of PR. So (8.7) is a regular derivation of PR by case st2.

135

(ii) By the inductive hypothesis, we have |γ`1 | ≤ 2 · lv(R) for each `1 ∈ [0..k], as well as

|γ`2 | ≤ 2 · lv(R) for each `2 ∈ [k + 1..n+ 1]. Therefore, |γi| ≤ 2 · lv(R) holds for each

i ∈ [0..n+ 1].

(iii) By the inductive hypothesis, we have that R =⇒∗ ρ0 − ρk and R =⇒∗ ρk+1 − ρn+1. But

then, R ·R v R ∈ R and ρk+1 = ρk implies that R =⇒∗ ρ0 − ρn+1 holds.

Case 3. R 6= >r and there is no ` ∈ [0..n] such that λ` = fR and the `-th derivation

step is of the form 〈λ`, ρ`, γ` · γ〉 `t2 〈λ`+1, ρ`+1, γ`+1 · γ〉, but k ∈ [0..n] exists such that

〈λk, ρk, γk · γ〉 `t5 〈λk+1, ρk+1, γk+1 · γ〉 and λk = fR. Then, let k be the largest such index—

that is, we assume that nom > k exists such that 〈λm, ρm, γm · γ〉 `t5 〈λm+1, ρm+1, γm+1 · γ〉

and λm = fR. Then, by case (t5) in Definition 8.1, for some role R2 of level less than R,

we have that R ·R2 v R ∈ R, λk+1 = iR2 , ρk+1 = ρk, and γk+1 = fR · γk. We next prove

that properties (i)–(iii) hold.

(i) As λk = fR, by the inductive hypothesis, we have 〈λ0, ρ0, γ0 · γ〉 ` · · · ` 〈λk, ρk, γk · γ〉

is a regular derivation of PR. By Definition 8.7, we have γk = γ0. Since λk+1 = iR2

and γk+1 = fR · γ0, by Lemma 8.5, an index j ∈ [k + 1..n] exists such that λj = fR2

and γj = γk+1; moreover, λj+1 = fR and γj+1 = γ0 and ρj+1 = ρj . We prove that

j + 1 = n+ 1. For the sake of contradiction, assume that j + 1 < n + 1 and con-

sider the form of transition 〈λj+1, ρj+1, γj+1 · γ〉 `xj+1 〈λj+2, ρj+2, γj+2 · γ〉. Given

that λj+1 = fR and R 6= >r, we must have xj+1 ∈ {t2, t5, p}. By the initial assump-

tion, we have xj+1 6= t2; furthermore, by the maximality of k, we have xj+1 6= t5;

finally, since γj+1 = γ0 = ε, we have xj+1 6= p. Thus, j + 1 = n + 1, as required. It

follows that the sequence is of the following form, where ρk+1 = ρk and ρn+1 = ρn.

〈iR, ρ0, γ0 · γ〉 ` · · · ` 〈fR, ρk, γ0 · γ〉 `t5

〈iR2 , ρk+1, γk+1 · γ〉 ` · · · ` 〈fR2 , ρn, γn · γ〉 `p

〈fR, ρn+1, γ0 · γ〉

By Lemma 8.5, for each ` ∈ [k+ 1..n], we have that γ` is of the form γ` = γ′′` · fR · γ0.

In particular, words γ′′k+1 and γ′′n are both empty. Then, by the inductive hypothesis,

136

we have that 〈iR2 , ρk+1, γk+1 · γ〉 ` · · · ` 〈fR2 , ρn, γn · γ〉 is a regular derivation of PR2 .

By case st5, then (8.7) is a regular derivation of PR.

(ii) By the inductive hypothesis, for each `1 ∈ [0..k], we have that |γ`1 | ≤ 2 · lv(R). Fur-

thermore, for each `2 ∈ [k + 1..n], we have that |γ′′`2 | ≤ 2 · lv(R2). Since lv(R2) < lv(R)

and γ`2 = γ′′`2 · fR, we also have that |γ`2 | ≤ 2 · lv(R). Given that γn+1 = ε, for each

i ∈ [0..n+ 1], we have that |γi| ≤ 2 · lv(R).

(iii) By the inductive hypothesis, we have that R =⇒∗ ρ0 − ρk and R2 =⇒∗ ρk+1 − ρn. Given

that R =⇒∗ R·R2, that ρk+1 = ρk, and that ρn+1 = ρn, we obtain that R =⇒∗ ρ0−ρn+1.

Case 4. R 6= >r and no index ` ∈ [0..n] exists such that λ` = fR, x` ∈ {t2, t5}, and

〈λ`, ρ`, γ` · γ〉 `x` 〈λ`+1, ρ`+1, γ`+1 · γ〉; but we have 〈λ0, ρ0, γ0 · γ〉 `t3 〈λ1, ρ1, γ1 · γ〉. Then,

by case (t3) in Definition 8.1, for some role R1 of level less than R, we have R1 ·R v R ∈ R,

λ1 = iR1 , ρ1 = ρ0, and γ1 = iR · γ0. We next prove that properties (i)–(iii) hold.

(i) Since λ1 = iR1 and γ1 = iR · γ0, by Lemma 8.5, some j ∈ [1..n] exists such that

λj = fR1 and γj = γ1; furthermore, λj+1 = iR and γj+1 = γ0 and ρj+1 = ρj . Then,

the sequence is of the following form, where ρ1 = ρ0.

〈iR, ρ0, γ0 · γ〉 `t3

〈iR1 , ρ1, γ1 · γ〉 ` · · · ` 〈fR1 , ρj , γj · γ〉 `p

〈iR, ρj+1, γj+1 · γ〉 ` · · · ` 〈fR, ρn+1, γn+1 · γ〉

By Lemma 8.5, for each ` ∈ [1..j], word γ` is of the form γ` = γ′′` · iR · γ0; in particular,

we have that words γ′′1 and γ′′j are both empty. By the inductive hypothesis, we have

that 〈iR1 , ρ0, γ1 · γ〉 ` · · · ` 〈fR1 , ρj , γj · γ〉 is a regular derivation of PR1 . As γj+1 = γ0,

by the inductive hypothesis, then 〈iR, ρj+1, γj+1 · γ〉 ` · · · ` 〈fR, ρn+1, γn+1 · γ〉 is a

regular derivation of PR. By case st3, then (8.7) is a regular derivation of PR.

(ii) By the inductive hypothesis, for each `2 ∈ [j+ 1..n+ 1], we have that |γ`2 | ≤ 2 · lv(R);

furthermore, for each `1 ∈ [1..j], we have that |γ′′`1 | ≤ 2 · lv(R1). Since lv(R1) < lv(R)

and γ`1 = γ′′`1 · iR, we also have that |γ`1 | ≤ 2 · lv(R). Finally, since γ0 = ε, for each

i ∈ [0..n+ 1], we have that |γi| ≤ 2 · lv(R).

137

(iii) By the inductive hypothesis, we have that R1 =⇒∗ ρ1 − ρj and R =⇒∗ ρj+1 − ρn+1.

Given that R =⇒∗ R1 ·R, that ρ1 = ρ0, and that ρj+1 = ρj , we have R =⇒∗ ρ0 − ρn+1.

Case 5. R 6= >r and there is no index ` ∈ [0..n] such that λ` = fR, x` ∈ {t2, t5}, and

〈λ`, ρ`, γ` · γ〉 `x` 〈λ`+1, ρ`+1, γ`+1 · γ〉; in addition, 〈λ0, ρ0, γ0 · γ〉 `x0 〈λ1, ρ1, γ1 · γ〉 is such

that x0 6= t3. We next consider the remaining possibilities for x0. As λ0 = iR, we have that

x0 6∈ {t2, t5, u2, p} by cases (t2), (t5), (u2), and (p) of Definition 8.1; furthermore, due to

R 6= >r, we have x0 6∈ {ur, u1} by cases (ur) and (u1) of Definition 8.1. Moreover, assume

that x0 ∈ {r, t1}; then, we have λ1 = fR and γ1 = γ0 by cases (r) and (t1) of Definition 8.1;

since n > 1 and R 6= >r, the only possibility is that 〈λ1, ρ1, γ1 · γ〉 `p 〈λ2, ρ2, γ2 · γ〉, which

is impossible due to γ1 = ε and our assumption on the form of (8.7). The only remaining

possibility is that x0 = t4. By case (t4) in Definition 8.1, one of the following holds.

• γ1 = fR · γ0 and a role R1 with lv(R1) < lv(R) exist such that R1 v R ∈ R, λ1 = iR1 ,

and ρ1 = ρ0.

• γ1 6= fR · γ0, and R1 and R2 of level less than R exist such that R1 ·R2 v R ∈ R,

λ1 = iR1 , ρ1 = ρ0, and γ1 = iR2 · fR · γ0.

We next consider the latter case, and show that properties (i)–(iii) hold; for the remaining

case the properties can be proved similarly.

(i) Since λ1 = iR1 and γ1 = iR2 · fR · γ0, by Lemma 8.5, j1 ∈ [1..n] exists such that

λj1 = fR1 and γj1 = γ1; moreover, λj1+1 = iR2 and γj1+1 = fR · γ0 and ρj1+1 = ρj1 .

By Lemma 8.5, we also have that j2 ∈ [j1 + 1..n] exists such that λj2 = fR2 and

γj2 = γj1+1; furthermore, λj2+1 = fR and γj2+1 = γ0 and ρj2+1 = ρj2 . Next, we prove

that j2 + 1 = n+ 1. For the sake of contradiction, suppose that j2 + 1 < n + 1 and

consider the form of 〈λj2+1, ρj2+1, γj2+1 · γ〉 `xj2+1 〈λj2+2, ρj2+2, γj2+2 · γ〉. Given that

λj2+1 = fR, we must have that xj2+1 ∈ {t2, t5, u2, p}. However, we assumed that

xj2+1 6∈ {t2, t5} and that R 6= >r, so xj2+1 6= u2; finally, since γj2+1 = γ0 = ε, we have

xj2+1 6= p. Therefore, we have j2 + 1 = n+ 1, as required, and the sequence is of the

138

following form, for ρ1 = ρ0, ρj1+1 = ρj , and ρn+1 = ρn.

〈iR, ρ0, γ0 · γ〉 `t4

〈iR1 , ρ1, γ1 · γ〉 ` · · · ` 〈fR1 , ρj1 , γj1 · γ〉 `p

〈iR2 , ρj1+1, γj1+1 · γ〉 ` · · · ` 〈fR2 , ρn, γn · γ〉 `p

〈fR, ρn+1, γn+1 · γ〉

By Lemma 8.5, for each `1 ∈ [1..j1], word γ`1 is of the form γ`1 = γ′′`1 · iR2 · fR · γ0; in

particular, we have that words γ′′1 and γ′′j1 are both empty. Then, by the inductive

hypothesis, we have that 〈iR1 , ρ1, γ1 · γ〉 ` · · · ` 〈fR1 , ρj1 , γj1 · γ〉 is a regular derivation

of PR1 . Similarly, by Lemma 8.5, for each `2 ∈ [j1 + 1..n], we have that γ`2 is of

the form γ`2 = γ′′`2 · fR · γ0. In particular, words γ′′j1+1 and γ′′n are both empty. By

the inductive hypothesis, then 〈iR2 , ρj1+1, γj1+1 · γ〉 ` · · · ` 〈fR2 , ρn, γn · γ〉 is a regular

derivation of PR2 . By case st4, then (8.7) is a regular derivation of PR.

(ii) By the inductive hypothesis, for each `1 ∈ [1..j1], we have that |γ′′`1 | ≤ 2 · lv(R1). Since

lv(R1) < lv(R) and γ`1 = γ′′`1 · iR2 · fR, we also have that |γ`1 | ≤ 2 · lv(R). Similarly,

by the inductive hypothesis, for each `2 ∈ [j1 + 1..n], we have that |γ′′`2 | ≤ 2 · lv(R2).

Since lv(R2) < lv(R) and γ`2 = γ′′`2 · fR, we also have |γ`2 | ≤ 2 · lv(R). Since γ0 = ε,

for each i ∈ [0..n+ 1], we have that |γi| ≤ 2 · lv(R).

(iii) By the inductive hypothesis, we have that R1 =⇒∗ ρ1 − ρj1 and R2 =⇒∗ ρj1+1 − ρn.

Given that R =⇒∗ R1 · R2, that ρ1 = ρ0, and that ρn+1 = ρn, we conclude that

R =⇒∗ ρ0 − ρn+1.

There are no other possibilities for the form of (8.7), so the claim of this lemma holds

for each derivation of that form.

We are finally ready to show that PDA PR satisfies properties (1) and (2).

Lemma 8.8. For each role R ∈ rolR and each role chain ρ ∈ (rolR)∗,

1. ρ ∈ L(PR) implies ρ ∈ L(R), and

2. PR has stack bounded by 2 · lv(R) + 1.

139

Table 8.1: Definition of derivation (8.9) depending on the form of axiom ρ v T

Type Axiom Derivation

(t1) ε v T 〈iT , ρ′′, γi〉 `t1 〈fT , ρ′′, γi〉

(t2) T · T v T 〈iT , T · T · ρ′′, γi〉 `r 〈fT , T · ρ′′, γi〉 `t2
〈iT , T · ρ′′, γi〉 `r 〈fT , ρ′′, γi〉

(t3) T1 · T v T
〈iT , T1 · T · ρ′′, γi〉 `t3
〈iT1 , T1 · T · ρ′′, iT · γi〉 `r 〈fT1 , T · ρ′′, iT · γi〉 `p
〈iT , T · ρ′′, γi〉 `r 〈fT , ρ′′, γi〉

(t4) T1 v T

〈iT , T1 · ρ′′, γi〉 `t4
〈iT1 , T1 · ρ′′, fT · γi〉 `r 〈fT1 , ρ′′, fT · γi〉 `p
〈fT , ρ′′, γi〉

(t4) T1 · T2 v T

〈iT , T1 · T2 · ρ′′, γi〉 `t4
〈iT1 , T1 · T2 · ρ′′, iT2 · fT · γi〉 `r 〈fT1 , T2·ρ′′, iT2 · fT · γi〉 `p
〈iT2

, T2 · ρ′′, fT · γi〉 `r 〈fT2
, ρ′′, fT · γi〉 `p

〈fT , ρ′′, γi〉

(t5) T · T2 v T
〈iT , T · T2 · ρ′′, γi〉 `r 〈fT , T2 · ρ′′, γi〉 `t5
〈iT2

, T2 · ρ′′, fT · γi〉 `r 〈fT2
, ρ′′, fT · γi〉 `p

〈fT , ρ′′, γi〉

Proof. By the definition of PR, transitions resulting from case (p) in Definition 8.1 are the

only ones popping elements from the stack, and these never pop symbol ⊥; hence, at each

point i in an accepting derivation of PR, the stack content γi is of the form γi = γ′i · ⊥.

Then, the two claims follow immediately from Lemma 8.7.

8.2.2 Completeness

We next prove that our encoding is also complete, thus proving Theorem 8.3.

Lemma 8.9. For each role R ∈ rolR and each role chain ρ ∈ (rolR)∗, if ρ ∈ L(R) then

ρ ∈ L(PR).

Proof. Consider an arbitrary role R ∈ rolR. In the following, for each role chain ρ, we write

R
0

=⇒ ρ if ρ = R; furthermore, for each m ∈ N+, we write R
m
=⇒ ρ if role chains ρ1, . . . , ρm

with ρm = ρ exist such that R =⇒ ρ1 =⇒ · · · =⇒ ρm. By the definition of L(R), we have that

ρ ∈ L(R) if and only if a natural number m ∈ N exists such that R
m
=⇒ ρ. By induction on

m ∈ N, we next show that R
m
=⇒ ρ implies ρ ∈ L(PR).

140

Base case. Let m = 0. Then, we have that R
0

=⇒ R. We consider two cases depending on

the form of role R ∈ rolR, and show that in each case we have that R ∈ L(PR), as required.

• R = >r. By case (ur) in Definition 8.1, we have that

〈i>r ,>r,⊥〉 `ur 〈f>r , ε,⊥〉, so R ∈ L(PR).

• R ∈ rolR \ {>r}. By case (r) in Definition 8.1, we have that

〈iR, R,⊥〉 `r 〈fR, ε,⊥〉, so R ∈ L(PR).

Inductive step. Consider an arbitrary m ∈ N and assume that, for each role chain ρ′

such that R
m
=⇒ ρ′, we have ρ′ ∈ L(PR); we show that the same holds for m + 1. Then,

consider arbitrary role chains ρ1, . . . , ρm+1 such that R =⇒ ρ1 =⇒ · · · =⇒ ρm =⇒ ρm+1. By the

definition of relation =⇒, a role T ∈ rolR and role chains ρ′, ρ, ρ′′ exist such that role chain ρm

is of the form ρm = ρ′ · T · ρ′′, role chain ρm+1 is of the form ρm+1 = ρ′ · ρ · ρ′′, and T =⇒ ρ.

Since R
m
=⇒ ρ′ · T · ρ′′, by the inductive hypothesis, we have ρ′ · T · ρ′′ ∈ L(PR), so a sequence

〈λ0, ρ0, γ0〉 ` · · · ` 〈λn, ρn, γn〉 of PR exists with λ0 = iR and λn = fR; furthermore, γ0 = ⊥

and γn = ⊥; finally, ρ0 = ρ′ · T · ρ′′ and ρn = ε. Then there exists an index i ∈ [0..n − 1]

such that ρi = T · ρ′′ and ρi+1 = ρ′′. Furthermore, for each j ∈ [0..i], role chain ρj is of

the form ρj := ρ−j · T · ρ′′ for some role chain ρ−j ∈ rol∗R. Next, consider the form of xi

in 〈λi, ρi, γi〉 `xi 〈λi+1, ρi+1, γi+1〉. By Definition 8.1, only transitions in cases (r) and (ur)

read symbols from the input, so xi ∈ {r, ur}. We show that the lemma holds in each case.

Case 1. Consider the case in which xi = r. Then, we have λi = iT and λi+1 = fT ,

γi = γi+1, and T ∈ rolR \ {>r}. Due to T =⇒∗ ρ and T 6= >r, we have ρ v T ∈ R. Then,

the following is a derivation of PR

〈λ0, ρ
−
0 · ρ · ρ

′′, γ0〉 ` · · · ` 〈λi, ρ−i · ρ · ρ
′′, γi〉 `∗ (8.8)

[The derivation from Table 8.1 for ρ v T] `∗ (8.9)

〈λi+1, ρ
′′, γi+1〉 ` · · · ` 〈λn, ε, γn〉 (8.10)

where the derivation in (8.9) is defined in Table 8.1 depending on the form of ρ v T ∈ R.

Case 2. Consider the case in which xi = ur. Then, we have that λi = i>r and

141

λi+1 = f>r , γi = γi+1 and T ∈ rolR. Then, the following is also a derivation of PR

〈λ0, ρ
−
0 · ρ · ρ

′′, γ0〉 ` · · · ` 〈λi, ρ−i · ρ · ρ
′′, γi〉 `∗ (8.11)

[The derivation Π(ρ)] `∗ (8.12)

〈λi+1, ρ
′′, γi+1〉 ` · · · ` 〈λn, ε, γn〉 (8.13)

where the derivation Π(ρ) in (8.12) is inductively defined as follows.

Π(ρ) =


〈i>r , ρ

′′, γi〉 `u1 〈f>r , ρ
′′, γi〉 if ρ = ε,

〈i>r , ρ · ρ′′, γi〉 `ur 〈f>r , ρ̄ · ρ′′, γi〉 `u2 Π(ρ̄) if ρ = P · ρ̄.

Therefore, in either case, we have ρ′ · ρ · ρ′′ ∈ L(PR), as required.

142

Chapter 9

Answering CQs over ELRO+
⊥ KBs

Even though the datalog program DK of an ELRO+
⊥ knowledge base K can be used to

check the consistency of K, evaluating a conjunctive query q over DK can generate unsound

answers. In Chapter 6, we presented an NP filtering procedure that checks whether a

candidate answer τ to q over DK is sound, provided that K is in ELHO+
⊥. In this chapter,

we use the encoding of regular role inclusions based on bounded-stack PDAs introduced in

Chapter 8 to lift this restriction and present a PSpace filtering procedure isSoundRI for

ELRO+
⊥ that extends and refines the procedure for ELHO+

⊥. In Section 9.1 we discuss the

key differences between the two filtering procedures; and in Section 9.2 we introduce the

procedure isSoundRI formally and show that it can be implemented to use space polynomial

in combined complexity. Similarly to the procedure for ELHO+
⊥, the filtering procedure

isSoundRI runs in polynomial time if τ does not map query variables to auxiliary constants,

or if τ does not map binary atoms in q to atoms in DK that are obtained using the complex

role inclusions in K. Furthermore, we show that our filtering procedure can be used to

obtain the first worst-case optimal algorithm for answering CQs over ELRO+
⊥ knowledge

bases that runs in PSpace; thus, we settle the question of the combined complexity of CQ

answering for OWL 2 EL. In Chapter 10, we shall show that CQ answering over ELRO+
⊥

knowledge bases is PSpace-hard even when the query is fixed; hence, our algorithm is

optimal also in knowledge base complexity. Finally, in Section 6.4 we prove the correctness

of the filtering procedure.

143

a b

1 2T,B

T R

A1 Aa A2 Ab

T,E

Universal interpretation I Universal interpretation J

4 5T,C

TT

R,D

RS

P
S

S,T

c
A2

3

R

T

R,D
P

T,E6

a b

oT,B oR,D

T R

oT,C oT,E

TT

R
S

P

S

S,T

c
A2

R

T

T T
T T

S R R S R

A1 Aa A2 Ab

Figure 9.1: The universal interpretations I and J of ΞK and DK, respectively

9.1 Intuition

Algorithm 2 on page 153 specifies a procedure isSoundRI(q,DK, τ) that checks whether

candidate answer τ to q over DK is sound. We explain the fundamental differences between

the filtering procedure in Algorithm 2 and the filtering procedure for ELHO+
⊥ from Chapter

6 using the knowledge base K from Example 9.1.

Example 9.1. Let K be the ELRO+
⊥ KB where the ABox A = {A1(a), A2(b), A2(c)}, and

the TBox T and the RBox R contain the following axioms.

A1 v ∃T.B B v ∃T.C R · T v T

B v ∃S.Aa C v ∃T.C S · T v S

Aa v {a} A2 v ∃R.D P · T v R

B v ∃R.Ab D v ∃P.Self

Ab v {b} D v ∃T.E

Moreover, let ΞK be the rule base for K and let DK be the datalog program for K. Figure

9.1 shows the universal interpretations I and J of ΞK and DK, respectively; notation is as

in Example 4.1 on page 39. Axiom C v ∃T.C makes I infinite, so a terminating algorithm

cannot simply materialise I and evaluate conjunctive queries in it. Our filtering procedure

uses the PDA encoding of the RBox described in Chapter 8. The transition function δR is

144

iS fSf>ri>r

iT fTfPiP

iR fR

T,X/X

ε,X/iT ·X

S,X/X

ε,X/fS ·X

R,X/X

ε,X/iT · fR ·X

P,X/X

ε,X/X

U,X/X

ε,X/X

Figure 9.2: The transitions of δR where X ∈ ΓR and U ∈ rolR

shown in Figure 9.2; notation is the same as in Example 8.2 on page 125.

The initial steps of our filtering procedure isSoundRI follow the initial steps of the filtering

procedure for ELHO+
⊥. In step 1, we use the auxiliary function isDSound from Definition

6.5 to compute equality constraints using the aux-simple ‘forks’ in q, we check that these

constraints are satisfied by q and τ and compute a new query q∼, and then we check that q∼

does not contain aux-simple cycles. When q∼ contains only atoms that are either good or

aux-simple, step 1 suffices to determine whether the candidate answer τ is sound. Otherwise,

in lines 3–6 we nondeterministically compute a variable renaming σ (see Definition 6.6) and

a skeleton S for σ, q, and τ (see Definition 6.7). The skeleton is a finite structure that

describes the (possibly infinite) set of all substitutions π mapping the variables of σ(q∼) to

distinct labelled nulls of I. As we have seen in Chapter 6, the constraints expressed by the

skeleton do not sufficiently describe the substitutions that map onto I the binary atoms of

σ(q∼) that are neither good nor aux-simple, so additional steps are required to ensure that

each substitution π represented by the skeleton correctly maps the query into the universal

interpretation.

In the filtering procedure for ELHO+
⊥, we refine the skeleton’s constraints by guessing,

for each binary atom in the query that is neither good nor aux-simple, how to unfold it as

a sequence of direct edges in I using the transitive roles in K. We represent the unfolding

of each binary atom by labelling each skeleton edge with a set of roles, and each skeleton

145

root with a set of pairs consisting of a skeleton vertex and a role. However, this unfolding

step is based on properties that are particular to the universal interpretations of ELHO+
⊥

knowledge bases and cannot be immediately lifted to those of ELRO+
⊥ knowledge bases.

When K is an ELHO+
⊥ knowledge base, each edge 〈w,w′〉 in the universal interpretation

I of K that is labelled by a role R can be unfolded either via a nominal path or via an

anonymous path. Nominal paths contain at least one direct edge pointing towards an

individual from NI, whereas anonymous paths consist only of direct edges pointing towards

labelled nulls. Moreover, the relative position of the terms w and w′ in I completely

determines the type of the unfolding: if w reaches w′ in I using an anonymous path then the

edge 〈w,w′〉 will be unfolded using an anonymous path; otherwise 〈w,w′〉 will be unfolded

using a nominal path. Finally, each unfolding, regardless of its type, is uniform: one can

find a subrole P of R that labels each direct edge along the path.

Regular role inclusions in the knowledge base complicate the structure of the universal

interpretation, so the aforementioned properties do not hold when K is an ELRO+
⊥ knowl-

edge base. In particular, the relative positions of the terms in the universal interpretation I

do not anymore determine the the type of the unfolding. For example, the universal inter-

pretation I shown in Figure 9.1 contains the edge S(1, 4) and 1 is directly connected to 4 in

I; in spite of this, the only possible unfolding for S(1, 4) is the nominal path ρS = S · T · T

that connects 1 to individual a, a back to 1, and 1 to 4. Moreover, each edge 〈w,w′〉 of I

must be unfolded either via a nominal path or a self-anonymous path—a repeating sequence

of zero or more self edges, followed by a direct edge pointing towards a labelled null, ending

with zero or more self edges. Moreover, an unfolding need not be uniform: each edge along

the path can be labelled by a different role. For example, the edge R(2, 5) can be unfolded

into the self-anonymous path ρR = P · T connecting 2 with itself using the self edge labelled

by role P , and then connecting 2 with 5 using the direct edge labelled by role T .

Therefore, in the filtering procedure isSoundRI , we represent the unfolding ρR of each

binary atom R(s, t) that is neither good nor aux-simple by labelling edges and root vertices

of S with bounded-stack PDAs with transition function δR; this allows us to compactly

capture each possible, non-uniform unfolding ρR. In particular, we account for the two

types of unfolding using the guessing in step 9: if v0 is a root of the skeleton, then ρR is

146

iS fSf>ri>r

iT fTfPiP

iRstart fR

ε,X/iT ·X

ε,X/fS ·X

ε,X/iT · fR ·X

P,X/X

ε,X/X

P,X/X

ε,X/X

Figure 9.3: The stationary PDA spda(iR,⊥, λ0, γ0, oR,D) where X ∈ ΓR

a nominal path; otherwise ρR is a self-anonymous path. Similar to the filtering procedure

for ELHO+
⊥, in steps 10–12, we split the unfolding ρR into its subcomponents along the

path v0, . . . , vn that connects v0 to vn = t in the skeleton S. To this end, we ‘split’ the

PDA PR encoding L(R) into n bounded-stack PDAs by nondeterministically guessing a

sequence of states λ0, . . . , λn from QR and stack words γ0, . . . , γn over ΓR such that the size

of each γi is bounded by the depth of R, and λn = fR and γn = ⊥ are the final state and

stack of PR, respectively. Then, for each i ∈ [1..n], we construct the bounded-stack PDA

pda(λi−1, γi−1, λi, γi) with transition function δR such that λi−1 and γi−1 are the initial

state and stack, and λi and γi are the final state and stack of the PDA, respectively. We

use this PDA to describe the subpaths of ρR that connect π(vi−1) to π(vi) in I; so we label

the corresponding skeleton edge 〈vi−1, vi〉 ∈ S with pda(λi−1, γi−1, λi, γi).

At this point, the skeleton describes the part of the unfolding ρR that connects π(v0)

to π(vn) = π(t) in I and moves the PDA PR from state λ0 with stack γ0 to the final state

λn = fR with final stack γn = ⊥. However, it does not describe the, possibly empty, initial

part of ρR that connects π(s) to π(v0) and moves PR from its initial state iR and stack ⊥

to state λ0 with stack γ0. Hence, in steps 14–17, we consider two cases.

When v0 is a skeleton root and so ρR is a nominal path, the initial part of ρR must

connect π(s) to the individual represented by v0 in I. However, if v0 is a placeholder

variable, we do not know which individual of I v0 represents, so we cannot check the

147

existence of the required subpath independently. Therefore, we add in step 15 the pair

〈s, pda(iR,⊥, λ0, γ0)〉 as a constraint to the root v0, where pda(iR,⊥, λ0, γ0) is the PDA

with transition function δR such that iR and ⊥ are the initial state and stack, and λ0 and

γ0 are the final state and stack of the PDA, respectively; we use this PDA to describe the

subpaths of ρR that connect π(s) to π(v0) in I.

In contrast, when v0 = s is not a root and so ρR is a self-anonymous path, the initial

part of ρR must consist of a self loop. In addition, in this case, we also know that v0 is

mapped by τ to an auxiliary constant, say τ(v0) = oR,D. Hence, we capture the initial

subpath of ρ0 that moves PR from its initial state iR and stack ⊥ to state λ0 with stack γ0

using a so-called stationary PDA spda(iR,⊥, λ0, γ0, τ(s)). This stationary PDA describes

all the possible loops on elements in I that have type R,D since τ(s) = oR,D; that is,

ρ ∈ L(spda(iR,⊥, λ0, γ0, τ(s))) for each element w in I of type R,D and for each role chain

ρ corresponding to a self loop on w that moves the PDA from state iR with stack ⊥ to

state λ0 with stack γ0. Because τ already determines the type of π(s), we check directly

in step 17 that the required loop can be realised by the universal interpretation I: using

polynomial time we check that the language accepted by L(spda(iR,⊥, λ0, γ0, τ(s))) is non-

empty [50]. Figure 9.3 shows the stationary PDA spda(iR,⊥, fP , γ0, oR,D) for an arbitrary

stack word γ0. In the universal interpretation I shown in Figure 9.1 the self edges that

loop over elements in I of type R,D are all labelled by role P , so the transition function of

spda(iR,⊥, fP , γ0, oR,D) is obtained from δR by removing each transition that consumes an

input symbol different from P .

After steps 5–17, each substitution π that satisfies the skeleton’s constraints maps σ(q∼)

onto I, so we are left to check that at least one such substitution can be realised by the

universal interpretation I. Because the universal interpretation I of K can be infinite, in

the filtering procedure for ELHO+
⊥ we reduced this task to checking the existence of paths

in the universal interpretation J of DK that consist only of direct edges and are labelled

with a set of roles. For ELRO+
⊥ knowledge bases the reduction is more involved, because

we must check the existence of paths in J that are recognised by PDAs. In particular, we

show that a substitution π exists that satisfies the skeleton’s constraints if and only if the

following two properties hold for each skeleton edge 〈v, v′〉 and each root vertex vr of S.

148

(a) For each PDA P ∈ L(v, v′), a non-empty role chain ρ ∈ L(P) exists labelling a path

from u to u′ in J that starts with a direct edge and consists only of direct and self

edges pointing to auxiliary constants, where u and u′ are the constants representing

π(v) and π(v′) in J , respectively.

(b) For each 〈s,P〉 ∈ L(vr), a role chain ρ ∈ P exists labelling a path from us to ur in J ,

where us and ur are the constants representing π(s) and π(vr) in J , respectively.

These properties provide us with an effective way of checking the skeleton’s constraints

using the direct and self predicates occurring in the datalog program DK by applying in

steps 18–22 the procedure checkRI from Definition 9.4 to each skeleton vertex v ∈ V.

We check property (a) in function checkRI by applying to each edge 〈v, v′〉 of S the

auxiliary procedure existRI(u, u
′, L(v, v′)) from Algorithm 3 on page 153. Roughly speaking,

we run all PDAs in parallel in steps 7–14 of Algorithm 3. In step 8 we check existence of

direct edges pointing towards auxiliary constants in J via entailment checking; after that,

for each PDA, in step 10 we guess a state λ and a stack γ of the PDA, in step 11 we

check whether the PDA can perform the move, and in step 14 we actually move the PDA.

Due to self-restrictions and reflexive roles, however, the PDAs need not move in synchrony:

after each move over a direct edge, each of the PDAs can independently loop on the current

constant. To this end, in step 10 we guess a state λ′ and a stack γ′ that the PDA moves into

after looping, and in step 12 we check whether the PDA can move from state λ with stack

γ to state λ′ with stack γ′ using a role chain compatible with the constant is moving into

as given by the stationary PDA spda(λ, γ, λ′, γ′, oR,A). Because not all PDAs are required

to loop, the stationary PDA spda(λ, γ, λ′, γ′, oR,A) can accept the empty word in case its

start state and stack coincide with its final state and stack. Algorithm 3 thus checks loops

only after each move, which is why step 17 in Algorithm 2 is necessary. Steps 2–5 take

into account that each of the PDAs is nondeterministic and so it can initially make several

ε-transitions; note that an explicit check for ε-transitions is required only initially since

step 12 allows for possible ε-transitions after each move along a direct edge. Finally, we

ensure termination of Algorithm 3 by observing that, since the stack of each PDA in L(v, v′)

is bounded, the number of current configurations of each of the PDAs is exponential, and

149

so the number of distinct tuples of the current PDAs configurations is exponential as well;

hence, the algorithm repeats computations after at most exponentially many steps. We

thus obtain a nondeterministic decision procedure running in polynomial space by using a

binary counter to stop the computation after all distinct configurations have been explored.

Instead we check property (b) in function checkRI directly by exploiting the well-known

correspondence between PDAs, CFGs, and datalog programs [1]. In particular, for each root

node vr of S and each pair 〈s,P〉 ∈ L(vr), we construct in polynomial time the normalised

CFG GP that generates L(P) (see Proposition 2.1); then, we encode GP using a datalog

program DP such that, for all datalog constants u and u′, we have that DK ∪ DP |= SL(u, u′)

if and only if a role chain ρ ∈ L(P) exists labelling a path from u to u′ in J . Because GP is

normalised, each rule in DP contains a fixed number of variables, so the entailment check

can be implemented to run in polynomial time.

9.2 Formalisation

We now formalise the intuitions from the previous section. Towards this goal, we fix a

consistent ELRO+
⊥ KB K = T ∪ R ∪A with a regular RBox R, a conjunctive query q′, and

a candidate answer τ to q′ over DK.

We use several notions that have been introduced in previous chapters. Let the canonical

representative τ(t)≈ for a term t ∈ term(q′), and sets auxDK and r-indDK be as specified in

Definition 5.6 on page 57. Also, we use the notions of good and aux-simple atom, connection

graph, variable renaming, and skeleton from Chapter 6. Moreover, we let function isDSound

be as specified in Definition 6.5; and we let conjunctive queries q and q∼ be as specified

in Definitions 6.1 and 6.3, respectively. Finally, we let QR, ΓR, and δR be as specified in

Definition 8.1 on page 123, we let ` be the derivation relation associated with δR, and we

let dR be the depth of R as specified in Definition 8.4 on page 127.

We next generalise the notion of a PDA encoding the RBox R from Definition 8.1 by

allowing arbitrary start and final states as well as arbitrary start and final stacks of size

at most dR; we will use these PDA to label the skeleton’s edges. In addition, we associate

each generalised PDA with a normalised context-free grammar that generates the PDA’s

150

language; by Proposition 2.1, such grammar can be computed in polynomial time.

Definition 9.1. The generalised PDA for an RBox R, states λ, λ′ ∈ QR and stack words

γ, γ′ ∈ Γ∗R such that |γ| ≤ dR and |γ′| ≤ dR, is defined as

pda(λ, γ, λ′, γ′) = 〈QR, rolR,ΓR, δR, λ, γ, λ
′, γ′〉.

Furthermore, let G(λ, γ, λ′, γ′) be the normalised context-free grammar that generates the

language of pda(λ, γ, λ′, γ′) and let SL be the grammar’s start symbol.

In Definition 9.2, we associate each generalised PDA pda(λ, γ, λ′, γ′) with a datalog pro-

gram rls(λ, γ, λ′, γ′) that encodes L(pda(λ, γ, λ′, γ′)). We will use the program rls(λ, γ, λ′, γ′)

to efficiently check the constraints associated with the skeleton’s roots. We obtain the dat-

alog program by using the normalised context-free grammar G(λ, γ, λ′, γ′) associated with

pda(λ, γ, λ′, γ′) and by exploiting the well-known correspondence between datalog rules and

production rules in context-free grammars [1]. Because the grammar G(λ, γ, λ′, γ′) is nor-

malised, each production rule T → T1 · · ·Tn of the CFG is such that n ≤ 2. Therefore,

by Proposition 5.5, the set all of consequences of DK ∪ rls(λ, γ, λ′, γ′) can be computed in

polynomial time.

Definition 9.2. For states λ, λ′ ∈ QR and stack words γ, γ′ ∈ ΓR such that |γ| ≤ dR and

|γ′| ≤ dR, the datalog program rls(λ, γ, λ′, γ′) is the smallest set that contains

• a rule >c(x)→ SL(x, x) if SL → ε is a production rule of G(λ, γ, λ′, γ′), and

• a rule
∧n
i=1 Ti(xi−1, xi)→ T (x0, xn) for each production rule T → T1 · · ·Tn with n > 0

of G(λ, γ, λ′, γ′).

For an auxiliary constant oR,A, we next define the stationary PDA spda(λ, γ, λ′, γ′, oR,A)

whose language contains all role chains ρ ∈ L(pda(λ, γ, λ′, γ′)) such that DK |= ST (oR,A) for

each role T occurring in ρ. By Proposition 5.5, we can compute PDA spda(λ, γ, λ′, γ′, oR,A)

in time polynomial in |K|.

151

Definition 9.3. The stationary PDA for an auxiliary constant oR,A, an RBox R, and

states λ, λ′ ∈ QR and stack words γ, γ′ ∈ Γ∗R such that |γ| ≤ dR and |γ′| ≤ dR, is defined as

spda(λ, γ, λ′, γ′, oR,A) = 〈QR, rolR,ΓR, δR,A, λ, γ, λ
′, γ′〉,

where δR,A is the smallest transition function that satisfies the following two properties for

all states λi, λ
′
i ∈ QR, each symbol Xi ∈ ΓR, each role Ti ∈ rolR, and each word γ′i ∈ Γ∗R.

• 〈λ′i, γ′i〉 ∈ δR(λi, ε,Xi) implies that 〈λ′i, γ′i〉 ∈ δR,A(λi, ε,Xi).

• 〈λ′i, γ′i〉 ∈ δR(λi, Ti, Xi) and DK |= STi(oR,A) imply that 〈λ′i, γ′i〉 ∈ δR,A(λi, Ti, Xi).

Algorithm 3 shows the auxiliary procedure existRI that checks whether one can satisfy

property (a) on page 149 for each skeleton edge 〈v, v′〉 ∈ S that is labelled by a (possibly

empty) set {Pj = pda(λj , γj , λ
′
j , γ
′
j) | 1 ≤ j ≤ m} of generalised PDAs.

Finally, function checkRI in Definition 9.4 uses the auxiliary procedure existRI and the

datalog program associated with each generalised PDA to determine whether one can satisfy

both properties (a) and (b) for each vertex v ∈ V.

Definition 9.4. Given a skeleton vertex v, a constant u, and a function L that maps each

skeleton edge to a finite set of generalised PDAs and each skeleton vertex to a finite set of

pairs of the form 〈s, pda(λ, γ, λ′, γ′)〉 consisting of a skeleton vertex and a generalised PDA,

function checkRI(v, u, L) returns t if and only if the following two conditions hold.

(a) Function existRI(u, τ(v′), L(v, v′)) returns t for each skeleton edge 〈v, v′〉 ∈ S.

(b) DK ∪ rls(λ, γ, λ′, γ′) |= SL(τ(s), u) for each pair 〈s, pda(λ, γ, λ′, γ′)〉 ∈ L(v).

The soundness of the candidate answer τ to q′ over DK can be checked using the nonde-

terministic procedure isSoundRI(q,DK, τ) from Algorithm 2. The next theorem shows how

to use function isSoundRI to compute the certain answers to q′ over K. The proof of this

result is given in Section 9.3.

Theorem 9.5. For each substitution π, K |=DL π(q′) if and only if a candidate answer τ

to q′ over DK exists such that τ |~x = π and the following conditions hold:

152

Algorithm 2: isSoundRI(q,DK, τ)

1 if isDSound(q,DK, τ) = f then return f
2 return t if each R(s, t) ∈ q∼ is good or aux-simple
3 guess a variable renaming σ for q and τ
4 guess a skeleton S = 〈V, E〉 for q, σ, and τ
5 foreach v ∈ V, let L(v) = ∅; foreach 〈v, v′〉 ∈ E , let L(v, v′) = ∅
6 foreach aux-simple atom R(s, t) ∈ σ(q∼), add pda(iR,⊥, fR,⊥) to L(s, t)
7 foreach neither good nor aux-simple atom R(s, t) in σ(q∼) do
8 let vt be the unique root such that t is reachable from vt in S
9 guess v0 ∈ {s, vt} such that t is reachable from v0 in S

10 let v0, . . . , vn be the unique path in S with vn = t
11 guess states λ0, . . . , λn in QR with λn = fR
12 guess words γ0,γn in Γ∗R with γn = ⊥ and |γi| ≤ dR ∀i ∈ [0..n]
13 foreach i ∈ [1..n] add pda(λi−1, γi−1, λi, γi) to L(vi−1, vi)
14 if v0 is a root of S then
15 add 〈s, pda(iR,⊥, λ0, γ0)〉 to L(v0)
16 else
17 return f if L(spda(iR,⊥, λ0, γ0, τ(v0))) = ∅
18 foreach v ∈ V do
19 if v ∈ Ψq then
20 return f if no individual a ∈ r-indDK exists such that checkRI(v, a, L) = t
21 else
22 return f if checkRI(v, τ(v), L) = f

23 return t

Algorithm 3: existRI(u, u
′, {Pj = pda(λj , γj , λ

′
j , γ
′
j) | 1 ≤ j ≤ m})

1 let const = u and let M = (1 + |auxDK |) · |QR|m · (|ΓR|1+dR)m

2 for j = 1 to m do
3 guess a state λ ∈ QR and a word γ ∈ Γ∗R such that |γ| ≤ dR
4 if ε 6∈ LdR(pda(λj , γj , λ, γ)) then return f
5 set state[j] = λ and set stack[j] = γ

6 guess k ∈ N such that 1 ≤ k ≤M
7 for r = 1 to k do
8 guess oR,A ∈ auxDK such that DK |= DR(const, oR,A)
9 for j = 1 to m do

10 guess {λ, λ′} ⊆ QR and {γ, γ′} ⊆ Γ∗R with |γ| ≤ dR and |γ′| ≤ dR
11 if 〈state[j], R, stack[j]〉 6` 〈λ, ε, γ〉 then return f
12 if LdR(spda(λ, γ, λ′, γ′, oR,A)) = ∅ then return f
13 set state[j] = λ′ and set stack[j] = γ′

14 set const = oR,A
15 if const 6= u′ then return f
16 if j ∈ [1..m] exists such that state[j] 6= λ′j or stack[j] 6= γ′j then return f

17 return t

153

(1) for each x ∈ ~x, τ(x) ∈ NI, and

(2) a nondeterministic computation exists such that isSoundRI(q,DK, τ) returns t.

Finally, we determine the complexity of function isSoundRI . Towards this goal, we next

determine the complexity of function existRI .

Lemma 9.6. Function existRI(u, u
′, {Pj = pda(λj , γj , λ

′
j , γ
′
j) | 1 ≤ j ≤ m}) in Algorithm 3

can be implemented so that it uses space polynomial in m · |K| and, if the RBox R is fixed,

it runs in time polynomial in |T |+ |A|.

Proof. Consider arbitrary u, u′, and Pj = pda(λj , γj , λ
′
j , γ
′
j) as stated above; let M be as in

Algorithm 3. By the definition of generalised PDAs, we have |γj | ≤ dR and |γ′j | ≤ dR for

each j ∈ [1..m].

By Proposition 2.2, using polynomial time one can compute PDAs that recognise the

languages LdR(pda(λj , γj , λ, γ)) and LdR(spda(λ, γ, λ′, γ′, oR,A)) in lines 4 and 12; so the

checks in lines 4 and 12 can be implemented so that they use time (and thus space) poly-

nomial in |K| [50].

For the space usage of Algorithm 3, please observe that the function stores the following

information at each computation step:

(a) two arrays state and stack of length m such that state[j] ∈ QR, stack[j] ∈ Γ∗R, and

|stack[j]| ≤ dR for each j ∈ [1..m],

(b) a generalised PDA in line 4,

(c) a stationary PDA in line 12,

(d) a constant const ∈ {u} ∪ auxDK in line 1,

(e) a binary counter k such that 1 ≤ k ≤M , and

(f) the depth dR of R, an auxiliary constant oR,A, and role R.

By the definition of dR, we have that dR is linearly bounded by the number of axioms

occurring in R; hence, we need at most O(m · |R|) space to store the two arrays. Moreover,

we need at most O(m·|K|) space to store the counter k using binary encoding. By Definition

154

9.3 of stationary PDA, the size of spda(λ, γ, λ′, γ′, oR,A) is polynomial in |R|; by Definition

8.1, the size of pda(λ, γ, λ′, γ′) is polynomial in |R|. Overall, the space needed to store

the required information is polynomial in m · |K|. By Proposition 5.5 we can realise the

check in line 8 in polynomial time. Thus, existRI can be implemented so that it uses space

polynomial in m · |K|.

Next, assume that the RBox R is fixed. Then dR, QR, rolR, and ΓR are all fixed as

well; moreover, m is bounded by the size of R and so it is fixed, and M is linear in the

size of T and A. Thus, the number of alternatives in the nondeterministic step in step 3 of

Algorithm 3 is fixed, so lines 1–5 require time polynomial in |T |+ |A|. Furthermore, instead

of guessing k using the nondeterministic step in line 6, we can repeat lines 7–14 for each

k ∈ [1..M], which requires a linear number of iterations. To show that lines 7–14 can also

be implemented to run in polynomial time, we first define three sets which can be used to

perform the checks in lines 8, 11, and 12.

{〈R, c, oR,A〉 | for R ∈ rolR, c ∈ {u} ∪ auxDK , oR,A ∈ auxDK with DK |= DR(c, oR,A)} (9.1)

{〈R, pda(λ, γ, λ′, γ′)〉 | for R ∈ rolR with 〈λ,R, γ〉 ` 〈λ′, ε, γ′〉} (9.2)

{spda(λ, γ, λ′, γ′, oR,A) | LdR(spda(λ, γ, λ′, γ′, oR,A)) 6= ∅} (9.3)

Given that R is fixed, these sets can be computed in time polynomial in the size of T and A.

We next show that we can implement the for-loop in lines 7–14 to use space logarithmic in

the size of T , A, and of the sets in equations (9.1)–(9.3). For the space usage in lines 7–14,

at each computation step of the for-loop we store the information from points (a)–(f) above.

Since R and m are fixed, however, points (a)–(c) require constant space. Furthermore, the

checks in lines 8, 11, and 12 can be performed by a lookup in sets (9.1)–(9.3); by storing

these sets using a suitable binary encoding and by using a binary index into the sets, this

check can be implemented using logarithmic space. Finally, as auxDK and M are linear in

the size of T and A, we can store counter k using a binary encoding, so the overall space

the function needs to store is logarithmic in |T | + |A|, and the size of the sets (9.1)–(9.3).

Thus, lines 7–14 require nondeterministic logarithmic space, and it is well known that this

155

implies that lines 7–14 can be implemented to run in polynomial time. Finally, lines 15–17

clearly require polynomial time. Therefore, function existRI can be implemented so that it

runs in time polynomial in |T |+ |A| for fixed R.

We are now ready to establish the complexity of function isSoundRI .

Theorem 9.7. Function isSoundRI(q,DK, τ) can be implemented so that

(1) it uses space polynomial in the input size,

(2) if each binary atom in q∼ is either good or aux-simple, it runs in polynomial time in

the input size,

(3) if the RBox R is fixed, it runs in nondeterministic polynomial time in the size of the

TBox T , the ABox A, the query q, and the substitution τ , and

(4) if the RBox R and the query q are fixed, it runs in polynomial time in the size of the

TBox T and the ABox A.

Proof. We can check whether the language of a PDA is empty in time polynomial in |K| [50].

Moreover, the number of variables occurring in each rule in the program rls(iR,⊥, λ0, γ0) is

fixed, and so the set of all consequences of DK ∪ rls(iR,⊥, λ0, γ0) can be computed in time

polynomial in |K| [24]. Finally, by Lemma 6.11, function isDSound runs in polynomial time

in the input size; therefore, the checks in lines 1 and 2, 17, and the check (b) in Definition

9.4 of function checkRI all require time (and therefore space) polynomial in the input size.

Property (1) and (2). Please note that the function isSoundRI as specified in Algorithm

2 stores the following information at each computation step:

• the CQ q, datalog program DK, and substitution τ ;

• a variable renaming σ and CQ σ(q∼);

• a skeleton S = 〈V, E〉 and the connection graph cg = 〈V,Es, Et〉 from Definition 6.4

which we use to guess S more efficiently;

• a binary atom R(s, t);

156

• a path v0, . . . , vn in S, a sequence of states λ0, . . . , λn in QR, and a sequence of words

γ0, . . . , γn in Γ∗R such that |γi| ≤ dR for each i ∈ [0..n];

• a datalog program rls(iR,⊥, λ0, γ0);

• a function L mapping each edge 〈v, v′〉 ∈ E to a set of generalised PDA and each

vertex v ∈ V to a set of pairs consisting of a term and a generalised PDA; and,

• a stationary PDA spda(iR,⊥, λ0, γ0, τ(v0)).

By Definition 6.7 of skeleton and Definition 6.4 of connection graph, we need space poly-

nomial in the size of q and K to store S and cg. Moreover, the length of the longest path

in S is given by the number of variables occurring in σ(q∼), so we can store the sequences

of vertices, states, and words in space polynomial in |q| and |K| as well. Also, each set

L(v, v′) and each set L(v) contain at most m PDAs and m pairs, respectively, where m is

the number of binary atoms occurring in σ(q∼). Also, by Lemma 9.6, check (a) in Definition

9.4 of function checkRI can be implemented so that it uses space polynomial in the input

size; thus, also isSoundRI can be implemented so that it uses space polynomial in the input

size and property (1) holds. Because function isDSound runs in polynomial time, property

property (2) immediately holds as well.

Property (3). Assume that the RBox R is fixed. By Lemma 9.6, for a fixed RBox R,

check (a) in Definition 9.4 of function checkRI can be implemented to run in time polynomial

in |T |+|A|; hence, forR fixed, function checkRI runs in time polynomial in |T |+|A|. Clearly,

all other steps in Algorithm 2 can be implemented to run in nondeterministic polynomial

time in the size of TBox T , ABox A, and CQ q. Thus, for a fixed RBox R, function

isSoundRI can be implemented so that it runs in nondeterministic polynomial time in the

size of TBox T , ABox A, and CQ q.

Property (4). Assume that the RBox R and the query q are fixed. Then dR, QR,

rolR, and ΓR are all fixed as well. Given that the number of variables occurring in q is

fixed, the number of guessing steps required in lines 3 and 4 is fixed; also, the number of

alternatives for these steps is linear in |T | + |A|. Thus, lines 3 and 4 require polynomial

time. Furthermore, the maximum number of iterations of the for-loop in lines 7–17 is fixed

157

and the length of the longest path in S is fixed. Thus, the number of guessing steps in lines

11 and 12 is also fixed. In addition, the number of alternatives for the guessing steps in

lines 11 and 12 is fixed as well. Therefore, lines 7–17 require time polynomial in |T |+ |A|.

Finally, since the query is fixed, the maximum number of iterations of the for-loop in lines

18–22 is also fixed and so, by Lemma 9.6, the for-loop requires time polynomial in T and

A. Therefore, isSoundRI can be implemented so that it runs in time polynomial in |T |+ |A|

for fixed R and q.

By Propositions 5.5 and 5.7, we can check whether an ELRO+
⊥ KB is inconsistent using

polynomial time; hence, by Theorem 6.10 and Savitch’s theorem, checking whether π is a

certain answer to q over K is in PSpace in combined complexity (i.e., when the ABox, the

RBox, the TBox, and the query are all part of the input), in NP if the RBox is fixed (i.e.,

when the ABox, the TBox, and the query are part of the input), and in PTime in data

complexity (i.e., when the TBox, the RBox, and the query are fixed). Calvanese et al. [13]

showed that instance checking over EL knowledge bases is PTime-hard in data complexity;

when the query is not fixed, CQ answering is NP-hard already over relational databases [18];

and Krötzsch et al. [66] showed that the problem is PSpace-hard in combined complexity.

In addition, in Chapter 10, we shall improve the PSpace lower bound by Krötzsch et al. [66]

and show that CQ answering over ELRO+
⊥ knowledge bases is PSpace-hard already in the

restricted setting where the query, the TBox, and the ABox are all fixed and just the RBox

varies; thus, showing that the problem is PSpace-hard even in knowledge base complexity.

We next summarise these results; the proof of the PSpace-hardness in knowledge base

complexity is given in Theorem 10.7 on page 189.

Theorem 9.8. For π a substitution, checking whether K |=DL π(q′) is

• PTime-complete in data complexity,

• NP-complete, if the RBox R is fixed, and

• PSpace-complete in combined and KB complexities.

158

9.3 Proof of Correctness

In the rest of this section, let ΞK be the rule base for K; furthermore, let I and J be

universal interpretations of ΞK and DK, respectively, and let ι be the mapping from the

terms occurring in I to the terms occurring in J that we specified in Section 5.3.

We start by proving the correctness of function existRI ; then we will prove that datalog

program rls(λ, γ, λ′, γ′) correctly encodes a generalised PDA pda(λ, γ, λ′, γ′); and finally, we

will prove that function isSoundRI is sound and complete.

9.3.1 Correctness of existRI

The following lemma proves the correctness of function existRI from Algorithm 3.

Lemma 9.9. Function existRI(u, u
′, {Pj = pda(λj , γj , λ

′
j , γ
′
j) | 1 ≤ j ≤ m}) returns t if and

only if a natural number k ≥ 1, auxiliary constants u1, . . . , uk in auxDK with uk = u′, a set

of role chains {χj,i | j ∈ [1..m] and i ∈ [1..k]}, and roles R1, . . . , Rk and concepts A1, . . . , Ak

exist such that the following conditions hold for each j ∈ [1..m] and each i ∈ [1..k].

(1) u0 = u, ui = oRi,Ai, and DK |= DRi(ui−1, ui).

(2) For each role T occurring in χj,i, we have that DK |= ST (ui).

(3) R1 · χj,1 · · ·Rk · χj,k ∈ LdR(Pj).

Proof. Consider u, u′, and Pj = pda(λj , γj , λ
′
j , γ
′
j) as stated in the lemma; and let u0 = u.

(⇒) Assume that there is a nondeterministic computation of existRI such that the

function returns t. Let k ∈ N be as guessed in line 6; we show that the for-loop in lines 7–14

satisfies the following invariant: after each iteration r, there exist constants u1, . . . , ur in

auxDK with ur = const, roles R1, . . . , Rr, concepts A1, . . . , Ar, and role chains χj,1, . . . , χj,r

for each j ∈ [1..m] such that the following holds for each i ∈ [1..r] and j ∈ [1..m].

(a) ui = oRi,Ai and DK |= DRi(ui−1, ui).

(b) For each role T occurring in χj,i, we have that DK |= ST (ui).

(c) R1 · χj,1 · · ·Rr · χj,r ∈ LdR(pda(λj , γj , state[j], stack[j])).

159

〈λj , R1 · χj,1 · · ·Rn · χj,n, γj〉 `∗

〈λj,0, R1 · χj,1 · · ·Rn · χj,n, γj,0〉 ` 〈λ′j,1, χj,1 ·R2 · · ·Rn · χj,n, γ′j,1〉 `∗

〈λj,1, R2 · χj,2 · · ·Rn · χj,n, γj,1〉 ` . . . `∗

〈λj,i−1, Ri · χj,i · · ·Rn · χj,n, γj,i−1〉 ` 〈λ′j,i, χj,i ·Ri+1 · · ·Rn · χj,n, γ′j,i〉 `∗

〈λj,i, Ri+1 · χj,i · · ·Rn · χj,n, γj,i〉 ` . . . `∗

〈λj,n−1, Rn · χj,n, γj,n−1〉 ` 〈λ′j,n, χj,n, γ′j,n〉 `∗

〈λj,n, ε, γj,n〉

Figure 9.4: The form of derivations of Pj for R1 · χj,1 · · ·Rn · χj,n

Base case. Before the first iteration of the loop (i.e., after lines 1–5 and for r = 0), for

each j ∈ [1..m], we have that const = u = u0 and ε ∈ LdR(pda(λj , γj , state[j], stack[j]), so

properties (a)–(c) clearly hold.

Inductive step. Consider an arbitrary iteration r ∈ [1..k − 1] and assume that prop-

erties (a)–(c) hold at the end of iteration r; we show that the same is true after itera-

tion r + 1. By the inductive hypothesis, there exist constants u1, . . . , ur in auxDK with

ur = const, roles R1, . . . , Rr, concepts A1, . . . , Ar, and role chains χj,1, . . . , χj,r for each

j ∈ [1..m] that satisfy properties (a)–(c). Let constant ur+1 = oRr+1,Ar+1 be as guessed

in line 8. Therefore, we have that ur+1 ∈ auxDK and DK |= DRi(ur, ur+1), as required

for property (a). Furthermore, consider an arbitrary j ∈ [1..m], let λ, λ′, γ, and γ′ be

as guessed in line 10, and let state[j] and stack[j] be as at the end of iteration r; then,

〈state[j], Rr+1, stack[j]〉 ` 〈λ, ε, γ〉 due to line 11; also, due to the check in line 12, there ex-

ists a role chain χj,r+1 ∈ LdR(spda(λ, γ, λ′, γ′, ur+1)). By Definition 9.3 of stationary PDA,

for each role T occurring in χj,r+1, we have DK |= ST (ur+1), as required for property (b),

and χj,r+1 ∈ LdR(pda(λ, γ, λ′, γ′)). Finally, after line 13, we have that

R1 · χj,1 · · ·Rr · χj,r ·Rr+1 · χj,r+1 ∈ LdR(pda(λj , γj , state[j], stack[j]))

so property (c) holds.

Line 15 ensures that const = u′; furthermore, lines 16–17 ensure that state[j] = λ′j and

stack[j] = γ′j for each j ∈ [1..m], so R1 · χj,1 · · ·Rk · χj,k ∈ L(Pj). Thus, properties (1)–(3)

of this lemma hold.

160

(⇐) Let u1, . . . , un be auxiliary constants in auxDK with un = u′, let R1, . . . , Rn be roles,

let A1, . . . , An be concepts with ui = oRi,Ai for each i ∈ [1..n], and let χj,i be role chains

satisfying properties (1)–(3) of this lemma. Figure 9.4 shows the form of each derivation

for R1 · χj,1 · · ·Rn · χj,n of PDA Pj , where λj,n = λ′j and γj,n = γ′j :

The initial transition moving Pj from state λj to state λj,0 is ‘special’ in the sense that it

allows Pj to make an arbitrary number of ε-transitions; the rest of the derivation is regular

and consists of reading Ri and χj,i. Thus, λj,i−1 and λ′j,i are the states of Pj before and

after, respectively, reading Ri, and γj,i−1 and γ′j,i are the respective stacks. By property (3)

of this lemma, we have |γj,i| ≤ dR and |γ′j,i| ≤ dR.

Let Xi = 〈ui, λ1,i, γ1,i, . . . , λm,i, γm,i〉. Clearly, there are |QR| many different states in

each PDA Pj , and 1 + |auxDK | different constants in {u} ∪ auxDK ; moreover, there are∑dR
`=0 |ΓR|

` many different stacks of length at most dR. Since |ΓR| > 0 and due to dR ≥ 0,

we have that
∑dR

`=0 |ΓR|
` ≤ |ΓR|1+dR ; consequently, there are at most M distinct such

tuples. Therefore, for some k ≤M , we have that Xk = Xn. But then, uk = u′; fur-

thermore, for each j ∈ [1..m], we have λj,k = λj,n = λ′j and γj,k = γj,n = γ′j , so we have

R1 · χj,1 · · ·Rk · χj,k ∈ LdR(Pj).

We can now easily construct a nondeterministic computation of existRI as follows. In

line 3, for each j we let λ = λj,0 and γ = γj,0; clearly, condition in line 4 is not satisfied.

For each r in the for-loop in lines 7–14, we proceed as follows.

• In line 8 we let oR,A = ur; clearly, the condition is satisfied due to property (1).

• For each j ∈ [1..m], let λ = λ′j,r and λ′ = λj,r, and let γ = γ′j,r and γ′ = γj,r; clearly,

condition in line 11 is not satisfied due to the form of the derivation; condition in line

12 is also not satisfied due to property (2) and Definition 9.3 of stationary PDA.

Finally, conditions in lines 15 and 16 are not satisfied due to the way in which we chose k.

Thus, function existRI returns true in line 17.

9.3.2 Correctness of the Datalog Encoding of Generalised PDAs

The following result proves the correctness of the datalog encoding of the generalised PDA

pda(λ, γ, λ′, γ′) from Definition 9.2. Recall that SL is the start symbol of the context-free

161

grammar associated with pda(λ, γ, λ′, γ′).

Lemma 9.10. For all states λ, λ′ ∈ QR, all stack words γ, γ′ ∈ Γ∗R with |γ| ≤ dR and

|γ′| ≤ dR, and all constants u and u′ from DK, DK ∪ rls(λ, γ, λ′, γ′) |= SL(u, u′) if and only

if roles R1, . . . , Rn and constants u0, . . . , un with u0 = u and un = u′ exist such that

• R1 · · ·Rn ∈ L(pda(λ, γ, λ′, γ′)), and

• DK |= Ri(ui−1, ui) for each i ∈ [1..n].

Proof Sketch. Consider states λ and λ′ and stack words γ and γ′ as stated in the Lemma.

By Definition 9.1 of generalised PDA, the normalised context-free grammar G(λ, γ, λ′, γ′)

generates the language of pda(λ, γ, λ′, γ′). Let =⇒ be the derivation relation for G(λ, γ, λ′, γ′),

and let V and Σ be the set of non-terminal and terminal symbols of the grammar, respec-

tively. Because Abiteboul et al. [1, Chapter 12] already showed a similar correspondence

between datalog programs and CFGs, we next provide a sketch of the proof.

(⇒) Let K be a universal interpretation of DK ∪ rls(λ, γ, λ′, γ′). Furthermore, let K0

be the chase instance that contains each ground atom in DK ∪ rls(λ, γ, λ′, γ′), and let

〈K1, r1, σ1〉, 〈K2, r2, σ2〉, . . . be the chase sequence for DK ∪ rls(λ, γ, λ′, γ′) used to construct

K. By a straightforward induction on the length n ∈ N of the chase sequence one can

show that, for all constants u and u′ and each non-terminal symbol X ∈ V , we have that

X(u, u′) ∈ instKn implies that roles R1, . . . , Rn and constants u0, . . . , un with u0 = u and

un = u′ exist such that X =⇒∗ R1 · · ·Rn and DK |= Ri(ui−1, ui) for each i ∈ [1..n].

(⇐) Consider an arbitrary non-terminal symbol X ∈ V . In the following, for each word

ρ ∈ (V ∪ Σ)∗, we write X
0

=⇒ ρ if ρ = X; furthermore, for each m ∈ N+, we write X
m
=⇒ ρ if

words ρ1, . . . , ρm with ρm = ρ exist in (V ∪Σ)∗ such thatX =⇒ ρ1 =⇒ · · · =⇒ ρm. By a straight-

forward induction on m ∈ N, one can show that, for all symbols X1, . . . , Xn in V ∪Σ and all

constants u0, . . . , un such that X
m
=⇒ X1 · · ·Xn and DK ∪ rls(λ, γ, λ′, γ′) |= Xi(ui−1, ui) for

each i ∈ [1..n], we have that DK ∪ rls(λ, γ, λ′, γ′) |= X(u0, un).

9.3.3 Soundness

Assume that, for each x ∈ ~x, we have τ(x) ∈ NI and that a nondeterministic computation

exists such that isSoundRI(q,DK, τ) returns t; we show thatK |=DL τ |~x(q′). By the definition

162

of candidate answer and by Theorem 2.3, we have that ‖τ(q′)‖J ⊆ instJ . Furthermore, by

the definition of CQ q, for each term t ∈ term(q), we have ‖τ(t)‖J = τ(t); and so τ(q) ⊆ instJ .

Lemma 6.20 shows that, if isSoundRI(q,DK, τ) returns t in line 2, then K |=DL τ |~x(q′).

Hence, in the following we consider only the case in which isSoundRI returns t in line 23.

Let q∼ be as specified in Definition 6.3, and let cg = 〈V,Es, Et〉 be as specified in Def-

inition 6.4. Furthermore, let variable renaming σ, skeleton S = 〈V, E〉, function L, and set

L(v) for each v ∈ V be as determined by isSoundRI .

In the rest of this proof, we construct a substitution ν that is congruent with τ (see

Definition 6.16 on page 100) and satisfies the following properties:

(a) for all terms s, t ∈ term(q) such that s ∼ t or σ(s) = t, we have that ν(s) = ν(t),

(b) for each edge 〈v, v′〉 ∈ E and each PDA Pj ∈ L(v, v′), there exists a non-empty role

chain ρj ∈ L(Pj) such that ρj(ν(v), ν(v′)) ∈ instI .

By the definition of a skeleton, graph S is a forest rooted in the individuals and in the

placeholders occurring in V. Then, we define ν by structural induction on the forest S;

later we show that ν(q) ⊆ instI .

Base case. Consider a root v ∈ V. We distinguish two cases.

• v ∈ V \ Ψq; therefore vertex v is a named individual in r-indDK . Given that each

element in rng(σ) is a variable, no term s ∈ term(q) exists such that σ(s) = v. Then,

for each term s ∈ term(q) with s ∼ v, let ν(s) = v. By condition (1) in Definition 6.5,

we have τ(s) = τ(v). Thus, properties (C) in Definition 6.16, and (a) are satisfied.

• v ∈ V ∩ Ψq. By the definitions of relation ∼ and renaming σ, no term s ∈ term(q)

exists with s ∼ v or σ(s) = v. Then let ν(v) be an arbitrary individual a ∈ r-indDK

such that checkRI(v, a, L) return t. Since the condition in line 20 is not satisfied,

such an individual exists; moreover, properties (C) of Definition 6.16, and (a) hold

vacuously.

Inductive step. Consider 〈v, v′〉 ∈ E such that ν(v) has been defined, but ν(v′) has not.

Let u0 = τ(v) if u0 6∈ Ψq; otherwise, let u0 = ν(v); furthermore, let L(v, v′) = {P1, . . . ,Pm}

163

the (possibly empty) set of PDAs associated with 〈v, v′〉. Because the checks in lines 20

and 22 fail and by the definition of procedure checkRI , function existRI(u0, τ(v′), L(v, v′))

returns t. By Lemma 9.9, there exist auxiliary constants u1, . . . , un in auxDK with un = τ(v′),

roles R1, . . . , Rk, concepts A1, . . . , Ak, and a role chain ρj = R1 · χj,1 · · ·Rk · χj,k for each

j ∈ [1..m] such that the following conditions hold for each j ∈ [1..m] and each i ∈ [1..k].

• ui = oRi,Ai and DRi(ui−1, ui) ∈ instJ .

• For each role T occurring in χj,i, we have that ST (ui) ∈ instJ .

• ρj ∈ LdR(Pj).

Let w0 = ν(v). By property (d5) of Lemma 5.13, for each i ∈ [1..n], a term wi exists such

that ι(wi) = ui and Ri(wi−1, wi) ∈ instI ; furthermore, by property (d2) of Lemma 5.13, for

each j ∈ [1..m] and each role T occurring in χj,i, we have that T (wi, wi) ∈ instI ; and so

ρj(w0, wn) ∈ instI . Now, for each s ∈ term(q) with s ∼ v′ or σ(s) = v′, let ν(s) = wn. Prop-

erties (a)–(b) clearly hold; property (C) is also satisfied, since σ(s) = v′ implies τ(s) = τ(v′),

by construction of σ, and s ∼ v′ implies τ(s) = τ(v′), by condition (1) in Definition 6.5.

Lemma 9.11. Substitution ν is such that ν(q) ⊆ instI .

Proof. We next show that ν(q) ⊆ instI by considering the various atoms occurring in q.

Consider an atom A(s) in q. By assumption, we have A(τ(s)) ∈ instJ . Because ν is

congruent with τ , by Lemma 6.17, we have that A(ν(s)) ∈ instI .

Consider an atom R(s′, t′) in q. By the definition of q∼, terms s′′ and t′′ occur in q∼ such

that s′ ∼ s′′, t′ ∼ t′′, and R(s′′, t′′) is an atom in q∼. By condition (1) in Definition 6.5, we

have τ(s′) = τ(s′′) and τ(t′) = τ(t′′). Therefore, R(τ(s′′), τ(t′′)) ∈ instJ . By the definition of

σ(q∼), terms s and t occur in σ(q∼) such that σ(s′′) = s, σ(t′′) = t, and R(s, t) is an atom in

σ(q∼). By the definition of variable renaming, we have τ(t′′) = τ(t) and τ(s′′) = τ(s); and

so R(τ(s), τ(t)) ∈ instJ . By property (a), it suffices to show that R(ν(s), ν(t)) ∈ I. Towards

this goal, we consider three cases.

R(s, t) is good. As ν is congruent with τ , we have R(ν(s), ν(t)) ∈ instI by Lemma 6.17.

R(s, t) is aux-simple. By the definition of E , we have 〈s, t〉 ∈ E ; moreover, by step 6,

we have pda(iR,⊥, fR,⊥) ∈ L(s, t). By property (b), a role chain ρj ∈ L(pda(iR,⊥, fR,⊥))

164

exists such that ρj(ν(s), ν(t)) ∈ instI . By Theorem 8.3, we have that ρj ∈ L(R); since I

is closed under ΞK, R is simple, and ΞK contains the translation of each role inclusion

occurring in K, we have that R(ν(s), ν(t)) ∈ instI .

R(s, t) is neither good nor aux-simple. Let v0, . . . , vn, λ0, . . . , λn, and γ0, . . . , γn be as

determined in lines 10–12 when Algorithm 2 considers atom R(s, t). For each i ∈ [1..n],

we have pda(λi−1, γi−1, λi, γi) is in L(vi−1, vi) by line 13; thus there exists a role chain

ρi ∈ L(pda(λi−1, γi−1, λi, γi)) such that ρi(ν(vi−1), ν(vi)) ∈ instI . Next, we define ρ0 by con-

sidering the following two cases, and in each case we will have that ρ0 ∈ L(pda(iR,⊥, λ0, γ0))

and ρ0(ν(s), ν(v0)) ∈ instI .

• v0 is a root of S. Please note that, if v ∈ V \Ψq, then v0 ∈ r-indDK and τ(v0) = ν(v0);

otherwise, if v0 ∈ V ∩Ψq, then ν(v0) ∈ r-indDK . Because of the checks in lines 20

and 22 and by the definition of ν(v0), we have that function checkRI(v0, ν(v0), L)

returns t, and so DK ∪ rls(iR,⊥, λ0, γ0) |= SL(τ(s), ν(v0)) holds. Hence, by Lemma

9.10, there exist a role chain ρ0 = R1 · · ·Rk with ρ0 ∈ L(pda(iR,⊥, λ0, γ0)) and con-

stants u0, . . . , uk with u0 = τ(s) and uk = ν(v0) such that Ri(ui−1, ui) ∈ instJ for each

i ∈ [1..k]; thus, ρ0(τ(s), ν(v0)) ∈ instJ . By properties (d3)–(d4) of Lemma 5.13, terms

w0, . . . , wn with w0 = ν(s) and wn = ν(v0) exist such that Ri(wi−1, wi) ∈ instI for each

i ∈ [1..n]; and so ρ0(ν(s), ν(v0)) ∈ instI .

• v0 is not a root of S. Hence v0 = s and τ(v0) is an auxiliary constant. By line

17, a role chain ρ0 exists with ρ0 ∈ L(spda(iR,⊥, λ0, γ0, τ(v0))). By Definition 9.3 of

stationary PDA, we have that ρ0 ∈ L(pda(iR,⊥, λ0, γ0)) and, for each role T occur-

ring in ρ0, we have ST (τ(v0)) ∈ instJ . By property (d2) of Lemma 5.13 and by the

definition of ν, for each role T occurring in ρ0, we have T (ν(v0), ν(v0)) ∈ instI , and so

ρ0(ν(s), ν(v0)) ∈ instI .

Let ρ′ = ρ0 · ρ1 · · · ρn. Clearly, we have that ρ′(ν(s), ν(vn)) ∈ instI where vn = t. Moreover,

ρ′ ∈ L(pda(iR,⊥, λn, γn)) with λn = fR and γn = ⊥. By Theorem, 8.3, we have ρ′ ∈ L(R),

and because R(s, t) is not good, we have that >r 6∈ L(R). Since I is closed under ΞK and

ΞK contains the translation of each role inclusion in K, we have R(ν(s), ν(t)) ∈ instI .

165

The soundness claim follows directly from Lemmas 9.11 and 6.17.

9.3.4 Completeness

Let π be a substitution such that dom(π) = ~x and each element in rng(π) is an individual

from indK, and assume that K |=DL π(q′). By Proposition 5.2, we have that ΞK |= π(q′);

furthermore, by Theorem 2.3, a substitution π∗ with dom(π∗) = var(q′) exists such that

π ⊆ π∗ and ‖π∗(q′)‖I ⊆ instI . We next show that a candidate answer τ to q′ over DK and a

nondeterministic computation exist such that π ⊆ τ and isSoundRI(q,DK, τ) returns t. In

the following, we use essentially the same constructions as for the completeness proof in

Section 6.4.

Let τ be substitution as defined in Definition 6.22 on page 107. Then, for each x ∈ ~x,

we have that τ(x) = π(x) . By Lemmas 5.11 and 5.12, we have ‖τ(q′)‖J ⊆ instJ , and so

DK |= τ(q′) due to Theorem 2.3. Hence, τ is a candidate answer to q′ over DK. Moreover,

by Definition 6.1 of q, we also have that τ(q) ⊆ instJ ; furthermore, by Lemma 5.11 and the

definition of τ , we have that π∗(q) ⊆ instI . Finally note that, for each variable y ∈ var(q),

we have that π∗(y) is a labelled null, τ(y) is an auxiliary individual, and ι(π∗(y)) = τ(y).

We are now ready to prove the completeness claim.

Lemma 9.12. A nondeterministic computation exists such that the filtering procedure

isSoundRI(q,DK, τ) from Algorithm 2 returns t.

Proof. By Lemma 6.24, function isDSound(q,DK, τ) returns t. Hence, in the rest of this

proof we consider the case in which an atom R(s, t) exists in q∼ that is neither good nor

aux-simple; otherwise, the algorithm returns t in line 2.

Let variable renaming σ be as specified in Definition 6.25. Then, for all distinct

terms s, t ∈ term(σ(q∼)), we have π∗(s) 6= π∗(t). Also, due to π∗(q∼) ⊆ instI , we have

π∗(σ(q∼)) ⊆ instI . Finally, we define the skeleton S for q, σ, and τ .

Furthermore, let substitution ν and skeleton S = 〈V, E〉 be as specified in Definition

6.26 and let dirI be the relation over the terms in instI specified just before Lemma 5.3 on

page 55; moreover, let dir+
I be the transitive closure of dirI . Recall that dirI contains a pair

〈w,w′〉 for each edge 〈w,w′〉 in I that is direct for some role R and w′ is a labelled null.

166

Since π∗ ⊆ ν, we clearly have that ν(σ(q∼)) ⊆ instI . Consider an arbitrary edge

〈v, v′〉 ∈ E . Due to 〈ν(v), ν(v′)〉 ∈ dir+
I , we have that terms w0, . . . , wk, roles R1, . . . , Rk,

and concepts A1, . . . , Ak exist such that w0 = ν(v), wk = ν(v′), and, for each i ∈ [1..k], we

have that DR(wi−1, wi) ∈ instI and wi’s type is Ri, Ai (i.e., ι(wi) = oRi,Ai). Note that all of

these are uniquely defined by the edge. Then a role chain ρ is existRI-compatible with the

edge 〈v, v′〉 if role chain χ0, . . . , χk exist such that

• ρ is of the form ρ = χ0 ·R1 · χ1 · · ·Rk · χk, and

• for each i ∈ [0..k] and each role T occurring in χi, we have that SelfT (ι(wi)) ∈ instJ .

To prove the lemma, we show that the following two properties hold for each v ∈ V.

(♦) For each 〈v, v′〉 ∈ E and each PDA Pj ∈ L(v, v′), a non-empty role chain ρj ∈ L(Pj)

exists that is existRI -compatible with the edge 〈v, v′〉 ∈ E .

(♥) For each pair 〈s,Pj〉 ∈ L(v) with s a term and Pj a PDA, a role chain ρ ∈ L(Pj)

exists such that ρ(τ(s), ν(v)) ∈ instJ .

Please note that, by lines 14 and 15 in Algorithm 2, we have that 〈s, P 〉 ∈ L(v) implies that

v is a root of S. Hence, either v ∈ r-indDK and τ(v) = ν(v), or v ∈ Ψq and ν(v) ∈ r-indDK .

Therefore, by Lemma 9.9 and by the above notion of existRI -compatibility, and by Lemma

9.10, properties (♥) and (♦) imply that

• for each v ∈ V ∩Ψq, we have that checkRI(v, ν(v), L) returns t in line 20, and

• for each v ∈ V \Ψq, we have that checkRI(v, τ(v), L) returns t in line 22.

For the loop in line 6; let R(s, t) be an aux-simple atom in σ(q∼). By Definition 6.2 of

aux-simple atom, we have s 6= t. By step 6, we have that pda(iR,⊥, fR,⊥) ∈ L(s, t). As

R(ν(s), ν(t)) ∈ instI , a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with ρ ∈ L(R) and

terms w0, . . . , wm with w0 = ν(s) and wm = ν(t) exist that satisfy property (2) in Lemma

5.3. Since R is simple, we have that |ρ| ≤ 1 and, by the definition of variable renaming σ,

we also have that ν(s) 6= ν(t); so χ0 = ε. Thus ρ = R1 is compatible with the edge 〈s, t〉.

For the loop in lines 7–17; let R(s, t) be an atom in σ(q∼) that is neither good nor

aux-simple. We next determine the nondeterministic choices that preserve (♦) in line

167

13, (♥) in line 15, and that do not satisfy the conditions in line 17. By assumption, we

have R(ν(s), ν(t)) ∈ instI . Thus, a non-empty role chain ρ = χ0 ·R1 · χ1 · · ·Rm · χm with

ρ ∈ L(R), and terms w0, . . . , wm with w0 = ν(s) and wm = ν(t) exist that satisfy property

(2) in Lemma 5.3. To define vertex v0 in line 9, we distinguish two cases, and for each we

also define an index `0 ∈ [0..m] such that w`0 = ν(v0).

• If some j ∈ [0..m] exists such that wj ∈ NI, let v0 = vt and let `0 be the largest index

such that w`0 = ν(vt).

• Otherwise, let v0 = s and let `0 = 0.

Let v0, . . . , vn be the unique path connecting v0 to t in S. By the definition of `0 and

the form of the terms w`0+1, . . . , wm, we have that ν(v0) = w`0 and ν(vn) = wm; further-

more, for each j ∈ [`0 + 1..m], we have that wj ∈ ΦN and 〈wj−1, wj〉 ∈ dirI . By Lemma 5.3,

relation dirI is a forest rooted in NI; thus, for each i ∈ [1..n], a unique index `i exists such

that ν(vi) = w`i . Now let ρ0 = χ0 · · ·R`0 · χ`0 , and let ρi = R`i−1+1 · χ`i−1+1 · · ·R`i · χ`i

for each i ∈ [1..n]; clearly, ρ = ρ0 · · · ρn. By properties (1) and (2) of Lemma 5.3 and

by Lemma 5.12, role chain ρi is compatible with the edge 〈vi−1, vi〉 for each i ∈ [1..n].

Moreover, due to ρ ∈ L(R) and Theorem 8.3, we have that ρ ∈ LdR(pda(iR,⊥, fR,⊥));

therefore states λ0, . . . , λn with λn = fR and words γ0, . . . , γn with γn = ⊥ exist such that

ρ0 ∈ LdR(pda(iR,⊥, λ0, γ0)) and ρi ∈ LdR(pda(λi−1, γi−1, λi, γi) for each i ∈ [1..n]. Since

each ρi is compatible with 〈vi−1, vi〉, line 13 preserves property (♦), as required. Finally,

we consider the two cases in line 14.

• v0 is a root of S. Hence, if v0 ∈ V \Ψq, then v0 ∈ r-indDK and τ(v0) = ν(v0); otherwise,

if v0 ∈ V ∩Ψq, then ν(v0) ∈ r-indDK . By property (2) of Lemma 5.3, we have that

ρ0(ν(s), ν(v0)) ∈ instI . By Lemma 5.12, we have that ρ0(τ(s), ν(v0)) ∈ instJ , thus line

15 preserves property (♥).

• v0 is not a root of S. Hence v0 = s and s is a variable that τ maps to an auxil-

iary constant. By the definition of τ , we also have that ι(ν(v0)) = τ(v0). By the

definition of `0, we have ρ0 = χ0. By property (2) of Lemma 5.3, for each role T

occurring in χ0, we have ST (ν(v0)) ∈ instI . Hence, by Lemma 5.12, for each role T

168

occurring in χ0, we have ST (τ(v0)) ∈ instJ . By Definition 9.3 of stationary PDA and

because ρ0 ∈ L(pda(iR,⊥, λ0, γ0)), we have ρ0 ∈ L(spda(iR,⊥, λ0, γ0, τ(v0))), and so

the condition in line 17 is not satisfied.

169

170

Chapter 10

Acyclic Conjunctive Queries

Answering CQs over KBs formulated in the EL family of DLs is a computationally expen-

sive task with the combined complexity of the problem ranging between NP-complete and

PSpace-complete depending on the form of role inclusions in the knowledge base. An excep-

tion are instance queries—CQs consisting of a single unary atom—which can be evaluated

in polynomial time over all members of the EL family of DLs studied in this thesis. Unfor-

tunately, the expressivity of instance queries is quite limited and many interesting queries

do not fall within this class. For instance, the following Boolean query checks whether two

objects exist that share a common ancestor, and cannot be expressed as an instance query.

q = ∃x, y, z. ancestor(x, z) ∧ ancestor(y, z) (10.1)

The query in (10.1), however, belongs to a well-known class of Boolean CQs, the class of

acyclic queries. Acyclic CQs generalise instance queries and can be answered in polynomial

time over relational database. To the best of our knowledge, only two studies investigated

the computational properties of acyclic CQs over KBs formulated in the EL family of DLs

and they provide contrasting results: Bienvenu et al. [10] showed that acyclic CQ answering

is tractable over ELH⊥ KBs, whereas Krötzsch et al. [66]1 showed that the problem is

PSpace-hard over ELRO+
⊥ KBs with regular RBoxes.

1The proof of the result is given in full details in the associated workshop paper [65]. While Krötzsch and
Rudolph [65] do not explicitly consider acyclic CQs, a careful examination of the proof in Lemma 2 shows
that the PSpace lower complexity bound holds also for acyclic CQs.

171

In this chapter, we complete the complexity landscape of acyclic CQ answering for sev-

eral important members of the EL family of DLs. To provide a more thorough investigation

of the complexity of the problem, we start by introducing arborescent queries, a simple class

of tree-shaped acyclic CQs in which all roles point towards the parent. Then, for ELHO⊥

knowledge bases, we show that answering arborescent queries can be done in polynomial

time, while answering arbitrary acyclic CQs is intractable. We also show that answering

arborescent queries is intractable over EL KBs that contain either a single transitive role or

a single reflexive role. These lower bounds thus suggest that ELH⊥ is the largest member

of the EL family for which acyclic CQ answering is tractable. Finally, we strengthen the

known PSpace lower bound of CQ answering over ELRO+
⊥ KBs by Krötzsch et al. [66] and

show that the problem is PSpace-hard in knowledge base complexity even when the CQ is

an arborescent query and just the role inclusions are considered as part of the input (i.e.,

the query and all other parts of the knowledge base are fixed).

10.1 Acyclic and Arborescent Queries

Each Boolean CQ q can be associated with a directed graph dgq, possibly containing loops,

that describes the query’s shape. In Definition 10.1, we define acyclic and arborescent

queries by restricting the form of dgq. Because our queries contain only unary and binary

predicates, we follow Bienvenu et al. [10] and define acyclic CQs by checking that the

undirected graph obtained from dgq is acyclic. Nevertheless, our definition is consistent

with the more general notion of acyclic CQs based on hypergraphs known from the theory

of relational databases [38].

Definition 10.1. For q a Boolean CQ, the directed graph dgq = 〈var(q), E〉 contains an

edge 〈x, y〉 ∈ E for all variables x and y in var(q) for which a role R exists such that R(x, y)

is an atom in q. Then q is acyclic if the undirected graph obtained from dgq by removing

the orientation of edges is acyclic; furthermore, q is arborescent if dgq is a directed, rooted

tree in which all edges point towards the root.

One can easily check that the query in (10.1) is arborescent, and so also acyclic. The

next example illustrates the differences between acyclic and arborescent queries.

172

v1 v2

v3

R

ST

x1

x2

x3

R S

x4

T

y1

y2 y3

y4 y5

R S

T T

z2

z1

z3

S T

z5

S

q1 q2
q3 q4

z4

R

A B

Figure 10.1: The directed graphs associated with the CQs from Example 10.1

Example 10.1. Let q1, q2, q3, and q4 be the following Boolean CQs.

q1 = ∃~v.R(v1, v2) ∧ S(v3, v2) ∧ T (v3, v1) (10.2)

q2 = ∃~x.R(x1, x2) ∧ S(x3, x2) ∧ T (x3, x4) (10.3)

q3 = ∃~y.R(y1, y2) ∧ S(y1, y3) ∧ T (y3, y4) ∧ T (y3, y5) (10.4)

q4 = ∃~z. S(z2, z1) ∧ T (z3, z1) ∧A(z4) ∧R(z4, z2) ∧B(z5) ∧ S(z5, z3) (10.5)

Figure 10.1 shows the graph dgqi for each i ∈ [1..4]. Query q1 is not acyclic as dgq1 contains

an undirected cycle, whereas all other queries are tree-shaped and thus acyclic. However,

query q2 is not rooted, whereas query q3 is a rooted tree in which all edges point away from

(rather than towards) the root y1; consequently, query q4 is the only arborescent query.

By using the ‘rolling up’ technique by Horrocks and Tessaris [52], tree-shaped queries

of the form (10.4)—acyclic CQs in which the underlying directed graph is a rooted tree

where all edges point away from the root—can be answered over a KB K in two steps.

We first transform the CQ into a concept, and then check that the resulting concept is

consistent with K; for instance, CQ (10.4) can be equivalently expressed as the EL concept

∃R.>c u ∃S.(∃T.>c u ∃T.>c). Arborescent queries, however, can be used to test incoming

connections from the root and the DLs in the EL family do not support inverse roles;

therefore, the ‘rolling up’ technique is not applicable to arborescent queries over EL KBs.

173

10.2 Arborescent Queries over ELHO⊥ KBs

In Chapter 6 we presented a procedure that can be used to check whether a consistent

ELHO⊥ knowledge base K entails an arborescent query q. We first compute the set of all

candidate answers to q over DK, and then we check whether at least one such candidate

answer is sound. Even though by Theorem 6.13 we can check in polynomial time whether

each candidate answer is sound w.r.t.K, the number of candidate answers can be exponential

in the size of q, so this procedure runs in exponential time in the worst-case. In this section,

we improve this upper bound and present a tractable algorithm for answering arborescent

queries over ELHO⊥ KBs. For convenience, our algorithm considers only a simplified form

of arborescent queries that do not contain individuals. In Proposition 10.2, we exploit

nominals and the fact that entailment of ground atoms over ELHO⊥ KBs can be decided

in polynomial time to show that this restriction is without loss of generality.

Proposition 10.2. For each ELHO⊥ knowledge base K and each arborescent query q over

K, one can compute in polynomial time an ELHO⊥ knowledge base K′, an arborescent query

q′, and a conjunction of ground atoms qind such that

• q′ does not contain individuals, and

• K |=DL q if and only if K′ |=DL q′ and K′ |=DL qind.

Proof. Let K be an ELHO⊥ knowledge base and let q be an arborescent query over K. We

construct the arborescent query q′, the conjunction of ground atoms qind, and the knowledge

base K′ in three steps.

We first construct the ground conjunctive query qind, and an arborescent query q1 that

does not contain ground atoms. To this end, let qind be the conjunctive query that contains

all and only the ground atoms occurring in q, and let q1 be the result of removing from q all

its ground atoms. Clearly, q1 is an arborescent query, and K |=DL q if and only if K |=DL q1

and K |=DL qind.

At this point, if the arborescent query q1 contains individuals, then these individuals

must occur either in atoms of the form R(x, a) or of the form R(a, x). We next remove the

former type of binary atoms from q1. To this end, let q2 be the result of replacing each

174

binary atom R(x, a) in q1 with the unary atom AR,a(x), where AR,a is a fresh atomic concept

uniquely associated with R(x, a). Because neither atoms of the form R(x, a) nor unary

atoms count towards determining whether a query is arborescent, query q2 is arborescent

as well. Next, let K2 be the knowledge base that extends K with an axiom ∃R.{a} v AR,a

for each binary atom R(x, a) in q1. By the definition of K2, each model J of K2 is also a

model of K; furthermore, for each fresh concept AR,a, we have that (∃R.{a})J ⊆ (AR,a)
J .

In addition, each model I of K can be expanded to a model J of K2 by interpreting each

fresh concept AR,a as (AR,a)
J = (∃R.{a})J . By the definition of q2, we then have that

K |=DL q1 if and only if K2 |=DL q2, as well as K |=DL qind if and only if K2 |=DL qind.

Finally, we remove from q2 the binary atoms of the form R(a, x). Towards this goal,

let q′ be the result of replacing each binary atom R(a, x) with a binary atom R(xR,a, x)

and a unary atom Aa(x), where xR,a is a fresh variable uniquely associated with R(a, x)

and Aa is a fresh atomic concept uniquely associated with the individual a. Because each

variable xR,a is fresh, the query q′ is arborescent. Next, let K′ be the knowledge base that

extends K2 with a ground atom Aa(a) for each fresh atomic concept Aa occurring in q′. By

the definition of K′, each model J of K′ is also a model of K2; furthermore, for each fresh

concept Aa, we have that aJ ∈ (Aa)
J . In addition, each model I of K2 can be expanded

to a model J of K′ by interpreting each fresh concept AR,a as (AR,a)
J = ({a})J . By

the definition of q′, we then have that K2 |=DL q2 if and only if K′ |=DL q′, as well as

K2 |=DL qind if and only if K′ |=DL qind.

We next present our algorithm entails that, given a consistent ELHO⊥ KB K and an

arborescent query q such that q does not contain individuals, decides whether K |=DL q.

Our algorithm uses the datalog program DK for K to check whether K |=DL q. Arborescent

queries, however, can contain ‘forks’; therefore, DK |= q does not necessarily imply that

K |=DL q. We solve this problem by first computing in a top-down fashion all equality

constraints for q—that is, all possible ways of identifying terms in the query due to ‘forks’;

then, we evaluate q bottom-up over DK using the derived constraints to avoid generating

unsound answers.

Definition 10.3. Let K be a consistent ELHO⊥ KB and let q be an arborescent query

175

rooted in r ∈ var(q) such that q does not contain individuals. Furthermore, let DK be the

datalog program for K and let r-indDK and auxDK be as specified in Definition 5.6.

For each variable y ∈ var(q) with y 6= r, and each set V ⊆ var(q), sets rly and predV are

defined as follows.

rly = {R ∈ NR | R(y, x) ∈ q with x the parent of y in the rooted tree dgq}

predV = {y ∈ var(q) | ∃x ∈ V with x the parent of y in the rooted tree dgq}

Set RT is the smallest set satisfying the following conditions.

• {r} ∈ RT and the level of {r} is 0.

• For each set V ∈ RT with level n such that predV 6= ∅, we have predV ∈ RT and the

level of predV is n+ 1.

• For each set V ∈ RT with level n and each y ∈ predV , we have {y} ∈ RT and the level

of {y} is n+ 1.

For each V ∈ RT, set cV is defined as follows.

cV ={u ∈ r-indDK ∪ auxDK | DK |= B(u) for each atom B(x) ∈ q with x ∈ V }

By reverse-induction on the level of the sets in RT, each V ∈ RT is associated with a set

AV ⊆ r-indDK ∪ auxDK.

• For each set V ∈ RT of maximal level, let AV = cV .

• For V ∈ RT a set of level n where AV is undefined but AW has been defined for each

W ∈ RT of level n+ 1, let AV = cV ∩ (iV ∪ aV), where iV and aV are as follows.

iV = {u ∈ r-indDK | ∀y ∈ predV ∃u′ ∈ A{y} :
∧
R∈rly

DK |= R(u′, u)}

aV = {u ∈ auxDK | ∃u
′ ∈ ApredV ∀y ∈ predV :

∧
R∈rly

DK |= DR(u′, u)}

176

Function entails(K, q) returns t if and only if A{r} is non-empty.

The next theorem shows that function entails(K, q) runs in polynomial time and correctly

decides whether K |=DL q.

Theorem 10.4. For each consistent ELHO⊥ KB K and each arborescent query q such that

q does not contain individuals,

• function entails(K, q) returns t if and only if K |=DL q, and

• function entails(K, q) runs in time polynomial in the input size.

Proof. Let K be a consistent ELHO⊥ KB and let q be an arborescent query such that q

does not contain individuals. Furthermore, let ΞK and DK be the rule base and the datalog

program for K, respectively, and let I and J be universal interpretations for ΞK and DK,

respectively. Moreover, let ι be the function that maps the terms in I to constants as speci-

fied at the beginning of Section 5.3. Since q does not contain individuals, by Proposition 5.2

and Theorem 2.3 we have that K |=DL q if and only if a substitution π with dom(π) = var(q)

exists such that π(q) ⊆ instI .

Before proving the theorem, we next define a couple of auxiliary notions. Let H be

the height of the tree dgq. Moreover, we uniquely associate each set V ∈ RT with the

arborescent query qV obtained from q by first removing each variable z ∈ var(q) and all

atoms involving z such that z 6∈ V and z is an ancestor of some y ∈ V in the graph dgq, and

then replacing each variable y ∈ V in the resulting query with a fresh variable yV uniquely

associated with V .

We are now ready to prove the theorem. We first argue that we can compute set RT in

polynomial time. Let RT0 = {{r}} and, for each i ∈ [0..H − 1], let

RTi+1 = {predV | V ∈ RTi ∧ predV 6= ∅} ∪ {{y} | V ∈ RTi ∧ y ∈ predV }

By the definition of RT, we then have that RT =
⋃H
i=0 RTi; therefore, RT can be computed

in polynomial time.

By Proposition 5.5 and Lemmas 5.12 and 5.13, each set V ∈ RT satisfies the two follow-

ing properties for each constant u ∈ r-indDK ∪ auxDK and each term w such that ι(w) = u.

177

(a) u ∈ cV if and only if B(w) ∈ I for each unary atom B(y) occurring in q with y ∈ V .

(b) cV can be computed in time polynomial in the size of K and q.

To prove the theorem, we next show that each set V ∈ RT satisfies the following two

properties for each constant u ∈ r-indDK ∪ auxDK .

(1) u ∈ AV if and only if a ground substitution π with dom(π) = var(qV) exists such that

ι(π(yV)) = u and π(qV) ⊆ instI .

(2) AV can be computed in time polynomial in the size of K and q.

The proof is by reverse-induction on the level of the sets in RT.

Base case. Consider an arbitrary set V ∈ RT of level H. By the definition of AV , we

have AV = cV . Furthermore, an atom B(yV) is in qV if and only if a variable y ∈ V exists

such that B(y) is in q. Then properties (1) and (2) follow from properties (a) and (b).

Inductive step. Consider an arbitrary n ∈ N. Let V ∈ RT be an arbitrary set of level n,

and assume that properties (1) and (2) hold for each set W ∈ RT of level n + 1; we show

that V satisfies the properties.

Property (1). Let u be an arbitrary constant in r-indDK ∪ auxDK . By the definition of

AV we have AV = cV ∩ (iV ∪ aV). By the definition of qV and from property (a), it suffices

to show that u ∈ (iV ∪ aV) if and only if a substitution π exists such that π(qV) ⊆ instI and

ι(π(yV)) = u. We consider the two directions of (1) separately.

(⇒) Assume that u ∈ (iV ∪ aV). We distinguish two cases.

• u ∈ iV . Thus, u ∈ r-indDK and u ∈ NI. Consider an arbitrary variable y ∈ predV

and an arbitrary role R ∈ rly. Then, a constant u′ ∈ r-indDK ∪ auxDK exists such that

u′ ∈ A{y} and R(u′, u) ∈ instJ . By the inductive hypothesis, a substitution π{y} exists

such that π{y}(q{y}) ⊆ instI and ι(w′) = u′ where w′ = π{y}(y{y}). By Lemma 5.13,

we have R(w′, u) ∈ instI . Let π be the substitution such that π(yV) = u and π{y} ⊆ π

for each y ∈ predV . Then, we have π(qV) ⊆ instI .

• u ∈ aV . Thus, u ∈ auxDK and u is of the form oP,A. It follows that a con-

stant u′ ∈ r-indDK ∪ auxDK exists such that u′ ∈ ApredV and DR(u′, u) ∈ instJ for each

178

y ∈ predV and each role R ∈ rly. By the inductive hypothesis, a substitution πpredV

exists such that πpredV (qpredV) ⊆ instI and ι(w′) = u′, where w′ = πpredV (ypredV). By

Lemma 5.13, a term w∗ with ι(w∗) = oP,A exists in I such that R(w′, w∗) ∈ instI for

each y ∈ predV and each role R ∈ rly. Finally, let π be the substitution such that

πpredV ⊆ π, for each y ∈ predV we have π(y) = w′, and π(yV) = w∗. Then, we have

π(qV) ⊆ instI .

(⇐) Assume that a substitution π exists such that π(qV) ⊆ instI and ι(π(yV)) = u. We

distinguish two cases.

• π(yV) ∈ NI. By Lemma 5.11, we have u ∈ r-indDK and u ∈ NI. Consider an ar-

bitrary variable y ∈ predV and an arbitrary role R ∈ rly. By the definition of qV ,

atom R(y, yV) occurs in qV . Since R(π(y), π(yV)) ∈ instI , by Lemma 5.12 we have

that R(ι(π(y)), ι(π(yV))) ∈ instJ and ι(π(y)) ∈ r-indDK ∪ auxDK . Due to the construc-

tion of qV , q{y} is a subquery of qV ; thus, π(q{y}) ⊆ instI . Hence, by the inductive

hypothesis, we have ι(π(y)) ∈ A{y}. Due to ι(π(yV)) = u and u ∈ r-indDK , we have

u ∈ iV .

• π(yV) 6∈ NI. By Lemma 5.11, we have u ∈ auxDK and u is of the form oP,A. Con-

sider an arbitrary variable y ∈ predV and an arbitrary role R ∈ rly. Then, atom

R(y, yV) occurs in qV and so R(π(y), π(yV)) ∈ instI ; furthermore, by property (2)

of Lemma 5.3 and because K is an ELHO⊥ knowledge base, we have that P v∗R R

and DP (π(y), π(yV)) ∈ instI ; thus 〈π(y), π(yV)〉 ∈ dirI . By property (1) of Lemma

5.3, relation dirI is a forest rooted in NI; so for each variable z ∈ predV , we have that

π(y) = π(z). Furthermore, by Lemma 5.12, we have that DP (ι(π(y)), ι(π(yV))) ∈ instJ

and ι(π(y)) ∈ r-indDK ∪ auxDK . Since P v∗R R and J is closed under DK, we have that

DR(ι(π(y)), ι(π(yV))) ∈ instJ . Let πpredV be the substitution that extends π by setting

πpredV (ypredV) = π(y). Then, we have that πpredV (qpredV) ⊆ instI and, by the inductive

hypothesis, we have that ι(π(y)) ∈ ApredV . Due to ι(π(yV)) = u and u ∈ auxDK , we

have u ∈ aV .

Property (2). We show that AV can be computed in time polynomial in the size of DK

and q. By property (b), set cV can be computed in time polynomial in q and DK. But then,

179

by Proposition 5.5 sets iV and aV can also be computed in polynomial time, and so AV can

be computed in polynomial time as well.

By Proposition 5.7, we can use program DK to check the consistency of an ELHO⊥ KB K

in polynomial time, whereas by Proposition 10.2 we can use our algorithm entails to answer

arbitrary arborescent queries; thus the following result follows directly from Theorem 10.4.

Theorem 10.5. For an ELHO⊥ knowledge base K and an arborescent query q, checking

K |=DL q is PTime-complete in combined complexity.

10.3 Lower Bounds for Acyclic Queries

We next show that, unless PTime equals NP, answering arbitrary acyclic queries over

ELHO⊥ KBs is harder than answering arborescent queries; moreover, we show that adding

transitive or reflexive roles to the DL EL makes answering arborescent queries intractable.

Theorem 10.6. For a knowledge base K = T ∪ R ∪ A and a Boolean CQ q, checking

K |=DL q is NP-hard in combined complexity in each of the following cases.

1. The CQ q is acyclic and the KB K is in ELHO⊥.

2. The CQ q is arborescent, the ABox A contains a single unary assertion, the TBox T

contains only axioms of the form A1 v A and A1 v ∃R.A, and the RBox R contains

a single axiom of the form R ·R v R.

3. The CQ q is arborescent, the ABox A contains a single unary assertion, the TBox T

contains only axioms of the form A1 v A and A1 v ∃R.A, and the RBox R contains

a single axiom of the form ε v R.

Proof. All lower bounds are proved by reducing the NP-hard problem of checking the

satisfiability of a CNF formula ϕ [33]. For the rest of this proof, we fix a CNF formula

ϕ =
∧m
j=1Cj where each Cj is a clause over variables {v1, . . . , vn}. In the following, given

two Boolean CQs q and q′ with var(q) ∩ var(q′) = ∅, let q ∧ q′ be the Boolean CQ that

contains all atoms occurring in q and all atoms occurring in q′.

180

a

1

R

2

R

T1 F1

3 4 5 6T2 F2 T2 F2

R RR R

7 8 9 10

R R R R

G G G G

C2

C1

G

A2

A1

A0

p3

p2

p1

p0

Universal interpretation Query

R

R

R

A0

Figure 10.2: Universal interpretation I0 and query q0

Then to prove the theorem, we will first define a KB K0 containing only axioms of the

form A1 v A and A1 v ∃R.A, and a Boolean CQ q0, after which we will construct

(1) a KB K1 and an acyclic CQ q1 such that K1 is in ELHO⊥, and ϕ is satisfiable if and

only if K0 ∪ K1 |=DL q0 ∧ q1,

(2) a KB K2 and an arborescent CQ q2 such that K2 contains a single axiom of the form

R ·R v R and ϕ is satisfiable if and only if K0 ∪ K2 |=DL q0 ∧ q2, and

(3) a KB K3 and an arborescent CQ q3 such that K3 contains a single axiom of the form

ε v R and ϕ is satisfiable if and only if K0 ∪ K3 |=DL q0 ∧ q3.

Construction of K0 and q0. In our construction, we use a fresh role R, a fresh

concept G, fresh concepts Ti, Fi, and Ai uniquely associated with each variable vi in ϕ, and

fresh concepts Cj uniquely associated to each clause Cj in ϕ.

Then, KB K0 contains an assertion (10.6), and axioms (10.7)–(10.13). We next describe

how the axioms in K0 model the structure of a universal interpretation I0 of K0. Assertion

(10.6) and axioms (10.7)–(10.11) encode a binary tree of depth n+1 in I0 rooted in individual

a in which edges are labelled by role R, each leaf node satisfies concept G, and each node

w at depth 1 ≤ i ≤ n satisfies exactly one of Ti and Fi. Then node w represents a positive

truth assignment to vi if Ti(w) ∈ I0; otherwise, it represents a negative truth assignment

to vi. Consequently, a path from a to a leaf node in the tree represents a truth assignment

181

to the variables in ϕ. Finally, axioms (10.12) and (10.13) ensure that, for each node w

at depth 1 ≤ i ≤ n in the tree, if the truth assignment to vi represented by w makes

clause Cj evaluate to true, then Cj(w) ∈ I0. The left part of Figure 10.2 shows a universal

interpretation of K0 for a CNF formula with 2 variables.

A0(a) (10.6)

Ai−1 v∃R.Ti ∀i ∈ [1..n] (10.7)

Ai−1 v∃R.Fi ∀i ∈ [1..n] (10.8)

Ti vAi ∀i ∈ [1..n] (10.9)

Fi vAi ∀i ∈ [1..n] (10.10)

An v∃R.G (10.11)

Ti vCj ∀i ∈ [1..n] ∀j ∈ [1..m] with vi ∈ Cj (10.12)

Fi vCj ∀i ∈ [1..n] ∀j ∈ [1..m] with ¬vi ∈ Cj (10.13)

Query q0 is given in (10.14) where ~p = p0, . . . , pn+1 are fresh variables.

q0 = ∃~p.
n∧
i=0

[Ai(pi) ∧R(pi, pi+1)] ∧G(pn+1) (10.14)

The right part of Figure 10.2 shows the query q0 for a CNF formula with 2 variables. It

should be clear that, for each substitution π with dom(π) = ~p such that π(q0) ⊆ I0, we have

that π(p0) = a and π(pn+1) is a leaf; furthermore, there exists a one-to-one correspondence

between the truth assignments for ϕ and the ground substitutions embedding q0 into I0.

Construction of K1 and q1. In our construction, we use fresh roles Sj and indi-

viduals cj uniquely associated with each clause Cj of ϕ.

Then KB K1 contains assertions (10.15), and axioms (10.16) and (10.17). Let I1 be a

universal interpretation of K0 ∪ K1. We next describe how the axioms and assertions in K1

modify the tree encoded by K0. Axioms (10.16) ensure that, for each node w in the tree

whose truth assignment makes clause Cj evaluate to true, there exists an edge labelled by

Sj from w to individual cj . Assertion (10.15) generates an edge labelled by R connecting cj

182

a

1 2T1 F1

3 4 5 6T2 F2 T2 F2

7 8 9 10G G G G

C2

C1

c1

 S1

R, Sjc2
R, Sj

 S2

R, Sj
R, Sj

R, Sj
R, Sj

R, SjR, SjR, Sj
R, Sj

R, Sj R, Sj

G

A2

A1

A0

zj
3

zj
2

yj
2xj

2

zj
1 yj

1
xj

1

xj
0 yj

0

A0

R

R

R

Sj

Sj

SjR R

R

R

R

R

R

p3

p2

p1

p0

Universal interpretation Query

yj

Figure 10.3: Universal interpretation I1 and query q0 ∧ q1

to itself. Finally, axiom (10.17) labels each edge in the tree and each looping edge with Sj .

Figure 10.3 shows the universal interpretation I1 obtained from the universal interpretation

I0 in Figure 10.2 by applying the axioms in K1.

R(cj , cj) ∀j ∈ [1..m] (10.15)

Cj v∃Sj .{cj} ∀j ∈ [1..m] (10.16)

R vSj ∀j ∈ [1..m] (10.17)

In our construction of q1, we use use variable pn+1 from (10.14), as well as fresh variables

~x = xj0, . . . , x
j
n, ~y = yj , yj0, . . . , y

j
n, and ~z = zj1, . . . , z

j
n+1 uniquely associated with each clause

Cj . Then, let q1 = ∃~x ∃~y ∃~z. ψ1 ∧ · · · ∧ ψm where, for each clause Cj , the conjunction of

atoms ψj is as specified in (10.18)–(10.21).

ψj = R(yj , xj0) (10.18)

∧
n∧
i=0

R(xji , z
j
i+1) ∧ Sj(yji , z

j
i+1) (10.19)

∧
n−1∧
i=0

R(yji , x
j
i+1) (10.20)

∧ R(yjn, pn+1) (10.21)

183

Figure 10.3 shows query q0 ∧ q1 for n = 2 and an arbitrary clause Cj . It should be clear

that query q0∧q1 is acyclic, as required; in contrast q0∧q1 is not arborescent: each variable

yji in q0 ∧ q1 has two parent nodes. We next prove that ϕ is satisfiable if and only if

K0 ∪ K1 |=DL q0 ∧ q1.

(⇒) Consider an arbitrary truth assignment ν : {v1, . . . , vn} → {t, f} and assume

that ν(ϕ) = t; we show that a substitution π with dom(π) = var(q0 ∧ q1) exists such that

π(q0 ∧ q1) ⊆ I1. To this end, let π(p0) = a and, for each i ∈ [1..n], let π(pi) be the unique

successor of π(pi−1) in I1 such that Ti(π(pi)) ∈ I1 if and only if ν(vi) = t. Consider an

arbitrary clause Cj . Since ν(ϕ) = t, a literal l ∈ Cj exists such that ν(l) = t. Let k ∈ [1..n]

be the unique index such that literal l is over variable vk. Then, we extend substitution π

as follows:

• let π(yj) = cj and for each ` ∈ [0..k − 1], let π(xj`) = π(yj`) = π(zj`+1) = cj , and

• let π(xjk) = cj , let π(zjk+1) = cj , and let π(yjk) = π(pk), and

• for each ` ∈ [k + 1..n], let π(xj`) = π(yj`) = π(p`), and let π(zj`+1) = π(p`+1).

Due to the atoms (10.15) and the axioms (10.16)–(10.17), one can check that π(ψj) ⊆ I1;

thus π(q0 ∧ q1) ⊆ I1, as required.

(⇐) Consider an arbitrary ground substitution π and assume that π(q0 ∧ q1) ⊆ I1; we

next show that a truth assignment ν : {v1, . . . , vn} → {t, f} exists such that ν(ϕ) = t. By

the definition of K0 and q0, we have that π(p0) = a; furthermore, for each i ∈ [1..n], we have

that π(pi) is a successor of π(pi−1) in the binary tree encoded by K0. Then, let ν be the

truth assignment such that, for each i ∈ [1..n], we have ν(vi) = t if and only if Ti(π(pi)) ∈ I1.

We next show that ν(ϕ) = t; that is, for each clause Cj , we have ν(Cj) = t. Consider an

arbitrary clause Cj . By the definition of K0, it suffices to find an index ` ∈ [1..n] such that

Cj(π(p`)) ∈ I1. To this end, we show that substitution π satisfies the following property for

each i ∈ [0..n].

(♦) If for each ` ∈ [i..n] we have π(zj`+1) 6∈ NI, then π(yji) = π(pi) and π(xji) = π(pi).

We proceed by reverse induction on i ∈ [0..n].

184

Base case. Let i = n. Assume that π(zjn+1) 6∈ NI. By the definition of q1, we have that

π(yjn) is the unique parent of π(pn+1) in the tree encoded by K0, and so π(yjn) = π(pn).

Due to atom Sj(y
j
n, z

j
n+1) in ψj , we have π(zjn+1) is a successor of π(pn). Due to atom

R(xjn, z
j
n+1) in ψj , we have π(xjn) is the parent of π(zjn+1), thus π(xjn) = π(pn), as required.

Inductive step. Consider an arbitrary i ∈ [0..n− 1], and assume that the property holds

for i + 1, and that π(zj`+1) 6∈ NI for each ` ∈ [i..n]. By the inductive hypothesis, we have

π(yji+1) = π(pi+1) and π(xji+1) = π(pi+1). Due to atom R(yji , x
j
i+1) in ψj , we have π(yji) is

the unique parent of π(pi+1) in the tree, and so π(yji) = π(pi). Due to atom Sj(y
j
i , z

j
i+1) in

ψj , we have that π(zji+1) is a successor of π(pi). Finally, due to atom R(xji , z
j
i+1) in ψj , we

have π(xji) = π(pi).

We next show that there exists i ∈ [1..n] such that π(zji+1) is mapped to an individual

from NI. Assume the opposite, hence, for each i ∈ [1..n], we have that π(zji+1) 6∈ NI. By

property (♦), we then have that π(xj1) = π(p1) and, because atom R(yj0, x
j
1) occurs in q1,

we also have that π(yj0) = π(p0) = a. We next distinguish two cases.

• π(zj1) ∈ NI. Because π(yj0) = a, atom Sj(y
j
0, z

j
1) occurs in q1, and a is not connected

to an individual in I1, we have Sj(π(yj0), π(zj1)) 6∈ I1, which is a contradiction.

• π(zj1) 6∈ NI. Then, by property (♦), we also have that π(xj0) = π(p0) = a. Since q1

contains an atom R(yj , xj0) and individual a does not have incoming connections in

I1, we have that R(π(yj), π(xj0)) 6∈ I1, which is a contradiction.

Let ` ∈ [1..n] be the largest index such that π(zj`+1) ∈ NI. By property (♦), we then have

that π(yj`) = π(p`). By axioms (10.16) and (10.17) in K1, and because atom Sj(y
j
` , z

j
`+1)

occurs in q1, we have π(zj`+1) = cj and Cj(π(p`)) ∈ I1, as required.

Construction of K2 and q2. The KB K2 consists only of a single transitivity axiom

(10.22). Let I2 be a universal interpretation of K0 ∪ K2. Then axiom (10.22) modifies the

tree encoded by K0 by connecting each node w in the tree via an R edge to all nodes that

occur on the path connecting w to the root a. Figure 10.4 shows the universal interpretation

I2 obtained from the universal interpretation I0 in Figure 10.2 by applying the role inclusion

185

a

1

R

2

R

T1 F1

3 4 5 6T2 F2 T2 F2

R RR R

7 8 9 10

R R R R

G G G G

C1

G

A2

A1

A0

p3

p2

p1

p0

Query

R

R

R

Universal interpretation

A0

Cj
xj

R

Figure 10.4: Universal interpretation I2 and query q0 ∧ q2

in K2; the edges obtained using the transitivity of role R are dashed.

R ·R v R (10.22)

In our construction of q2, we use variable pn+1 from query q0, as well as a fresh variable xj

uniquely associated to each clause Cj . Query q2 is given in (10.23).

q2 = ∃x1 . . . ∃xm.
m∧
i=1

Cj(xj) ∧R(xj , pn+1) (10.23)

Figure 10.4 shows query q0∧q2 for n = 2 and an arbitrary clause Cj . It should be clear that

q0∧ q2 is arborescent. We next prove that ϕ is satisfiable if and only if K0∪K2 |=DL q0∧ q2.

(⇒) Consider an arbitrary truth assignment ν : {v1, . . . , vn} → {t, f} and assume that

ν(ϕ) = t; we show that a substitution π with dom(π) = var(q0 ∧ q2) exists such that

π(q0 ∧ q2) ⊆ I2. To this end, let π(p0) = a and, for each i ∈ [1..n], let π(pi) be the unique

successor of π(pi−1) in I2 such that Ti(π(pi)) ∈ I2 if and only if ν(vi) = t. Since ν(ϕ) = t,

for each clause Cj , a literal l ∈ Cj exists such that ν(l) = t; then, we let π(xj) = π(pk)

where k ∈ [1..n] is the unique index such that literal l is over variable vk. Due to axioms

(10.12) and (10.13) in K0 and because role R is transitive, for each j ∈ [1..m], we then have

that {Cj(π(xj)), R(π(xj), π(pn+1)} ⊆ I2; thus π(q0 ∧ q2) ⊆ I2.

(⇐) Consider an arbitrary ground substitution π and assume that π(q0 ∧ q2) ⊆ I2; we

next show that a truth assignment ν : {v1, . . . , vn} → {t, f} exists such that ν(ϕ) = t. By

186

a

1

R

2

R

T1 F1

3 4 5 6
T2

 F2
 T2 F2

R RR R

7 8 9 10

R R R R

G G G G

C2

C1

G

A2

A1

A0

p3

p2

p1

p0

Universal interpretation Query

R

R

R

A0

R

R

R

R

Cj

Figure 10.5: Universal interpretation I3 and query q0 ∧ q3

the definition of q0 and q2, for each clause Cj occurring in ϕ, term π(xj) occurs on the unique

path connecting π(pn+1) to individual a and Cj(π(xj)) ∈ I2; therefore, an index `j ∈ [1..n]

exists such that π(p`j) = π(xj). By the definition of K0 and q0, the truth assignment

represented by π then makes each clause Cj of ϕ evaluate to true.

Construction of K3 and q3. The KB K3 consists of a single reflexivity axiom

(10.24). Let I3 be a universal interpretation of K0 ∪ K3. Axiom (10.24) modifies the tree

encoded by K0 by generating an edge labelled by R connecting each node in the tree to

itself. Figure 10.5 shows the universal interpretation I3 obtained from I0 in Figure 10.2

by applying the role inclusion in K3; the edges obtained using the reflexivity of role R are

dashed.

ε v R (10.24)

In our construction of q3, we use variable pn+1 from query q0, as well as fresh variables

~x = xj0, . . . , x
j
n uniquely associated to each clause Cj . Then, let q3 = ∃~x. ψ1 ∧ . . . ∧ ψm

where, for each clause Cj , the formula ψj is as specified in (10.25).

ψj = Cj(x
j
0) ∧R(xj , xj0) ∧

n∧
i=1

R(xji−1, x
j
i) ∧R(xjn, pn+1) (10.25)

187

Figure 10.5 shows query q0∧q3 for n = 2 and an arbitrary clause Cj . It should be clear that

q0 ∧ q3 is arborescent. We next show that ϕ is satisfiable if and only if K0∪K3 |=DL q0∧ q3.

(⇒) Consider an arbitrary truth assignment ν : {v1, . . . , vn} → {t, f} and assume that

ν(ϕ) = t; we next show that a substitution π with dom(π) = var(q0 ∧ q3) exists such that

π(q0 ∧ q3) ⊆ I3. To this end, let π(p0) = a and, for each i ∈ [1..n], let π(pi) be the unique

successor of π(pi−1) in I3 such that Ti(π(pi)) ∈ I3 if and only if ν(vi) = t. Please observe

that π(q0) ⊆ I3. Consider an arbitrary clause Cj of ϕ. Since ν(ϕ) = t, a literal l ∈ Cj

and a variable vk exist such that ν(l) = t and l is over vk. Then, for each i ∈ [0..k], we

let π(xji) = π(pk); furthermore, for each ` ∈ [k + 1..n], we let π(xj`) = π(p`). Due to axioms

(10.12) and (10.13) in K0, we have that Cj(π(xj0) ∈ I3; furthermore, because role R is

reflexive and π(q0) ⊆ I3, for each i ∈ [1..n], we have that R(π(xji−1), π(xji)) ∈ I3. Thus, for

each clause Cj , we have that π(ψj) ⊆ I3, and so π(q0 ∧ q3) ⊆ I3.

(⇐) Consider an arbitrary ground substitution π and assume that π(q0 ∧ q2) ⊆ I2; we

next show that a truth assignment ν : {v1, . . . , vn} → {t, f} exists such that ν(ϕ) = t. For

each clause Cj , formula ψj ensures that a path of length n + 1 exists connecting π(pn+1)

to a node π(xj0) occurring in the unique path connecting π(pn+1) to a in I3. Since the tree

has depth n + 1 and the leaves and the root of the tree do no satisfy concept Cj , variable

π(xj0) must be at depth 1 ≤ i ≤ n. By the definition of K0 and q0, the truth assignment

represented by π then makes each clause Cj evaluate to true, and thus ϕ is satisfiable.

In Chapter 9, we presented a CQ answering algorithm for ELRO+
⊥ that uses space

polynomial in the total size of the input. This algorithm is worst-case optimal in combined

complexity: Krötzsch et al. [66] proved this by reducing the PSpace-hard problem of

checking nonemptiness of the intersection of the languages generated by m deterministic

finite automata F1, . . . ,Fm over a common alphabet Σ [62] to acyclic CQ answering in

ELRO+
⊥. In the knowledge base K encoding the problem, a regular RBox contains roles

R1 . . . Rm such that L(Ri) = L(Fi) for each i ∈ [1..m]; furthermore, a TBox ensures that

a universal interpretation of K is a rooted tree so, for each ρ ∈ Σ∗, a term wρ exists that

is reachable from the root by a chain of roles corresponding to ρ; finally, an acyclic CQ

contains m atoms that check whether
⋂
i L(Fi) is non-empty. We next improve this lower

188

bound by showing that the problem is hard already in the restricted setting where the query,

the TBox, and the ABox are all fixed—just the RBox varies—and the query is arborescent.

Thus, our algorithm from Chapter 9 is worst-case optimal also in KB complexity.

Theorem 10.7. For a regular ELRO+
⊥ KB K, a CQ q over K, and a substitution π,

checking K |=DL π(q) is PSpace-hard even when

• the query q is fixed and arborescent;

• the TBox T is fixed and is in EL; and

• the ABox A is fixed and contains a single unary assertion.

Proof. The proof is by reduction from the PSpace-hard problem of deciding whether the in-

tersection of the languages recognised by m deterministic finite automata is non-empty [62].

Let F ′1, . . . ,F ′m be deterministic finite automata over alphabet Σ′, let σ1 and σ2 be fresh

symbols not occurring in Σ′, and let Σ = Σ′ ∪ {σ1, σ2}. Then, for each j ∈ [1..m], we let

Fj = 〈Qj ,Σ, δj , ij , fj〉 be the deterministic FA obtained by extending F ′j with a transi-

tion labelled by σ1 from the final state f ′j of F ′j to itself, and with a transition labelled

by σ2 from f ′j to a fresh final state fj of Fj . Then,
⋂
j L(F ′j) 6= ∅ if and only if a word

w ∈
⋂
j L(Fj) exists such that |w| is odd: given w ∈

⋂
j L(F ′j), if |w| is odd, then |w · σ1 · σ2|

is odd and w · σ1 · σ2 ∈ L(Fj) for each j ∈ [1..m], and if |w| is even, then |w · σ2| is odd

and w · σ2 ∈ L(Fj) for each j ∈ [1..m]. Finally, we assume w.l.o.g. that Qi ∩Qj 6= ∅ and

Qi ⊆ NR hold for each 1 ≤ i < j ≤ m, and that Σ ⊆ NR as well.

Let w = R1 · · ·Rn be a word in Σ∗ such that n is odd, and let Γ = Σ ∪Q1 ∪ . . . ∪Qm.

Clearly, w ∈
⋂
j L(Fj) holds if and only if a word ρw ∈ Γ∗ of the form

ρw = e0
1 · · · e0

m ·R1 · o1
m · · · o1

1 ·R2 · e2
1 · · · e2

m · · · · · · en−1
1 · · · en−1

m ·Rn · onm · · · on1 (10.26)

exists such that for each j ∈ [1..m] and each i ∈ [1..n] we have that:

(i) i is odd implies that oij ∈ Qj and δj(e
i−1
j , Ri) = oij ;

(ii) i is even implies that eij ∈ Qj and δj(o
i−1
j , Ri) = eij ; and

189

(iii) e0
j = ij and onj = fj .

Now let LO, LE , L1, and L2 be the following languages.

LO = {e1 · · · em ·R · om · · · o1 | R ∈ Σ and ∀j ∈ [1..m] : δj(ej , R) = oj} (10.27)

LE = {om · · · o1 ·R · e1 · · · em | R ∈ Σ and ∀j ∈ [1..m] : δj(oj , R) = ej} (10.28)

L1 = (LO · Σ)∗ · LO (10.29)

L2 = {i1 · · · im} · (Σ · LE)∗ · Σ · {fm · · · f1} (10.30)

Consider an arbitrary word w ∈ Σ∗ and the corresponding word ρw ∈ Γ∗. By the definition

of L1, we have that ρw ∈ L1 if ρw is of the form (10.26) and it satisfies property (i). Similarly,

by the definition of L2, we have that ρw ∈ L2 if ρw is of the form (10.26) and it satisfies

properties (ii)–(iii). Thus, ρw ∈ L1 ∩ L2 if and only if w ∈
⋂
j L(Fj). For simplicity, in the

rest of this proof, we will use the following equivalent formulations of L1 and L2.

L1 = LO ∪ (LO · Σ)+ · LO (10.31)

L2 = {i1 · · · im} · Σ · {fm · · · f1} ∪ {i1 · · · im} · (Σ · LE)+ · Σ · {fm · · · f1} (10.32)

We next define a KB K and a fixed arborescent query q such that K |=DL q if and only

if
⋂
j L(Fj) 6= ∅. We will present our construction in stages, and for each we will describe

how it affects the universal interpretation I of K. For simplicity, we first present K in which

the TBox depends on Γ, and later we modify the construction to use a fixed TBox.

The TBox T contains axioms (10.33)–(10.34), and the ABox A contains only assertion

(10.35). Then, for each word ρ ∈ Γ∗, a term wρ exists in I that can be reached from aε in

I via a chain of roles corresponding to ρ.

A vB (10.33)

B v∃ω.B ∀ω ∈ Γ (10.34)

A(aε) (10.35)

We next present an RBox R consisting of four parts, each encoding languages LO, LE , L1,

190

and L2. Our construction uses fresh roles LR,1O , . . . , LR,m+1
O and LR,0E , . . . , LR,mE uniquely

associated with each role R ∈ Σ, as well as fresh roles LO, LE , LΣ, L1, L′1, L2, and L′2.

The first part of R contains axioms (10.36)–(10.38). Please note that, for all words

ρ1, ρ2 ∈ Γ∗ where ρ1 is a prefix of ρ2, we have LO(aρ1 , aρ2) ∈ I if and only if ρ2 − ρ1 ∈ LO.

R v LR,m+1
O ∀R ∈ Σ (10.36)

ej · LR,j+1
O · oj v LR,jO ∀R ∈ Σ ∀j ∈ [1..m] ∀ej , oj ∈ Qj with δj(ej , R) = oj (10.37)

LR,1O v LO ∀R ∈ Σ (10.38)

The second part of R contains axioms (10.39)–(10.41). Then, for all words ρ1, ρ2 ∈ Γ∗

where ρ1 is a prefix of ρ2, we have LE(aρ1 , aρ2) ∈ I if and only if ρ2 − ρ1 ∈ LE .

R v LR,0E ∀R ∈ Σ (10.39)

oj · LR,j−1
E · ej v LR,jE ∀R ∈ Σ ∀j ∈ [1..m] ∀ej , oj ∈ Qj with δj(ej , R) = oj (10.40)

LR,mE v LE ∀R ∈ Σ (10.41)

The third part ofR contains axioms (10.42)–(10.46). It should be clear that, for all words

ρ1, ρ2 ∈ Γ∗ where ρ1 is a prefix of ρ2, we have L1(aρ1 , aρ2) ∈ I if and only if ρ2 − ρ1 ∈ L1.

R v LΣ ∀R ∈ Σ (10.42)

LO v L1 (10.43)

LO · LΣ v L′1 (10.44)

L′1 · L′1 v L′1 (10.45)

L′1 · LO v L1 (10.46)

The fourth part of R contains axioms (10.47)–(10.50). Then, for all words ρ1, ρ2 ∈ Γ∗

where ρ1 is a prefix of ρ2, we have L2(aρ1 , aρ2) ∈ I if and only if ρ2 − ρ1 ∈ L2.

i1 · · · im · LΣ · fm · · · f1 v L2 (10.47)

LΣ · LE v L′2 (10.48)

191

L′2 · L′2 v L′2 (10.49)

i1 · · · im · L′2 · LΣ · fm · · · f1 v L2 (10.50)

Query q is given in (10.51) and it should be clear that it is arborescent. Please note that,

because only individual aε satisfies concept A in the universal interpretation I of K, each

substitution that embeds q in I necessarily maps variables x1 and x2 to individual aε. Then,

K |=DL q if and only if a word ρ ∈ Γ∗ exists such that L1(aε, aρ) ∈ I and L2(aε, aρ) ∈ I, and

the latter is clearly the case if and only if ρ ∈ L1 ∩ L2. RBox R is regular and of size

polynomial in the size of automata F1, . . . ,Fm.

q = ∃x1∃x2∃y.A(x1) ∧ L1(x1, y) ∧A(x2) ∧ L2(x2, y) (10.51)

We next tighten this reduction to use the fixed TBox T ′ consisting of axiom (10.33) and

of axioms (10.52)–(10.53), where P0 and P1 are fresh roles.

B v ∃P0.B (10.52)

B v ∃P1.B (10.53)

Let k = dlog2 |Γ|e, and assume that each symbol ω ∈ Γ corresponds to a k-digit binary

number b1 · · · bk with bi ∈ {0, 1}. Then, let R′ be R extended with axiom (10.54).

Pb1 · · ·Pbk v ω ∀ω ∈ Γ corresponding to b1 · · · bk (10.54)

Finally, let K′ = T ′ ∪R′ ∪ A, and let I ′ be the universal interpretation of K′. Axioms

(10.35), (10.52), and (10.53) ensure the existence of a binary tree whose edges are labelled

with roles P0 and P1. Furthermore, axioms (10.54) ensure that, for each ω ∈ Γ and each

sequence of k edges in this tree corresponding to the binary number assigned to ω, there is

a ‘shortcut’ in the tree labelled with ω. Thus, the universal interpretation I of K can be

homomorphically embedded into the universal interpretation I ′ of K′. Finally, roles P0 and

P1 do not occur in R and query q checks for existence of a domain element connected to

192

aε; therefore, the ‘extra’ edges in I ′ are irrelevant. Consequently, the encoding of languages

L1 and L2 works in the same way as with the varying TBox T .

193

194

Chapter 11

Navigational Queries

The data in DL knowledge bases has a graph-like structure, where unary assertions en-

code properties of graph nodes and binary assertions encode graph edges. Conjunctive

queries cannot express recursive properties such as reachability, and so their expressivity is

often insufficient in applications that require graph navigation. As the popularity of graph

databases is on the rise, a number of navigational languages for querying graph-like data

have been proposed; for example, regular path queries [7] use regular expressions to ex-

press complex navigational patterns between graph vertices, and graph XPath queries [70]

extend regular path queries with the converse operator, negation on regular expressions,

and checking properties of vertices using Boolean combinations of concepts and existential

quantifications over paths. In the DL context, the computational complexity of navigational

queries has been studied for several expressive DLs and members of the DL-Lite family

and the EL(H) fragment of ELRO+
⊥ [15, 9, 61, 11]. In order to complete the complexity

landscape of this problem, in this chapter we study the problem of answering graph XPath

queries over ELRO+
⊥ knowledge bases.

11.1 Graph XPath Queries

Graph XPath queries consist of node expressions and path expressions which are defined as

specified in Table 11.1 for A ∈ NC and R ∈ NR. Following Libkin et al. [70], we consider

the following expression fragments.

195

Table 11.1: Interpreting path and node expressions in an interpretation I = 〈∆I , ·I〉

Syntax Semantics

Node expression:

atomic concept A AI ⊆ ∆I

complement ¬ϕ ∆I \ (ϕ)I

conjunction ϕ1 ∧ ϕ2 (ϕ1)I ∩ (ϕ2)I

disjunction ϕ1 ∨ ϕ2 (ϕ1)I ∪ (ϕ2)I

existential quantification 〈α〉 {x ∈ ∆I | ∃y ∈ ∆I : 〈x, y〉 ∈ αI}
Path expression:

role R RI ⊆ ∆I ×∆I

converse R− {〈y, x〉 ∈ ∆I ×∆I | 〈x, y〉 ∈ RI}
concatenation α1 · α2 (α1)I ◦ (α2)I

union α1 + α2 (α1)I ∪ (α2)I

Kleene’s star α∗ (αI)∗

negation α (∆I ×∆I) \ αI

node test test(ϕ) {〈x, x〉 ∈ ∆I ×∆I | x ∈ ϕI}

• The path-positive fragment forbids path expressions of the form α.

• The positive fragment forbids path expressions of the form α and node expressions of

the form ¬ϕ.

• The converse-free fragment forbids path expressions of the form R−.

A graph XPath atom has the form ϕ(s) or α(s, t), for ϕ a node expression, α a path

expression, and s and t first-order terms. A conjunctive graph XPath query (CGXQ) g

is an expression g = ∃~y. ψ(~x, ~y) where ψ is a conjunction of graph atoms over variables

~x ∪ ~y; variables ~x are called the answer variables of g. If g has the form g = α(s, t), then

g is a graph XPath query (GXQ). Path-positive, positive, and converse-free (C)GXQs are

obtained by restricting query atoms accordingly.

The interpretation of node and path expressions in an interpretation I = 〈∆I , ·I〉 is

inductively defined as shown on the right-hand side of Table 11.1. Please observe that the

difference of path expressions α1 and α2 corresponds to (α1 + α2), whereas the intersection

of α1 and α2 corresponds to (α1 + α2); moreover, Libkin et al. [70] define a path expression

ε, which in our setting corresponds to test(>c). For K an ELRO+
⊥ KB, g = ∃~y. ψ(~x, ~y) a

CGXQ, and π a substitution with dom(π) = ~x and rng(π) ⊆ indK, K |=DL π(g) is defined

in the obvious way, and CGXQ answering is the problem of checking K |=DL π(g).

196

a b c d

f 12

g 34

R R,S

B

R,S

R
e

R,S

5 6 7

S

S

S S S,A

U

P P

P P
U

P,A P,E

P,E P,F S,D S,D

Figure 11.1: Interpretation I

Example 11.1. We illustrate these definitions using interpretation I shown in Figure 11.1;

notation is as in Example 4.1 on page 39. Moreover, let α1, α2, and α3 be the following

path expressions.

α1 =(R · test(〈S∗ · test(A ∨B)〉))∗ (11.1)

α2 =(U · test(¬〈P · test(A ∨B)〉)) (11.2)

α3 =((R · S)∗) (11.3)

Expression α1 is positive, and it retrieves all pairs of individuals that are connected by a

path of R-edges such that, for each element occurring in the path other than the first, there

exists an outgoing path of S-edges reaching a member of concept A t B. For example, we

have {〈aI , dI〉, 〈aI , eI〉} ⊆ (α1)I .

In contrast, expression α2 is path-positive, and it retrieves all pairs of individuals that

are connected by a U -edge such that no P -successor exists that is a member of concept AtB.

For example, we have 〈aI , gI〉 ∈ (α2)I , but 〈aI , fI〉 6∈ (α2)I .

Finally, expression α3 is neither positive nor path-positive, and it retrieves all pairs of

individuals that are connected by a path not consisting of a sequence of edges described by

the regular expression (R ·S)∗. For example, we have 〈aI , dI〉 ∈ (α3)I , but 〈aI , eI〉 6∈ (α3)I .

Let g = ∃x, y, z. α1(x, y)∧α2(x, z)∧α3(x, y) be a conjunctive graph XPath query, and let

σ = {x 7→ a, y 7→ d, z 7→ g} be a substitution. Using Figure 11.1, one can see that I |= σ(g).

As observed by Kostylev et al. [61], node expressions in graph XPath queries correspond

precisely to formulas in propositional dynamic logic with negation (PDL¬) [48]; the satis-

197

Table 11.2: Encoding positive, converse-free node and path expressions using axioms

Node expressions

TA = {A v CA} RA = ∅
Tϕ1∧ϕ2 = {Cϕ1 u Cϕ1 v Cϕ1∧ϕ2} Rϕ1∧ϕ2 = Rϕ1 ∪Rϕ2

∪ Tϕ1 ∪ Tϕ2

Tϕ1∨ϕ2 = {Cϕ1 v Cϕ1∨ϕ2} Rϕ1∨ϕ2 = Rϕ1 ∪Rϕ2

∪ {Cϕ2 v Cϕ1∨ϕ2}
∪ Tϕ1 ∪ Tϕ2

T〈α〉 = {∃Tα.>c v C〈α〉} ∪ Tα R〈α〉 = Rα

Path expressions

TR = ∅ RR = {R v TR}
Tα1·α2 = Tα1 ∪ Tα2 Rα1·α2 = {Tα1 · Tα2 v Tα1·α2}

∪ Rα1 ∪Rα2

Tα1+α2 = Tα1 ∪ Tα2 Rα1+α2 = {Tα1 v Tα1+α2}
∪ {Tα2 v Tα1+α2}
∪ Rα1 ∪Rα2

Tα∗ = Tα Rα∗ = {ε v Tα∗}
∪ {Tα v Tα∗}
∪ {Tα∗ · Tα∗ v Tα∗}
∪ Rα

Ttest(ϕ) = {Cϕ v ∃Ttest(ϕ).Self} ∪ Tϕ Rtest(ϕ) = Rϕ

fiability problem for PDL¬ is undecidable [47], so answering GXQs under DL constraints

is undecidable. Decidability results have been recently obtained for path-positive and pos-

itive queries over DL-Lite and EL knowledge bases [61, 11]. In addition, Kostylev et al.

[61] proved that, for all DLs, answering path-positive, converse-free GXQs is coNP-hard

in data-complexity. Finally, Bienvenu et al. [11] proved that answering positive GXQs over

EL knowledge bases is ExpTime-complete. Thus, in the rest of this section we focus on

positive, converse-free graph XPath queries.

11.2 Positive, Converse-Free CGXQ over ELRO+
⊥ KBs

In the rest of this section, we fix an ELRO+
⊥ KB K = T ∪ R ∪A such that R is regular.

We next show that, given a positive, converse-free CGXQ g and a substitution π, one can

construct in polynomial time a regular ELRO+
⊥ KB K′ and a CQ q′ such that K |=DL π(g)

198

if and only if K′ |=DL π(q′). Our construction of K′ combines various expressive features of

ELRO+
⊥: role inclusions and reflexive roles encode the path expressions of g in the RBox,

and self-restrictions encode the node expressions of g in the TBox.

Proposition 11.1. Given a positive, converse-free CGXQ g = ∃~y. ψ(~x, ~y) one can compute

in time polynomial in |K|+ |g| an ELRO+
⊥ KB K′ and a CQ q′ = ∃~y. ψ′(~x, ~y) such that

• the RBox of K′ is regular,

• g and q have equally many atoms, and

• for each substitution π, K |=DL π(g) if and only if K′ |=DL π(q′).

Proof. Let g = ∃~y. ψ(~x, ~y) be a positive, converse-free CGXQ, and let π be a substitution

mapping ~x to NI. For each positive node expression ϕ, let Cϕ be a fresh atomic concept

uniquely associated with ϕ and, for each positive, converse-free path expression α, let Tα

be a fresh role uniquely associated with α. By structural induction, we associate with each

ϕ (resp. α) a TBox Tϕ and an RBox Rϕ (resp. a TBox Tα and an RBox Rα) as shown in

Table 11.2. Then, let K′ = T ∪ T ′ ∪R ∪R′ ∪ A where T ′ and R′ are as follows.

T ′ =
⋃

ϕ(s)∈ψ

Tϕ ∪
⋃

α(s,t)∈ψ

Tα R′ =
⋃

ϕ(s)∈ψ

Rϕ ∪
⋃

α(s,t)∈ψ

Rα

Now let q′ = ∃~y. ψ′(~x, ~y) be the Boolean CQ where ψ′ contains Cϕ(s) for each atom ϕ(s) ∈ ψ

and Tα(s, t) for each atom α(s, t) ∈ ψ. Clearly, g and q′ have the same terms and number

of atoms. Finally, both q′ and K′ can be computed in polynomial time in the input size,

and the RBox of K′ is clearly regular. We next show that K′ 6|=DL π(q′) if and only if

K 6|=DL π(g).

(⇒) Assume that K′ 6|=DL π(q′), so an interpretation I exists such that I |= K′ and

I 6|= π(q′). Since each axiom of K is also an axiom of K′, we have that I |= K. Furthermore,

for each positive node expression ϕ and positive path expression α, we have ϕI ⊆ (Cϕ)I

and αI ⊆ (Tα)I . We prove this claim by simultaneous induction on the structure of node

and path expressions.

199

Base case. Let ϕ be an arbitrary node expression of the form ϕ = A and let α be an

arbitrary path expression of the form α = R. Since A v CA ∈ T ′, R v TR ∈ R′, and I is a

model of K′, the claim easily follows.

Inductive step. For the inductive step, we distinguish two cases.

First, consider an arbitrary node expression ϕ such that the property holds for all node

and path expressions occurring in ϕ. Then let x be an arbitrary element of ∆I and assume

that x ∈ ϕI ; we show that x ∈ CIϕ by considering the various forms that ϕ can take.

• ϕ = ϕ1 ∧ ϕ2. Since x ∈ ϕI , we have x ∈ ϕI1 and x ∈ ϕI2 . By the inductive hypothesis,

we have x ∈ CIϕ1
and x ∈ CIϕ2

. By the definition of T ′, we have Cϕ1 u Cϕ2 v Cϕ ∈ T ′.

Since I is a model of T ′, we have x ∈ CIϕ , as required.

• ϕ = ϕ1 ∨ ϕ2. The proof for this case is similar to the one above.

• ϕ = 〈α〉. Since x ∈ ϕI , there exists y ∈ ∆I with 〈x, y〉 ∈ αI . By the inductive

hypothesis, we have 〈x, y〉 ∈ T Iα . By the definition of T ′, we have ∃Tα.>c v Cϕ ∈ T ′.

Since I is a model of T ′, we have x ∈ CIϕ , as required.

Second, consider an arbitrary path expression α such that the property holds for all

node and path expressions occurring in α. Then let x and y be elements of ∆I and assume

that 〈x, y〉 ∈ αI ; we show that 〈x, y〉 ∈ T Iα by considering the forms that α can take.

• α = α1 · α2. Since 〈x, y〉 ∈ αI , there exists z ∈ ∆I such that 〈x, z〉 ∈ αI1 and

〈z, y〉 ∈ αI2 . By the inductive hypothesis, we have 〈x, z〉 ∈ T Iα1
and 〈z, y〉 ∈ T Iα2

.

Moreover, by the definition of R′, we have Tα1 · Tα2 v Tα ∈ R′. Since I is a model of

R′, we have 〈x, y〉 ∈ T Iα , as required.

• α = α1 + α2. Given that 〈x, y〉 ∈ αI , we have that 〈x, y〉 ∈ αI1 or 〈x, y〉 ∈ αI2 . By the

inductive hypothesis, we have 〈x, y〉 ∈ T Iα1
or 〈x, y〉 ∈ T Iα2

. Moreover, by the definition

of R′, we have that {Tα1 v Tα, Tα2 v Tα} ⊆ R′; and because I is a model of R′, we

have 〈x, y〉 ∈ T Iα .

• α = α∗1. First, consider the case in which x = y. By the definition of R′, we have

ε v Tα ∈ R′. Since I is a model of R′, we have 〈x, y〉 ∈ T Iα , as required. Otherwise,

200

consider the case in which x 6= y. Since 〈x, y〉 ∈ αI , elements x0, . . . , xn with x0 = x

and xn = y exist in ∆I such that n > 0 and 〈xi−1, xi〉 ∈ αI1 for each i ∈ [1..n]. By the

inductive hypothesis, for each i ∈ [1..n], we have 〈xi−1, xi〉 ∈ T Iα1
. By the definition

of R′, we have Tα1 · Tα1 v Tα ∈ R′. Since I is a model of R′, we have 〈x, y〉 ∈ Tα.

• α = test(ϕ). It follows that x = y and that x ∈ ϕI . By the inductive hypothesis, we

have x ∈ CIϕ . By the definition of T ′, we have Cϕ v ∃Tα.Self ∈ T ′. Since I is a model

of T ′, we have 〈x, y〉 ∈ T Iα , as required.

Since node and path expressions in g are positive, we have I 6|= π(q′) implies I 6|= π(g).

(⇐) Assume that K 6|=DL π(g), so an interpretation I exists such that I |= K and

I 6|= π(g). Let I ′ be the interpretation obtained by extending I to the fresh concepts and

roles occurring in K′ as follows.

(Cϕ)I
′

= ϕI
′

(Tα)I
′

= αI
′

By the definition of K′, it is straightforward to see that I ′ |= K′; furthermore, by the

definition of q′, it is straightforward to see that I ′ 6|= π(q′), as required.

Next, we establish the complexity of answering positive, converse-free (C)GXQs over

ELRO+
⊥ knowledge bases.

Theorem 11.2. For a positive, converse-free CGXQ g and a substitution π, checking

whether K |=DL π(g) is PTime-complete in data complexity and PSpace-complete in com-

bined and KB complexities. If g is a GXQ, then checking whether K |=DL π(g) is PTime-

complete in combined complexity.

Proof. Note that the hardness in data complexity of positive, converse-free (C)GXQs follows

from the PTime-hardness of instance checking in EL [13].

For positive, converse-free GXQs, hardness in combined complexity is inherited from the

PTime-hardness of TBox reasoning in EL [4]. For the matching upper bounds, Proposition

11.1 allows us to reduce GXQ answering to checking entailments of the form K′ |=DL π(q′)

where π(q′) is a BCQ containing only one ground binary atom—that is, π(q′) is of the form

201

R(a, b). Clearly, we have that K′ |=DL R(a, b) if and only if K′ |=DL {a} v ∃R.{b}. Since

we can check in polynomial time the entailment of concept inclusions over K′, the claim

easily follow.

For positive, converse-free CGXQs, hardness in combined and KB complexities is given

by Theorem 9.8, and the upper bounds follow from Theorem 9.7 and Proposition 11.1.

202

Chapter 12

The OWL 2 DL Regularity

Restriction

In this thesis, we presented novel complexity results and algorithms for answering expressive

queries over knowledge bases formulated in several important fragments of OWL 2 EL

with complex role inclusions. Complex role inclusions are closely related to context-free

grammars and are a known source of undecidability for CQ answering in EL variants, so

we have considered only role inclusions that satisfy the syntactic regularity restriction by

Horrocks and Sattler [51]. This restriction ensures that each language L(R) induced by a

knowledge base can be recognised by a finite automaton and is therefore regular. Hence,

the undecidability of CQ answering does not apply to KBs with regular role inclusions.

Complex role inclusions are also known to cause the undecidability of standard reasoning

tasks in expressive DLs such as SROIQ—the DL logically underpinning the DL profile of

OWL 2. For this reason, OWL 2 DL incorporates an extended version of the regularity

restriction by Horrocks and Sattler [51] into its definition; moreover, this extended regularity

restriction is inherited by all the profiles of OWL 2, including OWL 2 EL.

While designing the regularity restriction for OWL 2 DL, Motik et al. [78] attempted to

address two known issues with the syntactic regularity restriction by Horrocks and Sattler

[51]. First, each knowledge base that satisfies the restriction by Horrocks and Sattler [51]

cannot contain complex role inclusions of the form R1 · · ·Rn v R−, which express the com-

203

positional properties of the inverse of role R. Second, the absence of complex role inclusions

in a knowledge base is not sufficient for regularity, although each language L(R) induced

by the knowledge base is regular. Unfortunately, we show in Section 12.1 that the extended

regularity condition by Motik et al. [78] is flawed: it does not ensure that each language

L(R) induced by an OWL 2 knowledge base is regular.

Hence, in Section 12.2 we propose a revised syntactic condition on role inclusions for

OWL 2 DL. Like the original restriction by Horrocks and Sattler [51], our syntactic condition

can be checked in polynomial time. In addition, our condition supports role inclusions of

the form R1 · · ·Rn v R− for the specification of the compositional properties of inverse

roles, and extends to knowledge bases that do not contain complex role inclusions. Finally,

we show that each DL knowledge base K whose RBox component satisfies our revised

restriction can be transformed in polynomial time into a knowledge base K′ that satisfies

the condition by Horrocks and Sattler [51] without affecting the answers to CQs. Therefore,

our restriction correctly ensures that each language L(R) induced by K is regular; moreover,

if K is formulated in a fragment of OWL 2 EL, we can answer queries over K using the

knowledge base K′ and the CQ answering algorithms presented in this thesis.

12.1 The Existing Regularity Restrictions

All the profiles of OWL 2, apart from the EL profile, support inverse roles. In order to

present the syntactic conditions on role inclusions with inverse roles, we next generalise our

definitions of roles, role inclusions, and RBoxes to accommodate for inverse role.

Each element of NR is an atomic role; furthermore, for each R ∈ NR \ {>r,⊥r}, expres-

sion R− denotes the inverse of R. Then, a role is either an atomic role or an inverse role.

A role chain ρ is a possibly empty sequence of roles. Function inv(·) maps each role chain

to its inverse as follows, where R is a role and R1 · · ·Rn is a non-empty role chain.

inv(>r) = >r inv(⊥r) = ⊥r

inv(R) = R− inv(R−) = R

inv(ε) = ε inv(R1 · · ·Rn) = inv(Rn) · · · inv(R1)

204

For I a DL interpretation, the inverse role R− is interpreted as

(R−)I = {〈y, x〉 ∈ ∆I ×∆I | 〈x, y〉 ∈ RI}.

An RBox R is a finite set of role inclusions of the form ρ v R, where ρ is a role chain and

R is a role; rolR is the smallest set that contains >r and ⊥r, and contains R and inv(R) for

each role R occurring in R. Such an RBox R is a role hierarchy if each ρ v R ∈ R satisfies

|ρ| ≤ 1 or ρ = R ·R. A role R ∈ rolR is composite in R if a role chain ρ with |ρ| > 1 exists

such that either ρ v R ∈ R and ρ 6= R · R, or ρ v R− ∈ R and ρ 6= R− · R−. The subrole

relation v∗R for R is the smallest reflexive and transitive relation on rolR such that

• S v∗R R and inv(S) v∗R inv(R) for each role inclusion S v R ∈ R, and

• S v∗R >r and inv(S) v >r for each role S ∈ rolR

In Definition 12.1, we present the regularity restriction by Horrocks and Sattler [51],

which is based on checking the existence of a so-called regular order on the roles occurring

in the RBox. Horrocks and Sattler [51] showed that, for each role R occurring in a regular

RBox R, using time exponential in |R| one can construct a finite automaton FR such that

L(FR) = L(R). When the RBox R does not contain inverse roles, the definition of regular

RBox given below is equivalent to the one presented in Section 3.2 for ELRO+
⊥ RBoxes.

Definition 12.1 ([51]). A strict partial order ≺r on the set of roles is a regular order if,

for all roles S and R, S ≺r R if and only if inv(S) ≺r R. Then, an RBox R is regular if a

regular order ≺r exists such that each axiom ρ v R ∈ R with R 6= >r satisfies R ∈ NR and

ρ v R is of the form

(inv) inv(R) v R, or

(t1) ε v R, or

(t2) R ·R v R, or

(t3) R1 · · ·Rn ·R v R where n ≥ 0 and Ri ≺r R for each i ∈ [1..n], or

(t4) R1 · · ·Rn v R where n ≥ 1 and Ri ≺r R for each i ∈ [1..n], or

205

(t5) R ·R1 · · ·Rn v R where n ≥ 0 and Ri ≺r R for each i ∈ [1..n].

In Example 12.1 we show that the absence of complex role inclusions is not a sufficient

precondition for regularity.

Example 12.1. Consider the RBox R = {S v R,R v S}. Because S v R ∈ R and

R v S ∈ R, we must have that S ≺r R and R ≺r S; but then, ≺r cannot be a regular order.

Even though R is not (syntactically) regular, languages L(S) and L(R) are finite,

whereas L(⊥r) is empty and L(>r) contains each role chain over the alphabet rolR. There-

fore, each language L(R) induced by R is regular.

We next present the definition of so-called OWL regular RBoxes as defined in the OWL 2

specification by Motik et al. [78].

Definition 12.2 ([78]). An RBox R is OWL regular if a regular order ≺r exists such that

• R 6v∗R S for each S ≺r R, and

• each axiom ρ v R ∈ R with R 6= >r and |ρ| > 1 is of the form

(t2) R ·R v R, or

(t3) R1 · · ·Rn ·R v R where Ri ≺r R for each i ∈ [1..n], or

(t4) R1 · · ·Rn v R where Ri ≺r R for each i ∈ [1..n], or

(t5) R ·R1 · · ·Rn v R where Ri ≺r R for each i ∈ [1..n].

Each role hierarchy R is trivially OWL regular since all the properties in Definition 12.2

are satisfied by the empty regular order. However, the following example shows that an

OWL regular RBox exists that induces a non-regular language.

Example 12.2. Let R be the RBox containing axioms (12.1)–(12.4).

Ra · S ·Rb v R (12.1)

R′ v S (12.2)

R′a · S′ ·R′b v R′ (12.3)

R v S′ (12.4)

206

Moreover, let ≺r be the following regular order.

Ra ≺r R R−a ≺r R

S ≺r R S− ≺r R

Rb ≺r R R−b ≺r R

R′a ≺r R′ R′−a ≺r R′

S′ ≺r R′ S′− ≺r R′

R′b ≺r R′ R′−b ≺r R
′

Note that, for each P ≺r T , we have that T 6v∗R P . Then, using Definition 12.2, one can

easily check that R is OWL regular. However, the RBox R induces the language L(R) that

contains each word ρa ·X · ρb such that X ∈ {S, S′, R′, R}, ρa is a non-empty sequence of

alternating Ra and R′a, and ρb is a non-empty a sequence of alternating Rb and R′b such

that |ρa| = |ρb|. Since finite automata have finite memory [50], the language L(R) cannot

be recognised by a finite automaton and so L(R) is not regular.

In contrast, the regular order ≺r cannot be used to show that R is regular. Indeed, R

contains R′ v S and R v S′, but R′ 6≺r S and R 6≺r S′. Note that, if we add R′ ≺r S and

R ≺r S′, then the resulting partial order is reflexive and thus not a regular order.

Hence, the decidability proof by Horrocks et al. [53] for consistency checking in the

description logic underpinning OWL 2 DL does not apply to knowledge bases with OWL

regular RBoxes. Similarly, our decidability proof and the decidability proof by Ortiz et al.

[83] for CQ answering over OWL 2 EL knowledge bases do not apply in case of OWL regular

RBoxes. Moreover, the ability to encode non-regular languages in a knowledge base brings

the decidability of these two problems into question.

12.2 A Revised Regularity Restriction for OWL 2 DL

Example 12.2 shows that the OWL regularity restriction overlooks the interplay between

the simple role inclusions of the form S v R and the complex role inclusions of the form

R1 · · ·Rn v R occurring in an RBox R. We next solve this issue and present our revised

207

syntactic regularity restriction for OWL 2 DL. Unlike the existing conditions which are non-

constructive because they require checking the existence of a regular order, our condition is

based on checking an acyclicity condition on a graph associated with the RBox R; thus, our

restriction can be implemented more directly. More specifically, in Definition 12.3 we use

the role inclusions in R to construct a directed graph GR; and then, we determine whether

R satisfies our weak regularity restriction by checking that (i) GR does not contain cycles

involving composite roles, and (ii) all the role inclusions in R are in a normal form similar

to the one specified by Horrocks and Sattler [51] and Motik et al. [78].

Definition 12.3. For an RBox R, let GR = 〈rolR, E〉 be the directed graph where E is the

smallest set of edges such that {〈Ri, R〉, 〈inv(Ri), R〉} ⊆ E for each axiom R1 · · ·Rn v R ∈ R

with R 6= >r, and each i ∈ [1..n] with Ri 6= R and inv(Ri) 6= R. Then, RBox R is weakly

regular if each composite role R ∈ rolR is not reachable from itself in GR and each axiom

ρ v R ∈ R with R 6= >r is of the form

(inv) inv(R) v R, or

(t1) ε v R, or

(t2) R ·R v R, or

(t3) R1 · · ·Rn ·R v R where n ≥ 0, and Ri 6= R and Ri 6= inv(Ri) for each i ∈ [1..n], or

(t4) R1 · · ·Rn v R where n ≥ 1, and Ri 6= R and Ri 6= inv(Ri) for each i ∈ [1..n], or

(t5) R ·R1 · · ·Rn v R where n ≥ 0, and Ri 6= R and Ri 6= inv(Ri) for each i ∈ [1..n].

Please note that each role hierarchy R is weakly regular, because role hierarchies do not

contain composite roles. In the following examples, we illustrate weakly regular RBoxes.

Example 12.3. Consider the RBox R from Example 12.1. No roles are composite in R

since R does not contain complex role inclusions. The left part of Figure 12.1 shows the

graph GR associated with R. Although the graph is cyclic, the RBox R is weakly regular.

Example 12.4. Consider the RBox R from Example 12.2. Roles R and R′ are composite

in R due to axioms (12.1) and (12.3), respectively. The right part of Figure 12.1 shows the

208

R

Ra RbS inv(Ra) inv(S) inv(Rb)

R' inv(R')

R'a R'bS' inv(R'a) inv(S') inv(R'b)

inv(R)R

S

Figure 12.1: The graphs associated with the RBoxes in Examples 12.1 and 12.2, respectively

graph GR associated with R. Roles that are composite in R are shown in red. As one can

see, both R and R′ are reachable from themselves in GR, and so R is not weakly regular.

Theorem 12.4 shows that each DL knowledge base K with a weakly-regular RBox can

be ‘regularised’ in polynomial time without affecting the answers to CQs. This result thus

shows that weakly regular RBoxes induce only regular languages; moreover, it shows that

our CQ answering algorithms from Chapters 6 and 9 can be used to answer conjunctive

queries over ELHO+
⊥ and ELRO+

⊥ knowledge bases with weakly regular RBoxes as well.

Theorem 12.4. For each first-order expressible DL knowledge base K with a weakly regular

RBox and each conjunctive query q over K, one can compute in polynomial time a knowledge

base K′ and a conjunctive query q′ over K′, such that

• the RBox of K′ is regular, and

• For each substitution π, K |=DL π(q) if and only if K′ |=DL π(q′).

Proof. Let K = T ∪R∪A be an arbitrary knowledge base with a weakly regular RBox that

can be equivalently expressed as first-order theory; furthermore, let GR = 〈rolR, E〉 be the

graph associated with R. Let q be a conjunctive query over K and let π be an arbitrary

substitution.

In the rest of this proof, we consider the case in which >r 6v∗R ⊥r since otherwise the

theorem immediately holds for the KB K′ = {>r v ⊥r} and the query q′ defined as q′ = q.

209

We first compute KB K1 = T ∪ R1 ∪ A such that R1 is weakly regular and each role

inclusion ρ v R ∈ R1 satisfies R ∈ NR. To this end, let R1 be the result of replacing each

role inclusion ρ v R ∈ R such that R is an inverse role with inv(ρ) v inv(R). The resulting

KB K1 can be computed in polynomial time. Furthermore, for each interpretation I, we

have that I satisfies ρ v R if and only if I satisfies inv(ρ) v inv(R), and so so K |=DL π(q)

if and only if K1 |=DL π(q). We are left to show that R1 is weakly regular.

To this end, let GR1 = 〈rolR1 , E1〉 be the graph associated with R1. We first show

that for each non-empty path R0, . . . , Rn in GR1 , a path P0, . . . , Pn in GR exists such that

Pi ∈ {Ri, inv(Ri)} for each i ∈ [0..n]. The proof is by induction on the length of the path

n ∈ N+. For the base case, consider an arbitrary edge 〈R0, R1〉 of GR1 . By the construction

of R1, we have that either 〈R0, R1〉 is an edge of GR, or 〈inv(R0), inv(R1)〉 is an edge of GR,

so the property holds in the base case. For the inductive step, consider an arbitrary n ∈ N+

and assume that the property holds for each path of length n; we show that the same holds

for all paths of length n+ 1. To this end, consider an arbitrary path R0, . . . , Rn+1 in GR1

of length n+1. By the inductive hypothesis, there exists a path P0, . . . , Pn in GR such that

Pi ∈ {Ri, inv(Ri)} for each i ∈ [0..n]. Next, consider the form of the edge 〈Rn, Rn+1〉 ∈ E1.

If 〈Rn, Rn+1〉 occurs in GR, then we have that 〈inv(Rn), Rn+1〉 also occurs in GR, and so

P0, . . . , Pn, Rn+1 is the required path. Otherwise, if 〈Rn, Rn+1〉 does not occur in GR, then

〈inv(Rn), inv(Rn+1)〉 and 〈Rn, inv(Rn+1)〉 must occur in GR, by the definition of R1, and so

P0, . . . , Pn, inv(Rn+1) is the required path.

We are ready to show that R1 is weakly regular. Assume the opposite; hence, roles

R0, . . . , Rn exist in rolR1 such that 〈Ri−1, Ri〉 ∈ E1 for each i ∈ [1..n], and R0 = Rn and

Rn is composite in R1. By the above property, a path P0, . . . , Pn exist in GR such that

Pi ∈ {Ri, inv(Ri)} for each i ∈ [0..n]. Note that, because R0 and Rn are composite roles, so

are P0 and Pn. Now, if P0 = Pn, the path P0, . . . , Pn describes a cycle in GR that contains

composite roles. Otherwise, because R0 = Rn and P0, Pn ∈ {R0, inv(R0)}, we must have

that P0 = R0 and Pn = inv(R0), or vice versa. In either case, since 〈P0, P1〉 is an edge

in GR, we have that 〈inv(P0), P1〉 is also an edge in GR, and so the path inv(P0), . . . , Pn

describes a cycle in GR that contains composite roles, which is a contradiction.

Even though GR1 does not contain cycles involving composite roles, the graph may

210

contain cycles that consist only of roles that are not composite. We next construct RBox

R′ by eliminating these cycles and we also compute a function rep that maps each role

R ∈ rolR1 to a representative role rep(R) ∈ rolR; we use function rep later to compute the

knowledge K′ and the query q′. To this end, let GH be the directed graph that contains an

edge 〈S,R〉 for each role inclusion S v R ∈ R1; furthermore, let SCC be the set containing

each maximal, strongly connected component Π of the graph GH. It is well-known that

the set SCC can be computed in polynomial time. Please note that, because >r 6v∗R ⊥r,

for each Π ∈ SCC, we have that {>r,⊥r} 6⊆ Π. Next, for each role R ∈ rolR1 , let rep(R)

be an arbitrary, but fixed representative of the strongly connected component Π ∈ SCC

containing R such that rep(R) = >r if >r ∈ Π, and rep(R) = ⊥r if ⊥r ∈ Π. Then, let R′

be the following RBox.

R′ = {rep(R) v R | R ∈ rolR1}

∪ {rep(R1) · · · rep(Rn) v rep(R) | R1 · · ·Rn v R ∈ R}

It should be clear that the graph GR′ associated with R′ is acyclic. Furthermore, by

the definition of GR′ , for each edge 〈S,R〉 in GR′ we have that 〈inv(S), R〉 occurs in GR′ as

well. Therefore, we can read off GR′ the regular order that shows that R′ is regular.

Finally, let K′ = T ′ ∪R′ ∪A′ where T ′ and A′ are obtained from T and A by replacing

each role R ∈ rolR with its representative rep(R). Similarly, let q′ be the result of replacing

each binary atom R(s, t) with rep(R)(s, t). Then, by the definition of K′, each model I of

K1 is a model of K′. Similarly, each model J of R′ can be expanded to a model I of K1 by

interpreting each role R ∈ rolR1 as RI = rl(R)J . Therefore, we have that K1 |=DL q if and

only if K′ |=DL π(q′).

211

212

Chapter 13

Outlook

In this thesis, we presented several novel complexity results and practicable algorithms for

answering expressive queries over knowledge bases formulated in the EL family of DLs, the

family of languages that logically underpin the EL profile of OWL 2.

Many of our algorithms and results are based on our translation of knowledge bases into

datalog programs. This translation can be applied to any fragment of OWL 2 EL; and the

translation preserves both knowledge base consistency and answers to instance queries. In

contrast, evaluating CQs over the datalog program may produce answers that are unsound

w.r.t. the knowledge base.

Based on our datalog translation, we then proposed a procedure for answering CQs

over ELHO+
⊥ knowledge bases which runs in nondeterministic polynomial time in the input

size, but runs in polynomial time in the size of the knowledge base. Moreover, by taking

advantage of an innovative, succinct encoding of regular role inclusions using bounded-

stack PDA, we extended the CQ answering algorithm for ELHO+
⊥ KBs to obtain the first

PSpace procedure for answering CQs over ELRO+
⊥ KBs with regular role inclusions. Thus,

we closed two long-standing open questions on the complexity of CQ answering in EL with

transitive roles and in OWL 2 EL.

To experimentally validate the practicability of our method for answering CQs, we

have implemented a prototypical system, called EOLO, that implements the CQ answering

algorithm for ELHO+
⊥. Our preliminary evaluation suggests that the overhead caused by

materialising the consequences of the datalog program DK is manageable in many practical

213

situations. Furthermore, although some queries may be challenging, the majority of queries

that we tested retrieve a moderate percentage of unsound candidate answers, and on average

each candidate answer can be filtered in as few as a couple of microseconds for CQs that do

not use transitive roles, and at most several milliseconds for CQs with transitive roles. Thus,

we believe that our approach can provide an adequate practical basis for CQ answering over

OWL 2 EL KBs.

As answering CQs over KBs formulated in the EL family of DLs is a computationally

expensive task, we also studied the complexity of answering acyclic CQs. Our results suggest

that ELH⊥ is essentially the largest member of the EL family of DLs for which answering

acyclic CQs is tractable. Furthermore, we show that CQ answering over ELRO+
⊥ knowledge

bases is PSpace-hard even when just the role inclusions are considered as part of the input

(i.e., the query and all other parts of the knowledge base are fixed); thus, we show that the

problem is PSpace-hard also in KB complexity.

We also studied the problem of answering navigational queries and showed that positive,

converse-free GXQs and CGXQs can be answered over OWL 2 EL KBs in PTime and

PSpace, respectively; this is interesting because Bienvenu et al. [11] proved that answering

positive GXQs over ELH⊥ KBs is ExpTime-complete; hence, adding the converse operator

increases the complexity of graph XPath queries. Our results thus suggest that, at least

from a theoretical perspective, positive, converse-free GXQs and CGXQs are appealing as

query languages for OWL 2 EL knowledge bases.

Finally, we reviewed the existing regularity restriction on role inclusions in the OWL 2

specification [78], and showed that this condition does not ensure that each language induced

by a knowledge base is regular. To solve this issue, we proposed a revised syntactic condition

that correctly ensures the regularity of the induced languages; furthermore, in the same way

as the original condition by Motik et al. [78], our revised restriction generalises the well-

known regularity condition by Horrocks and Sattler [51], extends to role hierarchies, and

allows for the specification of the compositional properties of inverse roles.

214

Table 13.1: The complexity landscape for conjunctive and graph queries over OWL 2 EL

(a) The complexity landscape of acyclic CQ answering (all are completeness results)

ELH⊥ ELHO⊥ ELHO+
⊥ ELRO

+
⊥

arborescent
PTime

[10]

PTime
(Th. 9.8)

NP
(Th. 6.14)

PSpace
(Th. 9.8)

acyclic
PTime

[10]

NP
(Th. 9.8)

NP
(Th. 6.14)

PSpace
[66]

(b) The complexity landscape of CQ answering (all are completeness results)

ELH⊥ ELHO+
⊥ ELRO

+
⊥ Horn-SHOIQ Horn-SROIQ

data
PTime

[86]

PTime
(Th. 6.14)

PTime
(Th. 9.8)

PTime
[83]

PTime
[83]

combined
NP
[86]

NP
(Th. 6.14)

PSpace
(Th. 9.8)

ExpTime
[83]

2ExpTime
[83]

(c) The complexity of answering graph XPath queries over ELRO+
⊥ knowledge bases (‘c’ means

‘complete’, and ‘h’ means ‘hard’)

positive
converse-free

GXQs

positive
converse-free

CGXQs

positive
GXQs

path-positive
GXQs

GXQs

data
PTime-c
(Th. 11.2)

PTime-c
(Th. 11.2)

PTime-h
[11]

coNP-h
[61]

undec.
[61]

combined
PTime-c
(Th. 11.2)

PSpace-c
(Th. 11.2)

ExpTime-h
[11]

ExpTime-h
[11]

undec.
[61]

215

13.1 The Complexity of Query Answering in OWL 2 EL

We next harness the novel results presented in this thesis and review the complexity land-

scape of answering acyclic and unrestricted CQs, as well as navigational queries in various

DLs related to OWL 2 EL.

Table 13.1a summarises the combined complexity of answering arborescent and acyclic

CQs in important members of the EL family of DLs. The tractability result for acyclic CQ

answering in ELH⊥ is due to Bienvenu et al. [10], while the PSpace-hardness for acyclic

CQ answering in ELRO+
⊥ is due to Krötzsch et al. [66]; all other results have been proved

in this thesis. As one can see, extending ELH⊥ with nominals increases the complexity

of acyclic CQ answering, even though answering arborescent queries remains tractable. In

Theorem 10.6, we showed that extending EL with transitive or reflexive roles immediately

leads to the intractability of arborescent (and thus acyclic) CQ answering; furthermore,

extending EL with regular role makes the problem PSpace-hard and, by our PSpace lower

bound, this increase is solely due to role inclusions.

Table 13.1b summarises the complexity landscape of answering unrestricted CQs in vari-

ous DLs related to ELRO+
⊥ (and thus to OWL 2 EL). Here, Horn-SHOIQ extends ELHO+

⊥

with inverse roles and Horn qualified number restrictions, and Horn-SROIQ extends Horn-

SHOIQ with regular role inclusions. The results for these logics are due to Ortiz et al. [83],

whereas the results for ELH⊥ are due to Rosati [86]. CQ answering is PTime-complete

in data complexity in all cases, which is essentially due to the fact that all of these logics

are Horn so no disjunctive reasoning is needed. For the combined complexity, the table

illustrates how the presence of different constructs affects the complexity of answering CQs.

In particular, we showed that extending ELH⊥ with transitive roles, reflexive roles, and

nominals does not increase the complexity of CQ answering. This is interesting because

role transitivity suffices to express simple graph properties such as reachability, and it is a

known source of complexity of CQ answering [28, 39]. In contrast, extending ELHO+
⊥ with

regular role inclusions increases the complexity from NP to PSpace. Furthermore, extend-

ing ELHO+
⊥ with inverse roles increases the complexity from NP to ExpTime. Finally,

extending ELRO+
⊥ with inverse roles increases the complexity from PSpace to 2ExpTime.

216

Finally, Table 13.1c summarises the complexity landscape of answering graph XPath

queries over ELRO+
⊥ KBs. As one can see, adding the converse operator increases the

combined complexity of GXQs to ExpTime [11]. Moreover, adding negation over node

tests increases the data complexity of GXQs to coNP, whereas adding negation over path

expressions leads to the undecidability even when the TBox and the RBox are empty and

the query is considered to be fixed [61]. In contrast, existential quantification over paths

does not increase the complexity: answering positive, converse-free (C)GXQs over ELRO+
⊥

knowledge bases is as difficult as answering (C)RPQs over EL knowledge bases [9].

13.2 Future Work

We anticipate several directions for our future work. An important theoretical and practical

challenge is to develop novel optimisations that reduce the number of nondeterministic

choices required by the CQ answering algorithm for OWL 2 EL, and to implement the

resulting algorithm in order to evaluate its practicability.

Another theoretical challenge is to investigate the use of top-down query evaluation

techniques—such as magic sets [1] or SLG resolution [19]. Moreover, tighter integration

of the detection of unsound answers with the query evaluation algorithms should make it

possible to eagerly detect unsound answers (i.e., before the query is fully evaluated); thus

reducing the overhead caused by queries that generate a large number of unsound answers.

As our datalog translation of knowledge bases can be used to check the consistency

of, and answer database-like queries over OWL 2 EL knowledge bases, an important open

problem is whether our datalog encoding can also be used to efficiently check concept

subsumptions, thus leading the way towards a unified reasoning system for OWL 2 EL.

Finally, as static query analysis is a fundamental task in query optimisation, we shall

study the containment problem for graph queries under OWL 2 EL constraints.

217

218

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995. ISBN 0-201-53771-0.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases.

ACM Trans. Database Syst., 4(3):297–314, September 1979. ISSN 0362-5915. doi:

10.1145/320083.320091. URL http://doi.acm.org/10.1145/320083.320091.

[3] Marcella Anselmo, Dora Giammarresi, and Stefano Varricchio. Finite automata and

non-self-embedding grammars. In Proceedings of the 7th International Conference

on Implementation and Application of Automata, CIAA’02, pages 47–56. Springer-

Verlag, 2003. ISBN 3-540-40391-4. URL http://dl.acm.org/citation.cfm?id=

1756384.1756390.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the

19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages

364–369, Edinburgh, UK, July 30–August 5 2005. Morgan Kaufmann Publishers.

[5] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope further.

In In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and

Directions, 2008.

[6] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, 2010. Paperback edition.

[7] Pablo Barceló. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-

219

http://doi.acm.org/10.1145/320083.320091
http://dl.acm.org/citation.cfm?id=1756384.1756390
http://dl.acm.org/citation.cfm?id=1756384.1756390

SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, pages

175–188. ACM, 2013.

[8] Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained

path problems. SIAM Journal on Computing, 30(3):809–837, May 2000. ISSN

0097-5397. doi: 10.1137/S0097539798337716. URL http://dx.doi.org/10.1137/

S0097539798337716.

[9] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Conjunctive regular path

queries in lightweight description logics. In IJCAI 2013, Proceedings of the 23rd

International Joint Conference on Artificial Intelligence. IJCAI/AAAI, 2013.

[10] Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Xiao Guohui. Tractable

queries for lightweight description logics. In IJCAI 2013, Proceedings of the 23rd

International Joint Conference on Artificial Intelligence. IJCAI/AAAI, 2013.

[11] Meghyn Bienvenu, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Nested

regular path queries in description logics. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014.

AAAI Press, 2014.

[12] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query

answering under expressive relational constraints. Journal of Artificial Intelligence

Research, 48:115–174, 2013. ISSN 10769757. doi: 10.1613/jair.3873.

[13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and

Riccardo Rosati. Data complexity of query answering in description logics. In Pro-

ceedings, Tenth International Conference on Principles of Knowledge Representation

and Reasoning, KR 2006, pages 260–270. AAAI Press, 2006.

[14] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and

Riccardo Rosati. Tractable reasoning and efficient query answering in description

logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

220

http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1137/S0097539798337716

[15] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in ex-

pressive description logics with nominals. In IJCAI 2009, Proceedings of the 21st

International Joint Conference on Artificial Intelligence, pages 714–720, 2009.

[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and

Domenico Fabio Savo. The MASTRO system for ontology-based data access. Se-

mantic Web, 2(1):43–53, 2011.

[17] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries

in expressive description logics via alternating tree-automata. Inf. Comput., 237:12–

55, 2014. doi: 10.1016/j.ic.2014.04.002. URL http://dx.doi.org/10.1016/j.ic.

2014.04.002.

[18] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in

relational data bases. In J. E. Hopcroft, E. P. Friedman, and M. A. Harrison, editors,

Proc. of the 9th annual ACM Symposium on Theory of Computing (STOC ’77), pages

77–90, Boulder, CO, USA, May 2–4 1977. ACM Press.

[19] Weidong Chen and David S. Warren. Query evaluation under the well-founded

semantics. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, PODS ’93, pages 168–179, New York,

NY, USA, 1993. ACM. ISBN 0-89791-593-3. doi: 10.1145/153850.153865. URL

http://doi.acm.org/10.1145/153850.153865.

[20] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Goal-oriented query

rewriting for OWL 2 QL. In Riccardo Rosati, Sebastian Rudolph, and Michael Za-

kharyaschev, editors, Proceedings of the 24th International Workshop on Description

Logics (DL 2011), volume 745. CEUR-WS.org, 2011.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms (3. ed.). MIT Press, 2009. ISBN 978-0-262-03384-8. URL

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866.

221

http://dx.doi.org/10.1016/j.ic.2014.04.002
http://dx.doi.org/10.1016/j.ic.2014.04.002
http://doi.acm.org/10.1145/153850.153865
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866

[22] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query

language supporting recursion. In Proceedings of the 1987 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’87, pages 323–330, New

York, NY, USA, 1987. ACM. ISBN 0-89791-236-5. doi: 10.1145/38713.38749. URL

http://doi.acm.org/10.1145/38713.38749.

[23] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F. Patel-

Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. J. Web Sem., 6(4):

309–322, 2008.

[24] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity

and expressive power of logic programming. ACM Comput. Surv., 33(3):374–425,

2001. ISSN 03600300. doi: 10.1145/502807.502810. URL http://portal.acm.org/

citation.cfm?doid=502807.502810.

[25] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Ric-

cardo Rosati, Marco Ruzzi, and Domenico Fabio Savo. MASTRO: A reasoner for

effective ontology-based data access. In Proceedings of the 1st International Work-

shop on OWL Reasoner Evaluation (ORE-2012). CEUR-WS.org, 2012.

[26] Steven DeRose and James Clark. XML path language (XPath) version 1.0. W3C

recommendation, W3C, November 1999. http://www.w3.org/TR/1999/REC-xpath-

19991116.

[27] Sebastian Derriere, André Richard, and Andrea Preite-Martinez. An ontology of

astronomical object types for the virtual observatory. Proceedings of the International

Astronomical Union, 2(14), 2006. ISSN 1743-9213. doi: 10.1017/S174392130701201X.

[28] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Simkus. Query answering

in description logics with transitive roles. In IJCAI 2009, Proceedings of the 21st

International Joint Conference on Artificial Intelligence, pages 759–764, 2009.

[29] Thomas Eiter, Magdalena Ortiz, and Mantas Simkus. Conjunctive query answering

in the description logic SH using knots. J. Comput. Syst. Sci., 78(1):47–85, 2012.

222

http://doi.acm.org/10.1145/38713.38749
http://portal.acm.org/citation.cfm?doid=502807.502810
http://portal.acm.org/citation.cfm?doid=502807.502810

[30] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao.

Query rewriting for Horn-SHIQ plus rules. In Proceedings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence. AAAI Press, 2012.

[31] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: Getting to the

core. ACM Trans. Database Syst., 30(1):174–210, March 2005. ISSN 0362-5915. doi:

10.1145/1061318.1061323. URL http://doi.acm.org/10.1145/1061318.1061323.

[32] Wenfei Fan. Graph pattern matching revised for social network analysis. In 15th

International Conference on Database Theory, ICDT ’12,, pages 8–21. ACM, 2012.

[33] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

[34] Viliam Geffert, Carlo Mereghetti, and Beatrice Palano. More concise representation of

regular languages by automata and regular expressions. Information and computation,

208(4):385–394, 2010.

[35] Martin Giese, Diego Calvanese, Peter Haase, Ian Horrocks, Yannis Ioannidis, Heralk

Kllapi, Manolis Koubarakis, Maurizio Lenzerini, Ralf Möller, Mariano Rodriguez-

Muro, Özgür Özcep, Riccardo Rosati, Rudolf Schlatte, Michael Schmidt, Ahmet

Soylu, and Arild Waaler. Scalable end-user access to big data. In Rajendra Akerkar,

editor, Big Data Computing. CRC Press, 2013.

[36] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query

answering for the description logic SHIQ. J. Artif. Intell. Res. (JAIR), 31:157–204,

2008.

[37] Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into small non-

recursive datalog programs. In Principles of Knowledge Representation and Reason-

ing: Proceedings of the Thirteenth International Conference, KR 2012. AAAI Press,

2012.

[38] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic

conjunctive queries. Journal of the ACM, 48(3):431–498, May 2001. ISSN 00045411.

223

http://doi.acm.org/10.1145/1061318.1061323

doi: 10.1145/382780.382783. URL http://portal.acm.org/citation.cfm?doid=

382780.382783.

[39] Georg Gottlob, Andreas Pieris, and Lidia Tendera. Querying the guarded fregment

with transitivity. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and

David Peleg, editors, Automata, Languages, and Programming–40th International

Colloquium, ICALP 2013, volume 7966, pages 287–298. Springer, 2013.

[40] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Thomas

Schwentick, and Michael Zakharyaschev. The price of query rewriting in ontology-

based data access. Artificial Intelligence, 213:42–59, aug 2014. ISSN 00043702. doi: 10.

1016/j.artint.2014.04.004. URL http://linkinghub.elsevier.com/retrieve/pii/

S0004370214000459.

[41] Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial combined rewritings

for existential rules. In Principles of Knowledge Representation and Reasoning: Pro-

ceedings of the Fourteenth International Conference, KR 2014. AAAI Press, 2014.

[42] Jennifer Green, Catherine Dolbear, Glen Hart, John Goodwin, and Paula Engelbrecht.

Creating a semantic integration system using spatial data. In 7th International Se-

mantic Web Conference, ISWC 2008, 2008.

[43] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description

logic programs: Combining logic programs with description logic. In Proceedings of

the 12th international conference on World Wide Web, pages 48–57, 2003. ISBN

1581136803. URL http://dl.acm.org/citation.cfm?id=775160.

[44] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowl-

edge base systems. Web Semantics, 3(2-3):158–182, 2005. ISSN 15708268. doi:

10.1016/j.websem.2005.06.005.

[45] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge Pérez. Foun-

dations of Semantic Web databases. J. Comput. Syst. Sci., 77(3):520–541, 2011.

224

http://portal.acm.org/citation.cfm?doid=382780.382783
http://portal.acm.org/citation.cfm?doid=382780.382783
http://linkinghub.elsevier.com/retrieve/pii/S0004370214000459
http://linkinghub.elsevier.com/retrieve/pii/S0004370214000459
http://dl.acm.org/citation.cfm?id=775160

[46] Victor Gutiérrez-Basulto, Yazmin Ibanez-Garcia, Roman Kontchakov, and Egor V

Kostylev. Queries with negation and inequality over lightweight ontologies. Jour-

nal of Web Semantics, 2014. URL http://www.informatik.uni-bremen.de/tdki/

research/papers/2014/GuIbKoKo14.pdf.

[47] David Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of

Philosophical Logic Vol. II, pages 497–604. Reidel Publishing Company, 1984.

[48] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-

bridge, MA, USA, 2000. ISBN 0262082896.

[49] Tony Hey and Anne E Trefethen. Cyberinfrastructure for e-Science. Science (New

York, N.Y.), 308(5723):817–821, 2005. ISSN 0036-8075. doi: 10.1126/science.1110410.

[50] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation - international edition (2. ed). Addison-Wesley,

2003. ISBN 978-0-321-21029-6.

[51] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion

axioms. Artificial Intelligence, 160(1–2):79–104, December 2004. ISSN 09401121.

[52] Ian Horrocks and Sergio Tessaris. Querying the Semantic Web: a formal ap-

proach. In Semantic Web-ISWC 2002, pages 177–191, 2002. ISBN 3-540-43760-

6. doi: 10.1007/3-540-48005-6\ 15. URL http://www.springerlink.com/index/

XAXBYMXFK0KX5LXG.pdf.

[53] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In

Proceedings, Tenth International Conference on Principles of Knowledge Representa-

tion and Reasoning, pages 57–67. AAAI Press, 2006.

[54] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In Principles of

Knowledge Representation and Reasoning: Proceedings of the Eleventh International

Conference, KR 2008, pages 274–284. AAAI Press, 2008.

225

http://www.informatik.uni-bremen.de/tdki/research/papers/2014/GuIbKoKo14.pdf
http://www.informatik.uni-bremen.de/tdki/research/papers/2014/GuIbKoKo14.pdf
http://www.springerlink.com/index/XAXBYMXFK0KX5LXG.pdf
http://www.springerlink.com/index/XAXBYMXFK0KX5LXG.pdf

[55] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. Conjunctive query

answering with OWL 2 QL. In Principles of Knowledge Representation and Reasoning:

Proceedings of the Thirteenth International Conference, KR 2012, 2012.

[56] SC Kleene. Representation of events in nerve nets and finite automata. Automata

Studies, 1956.

[57] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web ser-

vice discovery with OWLS-MX. In AAMAS 06 Proceedings of the fifth international

joint conference on Autonomous agents and multiagent systems, pages 915–922, 2006.

ISBN 1595933034. doi: 10.1145/1160633.1160796. URL http://portal.acm.org/

citation.cfm?id=1160796.

[58] Mélanie König, Michel Leclere, Marie-Laure Mugnier, and Mickael Thomazo. A

sound and complete backward chaining algorithm for existential rules. In RR

2012, pages 122–138, 2012. URL http://link.springer.com/chapter/10.1007/

978-3-642-33203-6_10.

[59] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-

kharyaschev. The combined approach to query answering in DL-Lite. In Principles of

Knowledge Representation and Reasoning: Proceedings of the Twelfth International

Conference, KR 2010, 2010. URL http://aaai.org/ocs/index.php/KR/KR2010/

paper/view/1282.

[60] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-

kharyaschev. The combined approach to ontology-based data access. In IJCAI

2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-

gence, pages 2656–2661. IJCAI/AAAI, 2011.

[61] Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. XPath for DL ontologies.

In Proc. of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), 2015.

[62] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium

on Foundations of Computer Science, FOCS 1977, pages 254–266, 1977.

226

http://portal.acm.org/citation.cfm?id=1160796
http://portal.acm.org/citation.cfm?id=1160796
http://link.springer.com/chapter/10.1007/978-3-642-33203-6_10
http://link.springer.com/chapter/10.1007/978-3-642-33203-6_10
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282

[63] Adila Krisnadhi and Carsten Lutz. Data complexity in the EL family of description

logics. In Proceedings of the 14th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning, 2007.

[64] Markus Krötzsch. Efficient rule-based inferencing for OWL EL. In Toby Walsh, edi-

tor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,

IJCAI 2011. AAAI Press/IJCAI, 2011. 2668–2673.

[65] Markus Krötzsch and Sebastian Rudolph. Conjunctive queries for EL with com-

position of roles. In Proceedings of the 2007 International Workshop on Descrip-

tion Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June,

2007, volume 250 of CEUR Workshop Proceedings. CEUR-WS.org, 2007. URL

http://ceur-ws.org/Vol-250/paper_58.pdf.

[66] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for a

tractable fragment of OWL 1.1. In Proceedings of the 6th International Semantic Web

Conference (ISWC’07), volume 4825 of LNCS, pages 310–323. Springer, 2007.

[67] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. ELP: Tractable rules for

OWL 2. In Proceedings of the 7th International Semantic Web Conference, ISWC

2008, pages 649–664, 2008.

[68] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in

knowledge representation and reasoning. Computational Intelligence, 3:78–93, 1987.

doi: 10.1111/j.1467-8640.1987.tb00176.x. URL http://dx.doi.org/10.1111/j.

1467-8640.1987.tb00176.x.

[69] Anita C. Liang, Boris Lauser, Margherita Sini, Johannes Keizer, and Stephen Katz.

From AGROVOC to the agricultural ontology service / concept server An OWL

model for managing ontologies in the agricultural domain. In Dublin Core Conference

Proceedings, volume 216, 2006. ISBN 3906570568.

[70] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. Querying graph databases with

227

http://ceur-ws.org/Vol-250/paper_58.pdf
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x
http://dx.doi.org/10.1111/j.1467-8640.1987.tb00176.x

XPath. In Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, pages 129–

140. ACM, 2013.

[71] Carsten Lutz. The complexity of conjunctive query answering in expressive description

logics. In Automated Reasoning, 2008. URL http://link.springer.com/chapter/

10.1007/978-3-540-71070-7_16.

[72] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in the

description logic EL using a relational database system. In IJCAI 2009, Proceedings

of the 21st International Joint Conference on Artificial Intelligence, pages 2070–2075,

2009.

[73] Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. The combined approach

to OBDA: taming role hierarchies using filters. In The Semantic Web - ISWC 2013 -

12th International Semantic Web Conference, volume 8218 of Lecture Notes in Com-

puter Science, pages 314–330. Springer, 2013. doi: 10.1007/978-3-642-41335-3 20.

URL http://dx.doi.org/10.1007/978-3-642-41335-3_20.

[74] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of

data dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979. ISSN 03625915.

doi: 10.1145/320107.320115.

[75] Bruno Marnette. Generalized schema-mappings: from termination to tractability. In

Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS 2009, pages 13–22. ACM, 2009.

[76] Marvin Minsky. A framework for representing knowledge. In P.H. Winston, editor,

The Psychology of Computer Vision, pages 211–278. McGraw-Hill, NY, 1975. URL

http://18.7.29.232/handle/1721.1/6089.

[77] José Mora, Riccardo Rosati, and Óscar Corcho. kyrie2: Query rewriting under exten-

sional constraints in ELHIO. In The Semantic Web - ISWC 2014 - 13th International

Semantic Web Conference, pages 568–583, 2014. doi: 10.1007/978-3-319-11964-9 36.

URL http://dx.doi.org/10.1007/978-3-319-11964-9_36.

228

http://link.springer.com/chapter/10.1007/978-3-540-71070-7_16
http://link.springer.com/chapter/10.1007/978-3-540-71070-7_16
http://dx.doi.org/10.1007/978-3-642-41335-3_20
http://18.7.29.232/handle/1721.1/6089
http://dx.doi.org/10.1007/978-3-319-11964-9_36

[78] Boris Motik, Peter Patel-Schneider, and Bijan Parsia. OWL 2 web ontology language

structural specification and functional-style syntax (second edition). W3C recom-

mendation, W3C, December 2012. http://www.w3.org/TR/2012/REC-owl2-syntax-

20121211/.

[79] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel

materialisation of datalog programs in centralised, main-memory RDF systems. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI

Press, 2014.

[80] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. Incremental update of

datalog materialisation: The backward/forward algorithm. In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 1560–1568. AAAI

Press, 2015.

[81] Adrian Onet. The chase procedure and its applications in data exchange. In Data

Exchange, Integration, and Streams, volume 5 of Dagstuhl Follow-Ups, pages 1–37.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013. ISBN 978-3-939897-61-3.

doi: http://dx.doi.org/10.4230/DFU.Vol5.10452.1. URL http://drops.dagstuhl.

de/opus/volltexte/2013/4288.

[82] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query

answering in expressive description logics via tableaux. J. Autom. Reasoning, 41(1):

61–98, 2008.

[83] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering in the

Horn fragments of the description logics SHOIQ and SROIQ. In IJCAI 2011, Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence, pages

1039–1044, 2011.

[84] Christos H Papadimitriou. Computational Complexity, volume 11. Addison Wesley,

1994. ISBN 0201530821. doi: 10.1006/jcom.1995.1011. URL http://portal.acm.

org/citation.cfm?id=1074233.

229

http://drops.dagstuhl.de/opus/volltexte/2013/4288
http://drops.dagstuhl.de/opus/volltexte/2013/4288
http://portal.acm.org/citation.cfm?id=1074233
http://portal.acm.org/citation.cfm?id=1074233

[85] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query answering and

rewriting under description logic constraints. J. Applied Logic, 8(2):186–209, 2010.

[86] Riccardo Rosati. On conjunctive query answering in EL. In Proceedings of the 2007

International Workshop on Description Logics (DL2007), 2007.

[87] Riccardo Rosati. The limits of querying ontologies. In Database Theory - ICDT 2007,

11th International Conference, pages 164–178, 2007.

[88] Riccardo Rosati. Prexto: Query rewriting under extensional constraints in DL-Lite.

In The Semantic Web: Research and Applications - 9th Extended Semantic Web

Conference, ESWC 2012, volume 7295 LNCS, pages 360–374. Springer, 2012. ISBN

9783642302831. doi: 10.1007/978-3-642-30284-8\ 31.

[89] M. Ross Quillan. Word concepts: A theory and simulation of some basic semantic

capabilities. Behavioral Science, 12(5):410–430, 1967.

[90] Walter J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. J. Comput. Syst. Sci., 4:177–192, 1970. ISSN 00220000. doi: 10.1016/

S0022-0000(70)80006-X.

[91] Stefan Schulz, Ronald Cornet, and Kent Spackman. Consolidating SNOMED CT’s

ontological commitment. Applied Ontology, 6:1–11, 2011. doi: 10.3233/AO-2011-0084.

URL http://iospress.metapress.com/index/P614602542457GWP.pdf.

[92] Frantǐsek Simanč́ık. Elimination of complex RIAs without automata. In Proceedings

of the 2012 International Workshop on Description Logics, DL-2012, 2012.

[93] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

[94] Giorgio Stefanoni and Boris Motik. Conjunctive queries over EL with transitive and

reflexive roles. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence, pages 1611–1617. AAAI Press, 2015.

230

http://iospress.metapress.com/index/P614602542457GWP.pdf

[95] Giorgio Stefanoni, Boris Motik, and Ian Horrocks. Introducing nominals to the com-

bined query answering approaches for EL. In Proceedings of the Twenty-Seventh AAAI

Conference on Artificial Intelligence, 2013.

[96] Giorgio Stefanoni, Boris Motik, Markus Krötzsch, and Sebastian Rudolph. The com-

plexity of answering conjunctive and navigational queries over OWL 2 EL knowledge

bases. J. Artif. Intell. Res. (JAIR), 51:645–705, 2014.

[97] Giorgos Stoilos. Hydrowl: A hybrid query answering system for OWL 2 DL ontologies.

In Proc. 8th Int. Conf. Web Reason. Rule Syst. (RR 2014), 2014.

[98] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System de-

scription. In Automated Reasoning, Third International Joint Conference, IJCAR

2006, pages 292–297, 2006.

[99] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach, and Henri E. Bal. QueryPIE:

Backward reasoning for OWL Horst over very large knowledge bases. In The Semantic

Web - ISWC 2011 - 10th International Semantic Web Conference, pages 730–745,

2011.

[100] Moshe Y. Vardi. The complexity of relational query languages (extended abstract).

In Proceedings of the fourteenth annual ACM symposium on Theory of computing,

STOC ’82, pages 137–146, New York, NY, USA, 1982. ACM. ISBN 0-89791-070-2.

doi: 10.1145/800070.802186. URL http://doi.acm.org/10.1145/800070.802186.

[101] Tassos Venetis, Giorgos Stoilos, and Giorgos B. Stamou. Incremental query rewriting

for OWL 2 QL. In Proceedings of the 2012 International Workshop on Description

Logics, 2012.

[102] Tassos Venetis, Giorgos Stoilos, and Giorgos Stamou. Query rewriting under query

extensions for OWL 2 QL ontologies. J. Data Semant., 3:1–23, 2014. ISSN 16130073.

doi: 10.1007/s13740-012-0017-6.

[103] Roberto De Virgilio, Giorgio Orsi, Letizia Tanca, and Riccardo Torlone. NYAYA: A

system supporting the uniform management of large sets of semantic data. In IEEE

231

http://doi.acm.org/10.1145/800070.802186

28th International Conference on Data Engineering (ICDE 2012), pages 1309–1312,

2012. doi: 10.1109/ICDE.2012.133. URL http://dx.doi.org/10.1109/ICDE.2012.

133.

[104] Artem Vorobiev and Jun Han. Security attack ontology for Web services. In 2006

2nd International Conference on Semantics Knowledge and Grid, SKG, 2006. ISBN

0769532055. doi: 10.1109/SKG.2006.85.

[105] Michael Wessel. Obstacles on the way to qualitative spatial reasoning with description

logics: Some undecidability results. In Working Notes of the 2001 International

Description Logics Workshop (DL-2001), volume 49. CEUR-WS.org, 2001.

[106] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the

seventh international conference on Very Large Data Bases, volume 7, pages 82–94,

1981.

[107] Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks. Complete query

answering over Horn ontologies using a triple store. In International Semantic Web

Conference 2013, volume 8218 LNCS, pages 720–736, 2013. ISBN 9783642413346.

doi: 10.1007/978-3-642-41335-3\ 45.

[108] Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks. Pay-as-you-go

OWL query answering using a triple store. In Proc. 28th Conf. Artif. Intell. (AAAI

14), pages 1142–1148. AAAI Press, 2014. ISBN 9781577356783.

232

http://dx.doi.org/10.1109/ICDE.2012.133
http://dx.doi.org/10.1109/ICDE.2012.133

	1 Introduction
	1.1 Representing Knowledge in Description Logics
	1.2 The Profiles of OWL 2
	1.3 Querying Description Logic Knowledge Bases
	1.3.1 Relational Query Languages
	1.3.2 Navigational Query Languages

	1.4 Querying the EL Profile of OWL 2
	1.5 Contributions

	2 Preliminary Notions
	2.1 Automata and Language Theory
	2.1.1 Finite Automata
	2.1.2 Context-Free Grammars and Pushdown Automata

	2.2 Rules and Queries
	2.2.1 First-Order Logic with Equality
	2.2.2 First-Order Rules
	2.2.3 Instance and Conjunctive Queries
	2.2.4 Chase and Universal Interpretations

	2.3 Complexity Theory

	3 The EL Profile of OWL 2
	3.1 The EL Family of DLs
	3.1.1 The DL Underpinning OWL 2 EL
	3.1.2 The Other Members of the Family

	3.2 CQ Answering in the EL family of DLs
	3.2.1 Decidability of CQ answering over OWL 2 EL via Regularity
	3.2.2 Normalising Knowledge Bases

	4 The CQ Answering Algorithms at a Glance
	4.1 Existing Approaches to Answering CQs
	4.2 Overview of our Approach

	5 Translating Knowledge Bases into Datalog
	5.1 Translating Knowledge Bases into Rule Bases
	5.2 Translating Rule Bases into Datalog
	5.3 Proof of Correctness
	5.3.1 Correctness of the Translation into Rule Bases
	5.3.2 Structural Properties of the Universal Interpretations of K
	5.3.3 Correctness of the Translation into Datalog

	6 Answering CQs over ELHsO KBs
	6.1 Intuition
	6.1.1 Filtering without Transitive and Reflexive Roles
	6.1.2 Filtering with Transitive and Reflexive Roles

	6.2 Formalisation
	6.3 Lower Bound for Checking the Soundness of Answers
	6.4 Proof of Correctness
	6.4.1 Soundness
	6.4.2 Completeness

	7 Proof of Concept
	7.1 Test Setting and Benchmarks
	7.2 Testing the Size of Materialisations
	7.3 Testing the Filtering Procedure

	8 Encoding Regular RBoxes Using Bounded-Stack PDAs
	8.1 Formalisation
	8.2 Proof of Correctness
	8.2.1 Soundness and Stack Boundedness
	8.2.2 Completeness

	9 Answering CQs over ELRO KBs
	9.1 Intuition
	9.2 Formalisation
	9.3 Proof of Correctness
	9.3.1 Correctness of exist
	9.3.2 Correctness of the Datalog Encoding of Generalised PDAs
	9.3.3 Soundness
	9.3.4 Completeness

	10 Acyclic Conjunctive Queries
	10.1 Acyclic and Arborescent Queries
	10.2 Arborescent Queries over ELHO KBs
	10.3 Lower Bounds for Acyclic Queries

	11 Navigational Queries
	11.1 Graph XPath Queries
	11.2 Positive, Converse-Free CGXQ over ELRO KBs

	12 The OWL 2 DL Regularity Restriction
	12.1 The Existing Regularity Restrictions
	12.2 A Revised Regularity Restriction for OWL 2 DL

	13 Outlook
	13.1 The Complexity of Query Answering in OWL 2 EL
	13.2 Future Work

	Bibliography

