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Abstract

Accessing data through ontologies expressed in Description Logics (DL) is important for the realization of
the Semantic Web. DL-LiteA, member of the DL-Lite family of DLs, is particularly suitable for answering
Conjunctive Queries over large data sets. In order to meet usability requirements, most logic-based
applications provide explanation facilities for reasoning services. This holds also for DL-LiteA, where
research focused on the explanation of both TBox reasoning and, more recently, query answering. This
thesis consists of a complete study on the latter problem, hence, we study both explanations for the
absence and the presence of a tuple in the answers.

Unfortunately, it happens that users are not always provided with the result they are expecting when
querying an ontology. Then, it is important to provide them with an high-level motivation for the absence
of a tuple in the results, i.e., find an explanation for a negative answer. In fact, in contrast with standard
database technology, in the ontology setting this problem is not easily solvable by looking at the structure
of the data stored in the data-layer and, for example, relaxing the conditions imposed in the query. The
reason is that the reasoning involved for answering queries, provides an additional layer obfuscating the
way the data is accessed by the system. We address the problem of explaining negative answers for
(conjunctive) query answering over DL-LiteA ontologies, by adopting abductive reasoning, that is, we
look for additions to the ABox that force a given tuple to be in the result. As reasoning tasks, we consider
existence and recognition of an explanation, and relevance and necessity of a certain assertion for an
explanation. An important aspect in explanations is to provide the user with solutions that are simple to
understand and free of redundancy, hence as small as possible. To address this requirement, we study
various restrictions on solutions, in particular, we focus on subset minimal and cardinality minimal ones.

Besides explaining the absence of a tuple in a query answer, it is important to explain also why a
given tuple is returned by the system. The presence of a tuple in the results of a query over a DL-LiteA
ontology does not only depend on the data but also on the constraints expressed at the conceptual level.
For this reason, it is important to provide users with insights on how conceptual information has been used
to return a certain tuple in the answers. This problem has been tackled already in the literature, where
an high-level procedure explaining positive answers to conjunctive queries over DL-LiteA ontologies is
introduced. As now, the mentioned procedure has never been given a formal algorithmic counterpart and,
therefore, it is not easily implementable in a real world system. For this reason, we close the gap between
theory and practice by providing such an algorithmic solution to the problem. Also, we improve the given
procedure by considering minimal explanations for positive answers. Further, this thesis contributes with
a new use of this algorithm to solve the problem of explaining to domain users the inconsistency of a
DL-LiteA knowledge base.
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Kurzfassung

Die Verwendung von Ontologien für die Vermittlung des Zugangs zu Daten ist für die Reali-
sierung des Semantischen Web sicherlich von Wichtigkeit. DL-LiteA ist Mitglied der DL-Lite
Familie von Beschreibungslogiken und eignet sich besonders für den Zugriff auf gros̈e Daten-
banken, insbesondere um konjunktive Abfragen auf dieselben durchzuführen.

Um den Ansprüchen einer einfachen Verwendung von Seiten der Benutzer entgegen zukom-
men, wurden erklärende Routinen innerhalb der Wissensbasiertes Systeme entwickelt, welche
eine Hilfestellung für die verschiedenen Interpretationsdienste des Systems bieten. Dies gilt auch
für DL-LiteA, wobei sich die Forschung auf die Erklärung der Interpretationsdienste auf Basis
von TBox und, neuerdings, auf die Erklärung von Query answering konzentriert.

Unglücklicherweise kommt es vor, dass Benutzer bei Abfragen zu Ontologien nicht immer
das von ihnen gewünschte Ergebnis geliefert bekommen. In diesem Fall ist es wichtig eine Be-
gründung für die Abwesenheit eines Tupels in der Antwort des Systems zu liefern. Im Gegensatz
zu relationalen Datenbanksystemen kann man bei Abfragen zu Ontologien dieses Problem nicht
durch eine genaue Untersuchung der im System enthaltenen Daten, beispielsweise durch eine
Änderung der Abfrage, lösen. Der Grund dafür ist, dass die logische Argumentation, mit der
die Antworten für eine Abfrage zu Ontologien berechnet werden, die Art und Weise maskiert
mit welcher die Abfrage auf die Daten zugreift. Diese Thesis behandelt die Problemstellung
negative konjunktive Antworten auf DL-LiteA Ontologien zu erklären, unter Verwendung einer
abduktiven Argumentation, indem die Zusätze zur ABox gesucht werden welche ein bestimm-
tes Resultat der Abfrage verursachen. Wir betrachten in der Argumentation die Existenz und
die Erkennung einer Erklärung, und die Relevanz und Notwendigkeit einer bestimmten Aussa-
ge für eine Erklärung. Ein wesentlicher Aspekt in den Erklärungen ist die Fähigkeit, Lösungen
zu produzieren welche einfach zu verstehen sind, keine Redundanz aufweisen, und folglich so
klein wie möglich sind. Um dieser Anforderung zu entsprechen untersuchen wir die Verwen-
dung verschiedener Einschränkungen bei den Lösungen, insbesondere konzentrieren wir uns
auf Erklärungen minimaler Untermengen und von minimaler Kardinalität.

Neben der Lieferung von Erklärungen für das Fehlen eines Tupels in den Antworten einer
Abfrage, ist es auch wichtig die Gründe zu erläutern, die dazu führen dass ein Tupel Teil des
Ergebnisses ist. In der Tat hängt die Präsenz eines Tupels in den Ergebnissen der Abfrage auf
eine DL-LiteA Ontologie nicht nur von den im System enthaltenen Daten ab, sondern auch von
den Einschränkungen welche in der Ontologie auf konzeptioneller Ebene vorhanden sind. Aus
diesem Grund ist es wichtig, den Benutzern zu erklären, wie die Aussagen auf der konzeptio-
nellen Ebene verwendet wurden um die Antwort zu generieren. Dieses Problem wurde bereits
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von Borgida et. al in Angriff genommen, wobei diese ein Verfahren auf hoher Ebene einfüh-
ren, um positive Antworten auf konjunktive Abfragen auf DL-LiteA Ontologien zu erklären.
Leider bietet diese Veröffentlichung keine algorithmische Lösung für das Problem, sondern nur
eine Beschreibung des Verfahrens. Aus diesem Grund reduziert diese Thesis die Kluft zwischen
Theorie und Praxis durch die Definition eines Algorithmus, der dieses Problem löst. Darüber
hinaus tragen wir zur Lösung des Problems bei, den Benutzern die Inkonsistenz einer DL-LiteA
Ontologie zu erläutern, mittels Verwendung der Prozedur welche positive Antworten auf kon-
junktive Abfragen erklärt.
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CHAPTER 1
Introduction

1.1 Overview

Conceptual analysis is a key aspect in both software development and knowledge engineer-
ing. In the past decade, ontologies have been advocated an important role in these fields. In
philosophical terms, an Ontology is a formal specification of a shared conceptualization of a
domain [18]. In 2004, the W3C1 recommended a new family of knowledge representation lan-
guages for defining ontologies: the Web Ontology Language (OWL). The fundamental feature
of these languages is their strong logical basis, since (most of) OWL is based on Description
Logics [5]: a family of languages tailored for knowledge representation. The foundation in log-
ics allows for the introduction of reasoning algorithms, which draw implicit conclusions from
the explicit knowledge declared in ontologies. Subsequent efforts in increasing the expressivity
of the language have led to the development of OWL2 [21], which introduces important mod-
eling features and two lightweight profiles: OWL2 EL and OWL2 QL. The former is a subset
of OWL2 suitable for applications requiring the use of large ontologies in terms of the defined
vocabulary. The latter is an ontology language tailored for accessing large data sets through
ontologies.

Accessing data through ontologies is an important aspect towards the realization of the
Semantic Web [20]. Nowadays, organizations have to deal with a never-ending increase in
the amount of information, while also coping with a diversification in the type of data (semi-
structured and unstructured information) they may receive. Furthermore, an information system
has also to be able to manage poor-quality information, for instance, incomplete data. Ontology-
Based Data Access (OBDA) systems2 aim at tackling these problems by mediating the access
to data silos through an ontology [13]. This method allows to achieve logical-transparency in
accessing data, that is, users are not aware on how the data is stored in the data layer, rather
they are presented with a semantically-rich conceptual view of the stored information. Addi-

1www.w3c.org
2a.k.a. Ontology-Based Information Systems
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Figure 1.1: A graphic representation of a mock ontology Ouni describing a university domain.

tionally, data-management tasks are based on sound and complete reasoning algorithms, whose
correctness can be proved formally.

The most important service users are interested in such a system is the ability of answering
queries over an ontology. Answering queries over ontologies amounts at computing the certain
answers to the query, that is, the tuples that are answers to the query in all the models of the on-
tology. Hence, unlike query evaluation over relational databases, computing the certain answers
is a form of logical reasoning.

1.2 Problem Description

Query answering being a form of logical reasoning requires OBDA systems to be able to jus-
tify the computed certain answers. An explanation is needed both for the absence (explaining
negative query answers) and for the presence of a tuple in the result (explaining positive query
answers). In the following two subsections, we describe the two problems and we argue about
their importance.

Explaining negative query answers

The logical reasoning adopted while answering queries over an ontology may cause a tuple, the
user expects to be in results, not to be returned in the certain answers. The motivations of this
absence cannot be found by simply looking at the way the user query accesses data. The reason
is that the answers to queries over ontologies do not only depend on the data, but also on the
conceptual level information provided by the ontology. The ontology is used to alter the way
the user query accesses the data in order to take into account incompleteness in the information
stored in the database. The logical reasoning involved in this process may be large in terms of
inference schemes used and, therefore, almost impossible to be humanly understood by tracing
the access to data.

In the relational database settings, there is the notion of database repair which allows to
answer queries over inconsistent databases by suitably updating the relational instance [2, 3].
In case of query answering over ontologies, the fact that a tuple is considered to be part of
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the certain answer but it is not returned by the query answering system can be understood as
a domain-level inconsistency in the ontology. That is, the data satisfies all logical constraints
expressed in the ontology, but it is inconsistent from the domain perspective. Hence, it is im-
portant to provide users with the additions to the data that allows the given tuple to be returned
in the certain answer. This problem is complementary to finding database repairs, since in that
context, we search for the largest consistent subset of the given database over which we can
evaluate queries safely.

The following example shows the use of such an explanation routine for negative answers
over a mock ontology.

Example 1. Figure 1.1 shows a graphical representation of an ontology describing a university
domain. In this fictitious university, there are two different kinds of students, PostGraduates
and UnderGraduadetes. Moreover, undergraduate students may work while studying, in which
case they are called PartTime students. These students are helped by Tutors, who are partic-
ular professors. Each Professor teaches at least one Course and viceversa. Additionally, the
university offers some Advanced courses.

The university administration uses the given ontology as a mean for accessing data. Unfor-
tunately, the University Information System (UIS) has recently experienced a breakdown, which
resulted in a data loss. Now, it contains only the following information:

A = {teaches(craig ,SWT ), hasTutor(peter , craig)}

i.e., craig teaches a course on Semantic Web Technologies (SWT) and tutors peter. Assume
that the administration is interested in finding all those who both teach an advanced course and
tutor a student. Then, the following query would be written:

q(x)← teaches(x, y),Advanced(y), hasTutor(z, x).

The university administration may expect craig to be part of the result, but this is not the
case. Intuitively, craig satisfies all the conditions imposed by the query, but the SWT course is
not asserted to be Advanced . The following table shows some of the changes to the information
system suggested by the explanation engine in order for craig to be in the result of the query.

Addition to the ontology Motivation
Advanced(SWT ) The course taught by craig

is not asserted to be advanced.
teaches(craig, ALG),Advanced(ALG) The UIS lacks information about an

advanced course taught by craig.
teaches(craig, TOC),Advanced(TOC), Add a new advanced course
hasTutor(ben, craig) taught by craig and a new tutored student.

Hence, the explanation procedure provides users with suggestions on facts to be added to the
information system, which help the user in two different ways. On the one hand, they give the
user a clear insight on the portion of the ontology to be modified. On the other hand, it provides
quick fixes for the query to run as expected.

In the example, one acceptable explanation for this lack in the query answers is the missing
assertion of the course SWT to be advanced. However, another motivation may be given by the
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addition of an advanced course, which is asserted to be taught by craig. Finally, one can add
both a new advanced course and a new student, which are related to craig. This latter solution
is, however, the most expensive one in terms of facts to be added to the information system.
In conclusion, the university administration can use domain knowledge to decide among the
candidate solutions provided by the explanation engine.

Explaining positive query answers

Standard database management systems provide SQL debuggers, which may help database ad-
ministrators in debugging SQL (recursive) stored procedures. These tools provide information
on SQL call stacks and on the local/global views being used while returning a particular answer.
Hence, these tools are only focused on how the data is accessed by means of SQL queries.

In query answering over ontologies, such a debugging procedure would not suffice in pro-
viding complete explanations on the reasons leading a tuple to be in the results. This is because,
as explained before, the answers to queries do not only depend on the data, but also on the con-
ceptual level information provided by the ontology. For this reason, it is important to have a
routine able to unleash to domain users the conceptual level reasoning adopted in providing a
particular answer to a query.

Providing such an explanation is vital in many fields. For instance, in critical decision-
making systems a conceptual level explanation of an answer may facilitate business managers in
taking risky decisions by increasing the trust in the answer itself. Also, the following example
shows how such an explanation routine may be handy in managing data loss.

Example 2. Recalling the university mock ontology introduced in Example 1, suppose that
the administration wants to understand how many professors are still listed in the information
system and for this the following query is posed:

q(x)← Professor(x ).

which results in only craig to be in the results. As the administration has checked, however,
in the information system there is no direct information about professors, since the Professor
relation is empty. For this reason, they use the explanation routine in order to understand why
craig is considered to be a Professor . The routine returns the following motivation:

Rewritings Ontology axiom Motivation
q(x)← Professor(x) Tutor v Professor Tutors are Professors
q(x)← Tutor(x) ∃hasTutor− v Tutor Tutors can be found in the range of hasTutor
q(x)← hasTutor(y, x) hasTutor(peter, craig) craig is in the range of hasTutor

That is, craig is considered to be a professor because there is information in the system of
him tutoring a student. Please note that this is not the only possible explanation. For instance,
craig being in the teaches relation is another motivation for the answer.

In the next section, we will provide a summary on the state of the art in the context of
explanations of query answers. In order to understand better the matter of the discourse, we will
first introduce the relevant concepts and notations in Ontology-Based Data Access, and then
focus more closely on the concept of explanation.
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1.3 Related Work

Ontology-Based Data Access

OBDA systems mediate the access to data sources by means of an ontology [13]. The ontology
provides a shared vocabulary that is used to describe the information contained in the data-layer.
Also, this common vocabulary is tailored for formulating queries over the data layer. In fact, the
most important service OBDA systems provide is answering queries expressed at the conceptual
level. As now, all OBDA systems mediate the access to data by means of ontologies specified
in one of the many Description Logics. The reason is that these systems have to deal with large
amount of data and, hence, are sensitive to scalability issues.

Description Logics Description Logics (DL) are a family of formal languages specifically
tailored for Knowledge Representation [5]. More precisely, a DL language is a decidable frag-
ment of First Order Logic3. Due to this decidability result, it is possible to devise correct and
terminating reasoning algorithms for DLs, which are used to explicit implicit knowledge. The
different languages in this family are the result of the particular set of constructs available for
modeling the domain. In general, the more constructs a DL has, the more complex it is to reason
in that logic. This is the well known tradeoff between expressivity and complexity, which was
first described by Brachman et. al in the late 80’s [11].

A description logic is characterized by a concept language that is used to represent the do-
main of interest by means of concepts (sets of objects) and roles (binary relations between ob-
jects). However, DLs are not only suitable for describing classes of objects and relationships. In
fact, it is possible to define Knowledge Bases (KB), which are used to model an aspect of the
world, i.e., they are ontologies. A KB O = 〈T ,A〉 is constituted by a terminological compo-
nent, the TBox T , and by an assertional component, the ABox A. The TBox is used to define
the constraints that necessary have to hold in every valid instance of the ontology. The ABox
asserts the facts that hold in every satisfying interpretation.

The fact that DLs are decidable fragments of FOL does not imply that query answering over
DLs is decidable as well. As already mentioned before, answering a query over an ontology is
a form of logical inference, since it amounts at computing the certain answers: the tuples that
are answers to the query in all the models of the ontology (more formally: cert(q,O) = {~c |
~c ∈ ans(q, I), for all models I of O}). Therefore, one cannot use Relational Calculus (a.k.a.
Full SQL), a syntactic variation of First Order Logic, as query language over DLs, because this
would lead to the undecidability of the problem [35, 36]. For this reason, the study of query
answering over DLs has focused on less expressive, but decidable, query languages, such as
Union of Conjunctive Queries (UCQs). This query language is the formal counterpart of union
of select-project-join SQL queries.

Query Rewritability Unfortunately, answering UCQs over very expressive DLs is not scal-
able in terms of the size of the data to be accessed, i.e., w.r.t. the data-complexity of the prob-

3Some DLs have constructors that cannot be expressed in FOL (e.g. cyclic definitions). Nevertheless, it has been
proved that such DLs are decidable as well.
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Figure 1.2: Computing query answers over ontologies by means of query rewriting. That is, computing the perfect
reformulation of q over T and perform query evaluation over the ABox. This process is equivalent to computing the
certain answers of q over (T ,A).

lem [36]. For instance, the complexity of query answering over OWL2 ontologies is CONP-hard
in data-complexity and 2-EXPTIME-Complete in combined complexity [13, 26]. This result
makes it practically impossible to use full OWL2 ontologies as scalable medium for accessing
data.

In order to solve this issue, lightweight Description Logics have been introduced that are
tailored for data access; among the others, we mention the DL-Lite family [4] and the EL family
[24]. These two families are at the basis of the OWL2-QL and OWL2-EL profiles, respectively.

The introduction of specifically tailored ontology languages for data access does not solve
the problem of managing large data sources. In fact, current ontology-based systems are not
able to load large ABoxes containing GigaBytes or TeraBytes of data. The current idea behind
OBDA systems is to delegate the storage of the data to external (relational) sources. In this
way, one can reuse the ability of current DBMSs to deal with large datasets and, at the same
time, cope with incompleteness and constraints over the data thanks to the reasoning involved
at the conceptual level. Then, OBDA systems use the notion of query rewritability [13] (or
combined query rewritability in case of EL [27]) to separate the contribution of the query and the
conceptual schema from the contribution of the data. We say that (conjunctive) query answering
over ontology language L is Q-rewritable if for every ontology O = 〈T ,A〉 of L and for every
query q, there exists a query rq,T of Q such that evaluating rq,T over the database instance A is
equivalent to computing the certain answers to q overO. Any such query rq,T is called a perfect
reformulation of q w.r.t. T (see Figure 1.2).

Intuitively, rq,T is a query that extends q by taking into account the necessary constraints
from the conceptual schema T . Then, the certain answers of q over O are computed by simply
evaluating the query rewriting rq,T over the ABox. It is easy to see that Q-rewritability is
tightly related to the data complexity of computing the certain answers of the user query over
the ontology. In fact, the data complexity of query answering corresponds precisely to the data
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complexity of evaluating rq,T over the ABox A. Therefore, when it is possible to rewrite 〈q, T 〉
into an AC0 query language, query evaluation can be delegated to a DBMS. In case the query
can be rewritten into a CONP language, then query evaluation can be delegated to a disjunctive
datalog database system.

Note that, if there is no constraint on the query language Q into which we want to rewrite
to, the process described in Figure 1.2 is always applicable. However, if we want to rewrite into
SQL, then query answering of UCQs over T must be AC0 in data complexity. This has led to the
investigation of the most expressive ontology language that enjoys FOL-rewritability. Both the
DL-LiteA and ELdr⊥ enjoy (combined) FOL-rewritability, i.e., query answering can be delegated
to a relational database by using the machinery of query rewriting. But only DL-LiteA does
not require any preliminary modification to the ABox, hence, it is the only one really achieving
logical transparency. This is the reason why we decided to tackle the problem of explaining
query answers over DL-LiteA ontologies.

Having now presented the notion of query answering over ontologies, let us now introduce
the notion of explanations both from a philosophical point of view and from a logical one.

Explanations for query answers

The notion of explanations stems from philosophy, where Carl Hampel and Paul Oppenheim
have highlighted their properties and structure in the Deductive-Nonmological Model (D-N
Model) [19,37]. An explanation is constituted by an explanandum, which is a sentence describ-
ing the phenomena to be explained and by an explanans, which is a class of sentences unfolding
the meaning of the phenomena. For the explanans to be a correct explanation it must meet two
requirements. First of all, the formality requirement, that is, the explanans must contain at least
one law of nature. Since we focus on explanations in a logical environment, every valid formula
in the ontology is considered to be a law of nature as well as any theorem of the logic. Finally,
the explanans must meet the soundness requirement, i.e., the explanation should have the form
of a sound deductive argument, where the explanandum follows from the explanans.

In order to meet usability requirements set by domain users, most logic-based applications
provide explanation algorithms for reasoning services. This holds also for DLs, where research
focused on the explanation of TBox reasoning [10, 28, 31, 32]. Additionally, the use of logical
reasoning in computing the answers to queries over ontologies has forced the study of a relatively
new problem: the explanation of query answers.

Explanation for positive query answers The problem of explaining positive answers to Con-
junctive Queries over DL-LiteA ontologies has been studied by Borgida et al. in [9]. In this
paper, they introduce both a logical calculus for explaining TBox reasoning and a description of
a procedure for computing the reasons for a tuple ~t to be in the result sets of a CQ q. Unfortu-
nately, this explanation procedure has never been formalized and, hence, an algorithmic solution
to the problem is needed in order to facilitate the implementation of the procedure in real-world
systems (see Section 5.1).
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Explanation for negative query answers The same paper [9] advocates the importance of
tackling the problem of computing explanations for negative query answers in the context of
DL-LiteA query answering. That is, provide users with the evidences and motivations that led
a given tuple not to be in the certain answers to a query. This problem stems from the database
community, where Chapman and Jagadish solved it in the context of databases extended with
provenance information [14]. Later, this approach has been extended by Huang et al. in [22].
Unfortunately, these approaches are not general enough to be applied in the context of query
answering over ontologies, where data-sets may not have any lineage information. To the best
of our knowledge, in the literature there is no formalization of the problem in the DL context.

1.4 Methods and Results

After having looked at the state of the art in the explanation of query answering in the DL setting,
we now present the methods we have used in tackling the described problems and the results we
achieved.

Methodology

This thesis aims at tackling two fairly different kinds of problems. First of all, the problem
of explaining negative query answers requires the formalization of a theoretical framework and
complexity results to be established. Differently, solving the explanation problem for positive
answers consists in finding an algorithmic solution to a procedure already presented in the liter-
ature.

As regards the explanation of negative query answers, we first have to devise a mathematical
characterization of the problem, since it was not tackled before in the DL setting. We adopt
abductive ABox reasoning, that is, we consider which additions need to be made to the ABox
to force the given tuple to be in the result. An important aspect in explanations is to provide
the user with solutions that are simple to understand and free of redundancy, hence as small as
possible. To address this requirement, we study various restrictions on solutions, in particular,
we focus on subset minimal and cardinality minimal ones. As reasoning tasks, we consider as
suggested in [16]: (i) existence of an explanation, (ii) recognition of a given ABox as being an
explanation, and (iii) relevance and (iv) necessity of an ABox assertion, i.e., whether it occurs
in some or all explanations. After motivating such problems and formalizing them, we provide
algorithms to solve them and a precise characterization of their computational complexity for
DL-LiteA. The complexity of the various decision problems is delineated as follows. First, an
effective algorithm solving the given problem is formalized and its worst-case asymptotic com-
plexity is investigated. At this stage, it is important to formally demonstrate the correctness of
the procedure. From this estimated complexity and by the algorithm’s correctness, we can derive
a (possibly non-optimal) upper-bound in complexity of the problem. Next, the standard tech-
nique for proving hardness of problems is used, that is, providing a reduction from a suitably
hard problem. The reduction is then proved to be correct and that it can be effectively com-
puted in polynomial time (or logarithmic space, when needed). This thesis aims at providing
completeness results, i.e., each problem (if possible) has to be shown to be both, a member of
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a certain complexity class and to be hard for the same class. By a preliminary analysis over
the considered reasoning problems, it seems that deciding the existence of an explanation is a
keystone among all reasoning tasks, perhaps it can be used to solve other problems. For this
reason, it is planned to start our complexity analysis from this particular problem. Afterwards,
the complexity of the other reasoning tasks will be analyzed and proper connection with the
existence problem will be highlighted. Finally, as rule of thumb, we decided to first concentrate
on the complexity of problems under no minimality criterion. The reason is that the complexity
analysis should be considerably easier and could provide a good starting point for solving the
harder problems.

With respect to the problem of explaining positive answers, the idea is to provide a corre-
sponding effective algorithm to the high-level procedure described in the literature [9]. This
task consists in finding suitable data-structures into which to encode the information used in
the high-level procedure, and, in identifying solutions to general-purpose problems (such as,
search problems over graphs) that can be reused in the algorithmic solution. In this way, it is
simpler to define the asymptotic complexity of the introduced algorithm. Furthermore, a closer
look at the positive explanation procedure has highlighted some connections to the explanation
problem for inconsistency in DL-LiteA ontologies. In fact, it seems possible to solve the latter
by using the algorithm computing explanations for positive answers. Therefore, in the thesis,
this connection is studied and, if possible, a new procedure will be provided. In such a case,
the differences between the new and the already introduced procedure solving the explanation
problem for ontology unsatisfiability [9] will be discussed.

Results

This thesis provides a complete analysis at the problem of explaining query answering over
DL-LiteA ontologies, by studying explanations both for positive and negative query answers.

First of all, this thesis addresses the problem of explaining negative answers over DL-LiteA
ontologies. For this, we introduce a mathematical framework modeling the problem based on
abductive reasoning. Also, this thesis provides a detailed study on the complexity of the consid-
ered reasoning problems with respect to various minimality criteria (see Table 4.1), among the
results we mention:

• checking the existence of an explanation for a negative query answer is PTIME-complete,
which is proved through a double reduction from/to the PTIME-complete satisfiability
problem for DL-LiteA ontologies without the Unique Name Assumption;

• recognizing a set of assertions to be an explanation is NP-complete, whereas checking
whether such a set is a minimal explanation w.r.t. the chosen minimality criterion is DP-
complete. The NP-hardness is proved by a reduction from CQ-OPT (i.e., the problem of
checking equivalences between two conjunctive queries), while DP-hardness is demon-
strated by reducing the problem of deciding whether for two graphs G,G′ it holds that G
has an Hamiltonian Path and G′ does not have one;
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• deciding whether an assertion is cardinality-minimal necessary is PNP
‖ -complete, while

determining whether an assertions is subset-minimal relevant is ΣP
2 -complete. This latter

hardness result is proved by a reduction from the problem named co-CERT3COL [34].

All the complexity results in the thesis are formally proved by providing both an algorithm
justifying the upper-bound and a polynomial time reduction proving the hardness of the problem
(or logarithmic space reduction in case we want to prove PTIME-hardness).

As we already mentioned, the problem of explaining positive answers has been tackled al-
ready by Borgida et. al in [9]. However, that paper does not provide an implementable algo-
rithm, only a description of an high-level procedure. First of all, this thesis provides a new
formalization of this explanation problem based on the derivability problem for DL-LiteA ABox
reasoning. That is, the problem of finding formal proofs for ABox assertions that are entailed by
a given ontology. Then, this thesis closes the gap between theory and practice by introducing an
algorithmic solution to this newly formalized problem. This is achieved by defining a modified
version of the standard algorithm computing perfect reformulations to conjunctive queries over
DL-LiteA ontologies, which provides a data-structure that contains all the information needed to
understand the reasons leading a tuple to be in the results. Differently from Borgida’s procedure,
our explanation algorithm is tailored for computing minimal explanations.

Finally, the thesis presents new algorithm solving the problem of explaining the reasons
leading to an inconsistent DL-LiteA ontology. This procedure is based on the algorithm solving
the explanation problem for positive answers and its peculiarity is that it highlights the contribu-
tion of both the TBox and the ABox in causing the unsatisfiability. Additionally, the algorithm
provides domain users with the evidences in the data motivating the inconsistency in the on-
tology. The algorithm runs in polynomial time in the size of the TBox. During the design of
this new procedure solving ontology unsatisfiability, the close study of explanation problems for
TBox reasoning over DL-LiteA ontologies has brought up that the structural explanation rou-
tines for TBox reasoning provided in [9] were not optimal. In particular, we have designed a
new set of structural procedures, which can explain TBox reasoning in polynomial space and
time w.r.t. the size of the TBox, whereas explaining concept unsatisfiability according to [9]
requires exponential time in the size of the TBox.

1.5 Structure of the Thesis

The rest of the work is organized as follows. The next chapter defines more in detail the notions
of query answering and KB consistency for DL-LiteA ontologies. Chapter 3 defines formally
the two problems of study, namely explaining the absence or the presence of a tuple in the re-
sults to a UCQ over a DL-LiteA ontology. Then, Chapter 4 provides complexity results for the
relevant reasoning tasks over Query Abduction Problems and argues about the correctness of
the introduced procedures. Chapter 5 tackles the problem of explaining positive query answers
by introducing an algorithmic solution to the problem. Also, it presents a new solution to the
problem of explaining KB inconsistency of DL-LiteA ontologies based on the algorithm com-
puting explanations for positive query answers. Next, Chapter 6 provides a summary of the
thesis and highlights some of the future steps that can be done to improve this work. Finally, the
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supplementary Chapter I introduces new algorithms for explaining DL-LiteA TBox reasoning
in polynomial time, while Appendix A introduces the Dijkstra’s algorithm for finding shortest
paths in a weighted graph.
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CHAPTER 2
Preliminaries

2.1 DL-LiteA Language

DL-LiteA is an expressive member of the DL-Lite family of DLs [13]. Let A, P, C be, respec-
tively, a countably infinite set of concept names, a countably infinite set of role names and a
countably infinite set of constant (individual) names. Then in DL-LiteA, concept expressions C,
denoting sets of objects, and role expressions R, denoting binary relations between objects, are
formed as follows:

C −→ A | ∃R, R −→ P | P−.

where A is a concept name from A and P a role name from P1. In a DL-LiteA ontology
O = 〈T ,A〉, the TBox T consists of axioms of the form:

C1 v C2,
C1 v ¬C2,

R1 v R2,
R1 v ¬R2, (funct R)

where the first row consists of positive inclusions among concepts or roles, while the second row
contains negative inclusions (disjointness axioms) among concepts or roles and functionality
assertions on roles. Note that for computational reasons, roles asserted to be functional in the
TBox T are not allowed to be further specialized by means of role inclusions in T .

ABox assertions are expressions of the form:

C(a), R(a, b).

where C is a concept expression and R a role expression, while a and b are constants from C.
DL-LiteA ABoxes consist of a restricted form of ABox assertions built only from concept names
in A and role names in P, i.e., expressions have the form A(a) or P (a, b).

1We ignore here the distinction between data values and objects, since it is immaterial for our results. As a
consequence, we not consider value domains and attributes, which are present in DL-LiteA.
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The semantics of DL-LiteA is, as usual in DLs, based on first-order interpretations I =
(∆I , ·I), where ∆I is a non-empty interpretation domain. The interpretation function ·I maps
each individual name a to aI ∈ ∆I , each concept name A to AI ⊆ ∆I and each role name P
to P I ⊆ ∆I ×∆I . Then, the semantics of expressions is determined as follows:

(∃R)I = {oI | ∃o′ 〈oI , o′I〉 ∈ RI},
(P−)I = {〈oI , o′I〉 | 〈o′I , oI〉 ∈ P I}.

If the Unique Name Assumption (UNA) is adopted, then for every interpretation I and distinct
individuals c1, c2, we have that cI1 6= cI2 .

Also, the interpretation I satisfies α1vα2 if αI1 ⊆ αI2 , it satisfies α1v¬α2 if αI1 ∩αI2 = ∅,
and it satisfies (funct R) if RI is a function (i.e., if 〈oI , zI1 〉 ∈ RI and 〈oI , zI2 〉 ∈ RI , then
zI1 = zI2 ). Also, I satisfies C(a) if aI ∈ CI and it satisfies R(a, a′) if 〈aI , a′I〉 ∈ RI .

An interpretation I is a model of the TBox T , if it satisfies all the axioms in T . Similarly,
it is a model of the ABox A, if it satisfies all the assertions in A. Finally, I is a model of
O = 〈T ,A〉, if it satisfies both the TBox and the ABox.

An ontology O is called satisfiable (or consistent) if O admits at least a model, otherwise it
is called unsatisfiable (inconsistent). A concept C (role R) is called satisfiable w.r.t. an ontology
O, if there exists a model I of O such that CI 6= ∅ (resp. RI 6= ∅). An ontology O logically
implies an axiom (or assertion) α, written O |= α, if all models of O satisfy α.

Example 3. Let us now present a fragment of the DL-LiteA characterization of the mock univer-
sity ontology presented in Figure 1.1. The following DL-LiteA TBox T ′ models the conceptual
relations among Professors and Courses.

1 Professor v ∃teaches,
2 Course v ∃teaches−,
3 Advanced v Course,
4 ∃teaches v Professor ,
5 ∃teaches− v Course.

That is, in this university domain each Professor has to teach at least one Course and each
Course must be taught by at least one Professor . Also, this university offers special kind
of Courses called Advanced courses. Finally, the domain of the teaches relation contains
Professors, while the range contains Courses.

Similarly, the following ABoxA′ asserts the known facts about Professors teaching Courses.

teaches(craig, SWT )

Then, O′uni = 〈T ′,A′〉 is the DL-LiteA ontology, which characterizes the small fragment of the
university domain that accounts for Professors and Courses.

Before actually delving into the properties of this Description Logic, let us define the query
language of study, namely Union of Conjunctive Queries.
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2.2 Union of Conjunctive Queries

Let V be a countably infinite set of variables. Since we are interested in querying DL-LiteA
ontologies, in the following it is assumed that queries contain at most binary relations.

Expressions A(t) and P (t, t′) are called atoms, where t, t′ ∈ V ∪C. A conjunctive query
(CQ) q is an expression

q(x1, . . . , xn)← a1, . . . , am.

where each ai is an atom, with 1 ≤ i ≤ m. Let V(q) denote the set of variables occurring in q,
C(q) denote the set of constants in q, and let at(q) =

⋃
1≤i≤m{ai}. The tuple 〈x1, . . . , xn〉 is

the tuple of answer variables of q and is denoted by AV(q). Then, NV(q) = V(q) \AV(q) is
the set of non-distinguished (or existential) variables of q.

Example 4. For instance, in the university example provided in the previous chapter:

q(x)← teaches(x, y), Advanced(y), hasTutor(z, x)

is a CQ with three different atoms and a single answer variable x.

A match for q in an interpretation I is a mapping:

π : V(q)→ ∆I

such that π is the identity on constants, 〈π(t), π(t′)〉 ∈ P I for all P (t, t′) ∈ at(q), and, 〈π(t)〉 ∈
AI for all A(t) ∈ at(q). The answer to q over I, denoted ans(q, I), is the set of all n-tuples
〈d1, . . . , dn〉 ∈ Cn such that 〈dI1 , . . . , dIn〉 = 〈π(x1), . . . , π(xn)〉 for some match π for q in I.

A union of conjunctive queries (UCQ) is a set of conjunctive queries over the same answer
variables ~x. For a UCQ q, we let

ans(q, I) =
⋃
q′∈q

ans(q′, I)

The complexity of answering (U)CQs over relational databases is NP-Complete in combined
complexity and AC0 in data-complexity [1, 36]. Finally, the certain answers to a CQ or a UCQ
q over an ontology O are defined as

cert(q,O) = {~c ∈ Cn | ~c ∈ ans(q, I), for each model I of O}.

2.3 DL-LiteA Properties

DL-LiteA ontologies admit a particular kind of models, called canonical interpretations [13].
Let I,J be two FOL interpretations over the same set of predicate symbol P , we call h :
∆I 7→ ∆J an homomorphism from I to J if for all predicate symbols P ∈ P of arity n
and for all tuples of constants 〈o1, . . . , on〉 ∈ ∆I , we have that: if 〈o1, . . . , on〉 ∈ P I , then
〈h(o1), . . . , h(on)〉 ∈ PJ .
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teaches(craig, SWT)

Professor(craig)Course(SWT)

teaches(craig, @b)

5 4

2

teaches(@a, SWT)

1

Figure 2.1: This figure shows the construction of the chase of O′uni from Example 3. The edge labels
indicate the TBox axioms being applied. Note that when we apply axiom 1 and 2 a new Skolem constant
is introduced.

Definition 1 (Canonical Interpretation). Let O = 〈T ,A〉 be a DL-LiteA ontology. A model
IO of O is called a canonical interpretation if for every other model I of O, there exists a
homomorphism from IO to I.

All these (possibly infinite) canonical interpretations IO are homomorphically equivalent
between each other and, hence, one can assume to be dealing with a single canonical model.
Furthermore, this canonical model can be defined in terms of a chasing procedure [13, 15], i.e.,
by constructing the chase of the ontology, denoted by chase(O). Basically, chase(O) is a
possibly infinite set of ABox assertions constructed inductively from the ABox A. At each step
of the construction, a positive inclusion α from TBox T is applied to one of the assertions in the
chase. The application of positive inclusions results in new assertions to be added. For instance,
in Figure 2.1 assertion Professor(craig) and axiom Professor v ∃teaches lead the assertion
teaches(craig,@b) to be added to the chase, where @b is a fresh Skolem constant. The reason
why the chasing procedure employs Skolem constants is that the canonical model is required to
be as less restrictive as possible. The process terminates when no new assertions can be added to
the chase. The details on the construction of the canonical model can(O) from chase(O) and
the proof of correctness of this approach can be found in [13].

A particularly interesting result following from the notion of canonical model is the follow-
ing:

Proposition 1 ( [13]). can(O) is a model of O if and only if O is satisfiable.

That is, every satisfiable DL-LiteA ontology has a canonical model. On the other hand, if
the ontology O is unsatisfiable, then constructing can(O) from the ontology’s chase would not
provide a model of O. Note that, it is not advisable to solve the problem of checking ontology
satisfiability by constructing the canonical model, since, in general, can(O) may be infinite.
However, this result gives us a proper way to tackle the problem of ontology satisfiability as it is
explained in the following.

KB Consistency
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1 INPUT: DL-LiteA ontology O
2 OUTPUT: true iff O is satisfiable

1: cln(T ) = computeNegClosure(T )
2: DB(A) = db(A)
3: qunsat(T ) = {⊥}
4: for α ∈ cln(T ) do
5: qunsat(T ) = qunsat(T ) ∪ {δ(α)}
6: end for
7: if ans(qunsat, DB(A)) = ∅ then
8: return true
9: end if

10: return false
Algorithm 2.1: SATISFIABLE(O)

Consistency checking is an important reasoning problem over DL-LiteA ontologies, the rea-
son being that every other TBox reasoning task can be reduced to a KB consistency check [13].
Now, we will give the intuition on how it is possible to decide ontology satisfiability of DL-LiteA
ontologies by evaluating a suitably constructed query over a database interpretation.

First of all, it is not difficult to see that every ontology that does not contain any disjointness
nor functionality axiom is always satisfiable. Roughly speaking, the reason is that the way the
canonical model is constructed deals with the positive inclusions occurring in the terminology,
and, therefore can(O) is always a model for such a positive ontology. Differently, if negative
axioms are stated in the TBox, then one needs to take care of the interactions occurring between
positive and negative inclusions. For this, we define the set cln(T ):

(1) all functionality assertions in T are also in cln(T );

(2) all negative inclusions in T are also in cln(T );

(3) if B1vB2 is in T and B2v¬B3 or B3v¬B2 are in cln(T ), then B1v¬B3 is in cln(T );

(4) if R1 v R2 is in T and ∃R2 v ¬B or B v ¬∃R2 is in cln(T ), then also ∃R1 v ¬B is in
cln(T );

(5) if R1 v R2 is in T and ∃R−2 v ¬B or B v ¬∃R−2 is in cln(T ), then also ∃R−1 v ¬B is in
cln(T );

(6) if R1 v R2 is in T and R2 v ¬R3 or R3 v ¬R2 is in cln(T ), then also R1 v ¬R3 is in
cln(T );

(7) if one of the assertions ∃Rv ¬∃R, ∃R− v ¬∃R−, or Rv ¬R, then all three assertions are
in cln(T ).

cln(T ) denotes the negative closure of the assertions occurring in the TBox. It can be proved
that, for every DL-LiteA TBox T and negative inclusion or functionality assertion α the follow-
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ing holds: T |= α if and only if cln(T ) |= α [13]. From this it follows that one can resort to
cln(T ) to check whether negative inclusions are entailed by the TBox.

Now, it is possible to define the database interpretation DB(A) over which we evaluate the
query testing satisfiability. Subsequently, we present the relation between DB(A) and cln(T )
on the one hand, and the satisfiability problem for DL-LiteA ontologies, on the other hand.

Definition 2. Let DB(A) be the following interpretation:

(i) ∆DB(A) is the set of individuals occurring in A,

(ii) ADB(A) = {o ∈ ∆DB(A) | A(o) ∈ A}, for each atomic concept A, and

(iii) PDB(A) = {〈o, o′〉 ∈ ∆DB(A) | P (o, o′) ∈ A}, for each atomic role P .

Proposition 2 ( [13]). DL-LiteA ontology O = 〈T ,A〉 is satisfiable if and only if DB(A) is a
model of 〈cln(T ),A〉.

Given this result, it is simple to check whetherDB(A) is a model of the closure of the TBox.
This can be done by evaluating a UCQ with inequalities over DB(A) itself:

δ((funct P )) = ∃x, y1, y2. P (x, y1), P (x, y2), y1 6= y2

δ((funct P−)) = ∃x, y1, y2. P (y1, x), P (y2, x), y1 6= y2

δ(B1 v ¬B2) = ∃x. γ1(B1, x), γ2(B2, x)

δ(Q1 v ¬Q2) = ∃x, y. ρ(Q1, x, y), ρ(Q2, x, y)

where γi and ρ are defined as follows:

γi(B, x) =


A(x) if B = A,
∃yi. P (x, yi) if B = ∃P ,
∃yi. P (yi, x) if B = ∃P−,

ρ(Q, x, y) =

{
P (x, y) if Q = P ,
P (y, x) if Q = P−.

Algorithm Satisfiable in Figure 2.1 computes DB(A) and the closure of the TBox, given an
ontology O. Then, query qunsat is iteratively computed, which intuitively asks whether DB(A)
contains any instance violating the constraints imposed by the TBox. If no such evidence can be
found, then the ontology is satisfiable. Therefore, DL-LiteA under the Unique Name Assumption
enjoys FOL-rewritability of ontology satisfiability, that is, it can be decided by evaluating a
suitable FOL query over DB(A).

By FOL-rewritability it follows that DL-LiteA consistency is AC0 in data-complexity. Ad-
ditionally, it can be proven that the algorithm runs in polynomial-time in the size of the TBox.

Query Answering

Since the canonical model of a DL-LiteA ontology O is homomorphically equivalent to any
other valid interpretation of O, it provides a way for computing the certain answers to a UCQ
over the ontology:
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Table 2.1: Result of applying positive inclusion α over query atom g.

Atom g Positive inclusion α gr(g, α)

A(x) A1 vA A1(x)
A(x) ∃P vA P (x, _)
A(x) ∃P− vA P (_, x)
P (x, _) Av ∃P A(x)
P (x, _) ∃P1 v ∃P P1(x, _)
P (x, _) ∃P−1 v ∃P P1(_, x)
P (_, x) Av ∃P− A(x)
P (_, x) ∃P1 v ∃P− P1(x, _)
P (_, x) ∃P−1 v ∃P− P1(_, x)
P (x1, x2) P1 v P or P−1 v P− P1(x1, x2)
P (x1, x2) P1 v P− or P−1 v P P1(x2, x1)

Proposition 3 ( [13]). Let O be a satisfiable ontology and let q be a UCQ over O. Then:

cert(q,O) = ans(q, can(O))

Unfortunately, the canonical model is generally infinite. For this reason, query answering
over DL-LiteA ontologies adopts a technique based on query rewritings in order to compute the
certain answers to user queries. Intuitively, the idea is to use a set of rewriting rules (see Table
2.1) to encapsulate conceptual level information in the query itself. At the end of this process,
the resulting query, called the perfect reformulation of the query w.r.t. the TBox, is evaluated
over the database interpretation DB(A).

Algorithm PerfectRef in Figure 2.2 inductively computes the perfect reformulation of a
UCQ q w.r.t. the constraints expressed in a DL-LiteA TBox T . Roughly speaking, positive
inclusions occurring in the TBox are used as rewriting rules, applied from left to right, which
encapsulate the relevant TBox axioms into the query itself. At each step of the construction, for
every positive inclusion α ∈ T applicable (according to the rewriting rules) to atom g of some
CQ ri in the perfect reformulation, the algorithm adds a new query to the reformulation resulting
from substituting g with gr(g, α) in ri. The process stops when there is no new rewriting to be
added. Step (b) is a unification step, whose role is to allow the largest possible number of
rewriting steps to be applied. In order to achieve this, the result of the unification of two atoms
reduce(q′, g1, g2) is given in input to the anonymization function anon, which replaces each
anonymous variable2 in q′ by _.

Example 5. Recalling the mock university ontology Ouni = 〈T ,A〉 from the previous chapter,

2A variable is said to be anonymous if it is a non-distinguished variable occurring only once in the query body.
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1 INPUT: UCQ q, DL-LiteA TBox T
2 OUTPUT: the perfect reformulation pr.

1: pr = q
2: repeat
3: pr′ = pr
4: for CQ q′ ∈ pr′ do
5: for (a) PI α ∈ T do
6: if α is applicable to g then
7: pr = pr ∪ {q′[g/gr(g, α)]}
8: end if
9: end for

10: for (b) each pair of atoms g1, g2 in q′ do
11: if g1 and g2 unify then
12: pr = pr ∪ {anon(reduce(q′, g1, g2))}
13: end if
14: end for
15: end for
16: until pr′ = pr
17: return pr

Algorithm 2.2: function PERFECTREF(q, T )

the query q(x)← Student(x) has the following perfect reformulation r = PerfectRef (q, T ):

r(x)← Student(x);
r(x)← PostGrad(x);
r(x)← UnderGrad(x);
r(x)← PartTime(x);
r(x)← hasTutor(x, _).

where, for instance, the rewriting r(x)← hasTutor(x, _) is generated from the rewriting asking
for PartTime students, since in the TBox we have that ∃hasTutor v PartTime .

The certain answers to a UCQ over O are then computed as follows. First of all, the pro-
cedure needs to check the consistency of the KB. In fact, if O is unsatisfiable, then every tuple
~c belongs to the certain answers of any query q. Next, the procedure computes the perfect re-
formulation of q and evaluates it over DB(A). The result of the evaluation is exactly the set of
certain answers to q over O. Hence:

Proposition 4. Let O = 〈T ,A〉 be a satisfiable DL-LiteA ontology and let q be a UCQ over
O. Further, let the FOL query r = PerfectRef(q, T ) be the perfect reformulation of q w.r.t. T as
in [13]. Then,

cert(q,O) =
⋃
ri∈r

ans(ri, DB(A)).

20



By FOL-rewritability, it follows that the data-complexity of the problem is AC0, while the
problem is in NP with respect to combined complexity. The interested reader can find the proofs
of correctness and termination in [13].
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CHAPTER 3
Explaining Query Answers

This chapter formalizes the problem of explaining answers to Union of Conjunctive Queries
over DL-LiteA ontologies. An explanation may be required both for the absence and for the
presence of an answer in the result. Therefore, we first formalize the former problem as an
abduction task. Then, the latter problem is characterized as a derivability problem in the context
of DL-LiteA ABox reasoning, that is, the search for proofs for the derivation of ABox assertions
from a DL-LiteA ontology.

3.1 Query Abduction Problem

Unfortunately, it happens that users are not always provided with the result they are expecting
when querying an ontology. That is, a user may have the feeling that a certain tuple should be
part of the result set of the query she posed, but the system is not able to return such an answer
to the query. In this case, we say that the given tuple is a negative answer to the query over the
ontology.

In contrast with standard database technology, in the ontology setting this problem is not
easily solvable by looking at the structure of the data stored in the data-layer and, for example,
slightly modifying the constraints of the query. The reason is that the reasoning involved for
answering queries, provides an additional layer obfuscating the way the data is accessed by the
system. For this reason, there is the need for algorithms and techniques aiming at computing
explanations for negative answers to user queries.

In the following, we will first present the relevant concepts in Abductive Reasoning, which is
a form of reasoning that is closely related to the problem of explaining negative answers. Then,
we will provide a formalization to the problem of explaining negative answers as an abduction
task.
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Abductive Reasoning

Searching for an explanation for a negative query answer over an ontology is a form of abduction,
a method of reasoning introduced by C.S. Peirce at the end of the 19th century. Abduction allows
to infer an explanation A given an observation B, thus it is a form of backward reasoning. In
the setting of query answering, the negative answer is the observation and the explanation A is
the set of ABox assertions to be added to the ontology in order for the tuple to be returned in the
results.

The general problem of abduction has been tackled from various perspectives, among the
others we mention: logic-based abduction [16] and abduction by Set Covering [33]. Since we
consider abduction in the context of Description Logics, in the following we will consider only
the former.

In classical logic, abductive reasoning is a form of non sequitur argument, in which a con-
clusion B does not follow from the premises Γ (Γ 6|= B), even though B is assumed to hold
true. The aim is to find a set of formulas A subset of a given set of hypotheses H , such that
Γ ∪A |= B. There are several conditions that one can consider to narrow down the problem by
considering only certain kinds of explanations. For example, given a knowledge base Γ and set
of formulas A,B:

Consistency Γ ∪ A 6|= ⊥, that is, extending the theory with the explanation should preserve
consistency,

Minimality A is minimal explanation for B, for a given minimality criteria.

Given an abduction problem, there are four basic reasoning problems one is interested to
solve according to Eiter et al. [16], namely:

1. Does there exists a solution, i.e., does there exists A such that Γ ∪A |= B?

2. Does a formula ψ contribute to some acceptable solution to the problem (relevance), that
is, exists an explanation A containing formula ψ?

3. Does a formula ψ occur in all acceptable solutions to the problem?

4. Is a set A of formulae a solution to the problem?

Surprisingly, abduction has not been studied widely in the context of description logics,
even though, there have been researchers advocating the importance of such a line of research
and the various problems have been formally characterized [7, 17]. Recently, the problem of
ABox Abduction has been studied for ALC knowledge bases [23]. This is the problem of
finding which additions need to be made to the ABox to force a set of ABox assertions to be
logically entailed by the ontology. Klarman et al. provide two sound and complete calculi based
on Semantic Tableaux and Resolution with Set of Support, respectively.
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PostGrad v Student ,
UnderGrad v Student ,
UnderGrad v ¬PostGrad ,
PartTime v UnderGrad ,

Tutor v Professor ,
Professor v ∃teaches,
∃hasTutor v PartTime,
∃hasTutor− v Tutor ,

Advanced v Course,
∃teaches v Professor ,
∃teaches− v Course.

teaches(craig, SWT ), hasTutor(peter, craig).

Figure 3.1: The complete characterization of the university domain as a DL-LiteA ontology Ouni.

Problem Formalization

We first note that the problem of ABox Abduction is not comparable with the problem of ex-
plaining negative answers to UCQs for two main reasons. First of all, the observations provided
in the ABox Abduction problem are ABox assertions, which do not contain variables. The
presence of variables forces one to consider different possible mappings of the variables while
computing explanations, which introduces a new source of complexity. Secondly, Union of CQs
contain a form of disjunction that has no counterpart in the ABox Abduction problem. This has
led to a new formalization of the problem of finding an explanation to a negative query answer:

Definition 3 (Query Abduction Problem). Let O = 〈T ,A〉 be an ontology, q a UCQ, and ~c a
tuple of constants. We call P = 〈O, q,~c〉 a Query Abduction Problem (QAP). A solution to P
(or an explanation for P) is any ABox U such that the ontology O′ = 〈T ,A ∪ U〉 is consistent
and ~c ∈ cert(q,O′). The set of all explanations to P is denoted expl(P).

If ~c /∈ cert(q,O), then we call ~c a negative answer to q over O. Note that a query over the
ontology can have a negative answer only if the ontology is satisfiable. On the other hand, if the
ontology is unsatisfiable, then the QAP P does not admit any solution.

In the following, we will examine various restrictions to expl(P) to reduce redundancy in
explanations. This is achieved by the introduction of a preference relation among explanations.
This relation is reflexive and transitive, i.e., we have a pre-order among solutions.

Definition 4. Assume a QAP P . Let � denote a pre-order on the set expl(P) of solutions.
We write U ≺ U ′ if U � U ′ and U ′ � U . The preferred explanations expl�(P) of a QAP P
under the pre-order � are defined as follows: expl�(P) = {U ∈ expl(P) | there is no U ′ ∈
expl(P) s.t. U ′ ≺ U }, i.e., expl�(P) contains all the �-explanations that are minimal under �.

Two different preference orders are considered in this thesis, namely the subset-minimality
order denoted by ⊆ and the minimum explanation size order denoted by ≤. The latter order is
defined by U ≤ U ′ iff |U| ≤ |U ′|. Observe that expl≤(P) ⊆ expl⊆(P).

Let us now provide an example of a Query Abduction Problem and its solutions by formally
characterizing the problem described in Example 1.

Example 6. LetOuni be the DL-LiteA ontology from Figure 3.1, q be the following conjunctive
query:

q(x)← teaches(x, y), Advanced(y), hasTutor(z, x)
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and ~c = 〈craig〉. We define QAP P as 〈Ouni, q,~c〉. Intuitively, 〈craig〉 is a negative answer
to q over the ontology, since craig satisfies all the conditions in the query but the SWT course
taught by him is not asserted to be Advanced . We note that:

{teaches(craig ,TOC ),Advanced(TOC ), hasTutor(john, craig)}

is an explanation for P , {teaches(craig ,ALG),Advanced(ALG)} is a ⊆-minimal solution,
while {Advanced(SWT )} is a ≤-minimal solution.

After having formalized the problem of explaining negative answers over DL-LiteA ontolo-
gies, we turn our attention to the characterization of the opposite problem, namely explaining
the presence of a tuple in the results.

3.2 Query Derivability Problem

Differently from query evaluation in relational databases, the presence of a tuple in the certain
answers to a query over an ontology does not only depend on the data and on how the data is
accessed by means of user queries. This follows from the same exact argument given to justify
the need for explanations for negative answers. That is, the logical reasoning adopted to answer
queries over ontologies alters the way the user query accesses the data. Also, this reasoning pro-
cess may require the use of a large number of unobvious inference steps. Therefore, the presence
of a tuple depends not only on the query and the data, but also on conceptual-level knowledge
and reasoning. For these reasons, domain users require explanations on the motivations leading
a certain tuple to be returned in the answers in terms of the conceptual level reasoning involved.

Next, we will first present the proof theory for ABox reasoning over DL-LiteA ontologies,
which is used to explain the deduction of ABox assertions from DL-LiteA ontologies. Then, the
problem of explaining positive query answers will be characterized as a derivation problem over
this proof theory.

Explanations for ABox Reasoning

It is widely accepted that explanations correspond to formal proofs [29]. Then, solving the
problem of explaining DL-LiteA ABox Reasoning amounts at finding formal proofs justifying
the inference of new facts about individuals [9].

We now briefly define the DL-LiteA proof theory for ABox Reasoning as in [9]. A sequent S
is an expression of the form 〈T ,A〉 ` α, where 〈T ,A〉 is a possibly empty DL-LiteA ontology
and α is either a TBox axiom or an ABox assertion of DL-LiteA. Roughly speaking, 〈T ,A〉 ` α
means that α can be derived from the ontology 〈T ,A〉. An inference is an expression of the
form:

S1
S or

S1 S2
S

where S, S1 and S2 are sequents and S is called the lower sequent while S1, S2 are called upper
sequents. Such an inference rule means that if S1 (resp. S1 S2) is asserted, then we can infer
S. In the context of explaining ABox Reasoning over DL-LiteA ontologies, we are interested in

26



inferences that allow one to derive new facts about existing individuals. According to [9], these
are the inference rules of interest:

〈T ,A〉 ` B1 vB2 〈T ,A〉 ` B1(a)

〈T ,A〉 ` B2(a)
SubConcept

〈T ,A〉 ` P1 v P2 〈T ,A〉 ` P1(a, b)

〈T ,A〉 ` P2(a, b)
SubRole

〈T ,A〉 ` P1 v P−2 〈T ,A〉 ` P1(a, b)

〈T ,A〉 ` P2(b, a)
SubRole-Inv

〈T ,A〉 ` P (a, b)

〈T ,A〉 ` ∃P (a)
Dom-Intro

〈T ,A〉 ` P (a, b)

〈T ,A〉 ` ∃P−(b)
Rng-Intro

Let O = 〈T ,A〉 be an ontology, then we define S(O) to be a function transforming O into
a set of sequents, which works as follows:

• for each TBox axiom α ∈ T , S(O) contains 〈T ,A〉 ` α,

• for each ABox assertion β ∈ A, S(O) contains 〈T ,A〉 ` β.

Then, an ABox assertion β is said to be derivable from O = 〈T ,A〉, written O ` β, if there
exists a tree of sequents D (called the derivation) satisfying the following conditions:

1. the top-most sequents are sequents from S(O),

2. every sequent in D except the lowest one is one upper sequent of an inference whose
lower sequent is also in D,

3. the lowest sequent in the proof is O ` β.

We denote with length(D) the number of inference rules used in the derivation D. Since
derivations for ABox assertions over ontologies solve an explanation problem, it is important
to provide users with minimal derivations. A derivation D for sequent S = O ` β is called
minimal if there is no other derivation D′ for S, such that length(D′) < length(D).

One can prove that O |= β if and only if O ` β and we incite the interested reader to refer
to [9] for further details.

Example 7. Let us now provide an example for the derivation of Professor(craig) from the
university ontologyOuni from Figure 3.1. Let D be the derivation in Figure 3.2. It is easy to see
that all top-most sequents of D are occurring in S(Ouni). Also, D satisfies the two structural
conditions on derivations by correctly applying inference rules throughout the tree. Then, it
easily follows that D is a derivation for Ouni ` Professor(craig).

Next, we will show how it is possible to solve the problem of explaining positive query
answers by using the notion of derivation for ABox reasoning.
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Ouni ` Tutor v Professor

Ouni ` ∃hasTutor− v Tutor

Ouni ` hasTutor(peter, craig)

Ouni ` ∃hasTutor−(craig)
Rng-Intro

Ouni ` Tutor(craig)
SubConcept

Ouni ` Professor(craig)
SubConcept

Figure 3.2: Derivation for Ouni ` Professor(craig).

Problem Formalization

The intuition for solving the explanation problem for query answers over DL-LiteA ontologies
is as follows. Let ~c be an answer to UCQ q(~x) over the ontology O = 〈T ,A〉. Since ~c ∈
cert(q,O), it follows that there exists a match π for some qi ∈ q over the canonical model of O
with π(~x) = ~c. Now, consider the set of ABox assertions U resulting from instantiating all the
atoms in qi(~c) according to π. Then, the explanation problem reduces to finding a derivation for
each assertion Ui ∈ U w.r.t. O, since the query answer can be seen as a set of ABox assertions.
In fact, the various derivations provide sufficient evidence on the conceptual-level reasoning
adopted for deriving the assertions and, in this way, a justification for the query answer.

Before actually formalizing the problem, let us first define the function called assertize ,
which given the body of a conjunctive query q and a match π for q over some interpretation, it
returns the ABox resulting from instantiating all the variables in at(q) according to π. Then,
the problem of explaining positive query answers over DL-LiteA ontologies can be defined as
follows:

Definition 5 (Query Derivation Problem). Let O be a DL-LiteA ontology, q a UCQ and ~c a
tuple of constants. We call D = 〈O, q,~c〉 a Query Derivation Problem. A solution to D (or an
explanation for D) is any tuple 〈π, 〈D1, . . . , Dn〉〉, such that:

• π is a match for some qi ∈ q(~c) over the canonical model of O,

• 〈D1, . . . , Dn〉 is a tuple of derivations, where each Dj is a derivation from O for ABox
assertion φj(~t) ∈ assertize(at(qi(~c)), π).

If ~c ∈ cert(q,O), then we call ~c a positive answer for q over O. Clearly, if ~c is not a
positive answer, then D does not have any solution. Finally, note that if the ontology in input is
unsatisfiable, then D has no solutions as well, since there is no canonical model for O.

QDPs formalize an explanation problem and, for this reason, we are interested in finding
non-redudant solutions, i.e., minimal solutions. A solution 〈π, 〈D1, . . . Dn〉〉 to QDPD is called
minimal if there is no other solution 〈π′, 〈D′1, . . . D′m〉〉 to D, such that:

length(D′1) + . . . length(D′m) < length(D1) + . . . length(Dn).

That is, minimal solutions require a small number of short derivations.
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Example 8. We now formalize the explanation problem presented in Example 2. Let Ouni be
the university ontology in Figure 3.1, q(x) be the following CQ:

q(x)← Professor(x).

and ~c = 〈craig〉. We define the QAD D to be 〈Ouni, q,~c〉, which intuitively asks to justify
why craig is considered to be a professor. It is easy to see that the only suitable match π for
q(~c) is the empty match. By the chasing procedure described in Figure 2.1, it easily follows that
can(O) |= Professor(craig) and hence π is a valid match for q(~c) over can(O). Finally, we
have that D in Example 7 is a derivation for Professor(craig). Hence, it follows that 〈π, 〈P 〉〉
is a solution to QAD D.

In conclusion, this chapter formalizes the two problems related to the explanation of query
answers. The next two chapters of this thesis deal with different aspects related to Query Abduc-
tion Problems and Query Derivation Problems. On the one hand, Chapter 4 introduces various
reasoning problems over QAPs and it provides a deep analysis on their computational com-
plexity in the context of DL-LiteA. On the other hand, Chapter 5 deals with the problem of
computing solutions to QDPs by providing a formal algorithm solving the problem based on a
high-level procedure proposed by Borgida et. al in [9].
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CHAPTER 4
Complexity of Reasoning over Query

Abduction Problems

In the previous chapter, we introduced the notion of Query Abduction Problem, a formalization
of the explanation problem for negative answer over DL-LiteA ontologies based on Abductive
Reasoning. This chapter deals with the analysis of the computational complexity of reasoning
over QAPs. For this we define four decision problems related to (minimal) explanations, which
are parametric w.r.t. the chosen preference order �, that is, given a QAP P:

• �-EXISTENCE: Does there exist a �-explanation to P?

• �-NECESSITY: Does an assertion α occur in all �-explanations to P?

• �-RELEVANCE: Does an assertion α occur in some �-explanations to P?

• �-RECOGNITION: Is a set U of ABox assertions a �-explanation to P?

In the following, whenever there is no preference order in place (i.e., � is the identity) we omit
to write � in front of the problem’s names.

4.1 Outline of Complexity Results

In the next sections, the complexity of the introduced problems is inspected in the light of the
different preference relations. Table 4.1 provides an overview of the complexity bounds of the
various problems. Recall that the class ΣP

2 is a member of the Polynomial Hierarchy [30]. It
contains all decision problems that can be solved in non-deterministic polynomial time using an
NP oracle. Moreover, the class PNP

‖ contains all the decision problems that can be computed in
polynomial time with an NP oracle, where all the polynomially many oracle calls must be first
prepared and then issued in parallel. Finally, the class DP [30] contains all those problems that,
considered as languages, can be characterized as the intersection of a language in NP and one
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Table 4.1: Summary of main complexity results (completeness)

� �-EXISTENCE �-NECESSITY �-RELEVANCE �-RECOGNITION

none PTIME (4.2) PTIME ( 4.3) PTIME (4.4) NP (4.5)

≤ PTIME PNP
‖ (4.3) PNP

‖ (4.4) DP (4.5)

⊆ PTIME PTIME (4.3) ΣP
2 (4.4) DP (4.5)

in CONP. Note that: PTIME ⊆ NP ⊆ DP ⊆ PNP
‖ ⊆ ΣP

2 is believed to be a strict hierarchy of
inclusions and here we make such an assumption.

The results can be explained as follows. In the next section, we will show how to reduce
EXISTENCE to the PTIME-complete satisfiability problem for DL-LiteA without the UNA [4].
This result can then be used to characterize the complexity of RELEVANCE, NECESSITY, and⊆-
NECESSITY. ≤-RELEVANCE and ≤-NECESSITY are harder. The reason is that in order to solve
these problems one has to compute first the minimum size of a solution and, then, inspect all the
solutions of that size. Additionally, there is another increase in complexity when dealing with
⊆-RELEVANCE. The intuition is that there are an exponential number of candidate solutions to
examine and for each of them one has to check that none of its subsets is itself a solution, which
requires a CONP computation. The results for �-RECOGNITION can be explained as follows.
The intuition for the NP bound for RECOGNITION is that one needs simply to check consistency
and perform query answering to decide the problem. In case a preference order is in place, one
has to check minimality as well and, hence, combine a NP computation with a CONP one. From
which follows that the problem is in DP.

4.2 Complexity of �-EXISTENCE

It is important to know whether a Query Abduction Problem has a solution. For instance, the
QAP consisting of the query q(x) ← UnderGrad(x ),PostGrad(x ) over the university mock
ontology (see Figure 3.1) and the negative answer ~c = 〈peter〉 does not have any solution. In
fact, the two concepts mentioned in the query are disjoint and, hence, any solution would lead
to the unsatisfiability of the ontology. Therefore, the non-existence of a solution signals an issue
either at the level of the query or at the conceptual level.

The problem �-EXISTENCE is defined as follows:

Definition 6 (�-EXISTENCE). Given a QAP P , check whether expl�(P) 6= ∅.

Note first that the existence of an explanation for P implies the existence of an explanation
under the ⊆ and ≤ orderings. Thus, we only consider EXISTENCE. Our first task is to show that
we can restrict ourselves on explanations built from the original signature of the input QAP.

Proposition 5. If P = 〈O, q,~c〉 has a solution, then P has a solution U ′ with concepts and roles
only from O and at most maxqi∈q|qi| fresh ABox individuals.
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Proof. Assume an arbitrary solution U to P . Given the consistency of O′ = 〈T ,A ∪ U〉, it
follows that there exists a model I of O′ under the UNA. W.l.o.g. we assume that ∆I = C
with cI = c for each c ∈ C. Additionally, the interpretation I admits a match π for some
qi(~x) ∈ q, such that π(~x) = ~c. Let U ′ = {A(o) | A(t) ∈ at(qi) and π(t) = o} ∪ {R(o, o′) |
R(t, t′) ∈ at(qi) and π(t) = o and π(t′) = o′}. Observe that U ′ has no more individuals than
qi has terms. It remains to see that U ′ is a solution. Clearly, the original match π witnesses also
~c ∈ ans(qi,A∪U ′) in every model ofO′′ = 〈T ,A ∪ U ′〉. It remains to see thatO′′ is consistent.
But this follows from the fact that I is a model of O′ and that the atoms in U ′ hold in I.

The above restriction allows us to consider canonical explanations, i.e., explanations result-
ing from suitable instantiations of the bodies of CQs qi ∈ q. Keeping in mind that CQs, seen
as FOL formulae, are always satisfiable, an explanation does not exist only if the structure of
the query is not compliant with the constraints expressed in the ontology. That is, for all the
interpretations J of q with ans(q,J ) 6= ∅, there is no model I of O, such that I ∪ J |= O.
To check whether a UCQ is compliant with the ontological constraints, a naïve method is to
iteratively go through all the CQs in q and instantiate them in the ABox. If for none of the CQs
we obtain a consistent ontology, then the query violates some of the constraints imposed at the
conceptual level. We now show that the EXISTENCE problem is equivalent to the problem of
checking consistency of DL-LiteA ontologies without the Unique Name Assumption.

Proposition 6. For DL-LiteA ontologies, EXISTENCE is PTIME-complete.

Proof. (MEMBERSHIP) Note thatP = 〈O, q,~c〉, with q a UCQ, has a solution iffPq′ = 〈O, q′,~c〉
has a solution for some q′ ∈ q. Hence, it suffices to show the upper bound for CQs. To this end,
we provide a reduction from EXISTENCE to consistency in DL-LiteA without UNA, which in
turn is PTIME-complete [4].

Assume a QAP P = 〈O, q,~c〉, where q is a CQ and O = 〈T ,A〉. We argue that P has a
solution iff O′ = 〈T ∪ T ′,A ∪ Uq ∪ A′〉 is consistent, where O′ is an ontology obtained from
O and q(~c) as follows. The ABox Uq is obtained from at(q(~c)) by replacing each variable x
with a fresh individual name ax. The ABox A′ consists of assertions Ao(o) for all constants o
occurring either in A or in q(~c), where each Ao is a fresh concept name. The TBox T ′ consists
of axioms Ao v ¬Ao′ for all pairs o 6= o′ of constants occurring in A′.

We now show that P has a solution iff O′ is consistent.
“⇒” Assume that P has a solution U . Then, due to consistency of O′′ = (T ,A ∪ U), there

is a model I of O′′ under the UNA. Additionally, I admits a match π for q(~c). Let I ′ be the
extension of I that additionally interprets (i) constants in Uq as aI

′
x = π(x) for all variables x

in q, and (ii) AI
′

o = {oI} for all freshly introduced Ao. It remains to show that I ′ is a model of
O′. Observe that since I is under the UNA, we have that AI

′
o ∩ AI

′
o′ = ∅ for all constant pairs

o 6= o′. Thus I ′ satisfies all the disjointness axioms Ao v ¬Ao′ in T ′. The assertions in A′ are
satisfied due to (ii), while the assertions in Uq due to (i) above.

“⇐” Assume O′ to be consistent. We want to show that QAP P admits a solution U . Given
the consistency of O′, we can assume a model I ′ of the ontology without the UNA. W.l.o.g.,
we require ∆I

′
= C. By the validity of I ′ w.r.t. O′, (a) it can be concluded that for all pairs of

constants o 6= o′ in A ∪C(q(~c)), AI
′

o ∩ AI
′

o′ = ∅ and, hence, oI
′ 6= o′I

′
. Then, let the solution
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U to P be defined as:

U = {A(cI
′
) | A(c) ∈ Uq} ∪ {P (cI

′
, c′I

′
) | P (c, c′) ∈ Uq}

First, we show thatO′′ = 〈T ,A ∪ U〉 has a model I under the UNA. Let I = 〈C, ·I〉 be defined
as follows:

• for all constants c in ∆I , cI = c;

• for all concept names A in O′′, AI = AI
′
;

• for all role names P in O′′, P I = P I
′
.

Since I ′ satisfies 〈T ,A〉 and by (a), it easily follows that the same holds for I. Additionally, I
satisfies the ABox U as well. The reason is that I ′ |= Uq and ABox U is defined by interpreting
Uq with respect to I ′. Then, we are left to prove the existence of a match π for q(~c) over all
models IO′′ of O′′. Let π be π(x) = (ax)I

′
, for all variables x ∈ V(q(~c)). It is easy to see that,

π maps q(~c) over U , hence π is a valid match for any model of O′′.
(HARDNESS) Let us reduce consistency in DL-LiteA without UNA to EXISTENCE. Given

O = 〈T ,A〉, we create QAP P = 〈O′, q(), 〈〉〉 as follows. We encode the ABox A in the CQ q
by replacing each constant a ∈ A by a distinct variable name xa in q. The ontology O′ consists
only of the TBox T . We now show that O is satisfiable without the UNA iff P has a solution.

“⇒” Let O be a satisfiable ontology, then by the previous membership proof it follows that
P has a solution.

“⇐” Assume that P has a solution U , then we have that O′ = 〈T ,U〉 is satisfiable under
the UNA. Let I ′ be a model of O′ and assume w.l.o.g. that ∆I

′
= C with cI

′
= c for all

c ∈ C. Since U is a solution, there exists a match π for q(~c) over I ′. We construct from I ′ an
interpretation I = 〈∆I , ·I〉 to O without the UNA, with ∆I = ∆I

′
:

• for all constants a ∈ A, we let aI = π(xa). For all other constants c, we set cI = c;

• for all concept names A in O, AI = AI
′
;

• for all role names P in O, P I = P I
′
.

Since the interpretation I interprets A as U , the satisfiability without the UNA of O easily
follows from the satisfiability of 〈T ,U〉 under the UNA.

4.3 Complexity of �-NECESSITY

The existence of an explanation is most of the times not sufficiently informative to the user. In
fact, given a negative answer to a user query, it is important to delineate the fundamental reasons
that led to the absence of the expected result. That is, users would like to know which assertions
occur in all the possible solutions to a QAP P:

Definition 7 (�-NECESSITY). Given a QAP P and an ABox assertion α, decide whether for all
U ∈ expl�(P) it is the case that α ∈ U .
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For instance, in the example introduced in Section 3.1, the assertion Advanced(SWT ) is
≤-necessary. Indeed, there is only one explanation of size 1, since all other solutions require
to introduce one new advanced course taught by craig. Hence, the given assertion occurs in all
the ≤-minimal solutions. Please also note that in case the QAP P admits no solution, every
assertion α is necessary to P . Let us now detail the complexity of this problem for the various
minimality criteria.

Proposition 7. For DL-LiteA ontologies, NECESSITY and ⊆-NECESSITY are PTIME-complete.

Proof. We assume a QAP P = 〈O, q,~c〉 with O = 〈T ,A〉, an assertion φ(~t) and consider
NECESSITY first. W.l.o.g, we restrict the study only to the case in which q is a CQ, the more
general result for UCQ follows as corollary.

(MEMBERSHIP) We now provide a PTIME algorithm that decides NECESSITY for an ABox
assertion φ(~t) w.r.t. a QAP P = 〈O, q,~c〉. First, the algorithm checks whether O is satisfiable
and that O |= φ(~t). If both the two conditions are met, then one can easily conclude that φ(~t)
is not necessary for P . Otherwise, we construct a new ontology O′ = 〈T ′,A′〉 defined by
setting A′ = A ∪ {φ̄(~t)} and T ′ = T ∪ {φ̄ v ¬φ}, where φ̄ is a fresh concept/role name.
By construction, the models of O′ are only those models of O in which φ(~t) does not hold.
Then, the algorithm considers P ′ = 〈O′, q,~c〉 and checks that this new QAP does not have any
solution. Assume that P ′ has a solution U . Then, it is not difficult to see that U does not contain
φ(~t) and that also U is a solution to P , which would lead φ(~t) not to be necessary for P .

(HARDNESS) The lower-bound can be proved through a logspace reduction from EXIS-
TENCE to non-NECESSITY, that is, deciding whether there exists a solution to a QAP that does
not contain the given assertion. The hardness for NECESSITY follows as corollary.

We build 〈P, α〉 such that P has a solution iff 〈P, α〉 is a negative instance to NECESSITY.
Let α = A(o), for some fresh concept A and constant o not occurring in P .

“⇒” Now, assumeP has a solution U . By Proposition 5, we know that there exists a solution
U ′ to P containing only concept and role names fromO. Hence,A(o) 6∈ U ′, since concept name
A is not in the ontology. Therefore, one can conclude that A(o) is not a necessary assertion to
P . The other direction of the proof is straightforward.

For ⊆-NECESSITY, observe that φ(~t) occurs in all explanation for P iff φ(~t) occurs in all
⊆-minimal explanations for P . Thus, ⊆-NECESSITY can be decided in polynomial time using
our algorithm for NECESSITY.

Let us now consider the complexity of necessity under the minimum size (≤) preference
order.

Theorem 8. For DL-LiteA ontologies, ≤-NECESSITY is PNP
‖ -Complete.

Proof. (MEMBERSHIP) Let’s assume a QAP P = 〈O, q,~c〉 and an assertion α. By the use
of canonical explanations, we know that if an explanation for P exists, then the size of a ≤-
solution to P is bounded by the size m of the largest CQ in q. Observe that 〈P, α〉 is a negative
instance of ≤-NECESSITY iff there is an 0 ≤ i ≤ m such that (a) P has an explanation U with
|U| = i and α 6∈ U , and (b) U is ≤-minimal. Thus, we use an auxiliary problem SIZE-OUT,
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which is to decide given a tuple 〈P ′, α′, n′〉, where P ′ is a QAP, α′ is an assertion, and n′ is
an integer, whether there exists an explanation U ′ for P ′ such that |U ′| = n′ and α′ 6∈ U ′.
Furthermore, the problem NO-SMALLER is to decide given a tuple 〈P ′, n′〉 of a QAP and an
integer whether there is no explanation U ′ for P ′ such that |U ′| < n′. Observe that SIZE-OUT

is in NP, while NO-SMALLER is in CONP. Take the tuple S = 〈A0, B0, . . . , Am, Bm〉, where
(a) Ai = 〈P, α, i〉, for all 0 ≤ i ≤ m, and (b) Bi = 〈P, i〉, for all 0 ≤ i ≤ m. Due to the
above observation, α occurs in all ≤-minimal explanations U for P iff for all 0 ≤ i ≤ m, one of
the following holds: (i) Ai is a negative instance of SIZE-OUT, or (ii) Bi is a negative instance
of NO-SMALLER. Note that S can be built in polynomial time in the size of the input, while
the positivity of the instances in S can be decided by making 2m parallel calls to an NP oracle.
Thus we obtain membership in PNP

‖ .
(HARDNESS) The hardness is proved by reducing a suitable hard problem to≤-DISPENSABILITY,

the complement of ≤-NECESSITY. That is, given a QAP P and an assertion α, decide whether
there exists a ≤-explanation U for P with α 6∈ U . The hardness of ≤-NECESSITY follows as
corollary from the following result.

Lemma 9. For DL-LiteA ontologies, ≤-DISPENSABILITY is PNP
‖ -hard.

Proof. We provide a reduction from EVEN-CQEVAL. Let X be a sequence of m pairs (qi, Di),
where qi is a Boolean CQ and Di is a relational instance (under the logic-programming perspec-
tive [1]). A pair (qi, Di) is said to be true if ans(qi, Di) 6= ∅. Otherwise, it said to be false.
X is a yes instance of the problem if there is an even number of true pairs in X . This problem
can be proved to be PNP

‖ -hard1. Now, the aim is to create a QAP P and an ABox assertion φ(~t)

such that, X is a yes-instance if and only if φ(~t) is ≤-dispensable to P . W.l.o.g. ( [12]), we
can assume X to have an odd number of pairs in input, such that (q1, D1) and (q2, D2) are true,
whereas (qm, Dm) is false. Moreover, we assume that (qi+1, Di+1) is false only if (qi, Di) is
false. Finally, we suppose that predicates are at most binary and that all the pairs are defined on
different signatures.

Given the assumptions made, the problem results to be equivalent to finding the first index i
in the sequence with (qi, Di) false. It just remains to check whether i is odd, in which case X
contains an even number of true pairs, specifically the first i− 1 pairs.

We create a QAP P = (O, q(), 〈〉) as follows. Queries qi in X are encoded into a single
tree-shaped query q by adding a new variable x and a role J that connects all the terms occurring
in qi to x. Let term(qi) denote the set of terms in qi. Then, q() is defined as follows:

q()←
∧

1≤i≤m
[qi,

∧
t∈term(qi)

J(x, t), R(t, xi), OK(xi), B(t)].

where x is the join variable over which the body of the m different queries are J-connected.
Moreover, every term t occurring in some qi is R-connected to a fresh variable xi, which is
required to be a member of fresh concept OK. Finally, each term in qi is required to be a
member of fresh concept B.

1From [12] we know that given boolean formulas {ψ1, . . . , ψm}, deciding whether there are an even number of
valid formulas is hard for PNP

‖ . Since we know that Satisfiability reduces to CQ-Evaluation, the claim follows.
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Figure 4.1: A representation of component Ai of A. If i is even, then backdoors are R-connected to aux.
Otherwise, they are R-connected to a constant bi

Let us now consider the ontology O. ABox A consists of {A3, . . . , Am} different compo-
nents, where each component Ai represents a particular configuration of X . That is, each Ai

models a different possible position of the first false pair in X . More specifically, component Ai

represents the case in which (qi, Di) is the first false pair. Hence, Ai contains database instances
{D1, . . . , Di−1} and it replaces the other database instances by m − i + 1 different backdoors
over which queries can vacuously match (see Figure 4.1). By assumption, it is known that the
first two tuples in X are always true. For this reason, we consider only {A3, . . . , Am} different
configurations.

Let ai, bi, b′i be fresh constants, then component Ai is defined as follows:

• for all database instances Dj (1 ≤ j < i) in X , we add the following assertions in Ai:

Dj ,
∧

c∈C(Dj)

B(c), J(ai, c), R(c, bi), OK(bi)

where C(Dj) denotes the set of constants occurring in Dj . That is, we encode Dj in
Ai and we further require that for every constant c occurring in Dj the following holds:
a) c is asserted to be a member of B, b) c is J-connected to join constant ai and c) c is
R-connected to an instance asserted to be of type OK.

• for all Dk with i ≤ k ≤ m, for all concept names A and role names Q occurring in qk,
we add:

J(ai, aux
i
k), A(auxik), Q(auxik, aux

i
k)

for some fresh constant auxik. Additionally, if i is even, we add R(auxik, o) to Ai, oth-
erwise, we add R(auxik, b

′
i). That is, we encode m − i + 1 different backdoors over

which queries {qi, . . . , qm} can potentially match. Also, backdoors are J-connected to
join individual ai and R-connected to either o or b′i depending on the value of i.
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Figure 4.2: On the left you can see the original query q(x), on the right the resulting query trq(q)
after the application of the transformation function.

By definition, the backdoors do not contain assertions over the B predicate, hence q cannot
match directly over A. Therefore, matching q over Ai requires an explanation containing asser-
tions B(auxij), for i ≤ j ≤ m. Moreover, if i is even then every ≤-explanation must contain
OK(o), since auxiliary objects are R-connected to that instance, which is not a member of OK
as required by q(). Otherwise, if i is odd, then auxiliary constants are R-related to b′i, which is
as well not a member of OK. Finally, the assertion we declare to be ≤-dispensable is OK(o).

The intuition behind this reduction is as follows. If the minimal solution is found by match-
ing q over Ai with i odd, then the ≤-explanation has to contain OK(b′i) and no assertion on o.
If this is the case, then X is a positive instance of the problem, since the first i − 1 pairs are
true. Otherwise, if the minimal update is found by matching q over Ai with i even, then the
≤-solution asserts o to be a member of OK and the problem in input is false, since there are an
odd number of true pairs in X .

Penalizing Database Updates However, for this reduction to work, explanations that modify
database instances encoded in the ABox have to be penalized. The reason is that there are cases
in whichX is not a positive instance of the problem, butOK(o) is≤-dispensable. In these cases,
one can argue that the solution has been found by altering a database instance Dj encoded in the
ABox. That is, the query maps over Ai with i odd, but the ≤-explanation modifies the structure
of some database instance Dj in Ai. In the following, we rule out this case by penalizing
database updates through the introduction of two transformation functions trq and trdb over
queries and database instances respectively, and by using negative inclusions at the TBox level.
The functions trq and trdb work in a similar way. Let S be either the body of a query or an ABox
and, interpret S as a graph. Then, the basic idea is to extend the structure of S by requiring that
concept and role labels occur only on new vertexes in the graph. That is, for every edge (t, t′)
labeled withQ, the function introduces a new node cQ(t,t′) that is suitably connected to t, t′ using
fresh edge P . Then, cQ(t,t′) is labeled with fresh name CQ, which intuitively says that there is an
edge between t, t′ of type Q. Hence, this transformation extends the graph by introducing new
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vertexes and labels, but it maintains its structure. The same kind of transformation is employed
for concept labels on vertexes (see Figure 4.2). The two functions are defined as follows:

trq(qi): Given an atom A(t) (or P (t, t′)), we denote with yA(t) (or yQ(t,t′)) a fresh variable.

• if A(t) ∈ at(qi), then {P (t, yA(t)), CA(yA(t)), P (yA(t), t)} ⊆ tr(qi);

• if Q(t, t′) ∈ at(qi), then {P (t, yQ(t,t′)), CQ(yQ(t,t′)), P (yQ(t,t′), t
′)} ⊆ tr(qi);

• nothing else is in trq(qi).

trdb(D): Given an assertionA(t) (or P (t, t′)), we denote with cA(t) (or cQ(t,t′)) a fresh constant.

• if A(t) ∈ D, then {P (t, cA(t)), CA(cA(t)), P (cA(t), t)} ⊆ tr(D);

• if Q(t, t′) ∈ D, then {P (t, cQ(t,t′)), CQ(cQ(t,t′)), P (cQ(t,t′), t
′)} ⊆ tr(D);

• nothing else is in trdb(D).

Please note that it can be easily proven that (qi, Di) is true if and only if (trq(qi), trdb(Di)) is
true.

Finally, the TBox T consists of negative inclusions only. For every pair of distinct con-
cept/role names N,N ′ occurring in the sequence X , T contains the following disjointness ax-
iom: CN v ¬CN ′ . These axioms ensure that no individual can get more than one concept or
role label at the same time. From this it follows that if an explanation introduces a new assertion
A(t) on an instance Dj in the ABox, the same explanation over the transformed instance would
require assertions {P (t, cA(t)), CA(cA(t)), P (cA(t), t)}. That is, performing a single update over
a transformed instances is three times more expensive than it is on the standard instance.

Consider P ′ = 〈O′, q′, 〈〉〉 with O′ = 〈T ,A′〉. Intuitively, q′ is constructed by replacing
each qi occurring in the definition of q with tr(qi). Similarly, we define A′ by replacing each
occurrence of Dj in A with tr(Dj).

Now, we prove that X is a yes-instance to EVEN-CQEVAL if and only if OK(o) is ≤-
dispensable to P ′.

“⇒” AssumeX to be a positive instance, then there exists i ∈ {3, . . . ,m}, such that (qi, Di)
is false and i is odd. Let us assume that q′ matches over component Ai. Then, it is easy to see
that a solution has to contain exactly the following assertions: U = {B(auxii), . . . , B(auxim)}∪
{OK(b′i)} with |U| = (m − i + 2), since by assumption query qk matches over Dk, for k ∈
{1, . . . , i − 1}. U does not contain OK(o), hence it is left to prove that U is a ≤-explanation.
By construction, any smaller solution than U does not allow q′ to match over Ai.

Let us assume by contradiction, that for l < i, matching q′ over Al leads to a smaller update
U ′. By definition ofAl and q′, U ′ has to containm− l+1 assertions onB and a further assertion
on OK. Given that l < i then (m− l + 2) > (m− i+ 2) and, hence, |U ′| > |U|.

Similarly, it is proved by contradiction that for u > i, matching q′ over Au does not lead to a
smaller solution U ′′. By definition ofAu and q′, U ′′ has to containm−u+1 different assertions
on B. Moreover, since by assumption qk does not match over Dk, for k ∈ {i, . . . , u− 1}, then
the explanation has to add p ≥ u− i different assertions on those database instances in order for
the queries to match. But by the use of the transformation function, we know that any alteration
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to the database instance requires at least 3 assertions in the solution, from which follows that
p > u− i. Hence (m− u+ 2 + p) > (m− i+ 2), which contradicts our assumption.

Therefore, U is a ≤-explanation with OK(o) 6∈ U .
“⇐” Assume U to be a ≤-explanation, such that OK(o) is not in the solution. Then, by

construction we know that U must have matched on one of the Ai components and the solution
must have the following form: U = {B(auxii), . . . , B(auxim)} ∪ {OK(b′i)}. Moreover, by the
presence of OK(b′i), one can conclude that i is odd, Now, using a similar argument as above, it
is possible to prove that if U is minimal then the i-th pair is the first false one, leading X to be a
positive instance.

Hence, we conclude that ≤-DISPENSABILITY is hard for PNP
‖ .

Given that PNP
‖ is closed under complementation, it follows that ≤-NECESSITY is PNP

‖ -
complete.

4.4 Complexity of �-RELEVANCE

A domain user faced with a negative answer to a query may ask herself whether, the absence
of a certain ABox assertion α in the ontology is related with the lack of the tuple in the results.
That is, she would like to know whether α occurs in some explanation to QAP P:

Definition 8 (�-RELEVANCE). Given a QAP P and an assertion α, decide whether there exists
U ∈ expl�(P) such that α ∈ U .

In our running example introduced in Section 3.2, assertion Advanced(MATH ) is relevant
because {teaches(craig ,MATH ),Advanced(MATH ), hasTutor(john, craig)} is an explana-
tion. However, it is not≤-relevant, since the only≤-solution is Advanced(SWT ). Now, as done
in the previous section, the complexity of the problem under the various orderings is analyzed.

Proposition 10. For DL-LiteA ontologies, RELEVANCE is PTIME-complete.

Proof. We assume a QAP P = 〈O, q,~c〉 with O = 〈T ,A〉 and an assertion φ(~t). As done
before, we further require q to be a CQ, the general result for Union of CQs follows directly.

(MEMBERSHIP) We now provide a logspace reduction from RELEVANCE to EXISTENCE. We
construct O′ = 〈T ,A′〉, where A′ = A ∪ {φ(~t)}. Now, we show that P has an explanation U
with φ(~t) ∈ U iff there exists an explanation to P ′ = (O′, q,~c).

“⇒” Assume φ(~t) to be relevant for P . Then, there exists a solution U to P with φ(~t) ∈ U .
That is, O′ = 〈T ,A ∪ U〉 is satisfiable and ~c ∈ cert(q,O′). The claim easily follows.

“⇐” Let P ′ have a solution U ′. Then, there exists a model I of O′ = 〈T ,A′ ∪ U ′〉 that
admits a match π for q(~c). W.l.o.g., we can suppose ∆I = C, with cI = c, for all c ∈ C. Now,
let

U ′′ = {A(π(t)) | A(t) ∈ at(q(~c))} ∪ {P (π(t), π(t′)) | P (t, t′) ∈ at(q(~c))}.

Clearly, I |= φ(~t) and, therefore, U = U ′′ ∪ {φ(~t)} is still a solution to P ′. Now, we show that
U is a solution to P . For this, we first argue that O′′ = 〈T ,A ∪ U〉 is satisfiable. But this is not
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difficult to see, since I is also a model ofO′. It remains to see that ~c ∈ cert(q,O′′). For this note
that every model of O′′ has to satisfy U and that π matches q(~c) exactly on U ′′ ⊂ U . Therefore,
φ(~t) is relevant to P .

(HARDNESS) Hardness can again be proved with a logspace reduction from EXISTENCE. We
construct P ′ = 〈O, q′,~c〉 as follows. Let q′ = q(~x) ∪ q′′(~x), where q′′ is:

q′′ ← at(q), A(o).

That is, q′′ extends q by adding a new atom over a fresh concept and a fresh individual.
We claim that: P has a solution iff A(o) is relevant to P ′.
“⇒” Assume thatP has a solution U . This means that there exists a model I of 〈T ,A ∪ U〉.

W.lo.g., we can assume ∆I = C with cI = c, for all c ∈ C. Moreover, we know that there exists
a match π for q(~c) over I. Now, let I ′ be the extension to I mapping oI

′
to o and AI

′
= {oI′}.

Then, by the freshness of A and o and by I |= 〈T ,A,∪ U〉, it follows that I ′ is a model of
O′′ = 〈T ,A,∪ U ∪ {A(o)}〉. Additionally, all models IO′′ of O′′ have to satisfy U ∪ {A(o)},
hence π witnesses ~c ∈ cert(q,O′′). Therefore, U ∪ {A(o)} is a solution to P ′, from which
follows that A(o) is relevant to P ′.

The other direction of the proof is straightforward.

This result is not surprising, in fact, when no minimality restriction is in place RELEVANCE

is equivalent to check the existence of a solution U for QAP P = 〈O, q,~c〉 and to ensure that
O ∪ U ∪ {φ(~t)} is consistent. Let us now tackle the problem of ⊆-RELEVANCE to a QAP.

Theorem 11. For DL-LiteA ontologies, ⊆-RELEVANCE is ΣP
2 -Complete.

Proof. (MEMBERSHIP) The membership in ΣP
2 is clear from Algorithm 4.1, which works as

follows. An explanation U containing φ(~t) is non-deterministically computed by guessing an
instantiation of a subquery in PerfectRef(q(~c), T ), whereAnon is a set of fresh ABox individuals
(see Proposition 5). Let HAS-SUBEXPL solve the problem of deciding whether a solution U
has a subset which is itself an explanation. The problem can be easily proved to be in NP.
Then, the algorithm checks the complement of HAS-SUBEXPL in order to assure that none of
the subsets of U is itself an explanation, from which it follows that φ(~t) is ⊆-relevant. Checking

1 INPUT: QAP P = 〈q,O,~c〉 and ABox assertion φ(~t)

2 OUTPUT: yes iff φ(~t) is relevant to P
1: Guess qi ∈ {q1, . . . , qn} = q
2: Guess the derivation of one rewriting r(~c) in PerfectRef(qi(~c), T )
3: Guess a set of atoms U ⊆ at(r)
4: Guess a mapping π from V(q) to constants in DB(A) and Anon
5: Check that (T ,A ∪ U) 6|= ⊥, where U is the instantiation of U through π.
6: Check that φ(~t) ∈ U and π is a match for r(~c) over DB(A ∪ U)
7: Check that HAS-SUBEXPL (P,U) = no.

Algorithm 4.1: Algorithm solving ⊆-RELEVANCE
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the complement of HAS-SUBEXPL requires the power of a CONP machine. For this reason, the
algorithm is solvable in non-deterministic polynomial time by a TM with an NP oracle.

(HARDNESS) We prove ΣP
2 -hardness by a reduction from the ΣP

2 -complete problem co-
CERT3COL [34] (see also [8]).

An instance of co-CERT3COL is given by a graphG = (V,E) with vertices V = {0, . . . , n−
1}, n ≥ 1, such that every edge is labeled with a disjunction of two literals over the Boolean
variables {p(i,j) | 0 ≤ i, j < n}. G is a positive instance if there is a truth value assignment t to
the Boolean variables such that the graph t(G) obtained from G by including only those edges
whose label evaluates to true under t is not 3-colorable.

Assume an instance G of co-CERT3COL. We show how to build in polynomial time a QAP
PG = 〈(TG,AG), qG,~cG〉 and an ABox assertion αG such that: G is a positive instance of
CO-CERT3COL iff αG is ⊆-relevant for PG. We use an empty TBox and a Boolean query, thus
TG = ∅ and ~cG = 〈〉. The query qG is a UCQ qG = qe1 ∪· · ·∪qek ∪q′, where {e1, . . . , ek} = E,
each qei is an atomic query qei()←Wei(x, y), and q′ is defined as follows. Assume B = {t, f}
to be the set of truth values. The query q′ has the following atoms for each edge e = (i, j) in E:

(a) B(xi), Re(xi, ye), Re(ye, xj), B(xj), and

(b) P (ye, zpi), Api(zpi), Wpi(zpi , z
′
pi), where pi ∈ {p1, p2} and p1, p2 are the first and the

second proposition in the labeling of e, respectively.

The query q′ simply incorporates G together with the disjunctions on the edges. Observe that
if two edges have the same proposition in their label, then this will be reflected in q′ by some
shared variables zpi .

To build AG we use individuals cp and c¬p for the truth value of proposition p. Intuitively,
the truth value of p will be determined by either Ap(cp) or Ap(c¬p) being in the update. Assume
a tuple ~t = 〈e, v1, v2, a, b〉, where e ∈ E, {v1, v2} ⊆ B, and a, b are individuals. Let p1, p2 be
the first and the second propositions of e. For i ∈ {1, 2} and vi = t , let li = pi if pi is positive
and li = ¬pi otherwise. Similarly, for i ∈ {1, 2} and vi = f , let li = ¬pi if pi is positive
and li = pi otherwise. Then, the ABox A(~t) consists of the assertions Re(a, dT ), Re(dT , b),
P (dT , cl1) and P (dT , cl2) depending on the Boolean values in input.

The ABox AG is the union of the following ABoxes:

(A1) A(〈e, v, v′, ai, aj〉) for all e ∈ E, v, v′ ∈ B, 0 ≤ i, j ≤ 2, and i 6= j;

(A2) A(〈e, f, f, ai, ai〉) for all e ∈ E, and 0 ≤ i ≤ 2;

(A3) A(〈e, v, v′, b, b〉) for all e ∈ E, v, v′ ∈ B;

(A4) The ABox {B(a0), B(a1), B(a2)};

(A5) The assertions Wp(cp, c¬p) and Wp(c¬p, cp), for all propositions.

Let αG = B(b). It is not too difficult to see that G is a positive instance of co-CERT3COL

iff there exists an ⊆-explanation U to P such that αG ∈ U . Basically, definitions (A1)-(A3)
encode a triangular structure T in which edges in G that evaluate to false according to a given
truth assignment can be mapped on any edge of T , reflexive edges included. If an edge of G
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Figure 4.3: On the left you can see a very simple graph G, on the right a portion of the ABox AG. The structure
over the purple node b represents a cycle over which every graph can be mapped. On the right side, there is a triangular
structure over the orange nodes. The idea is that nodes that evaluate to true under a certain truth assignment can be
mapped only on non-reflexive edges in the structure.

evaluates to true, then it must be mapped to one of the non-reflexive edges. This ensures that if
G can be mapped to T under truth assignment t, then t(G) is 3-colorable. Instead, definitions
(A4)-(A5) define a cyclic structure C into which any graph G can be embedded. It has to be
noted that the node b is not asserted to be a member of B, hence qG cannot be mapped there
directly with any truth assignment. Figure 4.3 shows an intuitive representation of the ABox
encoding for a small graph G. In order to facilitate the understanding, we decided to represent
the different truth assignments using distinct nodes in the figure. However, remember that in
the internal encoding for every Boolean variable p there are only two different individuals in the
ABox, namely cp and c¬p.

Now, we prove thatG is a positive instance of co-CERT3COL iff there exists an⊆-explanation
U to P such that αG ∈ U :

“⇒” Suppose there is a truth assignment t such that t(G) is not 3-colorable. Let U =
{B(b)} ∪ U1, where U1 = {Ap(cp) | t(p) = t} ∪ {Ap(c¬p) | t(p) = f}. It remains to argue
that U is a ⊆-explanation to P . It is not hard to see that U is an explanation. Indeed qG matches
already in the ABox obtained by point (A3) (hint: since B(b) ∈ U , we match qG by mapping all
variables of qG to (the interpretation of) b). Suppose there is a smaller update U ′ ⊂ U . Observe
that U1 ⊆ U ′. This is because for all propositions p, the symbol Ap does not occur in AG but
does occur in qG. Then, U \ {B(b)} must be an update. If this is the case, then qG can be
matched in AG without the ABox from (A3), i.e. in the triangle part. Then t(G) is 3-colorable,
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which contradicts the assumption.
“⇐” Let U be a ⊆-minimal explanation containing B(b). Due to the presence of qe1 ∪ . . .∪

qek in qG and the assumption, the role Wp cannot occur in U for any proposition p. Since U is
an explanation, by the definition of q′ and (A5) we have that Ap(cp) ∈ U or Ap(c¬p) ∈ U for
all propositions p. Since for any proposition p we have that Ap occurs in qG with one and only
variable zp, we know that exactly one of Ap(cp) ∈ U and Ap(c¬p) ∈ U holds. Due to the atoms
Wp(zp, z

′
p) in qG, we also have that individuals of the form cp and c¬p are the only ones that

can get an Ap label. Consider the assignment t defined as follows: t(e) = t if Ap(cp) ∈ U , and
t(e) = f if Ap(c¬p) ∈ U . It is not difficult to argue that t(G) is not 3-colorable and thus G is
a positive instance of co-CERT3COL. Indeed, if t(G) was 3-colorable, Q should be mappable
into the triangle part obtained in (A1)-(A3). Then U \ {B(b)} would be a smaller update, which
would mean a contradiction.

Note that the above lower bound applies already for empty TBoxes. Next, we see that under
the ≤ order the complexity of ≤-RELEVANCE is the same as the complexity of ≤-NECESSITY.

Proposition 12. For DL-LiteA ontologies, ≤-RELEVANCE is PNP
‖ -Complete.

Proof. (MEMBERSHIP) ≤-RELEVANCE can be tackled in a similar way as for ≤-NECESSITY.
In fact, the algorithm described in Theorem 8 can be modified in order to solve relevance. Let
SIZE-IN solve the following problem: given a tuple 〈P, α, n〉, where P is a QAP, α an assertion,
and n an integer, decide whether there exists an explanation U , with |U| = n and α ∈ U . Then,
we change the positivity condition of the ≤-NECESSITY algorithm as follows: α occurs in some
≤-minimal explanations U for P iff for some 0 ≤ i ≤ m, it holds that: (i) Ai is a positive
instance of SIZE-IN, and, (ii) Bi is a positive instance of NO-SMALLER. That is, it is possible
to find a solution U of size i containing the given assertion, such that there is no smaller ABox
that is a solution. It is easy to see that SIZE-IN is solvable in NP, hence the whole algorithm is
again in PNP

‖ .
(HARDNESS) The hardness of this problem can be shown by the exact same reduction as

for ≤-NECESSITY. The reason is that the reduction enforces the presence of only a single ≤-
minimal solution, hence in this case relevance and necessity coincide. The only difference re-
gards the way backdoors are connected to constant o in the ABox. We want to show that X is a
positive instance to EVEN-CQEVAL iff OK(o) is ≤-relevant to P , i.e., we want to enforce that
each time the query q matches over Ai with i odd, then a ≤-solution U contains OK(o). This is
done simply by inverting the way backdoors are defined. That is, when i is odd the backdoors
are R-connected to individual constant o, otherwise they are connected to b′i (see Figure 4.4).
In this way, whenever q matches over Ai, with i odd, the minimal update will contain OK(o).
It is not difficult to see that with a similar argument as above one can prove the reduction to be
correct.

4.5 Complexity of �-RECOGNITION

Another important task is the recognition of explanations. That is:
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Figure 4.4: A schematic representation of the ABox, note that the way in which auxiliary objects
are connected to ¯aux is inverted w.r.t. Fig. 4.1.

Definition 9 (�-RECOGNITION). Given an ABox U , decide whether U ∈ expl�(P).

In fact, in our running example, the university administration may be wondering whether
asserting craig to be a Tutor can fix the negative answer. It is easy to see that this is not the case
and, hence, the problem has to reside on another part of the ontology. Following the methodologt
employed in the previous sections, let us systematically explore the complexity of the problems
under the various minimality conditions.

Theorem 13. RECOGNITION is NP-Complete.

1 INPUT: QAP P = 〈q,O,~c〉 and ABox U
2 OUTPUT: yes iff U is solution to P

1: Check that (T ,A ∪ U) 6|= ⊥
2: Guess i ∈ {1, . . . , n}
3: Guess the derivation of one of the rewriting rj for qi(~c) w.r.t. T .
4: Guess a match ν for rj over DB(A ∪ U).
5: Check that ν is a valid match for rj over DB(A ∪ U).

Algorithm 4.2: Algorithm solving RECOGNITION.

Proof. (MEMBERSHIP) The membership of the problem in NP is clear from Algorithm 4.2,
which is a simplification of Algorithm 4.1 explained in Theorem 11.

(HARDNESS) NP-hardness is shown by reducing CQ-OPT to RECOGNITION. That is, given
a CQ q and a subquery q′ of q, decide whether q′ is equivalent to q. Before actually presenting
the result, we introduce briefly the optimization problem for CQs. Let q be a CQ and w.l.o.g,
assume that each relation in the query body is either unary or binary. Let q′ be a subquery of q
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and T , T ′ be the tableaux for q and q′, respectively [1]. Then by the Homomorphism Theorem
for tableaux, q′ is equivalent to q iff there exists an homomorphism δ from T to T ′ [1]:

δ : var(T )→ terms(T ′)

such that:

• δ(a) = a, for every constants,

• δ(x) = x, for every head variable,

• if ~t is a row of R in T , then δ(~t) is a row of R in T ′, for every relation R.

The problem of checking whether a subquery is equivalent to a given CQ is known to be NP-
complete [1].

The reduction works as follows. Let q(~x), q′(~x) be two conjunctive queries such that, q′ is
a subquery of q. Then, let P = (O, q(~x),~c) be a QAP, where O = (∅, ∅) and ~c is the tuple of
constants resulting from the replacement of each x ∈ AV(q) by its constant representative ax. It
is easy to see that ~c 6∈ cert(q,O), since both the TBox T and the ABoxA are empty. Moreover,
let U be the ABox resulting from replacing each variable x in the body of q′ with their constant
representative ax.

Now, we want to show that q′ is equivalent to q if and only if U is a solution to P .
“⇒” Assume that q′ is an equivalent subquery of q. Therefore by the Homomorphism Theo-

rem for Tableaux, there exists an homomorphism δ mapping T ′ to T that respects the conditions
specified above. Similarly, there exists also a tableaux homomorphism δ′ mapping T to T ′.

Given that the ontology is empty, the set of rewritings contains just q(~c) and (∅, U) is obvi-
ously satisfiable. Now, we have to demonstrate that we can find a match for q(~c) over DB(U).
Let us choose the match ν to be equivalent to the homomorphism resulting from the composition
δ′ ◦ toConst , where toConst is a function mapping variables to their constant representative and
the identity on constants. That is, whenever δ′ maps an element to a variable x in T ′, δ′◦toConst
maps it to its constant representative ax. By definition, δ′ maps T into T ′, where T ′ can be seen
as a different syntactical characterization of DB(U). Hence, ν is a valid match for q(~c). From
which follows that U is a solution to P .

“⇐” Assume that U is an explanation for P . Using the same argument as above, one can
conclude that the set of rewritings of q(~c) contains only q itself. From U being an explanation
it follows that (∅, U) is satisfiable and there exists a match ν from q(~c) to DB(U). We need to
show that there exists an homomorphism δ from T to T ′ (resp. the tableaux of q and q′). Let
toVar be a function from constants to variable, which given a variable’s constant representative
ax returns the variable x itself. If the input is not a variable representative, then toVar behaves
as an identity mapping. Then, we define the homomorphism as:

δ : ν ◦ toVar

That is, δ uses ν to map q over the database instance (that is, the explanation U ) and then,
uses the inverse relation toVar to transform U into the body of q′. Therefore, δ is a tableaux
homomorphism from T to T ′, since δ is a match and it respects the three conditions of Tableaux
Homomorphisms.
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This proves that RECOGNITION is NP-complete. In particular, it proves that recogniz-
ing explanations is hard already for the case in which the ontology O is empty, that is T =
∅,A = ∅, and the user queries are restricted to CQs. Let us now focus on the recognition of
≤-explanations.

Theorem 14. ≤-RECOGNITION is DP-Complete.

Proof. (MEMBERSHIP) The membership of ≤-RECOGNITION to DP is shown by providing two
languages L1 ∈ NP and L2 ∈ CONP, such that the set of all yes-instances of ≤-RECOGNITION

is L1 ∩ L2. This is easy: L1 = {(P, U)|U is an explanation to P} and L2 = {(P, U)|P does
not have an explanation U ′ s.t. |U ′| ≤ |U |}.

(HARDNESS) DP-hardness is proved by a reduction from the problem HP-NOTHP. That is,
given two directed graphs G = (V,E) and G′ = (V ′, E′), 〈G,G′〉 is a positive instance to HP-
NOTHP iff G has an Hamiltonian Path2 and G′ does not have one. The reduction is as follows.
Let P = 〈O, q,~c〉 be a QAP, where the TBox is empty. Let the ABox be made of three different
components:

1. AG encodes the graph G and it is defined as follows:

A = {e(vi, vj) | (vi, vj) ∈ E} ∪ {d(vi, vj), d(vj , vi) | vi, vj ∈ V. i 6= j}

where each e(vi, vj) encodes an edge in the graph, whereas d(vi, vj) encodes that nodes
vi and vj are distinct.

2. AG′ encodes G′ in a similar way as before using roles e′ and d′, but it adds the assertion
A(v′i) to each individual v′i ∈ V ′ representing a vertex in G′.

3. Finally, AC encodes a clique of size |V ′| over new individuals oi with 1 ≤ i ≤ |V ′| using
e′ and d′ as roles.

The query q() is composed by three different components as well: Q1, Q2 and Q3. The first
query Q1 encodes an Hamiltonian Path of length |V | over the first graph:

Q1 ←
|V |−1∧
i=1

e(xi, xi+1), e(x|V |, x1),
∧

vi,vj∈V.i 6=j

d(xi, xj), d(xj , xi)

Similarly, Q2 also encodes the presence of an Hamiltonian Path over G′. Further, it requires that
each vertex in the path is a member of concept A:

Q2 ←
|V ′|−1∧
i=1

e′(yi, yi+1), e
′(y|V ′|, y1),

∧
vi,vj∈V.i 6=j

d′(yi, yj), d
′(yj , yi),

|V ′|∧
i=1

A(yi)

2A graph G is said to have an Hamiltonian Path if there exists a path in G visiting all the vertices in the graph
exactly once.
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Q3 makes sure that in any case an explanation is needed by requiring a new individual a to be
member of the fresh concept B:

Q3 ← B(a)

Then, the Boolean CQ q() is the result of the conjunction of Q1, Q2 and Q3. Since we are
dealing with a Boolean query, ~c denotes the empty tuple 〈〉. It is easy to see that ~c 6∈ cert(q,O),
since B(a) is not present in the ABox. Finally, U is the set of assertions {A(oi)|1 ≤ i ≤
|V ′|} ∪ {B(a)}.

Now, we want to prove that 〈G,G′〉 is a positive instance to HP-NOTHP if and only if U is
a ≤-explanation for P .

“⇒” Assume thatG has an Hamiltonian Path butG′ does not. First of all given that the TBox
is empty, one can conclude that any possible solution maintains consistency of the ontology and,
moreover, that one has only to consider q() in the rewritings. Next, we need to show that U is
actually an explanation for P . By the definition of the ABox and the introduction of different
roles modeling G and G′, one can see that Q1 can only be mapped to AG and Q2 to AG′ ∪AC .
Moreover, Q2 is either mapped to AG or to AC , since the two graphs are encoded on distinct
individuals. From the assumption that G contains an Hamiltonian Path, it follows that there is a
graph homomorphism from Q1 to AG. Therefore, it is possible to find a match ν1 for Q1 over
A. Now, Q2 can be mapped easily to AC , since AC models a clique and the update U adds
to AC the required assertions on the membership of the vertexes of G′ to A. Let ν2 be such a
match. Furthermore AC and AG are distinct, hence one can conclude that ν1 ∪ ν2 is match for
Q1 ∧ Q2. This match, which is the identity on constants, is valid also for Q3, since U includes
the required assertion B(a). Finally, we need to show that U is a minimum size explanation.
But this follows easily from the fact thatG′ does not have a hamiltonian path by assumption and,
therefore, Q2 cannot be mapped to AG′ . Hence, one is forced to map Q2 to AC , which requires
all those assertions in the explanation.

“⇐” Assume that U ∈ expl≤(P). Then, one can conclude that there is a match ν for q.
Let ν ′ be the restriction of ν to the variables of Q1. It follows that ν ′ is a match for Q1 over
AG, since the atoms in the query refer only to this part of the ABox. From which it follows that
the encoded graph G does have an Hamiltonian Path. Assume by contradiction that G′ has an
Hamiltonian Path. Then Q2 can be mapped to AG′ and Q3 to A ∪ B(a). However, this would
contradict the minimality of U . This is because U ′ = {B(a)} would be an explanation for q().
Hence, G′ cannot have an Hamiltonian Path.

This proves the claim that ≤-RECOGNITION is DP-complete.

The recognition problem maintains the same complexity even under the ⊆ minimality crite-
ria.

Proposition 15. ⊆-RECOGNITION is DP-Complete.

Proof. (MEMBERSHIP) As done in the previous case, we define two languages L1 ∈ NP and
L2 ∈ CONP, such that the set of all yes-instances of ⊆-RECOGNITION is L1 ∩ L2. Let L1 be
as before the set of all tuples 〈P, U〉, where U is an explanation for P . Then L2 = {(P, U)|P
does not have an explanation U ′ s.t. U ′ ⊆ U}. Note that L2 is exactly the complement of
HAS-SUBEXPL introduced in Section 4.4. The claim easily follows.
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(HARDNESS) The DP-hardness can be proved with exactly the same construction as in The-
orem 14. In fact, it is sufficient to read⊆ in place of≤ in order to have a valid reduction proving
of hardness for ⊆-RECOGNITION.

In conclusion, this chapter studies the computational complexity of four main reasoning
tasks over Query Abduction Problems (�-EXISTENCE, �-NECESSITY, �-RELEVANCE and �-
RECOGNITION) in the context of DL-LiteA ontologies.
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CHAPTER 5
Solving Query Derivation Problems

In Chapter 3, we introduced the notion of Query Derivability Problem, the formalization of
the explanation problem for positive query answers to UCQ over DL-LiteA ontologies. In this
chapter, we address the problem of computing minimal solutions to QDPs. Given a QDP D =
〈O, q,~c〉, a solution to D is a tuple 〈π, 〈D1, . . . , Dn〉〉, where π is a match for some qi ∈ q(~c) on
the canonical model of O, and, 〈D1, . . . , Dn〉 are derivations w.r.t. O for the ABox assertions
resulting from instantiating the atoms in qi w.r.t. the match π (see Section 3.2).

The problem of computing solutions to QDPs has been tackled already by Borgida et. al
in [9], where an high-level procedure solving QDPs is provided. Unfortunately, the high-level
procedure has never been given an algorithmic counterpart and, for this reason, it cannot be
easily implemented in a query answering system over DL-LiteA ontologies. Hence, this chapter
aims at closing this gap between theory and practice by providing such a formalized algorithm
computing explanations to positive query answers. Also, the above mentioned procedure is not
tailored for searching minimal solutions, but our new algorithm takes minimality restriction into
account.

Moreover, this chapter introduces a new procedure solving the explanation problem for un-
satisfiable DL-LiteA ontologies, which employs the new algorithm solving QDPs. The designed
solution provides domain users with evidences both in the data and in the conceptual knowledge
justifying the inconsistency in the knowledge base.

The rest of the chapter is organized as follows. First, Borgida’s high-level procedure solving
QDPs is introduced. Then, we present an implementable algorithm formalizing this procedure,
which requires a modification to DL-LiteA’s standard query answering procedure. Finally, the
application of this new explanation algorithm to the problem of explaining unsatisfiability of
DL-LiteA ontologies is studied.

5.1 An High-level Procedure Solving QDPs

A solution to a QDPD = 〈O, q,~c〉 is composed by a match over the canonical model ofO and by
a series of derivations for ABox assertions w.r.t. the ontology. Let us first focus on the problem
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of finding such a match for a QDP. From theoretical results (see Proposition 3), we know that
conjunctive query answering over a DL-LiteA ontology O can be reduced to the problem of
evaluating CQs over the canonical model can(O). Therefore, in principle finding such a match
for a CQ qi ∈ q is possible. Unfortunately, can(O) is generally infinite and, for this reason,
it cannot be used to effectively compute solutions to QDPs. Nevertheless, an important feature
of the canonical model of a DL-LiteA ontology is that a UCQ q can be answered by evaluating
it on only a small finite portion of can(O) [13]. Then, Borgida’s procedure uses this fact in
order to solve Query Derivation Problems. That is, it constructs the finite small portion of the
canonical model and it justifies answer ~c over it, i.e., it finds an admissible match π for q(~c) over
the constructed finite portion of can(O).

We now present the technique introduced by Borgida et. al to construct such a finite portion
of can(O), which is based on the algorithm PerfectRef (q, T ) that computes the perfect refor-
mulation of a query q w.r.t. an ontologyO = 〈T ,A〉 (see Section 2). The key observation about
the perfect reformulation algorithm is the following: rewriting steps correspond to the inverses
of the additions made to the canonical model of the knowledge base [9].

Assume q(~x) to be a UCQ over ontology O and, further, suppose that ~c ∈ cert(q,O). From
this follows that there exists a rewriting ri ∈ PerfectRef (q, T ), such that ~c ∈ ans(ri, DB(A)).
The fact that ri(~c) evaluates positively over DB(A) implies the existence of an admissible
match π over the database instance, such that π(~x) = ~c. Then, we compute the derivation of
ri from q, building a data-structure storing information on how rewritings have been generated
from predecessor queries. In particular, in case of rewritings generated from the application of
rewriting rules we store: the predecessor rewriting, the atom being substituted and the axiom
used from the TBox. For unification steps, we store: the predecessor rewriting as well, the two
atoms being unified and the most general unifier between them. Now, we traverse backwards
the polynomially long trace of rewritings generating ri until some qi ∈ q is reached. While
backtracking, the match π is extended to be a match for the intervening queries by keeping track
of unifications or by assigning to variables new Skolem constants. More specifically, let ri be
generated from ri−1, if no variables has been eliminated from ri to ri−1, then the match is not
extended. When a variable z has been eliminated in ri because it has been unified with y in ri,
then we set π(y) = π(z). Differently, if a variable z has been eliminated in ri−1 by replacing
atom R(x, z) with A(x) in ri, due to the inclusion Av∃R in the TBox, then we set π(z) = @c,
where @c is a fresh Skolem constant. Please note that these extension procedure mimics the
(inverse of the) chasing procedure employed while computing the canonical model of O (see
Section 2.3)

At the end of this process, we are left with a match π for q over a finite portion of can(O),
such that π(~x) = ~c. Additionally, note that the constructed data-structure together with the
extended match provide sufficient information in order to construct derivation trees for the as-
sertions resulting from the instantiation of the body of the user query w.r.t. the extended match
π (see Figure 5.1). The reason is that the rewriting rules applied while generating rewritings
(see Table 2.1) are syntactic variations of the inference rules used to find derivations for ABox
assertions (see Section 3.2).

Then, the explanation procedure returns the extended match π together with the constructed
data-structure. Please refer to [9] for the proof of correctness of this approach.
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q(x,y):-Student(x), hasTutor(x,y), Professor(y)

q(x,y):-UnderGrad(x), hasTutor(x,y), Professor(y)

q(x,y):-PartTime(x), hasTutor(x,y), Professor(y)

q(x,y):-PartTime(x), hasTutor(x,y), Tutor(y)

q(x,y):-PartTime(x), hasTutor(x,y), Tutor(y)

q(x,y):-PartTime(x), hasTutor(x,y), hasTutor(b,y)

q(x,y):-PartTime(x), hasTutor(x,y)

q(x,y):-hasTutor(x,a), hasTutor(x,y)

q(x,y):-hasTutor(x,y)x:peter, y:craig

x:peter, a,y:craig

x:peter, y,a:craig

b,x:peter, a,y:craig

Professor(craig)

Tutor(craig)

hasTutor(peter,craig)

(a)

(b)

(a)

(b)

b,x:peter, a,y:craig

b,x:peter, a,y:craig

b,x:peter, a,y:craig

b,x:peter, a,y:craig

b,x:peter, a,y:craig

Match Extension Rewriting derivation Proof

Figure 5.1: This figure shows how it possible to turn the rewriting data-structure into a proof for an ABox assertion.
(a) denotes the application of TBox axiom Tutor v Professor and is an instance of the inference rule SubConcept.
(b) denotes the application of ∃hasTutor− v Tutor and represents an instance of the inference rule Rng-Intro.

Let us now introduce the algorithms that formalize the presented procedure.

5.2 Computing Minimal Solutions to QDPs

Let D = 〈O, q(~x),~c〉 be a Query Derivation Problem. We aim at providing a formal algorithm
EXPLAINPOSITIVEANSWER(D, ds), where D is a QDP and ds is a data-structure containing
generation information for the rewritings of q(~c). Then, the function returns a match π for
qi ∈ q(~c) over a finite fragment of can(O) and the relevant portion d′ of ds containing the
derivation of the rewriting through which π was computed. We require that the tuple 〈d′, π〉
returned by the algorithm generates a minimal solution to D.

Data Structure

The implementation of such a procedure requires first the definition of a suitable data-structure
over which to store information about the generation of rewritings. We decided to employ a
directed graph G = (V,E), where nodes are rewritings and edges characterize the derivation of
a rewriting ri from a predecessor query ri−1. Then, we associate to each edge a label, which
allows us to store the necessary information, such as TBox axioms or most general unifiers used
to derive ri from the predecessor query. The reason for choosing a graph structure over a linear
structure (as suggested in [9]) is that a single rewriting may be generated through many different
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q(x) :- Person(x)

r1(x) :- Male(x) r2(x) :- Academic(x)

r3(x) :- MaleProf(x)

Figure 5.2: Assume a TBox T = {MaleProf vMale,MaleProf v Academic,Male v Person,Academic v
Person} and a query q(x)← Person(x ). Then, rewriting r3 can be generated in two different ways.

derivations (see Figure 5.2). Therefore, in order to find minimal proof trees (and hence minimal
solutions), it is important to consider shortest derivations. The directed graph G = (V,E) is
defined as follows:

• V = Vq ∪ Vrewr contains the set of rewritings being computed and it is initialized with
Vq = q and Vrewr = ∅. Here we assume that conjunctive queries in q are numbered in
increasing order from 1 to n.

• E = Egr ∪ Eunify, is the derivation relation, where an edge (ri, ri+1) in Egr means that
query ri+1 has been derived from ri by a rewriting step, whereas an edge (ri, ri+1) in
Eunify means that query ri+1 has been derived from query ri via unification. Finally, let
L be a labeling function over edges and cost : E 7→ {0, 1} be a cost function.

Now, we have to define a procedure that populates the defined data-structure. We have cho-
sen to modify the standard perfect reformulation algorithm, rather than defining a new procedure
to be ran after the answers of the queries were given to the user. The reason is that a separated
procedure would have required the computation of the rewritings twice, while by suitably mod-
ifying the PerfectRef algorithm we don’t have such an overhead, since the data-structure is
populated during the computation.

Modified Reformulation Algorithm

Algorithm 5.1 shows the modified procedure for computing the perfect reformulation of a
UCQ q over TBox T . Roughly speaking, the new algorithm extends the standard procedure by
suitably storing rewritings in the directed graph G rather than storing them in a set. Assume that
rewriting ri has been generated from ri−1 by the application of axiom α over atom g ∈ at(ri−1).
Then in steps [9-15], ri is added to the vertexes of G (in Vrewr) and an edge (ri−1, ri) ∈ Egr is
asserted in the graph. Additionally, the new edge (ri−1, ri) is labeled with (g, α) and the cost of
traversing the edge is set to be 1. Differently, if ri has been derived from ri−1 by the unification
of two atoms g1, g2 ∈ at(ri−1) through mgu µ, in steps [21-27] ri is added to Vrewr and an edge
(ri−1, ri) ∈ Eunify is asserted in the graph. The new edge is labeled with (g1, g2, µ) and we
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1 INPUT: UCQ q and DL-LiteA TBox T
2 OUTPUT: graph G of the rewritings of q w.r.t. T

1: Vstart = q
2: i = |Vstart|
3: repeat
4: (V ′, E′) = G
5: for q′ ∈ V ′ do
6: for atom g ∈ q′ do
7: for PI α ∈ T do
8: if α is applicable to g then
9: i = i+ 1

10: qi = q′[g/gr(g, α)]
11: e = (q′, qi)
12: L(e) = (g, α)
13: cost(e) = 1
14: V ′rewr = V ′rewr ∪ qi
15: E′gr = E′gr ∪ {e}
16: end if
17: end for
18: end for
19: for atom g1, g2 ∈ q′ do
20: if g1 and g2 unify then
21: i = i+ 1
22: qi = anon(reduce(q′, g1, g2))
23: e = (q′, qi)
24: L(e) = (g1, g2)
25: cost(e) = 0
26: V ′rewr = V ′rewr ∪ qi
27: E′unify = E′unify ∪ {e}
28: end if
29: end for
30: end for
31: until G = (V ′, E′)
32: return (extendAnswer(V ′), E)

Algorithm 5.1: function PERFECTREF’(q, T )

set cost((ri−1, ri)) = 0. The reason for the difference costs associated to unify- and gr-edges
is that the former do not contribute in the reformulation with a new query, but they represent
an equivalence preserving transformation of already derived queries. Therefore, when searching
for shortest paths among rewritings, unify-edges should not count as rewriting steps.

Finally, let G = (V,E) be the (graph of the) generated perfect reformulation, we reuse a
technique from [9] to extend the tuple of answer variables of the perfect reformulation to include
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information on the rewriting generating a specific tuple in the answers. Let extendAnswer be a
function that alters each ri ∈ V in the following way: the tuple of answer variables is extended
to contain fresh variable tag, and, the body of ri is extended by the introduction of atom tag = i.

ri(~x)← at(ri). ri(~x, tag)← at(ri), tag = i.

It is not difficult to see that (by abusing of notation) 〈c1, . . . , cn, k〉 ∈ cert(extendAnswer(V ),O)
iff 〈c1, . . . , cn〉 ∈ ans(rk, DB(A)).

Correctness of the algorithm The algorithm modifies PerfectRef by storing the rewritings
in a graph structure. Also, extending the tuple of answer variables to store information on
generating rewritings does not alter the results, it only adds redundancies in the answers. In fact,
one can always remove the newly introduced answer variable from the projection of the results
and get precisely the same perfect reformulation as with PerfectRef .

Complexity of the algorithm The size of the perfect reformulation of a UCQ q is worst-case
exponential in the size of q [13]. Hence, generating the graph of rewritings is both exponential
in space and time with respect to the size of the input query. However, the algorithm runs in
polynomial time and space w.r.t. the size of the TBox T . The intuition is that the number of new
queries one can introduce is bounded by the number of axioms in the TBox [13].

Explanation Algorithm

The new rewriting algorithm provides a data-structure maintaining information on how
rewritings have been derived from the initial user query. The core explanation algorithm, then,
uses this information to generate the finite portion of the canonical model to be used in the
explanation of q(~c). The algorithm EXPLAINPOSITIVEANSWER(D, G) works as follows (see
Algorithm 5.2).

Given the QAP D = 〈O, q,~c〉 and the graph structure G, it first computes the set of rewrit-
ings that generate the answer tuple ~c. This is easy since the new reformulation procedure ex-
tends the result set by appending information on the rewriting generating each answer tuple. Let
computeGenerator be the function returning the set of rewritings generating answer ~c in QDP
D.

Let Q be the set of rewritings generating answer tuple ~c. Since we are interested in minimal
explanations, it is important to compute the solution based on the rewriting in Q that leads to a
minimal solution to D. For this reason, we associate to each ri ∈ Q a cost:

cost(ri) = bodySize(ri) +minPath(ri, q)

whereminPath(ri, q) gives the length of the shortest path S inG from ri to a query qj ∈ Vstart
and bodySize(ri) weights the size of the query in terms of the number of atoms occurring in the
body. The shortest path among queries in the graph is found by using the Dijkstra’s algorithm
for weighted graph (see Appendix A). Therefore, we reward rewritings with short derivations
and a small number of atoms. Note that this is exactly the definition of minimality for solutions
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1 INPUT: QDP D = 〈O, q,~c〉 and the graph of rewritings G of q w.r.t. O
2 OUTPUT: S shortest path from a rewriting generating ~c to qi ∈ q and a match for qi over
can(O).

1: Q = computeGenerator(D)
2: ri = computeMinimal(Q,G)
3: π = computeMatch(ri,D)
4: 〈dist, previous〉 = Dijkstra(G, ri)
5: min =∞
6: for qi ∈ Vstart do
7: if dist[qi] < min then
8: min = qi
9: end if

10: end for
11: S = shortestPath(ri,min, 〈dist, previous〉) (ordered sequence)
12: q = ri
13: while q 6∈ Vstart do
14: q′ = pop from S
15: if vars(q′) 6= vars(q) then
16: z = vars(q′) \ vars(q)
17: if (q′, q) ∈ Egr then
18: π = π ∪ {z 7→ newSkolem}
19: end if
20: if (q′, q) ∈ Eunify then
21: π = π ∪ {z 7→ joinedV ariable(label(q′, q))}
22: end if
23: end if
24: q = q′

25: end while
26: return (S, π)

Algorithm 5.2: function EXPLAINPOSITIVEANSWER(D, G)

to QDPs. Hence, by transforming the output of the algorithm into a solution for the QDP, we are
guaranteed to find a minimal solution to the problem.

Then, let ri be the minimal rewriting for q. We now compute a match π for ri over DB(A).
This can be done by extending the answer tuple of ri to include non-distinguished variables as
well and by evaluating again the query over the database instance. The result of this computation
is a match π for the rewriting.

Now, the aim of the algorithm is to traverse backwards the shortest path S from ri until an
initial query qi ∈ q is reached. During this backtracking through the shortest path leading to
an initial query, the match π for ri over DB(A) is extended by means of variable substitution
to be a match for the intervening queries, by using the information stored in the labels of graph
G on how queries have been generated and by using the technique described in Section 5.1. At
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the end of the backtracking, the algorithm has generated an extended match π for q(~c), i.e., the
finite relevant portion of the canonical model over which we can evaluate q. Then, the algorithm
returns the generated match together with shortest path S for deriving ri. This information can
then be used to generate proof trees and complex interactive explanation to be shown to domain
users.

Correctness of the algorithm The correctness of EXPLAINPOSITIVEANSWER(D, G) follows
from the high-level procedure explained in Section 5.1.

Complexity of the algorithm The procedure is based on the Dijkstra’s algorithm for shortest
paths, which is known to run in O(|V |2). In this case, the graph in input is the graph of rewrit-
ings. It follows that the algorithm runs in exponential space and time w.r.t. the size of the UCQ q
in input. Furthermore, a trace from a generating rewriting to a user query is at most polynomial
in the size of the TBox T , therefore the algorithm runs in polynomial time and space w.r.t. T .

Let us now show how KB inconsistency can be explained by making use of this explanation
procedure.

5.3 Explaining KB Inconsistency

As explained in Section 2.3, the inconsistency of a DL-LiteA ontology does not only depend on
the assertions occurring in the ABox. In fact, it can be generated by the combination of both
positive and negative inclusions asserted in the terminological component. For this reason, it is
important to give users a clear understanding on how axioms in the TBox and assertions in the
ABox generate an inconsistent Knowledge Base.

In [9], Borgida et. al provide an intuition on how to explain ontology unsatisfiability. Roughly
speaking, the idea is to search for individuals in the ABox that are either asserted to, or can be
deduced to, be member of an unsatisfiable concept or role. The procedure they employ to find
minimal explanations for the unsatisfiability of a concept or role is based on Breadth-First search
and, therefore, runs in exponential time in the size of the TBox1. All in all, the unsatisfiability
of an ontology is explained by providing the individual asserted to be a member of an unsat-
isfiable concept/role and the motivations leading the concept/role to be inconsistent. We now
provide a different solution to the problem, which is based on the algorithm computing positive
explanations to query answers that runs in polynomial time and space in the size of the TBox.

For this recall that deciding KB satisfiability can be reduced to the problem of evaluating a
Boolean query over a relational instance (see Section 2.3), i.e., the ontology is inconsistent if
and only if a specifically constructed query returns a non-empty answer. The procedure works
by the definition of a query qunsat, which asks for evidences in the data that do not satisfy the
constraints imposed at the TBox level. This query is defined by using the negative closure of
the TBox, cln(T ), hence combinations of negative and positive axioms are already taken into
account at the construction level. For this reason, the procedure does not employ any rewriting

1The supplementary Chapter I provides a structural algorithm for explaining concept/role inconsistency which
outperforms the one suggested in [9], since it runs in polynomial time in the size of the TBox.
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technique to define the query. For instance, in our mock ontology over the university domain
(see Figure 3.1), qunsat would contain qunsat() ← Postgrad(x),PartTime(x), because we
know that Postgrad and Undergrad are disjoint and, additionally, PartTime students are un-
dergraduates (see the definition of cln(T ) in Section 2.3).

In the following, we provide a new way of checking consistency which is based on query
rewritings and which returns evidences in the data justifying the inconsistency. Then, these
computed evidences are given in input to our explanation procedure for positive query answers,
which will highlight the TBox axioms used in finding the inconsistency.

Modified Satisfiability Algorithm

1 INPUT: DL-LiteA ontology O
2 OUTPUT: yes iff O is satisfiable. Otherwise, data-structures for explaining inconsistency.

1: q′unsat, q
′′
unsat, q

′′′
unsat = {⊥}

2: G = 〈V,E〉
3: for α ∈ NCI(T ) do
4: q′unsat = q′unsat ∪ {δ′(α)}
5: end for
6: G = PerfectRef ′(q′unsat, T ).
7: if ans(V,DB(A)) 6= ∅ then
8: return EXPLAINPOSITIVEANSWER(〈O, q′unsat,~c〉, G), where ~c is the first tuple in the

answers.

9: end if
10: for α ∈ NRI(T ) do
11: q′′unsat = q′′unsat ∪ {δ′(α)}
12: end for
13: (V,E) = PerfectRef ′(q′′unsat, T ).
14: if ans(V,DB(A)) 6= ∅ then
15: return EXPLAINPOSITIVEANSWER(〈O, q′′unsat,~c〉, G), where ~c is the first tuple in the

answers.

16: end if
17: for α ∈ funct(T ) do
18: q′′′unsat = q′′′unsat ∪ {δ′(α)}
19: end for
20: if ans(q′′′unsat, DB(A)) 6= ∅ then
21: return tuple breaking functionality assertion and the functionality assertion.
22: end if
23: return satisfiable

Algorithm 5.3: function UNSATISFIABLE’(O)

Let us now present the changes introduced by the new algorithm checking satisfiability of
DL-LiteA ontologies (see Algorithm 5.3). The basic idea is to define the query qunsat not in
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terms of the negative closure of the TBox, but rather by employing the perfect reformulation
algorithm. That is, we let the rewriting procedure find all the implied constraints from the
negative and positive inclusions in the TBox. By using the new algorithm PerfectRef ′, we also
have that the derivation of new negative inclusions from the TBox can be justified to the user.
Moreover, we extend the way the query is generated from the negative axioms occurring in the
terminological component in order to return the evidences of the values in the ABox that caused
a certain negative inclusion to be violated:

δ′(B1 v ¬B2) = q(x)← γ1(B1, x), γ2(B2, x)

δ′(Q1 v ¬Q2) = q(x, y)← ρ(Q1, x, y), ρ(Q2, x, y)

δ′((funct P)) = q(x, y, z)← P (x, y), P (y, z), y 6= z

δ′((funct P−) = q(x, y, z)← P (x, z), P (y, z), x 6= y

(γ and ρ are defined as before). This addition, however, requires some care on how we create
the final query to be evaluated, because queries do not have the same arity anymore and, hence,
they cannot be part of the same Union of CQs. For this reason, we use three different queries in
Algorithm 5.3 checking for violation of concept disjointness (NCI), role disjointness (NRI) and
functionality assertions, respectively.

Intuitively, the algorithm works as follows. It first goes through all the negative concept
inclusions explicitly asserted in the TBox and uses the function δ′ to derive a UCQ asking for
evidences not complying with these constraints. Then, by means of the procedure PerfectRef ′,
the algorithm derives the implied constraints by using the rewriting rules. For instance, let Ouni

be the university mock ontology, which contains α = UnderGrad v ¬PostGrad in the TBox.
Then, the following query will be generated by the application of δ′ to α:

q1(x)← UnderGrad(x),PostGrad(x);

The TBox further contains the axiom PartTime v UnderGrad , therefore we know that the
perfect reformulation of q1 w.r.t. Ouni contains:

q′1(x)← PartTime(x),PostGrad(x);

Given the graph of rewritings returned by PerfectRef ′, the resulting UCQ r is evaluated over
DB(A) and if the answers are not empty, then there is an evidence in the data, which does not
comply with the constraints expressed in the TBox. At this point, the explanation routine for
positive answers is ran to provide domain users with a complete justification for the presence of
the (possibly) implied constraint, which gives, together with the evidence in the data, a complete
understanding on the reasons why the ontology is unsatisfiable.

The same approach is repeated also for negative role inclusions, while for functionality as-
sertions it is not necessary to compute the perfect reformulation. The reason is that functional
roles cannot be specialized in DL-LiteA ontologies (see Section 2.1) and, hence, no other con-
straints can be further entailed. Figure 5.3 shows an example of the explanations provided to
justify an inconsistent ontology.
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q(x):- PostGrad(x), UnderGrad(x)

q(x):- PostGrad(x), PartTime(x)

PostGrad(arturo), PartTime(arturo) DATA LAYER

{x:arturo}

{x:arturo}

Figure 5.3: Recalling the mock ontology from Figure 3.1, we know that UnderGrad is disjoint from PostGrad .
Further assume that in the information system we have that arturo is both a PostGraduate and a PartTime student.
Then, the inconsistency explanation routine can, by means of query answer explanation, highlight the reasons leading
to such an unsatisfiable ontology by making use of the structure of rewritings.

Correctness of the algorithm It is not difficult to see that this procedure is equivalent to the
standard satisfiability procedure for DL-LiteA (see Algorithm 2.1). The reason is that it is known
that PerfectRef (and PerfectRef ′) is a correct procedure computing the perfect reformulation
of a query q w.r.t. a TBox T . Hence, one can compute the negative closure of a TBox T , cln(T ),
by encoding the explicit negative axioms occurring in T into a query q. Then, computing the
perfect reformulation amounts to apply rewriting steps, i.e. positive inclusions, over the given
negative axioms (encoded in the query). Therefore, a new rewriting in the perfect reformulation
can be understood as a new implied negative axiom. In fact, one can see from the definition
of cln(T ) that new negative inclusions can only be computed from the application of positive
inclusions from T . From the correctness and completeness of the rewriting procedure, one can
argue that the new procedure computes the same implied constraints as cln(T ). Therefore,
algorithm Unsatisfiable’ decides satisfiability of DL-LiteA ontologies.

Complexity of the algorithm The number of rewritings generated by the procedure is polyno-
mial in the size of the TBox. Each of this rewriting can be evaluated in AC0 data complexity over
the database. The query answers explanation procedure requires to store each single rewriting,
which are polynomially many in terms of T . Therefore, the whole algorithm runs in polynomial
space and time w.r.t. T .

This concludes this chapter, which introduced an algorithmic solution to the already de-
scribed problem of explaining positive query answers. In addition, it presented a new approach
in explaining KB inconsistency based on the explanation of positive query answers, which runs
in polynomial time w.r.t. the size of the TBox.
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CHAPTER 6
Conclusions and Future Work

This thesis tackled the problem of explaining query answers over lightweight ontologies. Lately,
there has been a lot of emphasis on Ontology-Based Data Access systems, i.e., data management
tools which mediate the access to data by means of a lightweight ontology. In this work, we
focused on the ontology language DL-LiteA: an expressive member of the DL-Lite family of
Description Logics at the basis of the OWL2-QL profile. In the context of explaining query
answers, we decided to focus on two main problems: the explanation of the absence of a tuple
in the answers and explaining the presence of a tuple in the results .

The problem of explaining the absence of results over DL ontologies was not yet given
attention in the literature. For this reason we have provided a formalization of the problem
of explaining negative query answers. A tuple is called a negative answer, if the user expects
it to be part of cert(q,O) but the tuple is actually not. In our framework based on abductive
reasoning, an explanation consists of an ABox that when added to the ontology leads the negative
answer to be returned in the results of the query. We define various problems that help us in
characterizing the complexity of this abduction problem, such as the existence of explanations
and relevance/necessity of assertions. We further consider minimality criteria to be applied over
explanations, such as subset-minimal and minimum explanation size preference orders. Within
this framework, we provide a characterization of the computational complexity of the various
problems for the DL DL-LiteA.

Differently, the explanation problem for positive answers over DL-LiteA ontologies was
already tackled in the literature, but not formally solved in terms of an implementable algorithm.
With the aim of closing this gap, we provide an algorithm which could be implemented in a real-
world system right out of the box. Furthermore, we employ this new algorithm to provide a new
solution to the problem of explaining the inconsistency of a DL-LiteA knowledge base.

Future work includes the implementation of the designed explanation algorithms over a real-
world OBDA-enabled reasoner, such as QuOnto1. The implementation would also require a

1http://www.dis.uniroma1.it/~quonto/
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study on Human-Computer Interaction in oder to devise the most suitable way for presenting
explanations to users.

Specifically for explanation of negative answers, it would be interesting to investigate the
application of this framework over different Description Logics. A perfect candidate seems to
be the EL family of DLs, which relies on a similar notion of query rewriting. Also, we would like
to investigate the problem in the case where the ontology signature and the explanation signature
may be different. In most cases the ontology vocabulary extends the database vocabulary. For
this reason, it may be the case that only a subset of the ontology signature may be used to
devise explanations [6]. Additionally, it is important to characterize formally the complexity of
computing solutions and provide algorithm solving the problem. Finally, it would be interesting
to consider semantic-based minimality criteria. For instance, one could consider a solution to be
minimal if it logically implies all other solutions to a given problem.

As regards the explanation of positive answers, in this thesis we focused only on computing
explanations, but we did not consider reasoning tasks over this problem. Therefore, it is impor-
tant in the future to consider reasoning tasks such as existence and recognition of solutions and
analyze their complexity in the DL-LiteA scenario.
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SUPPLEMENT I
Explaining TBox Reasoning

In Chapter 5, we introduced a new procedure for the explanation of ontology unsatisfiability,
which runs in polynomial time with respect to the given TBox. Borgida et. al in [9] have in-
troduced a procedure for explaining concept and role unsatisfiability, which runs in exponential
time w.r.t. the size of the TBox. However, it is known that for DL-LiteA the problem of checking
concept/role satisfiability can be reduced to the satisfiability problem for DL-LiteA ontologies
[13]. Therefore, the explanation problem for concept and role unsatisfiability can be solved in
polynomial-time in the size of the TBox.

The introduction of optimal explanation algorithms for TBox reasoning is important also
in the context of explanations of query answers. For instance, the absence of a solution to a
Query Abduction Problem may be caused by the inconsistency of a concept. Hence, a complete
explanation system should be able to motivate further the absence of a solution in terms of TBox
reasoning. Therefore, the aim of this supplementary chapter is to provide new polynomial-time
algorithms for the problem of explaining TBox reasoning. That is, we focus on explaining
subsumption and disjointness among concepts and roles, and, the unsatisfiability of concepts
and roles.

The new algorithms we propose are based on the Floyd-Warshall algorithm, which allows
the design of explanation procedures that run in polynomial time and space w.r.t. the size of
the TBox. This is a major improvement with respect to the explanation procedure for concept
unsatisfiability introduced in [9], which runs in exponential time in the size of the TBox.

I.1 Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm [25] is a graph analysis algorithm for finding shortest paths in a
weighted graph. The algorithm is based on dynamic programming and a single execution finds
the costs of the shortest paths between all pairs of vertices in the graph.

The algorithm works by comparing all the paths between each pair of nodes in the graph
and stores the cost of the optimal path. Let G = (V,E) be a weighted graph, where V is a set
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of nodes numbered from 1 to n and E the set of edges, then in worst case the algorithm takes
O(|V |3) to compute all the shortest paths, i.e. it’s polynomial in the number of vertexes.

The algorithm can be defined recursively by considering a function shortPath(i, j, k) (where
i, j, k are nodes) that returns the shortest possible path from i to j using only vertices 1 to k as
intermediate points along the way. Now, given this function and in order to apply induction, our
goal is to find the shortest path from each i to each j using only vertices 1 to k + 1. There are
only two possibilities:

1. the true shortest path uses only nodes from 1 to k, or

2. there exists some path that goes from i to k+1 and then from k+1 to j, which is optimal.

Assume there exists a better path from i to j passing through k+ 1, then this path will be the
concatenation of the shortest path from i to k+ 1 (using {1, . . . , k} nodes) and the shortest path
from k+ 1 to j (also using the same nodes). Therefore, we can define the function in a recursive
fashion as follows:

shortPath(i, j, k) = min{shortPath(i, j, k), shortPath(i, k, k−1) + shortPath(k, j, k−1)}

where the base case (k = 0) is defined as follows:

shortPath(i, j, 0) = edgeCost(i, j)

The algorithm repeatedly computes the shortest paths by increasing k until k = n, i.e., the
algorithm searches for all the shortest path passing through any node.

As it was mentioned before the algorithm is implemented in a linear programming manner as
it is clear from Algorithm I.1. At each step in the algorithm, path[i][j] is the shortest path from
i to j using intermediate vertices {1, . . . , k+ 1}. Each path[i][j] is initialized to edgeCost(i, j)
or infinity if there is no edge between i and j.

1: for k in V do
2: for i in V do
3: for j in V do
4: if path[i][k] + path[k][j] < path[i][j] then
5: path[i][j] = path[i][k] + path[k][j]
6: end if
7: end for
8: end for
9: end for
Algorithm I.1: function FloydWarshall(), where path is a 2-dimensional matrix.

Path reconstruction

The standard version of the algorithm stores only the cost of shortest path between two nodes,
but no information about the path itself. The algorithm can be slightly modified in order to
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permit the reconstruction of the shortest path between two nodes. Information to reconstruct all
paths can be stored in a single matrix next, where next[i][j] stores the vertex one must travel
through if one intends to take the shortest path from i to j. The next matrix is updated along
with the path matrix such that at completion both tables are complete and accurate. The path
from i to j is then the path from i to next[i][j], followed by path from next[i][j] to j. These two
shorter paths are determined recursively. This modified algorithm has the same space and time
complexity as the standard one.

I.2 Explanation Algorithms

TBox reasoning is probably the most well-known class of reasoning, which is used to uncover
implicit knowledge that is present in the terminological axioms. All the following explanation
algorithms are based on the Floyd-Warshall algorithm outlined in the previous section and hence
are made of two phases:

• an initialization phase that has to be carried out each time the ontology is modified, which
populates the two datastructures used in the graph algorithm,

• an explanation phase, in which the datastructures are used in order to explain a specific
reasoning service (e.g. concept subsumption).

We now introduce explanation algorithms for important reasoning tasks, namely Role/Concept
subsumption, Role/Concept Disjointness and Role/Concept unsatisfiability.

Role Subsumption

A role expressionR1 is said to be subsumed byR2 given a TBox T if and only if for all models I
we have that RI1 ⊆ RI2 . Due to the simplicity of the DL-LiteA language in terms of expressivity,
it is possible to devise a structural algorithm deciding role subsumption. According to [9], there
are only four reasons why a role inclusion can be entailed:

1. R1 is unsatisfiable, i.e., RI1 = ∅ and it trivially follows that RI1 ⊆ RI2 ;

2. {R1 v R2} ⊆ T , that is, the subsumption is explicitly stated in the TBox;

3. R1 and R2 are syntactically the same concept expression and hence subsumption is valid
because it is a reflexive relation;

4. there exists a role expression Rk such that {R1 v Rk} v T and {Rk v R2} v T ,
recursively.

It follows that explaining role subsumption is equivalent to finding the shortest path between
two vertices in the graph of role expressions, where the edge relation corresponds to the given
subsumption axioms and reflexive edges are added for each vertex. The case in which the role
expression R1 is unsatisfiable is explained in terms of the reason leading to this unsatisfiability,
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because it is more informative to the user. Please note that these four rules correspond to the ex-
planation rules: Given, Transitivity and Reflexivity which are introduced in the above mentioned
paper.

1: for R2 (Role expr) in T do
2: for R1 (Role expr) in T do
3: for R3 (Role expr) in T do
4: if ri[R1][R2] + ri[R2][R3] < ri[R1][R3] then
5: ri[R1][R2] = ri[R1][R2] + ri[R2][R3]
6: nextRole[R1][R3] = R2

7: end if
8: end for
9: end for

10: end for
Algorithm I.2: function INITIALIZERCI(T )

Then, the matrix of the Floyd-Warshall algorithm containing the cost of traversing the short-
est path from any two nodes is initialized as follows:

∀R1, R2 ∈ T . ri[R1][R2] =∞
∀R ∈ T . ri[R][R] = 0

∀R1, R2 ∈ T . T |= R1 v ⊥ → ri[R1][R2] = ri[R−1 ][R−2 ] = 0.5

∀R1, R2 ∈ T . {R1 v R2} ⊆ T → ri[R1][R2] = ri[R−1 ][R−2 ] = 1

where R1 and R2 are role expressions in the TBox. That is, if there is no subsumption between
two different roles in the TBox, the cost is infinite. Reflexive subsumption relations are pre-
ferred over given ones and are assigned a null cost. Similarly for subsumption generated by an
inconsistent subsumee, the cost is 0.5. For any given subsumption relation, the cost of traversing
the relation is 1. The reason for these different costs is to always choose the explanation that is
simpler, in the sense that we want to reward the explanations based on reflexive subsumptions
and on inconsistent concepts. In this way, the algorithm will not try to find a more complex
explanation, if it does not have to.

Algorithm I.2 uses the transitivity rule in order to compute the cost of all the subsumption
relations among roles occurring in T . Additionally, it computes the matrix nextRole which
allows to reconstruct the shortest path explaining the subsumption among two role expressions.

At this point, it is possible to define the explanation procedure explainRCI (see Algorithm
I.3). Given two roles R1, R2, the procedure first checks whether R1 is inconsistent w.r.t. the
TBox T . If this is the case, then we call the routine explaining the unsatisfiability of R1 w.r.t. T .
Otherwise, if R1 = R2, then we explain the subsumption with a reflexivity argument. Similarly,
if {R1 v R2} ⊆ T , then the axiom in the TBox is shown to the user. Finally, we use the
transitivity rule to explain subsumptions caused by the interactions of two or more axioms.

Correctness of the algorithm The correctness follows implicitly from the correctness of the
structural procedure outlined by Borgida et. al in [9].
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1: if T |= R1 v⊥ then
2: print R1 v R2 because explainUnsat(R1)
3: end if
4: if R1 = R2 then
5: print Reflexivity R1 vR2

6: end if
7: if R1 vR2 ∈ T then
8: print Given R1 vR2

9: end if
10: Rk = nextRole[R1, R2]
11: print explainRCI (R1, Rk) + explainRCI (Rk, R2) + ISA-Trans(R1 v R2)

Algorithm I.3: function EXPLAINRCI(R1, R2)

Complexity of the algorithm The fact that the algorithm runs in polynomial time follows
straightforwardly from the asymptotic complexity of the Floyd-Warshall algorithm, which is
O(|V |3). In this case, the number of vertexes in the graph is bounded by the number of roles
occurring in the TBox T .

Concept Subsumption

A concept expression C is said to be subsumed by the expression D w.r.t. a TBox T if and only
if for all interpretations I satisfying T , we have that CI ⊆ DI .

Explaining concept subsumption is a similar problem to the explanation of role inclusions.
The only difference is that in explaining concepts inclusions we have to deal with an additional
structural rule, which is the following one: if T |= Q1 vQ2 then, ∃Q1 v∃Q2 and ∃Q−1 v∃Q

−
2

are both entailed subsumptions.
The matrix of the Floyd-Warshall algorithm containing the cost of shortest paths is initialized

as before:

∀C,D ∈ T . ci[C][D] =∞
∀C ∈ T . ci[C][C] = 0

∀C,D ∈ T . T |= C v ⊥ → ci[C][D] = 0.5

∀C,D ∈ T . {C v D} ⊆ T → ci[C][D] = 1

where C and D are concept expressions in the TBox. But the way the matrix is filled in with the
missing costs is different. In fact, a part from the usual transitivity relation, we have to check
whether there are shortest paths derived from role inclusions. For this reason, the second part
of Algorithm I.4 traverses the role inclusion matrix searching for shortest paths and it applies
the new structural rule. That is, we search for two roles R1, R2 with T |= R1 v R2, such that
the cost associated to ∃R1 v ∃R2 is higher than computing the explanation for R1 v R2. The
algorithm treats in a similar way the case regarding inverse roles.

Then, the explanation routine EXPLAINPCI (see Algorithm I.5) is extended to cope with
this additional structural rule. Given the two concepts A and B and the two data-structures ci
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1: for C (Concept expr) in T do
2: for D (Concept expr) in T do
3: for E (Concept expr) in T do
4: if ci[D][C] + ci[C][E] < ci[D][E] then
5: ci[D][E] = ci[D][C] + ci[C][E]
6: nextConcept[D][E] = C
7: end if
8: end for
9: end for

10: end for
11: for Q2 (Role expr) in T do
12: for Q1 (Role expr) in T do
13: if ri[Q1][Q2] < ci[∃Q1][∃Q2] then
14: ci[∃Q1][∃Q2] = ri[Q1][Q2]
15: nextConcept[∃Q1][∃Q2] = null
16: end if
17: end for
18: end for
19: for Q2 (Role expr) in T do
20: for Q1 (Role expr) in T do
21: if ri[Q1][Q2] < ci[∃Q1

−][∃Q2
−] then

22: ci[∃Q1
−][∃Q2

−] = ri[Q1][Q2]
23: nextConcept[∃Q1

−][∃Q2
−] = null

24: end if
25: end for
26: end for

Algorithm I.4: function INITIALIZEPCI(T )

1: if T |= Av⊥ then
2: print A v B because explainUnsat(A)
3: end if
4: if nextConcept[A][B] ==∞ and A = B then
5: print Reflexivity AvA
6: end if
7: if nextConcept[A][B] ==∞ and AvB ∈ T then
8: print Given AvB
9: end if

10: K = nextConcept[A,B]
11: if K == null and A = ∃R1, B = ∃R2 then
12: return explainRCI(R1, R2)
13: end if
14: print explainPCI (A,K) + explainPCI (K,B) + ISA-Trans(A v B)

Algorithm I.5: function EXPLAINPCI(A,B)

70



and nextConcept produced in the initialization phase, the algorithm works as follows. It first
checks that A is unsatisfiable, in which case it calls the explanation routine justifying concept
inconsistency. Otherwise, the algorithm deals in a similar way with the reflexivity and given
cases. Then, before applying transitivity, it checks whether A = ∃R1 and B = ∃R2 and that
nextConcept[A,B] = null . If this is the case, then by construction of the data-structure we
know that the shortest path justifying the subsumption is the one explaining R1 v R2. Hence,
we use EXPLAINRCI to compute an explanation for R1 v R2. If K 6= null , then we apply the
usual transitivity rule.

Correctness of the algorithm The algorithm mimics the structural procedure for computing
concept subsumptions. The claim follows.

Complexity of the algorithm The algorithm runs in polynomial time w.r.t. the size of the
TBox. As for the previous algorithm, the predominant cost is the run of the Floyd-Warshall
algorithm, which runs in O(|T |3).

Concept Disjointness

Let us now focus on the explanation of concept disjointness, two concept expressions are said
to be disjoint w.r.t. to the TBox T (T |= A v ¬B) if for all models I of T we have that
AI ∩ BI = ∅. Obviously, if either A or B are unsatisfiable, it follows that they are disjoint as
well.

In this case, the matrix containing the costs of the shortest paths between two disjoint con-
cepts is initialized as follows:

∀C,D ∈ T . disj[C][D] =∞
∀C∀D ∈ T . T |= C v ⊥ → disj[C][D] = 0.5 = disj[D][C]

∀D∀C ∈ T . T |= D v ⊥ → disj[C][D] = 0.5 = disj[D][C]

∀C,D ∈ T . {C v ¬D} ⊆ T → disj[C][D] = 1 = disj[D][C]

That is, disjoint relationships generated by inconsistent concepts are rewarded against explicit
disjoint axioms. This is to avoid long explanations for a disjoint relationship, which is generated
by a single inconsistent concept. Note that, since the disjointness relation is symmetric, at the
implementation level only half matrix can be stored.

Algorithm I.6 shows how to compute the shortest disjointness path between two concepts.
Implicit disjointness are computed using the inductive definition of the negative closure of the
TBox (see Section 2.3). More specifically, we use rules (3)-(5) which are the only ones introduc-
ing concept disjointness axioms among concept expressions. Assume that we want to compute
the cost of D v ¬E. Then, we have to search for a concept C, such that (a) D v C and (b)
C v ¬E. The cost of D v ¬E is simply the sum of the cost of (a) and (b). Note that, rules (4)-
(5) are taken into account in the algorithm, since by the way matrix ci is computed, domain and
range inclusions of roles are already considered. As usual, the algorithm maintains information
on how to reconstruct the shortest path.
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1: for C (Concept expr) in T do
2: for D (Concept expr) in T do
3: for E (Concept expr) in T do
4: if ci[D][C] + disj[C][E] < disj[D][E] then
5: disj[D][E] = ci[D][C] + disj[C][E]
6: disj[E][D] = disj[D][E]
7: nextDisj[D][E] = C = nextDisj[D][E]
8: end if
9: end for

10: end for
11: end for

Algorithm I.6: function INITIALIZEDISJOINTNESS(T )

Algorithm I.7 takes as input two concept expressions A and B such that T |= A v ¬B.
As with concept subsumption, the procedure checks whether the disjointness is generated by
an inconsistency, in such a case the disjointness is explained to the user in terms of the cause
of the unsatisfiability of the concept. Otherwise, if the disjointness path is not complex, i.e., it
is not involving any other vertexes apart from A and B, the given rule is used for the explana-
tion. In case of a complex path, the explanation is recursively computed using the disjointness
structural rule. This structural rule combines the explanation of a positive concept inclusion
and the explanation of a disjointness among concepts. For this reason, in order to compute the
correct subsumption explanation, the EXPLAINPCI algorithm is used. In this way, the user is
provided with a comprehensive explanation of the disjointness, which intrinsically depends on
an explanation of a concept subsumption.

1: if A or B is inconsistent then
2: print A v ¬B because explainUnsat(A or B)
3: return
4: end if
5: if nextDisj[A][B] ==∞ then
6: print Given Av ¬B
7: end if
8: K = nextDisj[A,B]
9: print explainPCI (A,K) + explainDisj (K,B) + Disjointness(A v ¬B)

Algorithm I.7: function EXPLAINDISJ(A,B)

Correctness of the algorithm The algorithm computes implied disjointness axioms using
structural rules derived from the definition of cln(T ). Also, algorithm EXPLAINPCI is used
to guarantee a complete explanation of the reasons leading to the disjointness of two concepts.

Complexity of the algorithm The algorithm runs in polynomial time w.r.t. the size of the
TBox. The argument is similar to the ones used before.
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The explanation of role disjointness can be performed in a very similar way. In the following,
we assume to have a matrix roleDisj, which is the equivalent to disj for role expressions.

Concept and Role Unsatisfiability

A concept expression C (role expression R) is said to be unsatisfiable w.r.t. TBox T if and only
if there is no model I of T , such that CI 6= ∅ (RI 6= ∅). As it was highlighted in [9], there are
three main reasons why a concept could result in being unsatisfiable:

1. the concept C is subsumed by two concepts that are disjoint;

2. the concept C is subsumed by a concept expression of the for ∃R (∃R−) and R is unsat-
isfiable; or,

3. C is subsumed by an unsatisfiable concept.

Similarly, a role can only be unsatisfiable due to subsumption by another unsatisfiable role,
subsumption by disjoint roles, or due to its current domain or range being unsatisfiable.

In oder to take these reasons into account, we define two different vectors: cUnsat[X]
and rUnsat[X], which store the cost of the unsatisfiability of concept/role X . The vectors are
initialized as follows:

∀C. C v ¬C ∈ T cUnsat[C] = 0 ∀R. Rv ¬R ∈ T rUnsat[R] = 0

1: for A,B such that disj[A][B] 6=∞ do
2: for C such that ci[C][A] 6=∞ and ci[C][B] 6=∞ do
3: if ci[C][A] + ci[C][B] + disj[A][B] < cUnsat[C] then
4: cUnsat[C] = ci[C][A] + ci[C][B] + disj[A][B]
5: nextCon[C] = (A,B)
6: end if
7: end for
8: end for
9: for A,B such that ci[A][B] 6=∞ and cUnsat[B] 6=∞ do

10: if ci[A][B] + cUnsat[B] < cUnsat[A] then
11: cUnsat[A] = ci[A][B] + cUnsat[B]
12: nextCon[A] = (B)
13: end if
14: end for
15: for A,∃R such that ci[A][∃R] 6=∞ and rUnsat[R] 6=∞ do
16: if ci[A][∃R] + rUnsat[R] < cUnsat[A] then
17: cUnsat[A] = ci[A][∃R] + rUnsat[R]
18: nextCon[A] = (∃R,R)
19: end if
20: end for

Algorithm I.8: function COMPUTECUNSAT(T )
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Let us now detail how the cost of the unsatisfiability of a concept expressionC is determined.
Algorithm I.8 works upon the three reasons leading to unsatisfiability in order to compute the
correct cost of unsatisfiability. It first searches for two disjoint concepts that both subsume C.
Then, it checks whether there exists a subsuming concept D which is known to be unsatisfiable.
Finally, it searches for a concept expression ∃R that subsumes C for which R is unsatisfiable.
The algorithm recursively computing the cost of role unsatisfiability works in a similar way (see
Algorithm I.9). Please note that the content of the two vectors depend on one another. For this
reason, the computations have to be ran in parallel and iteratively, until no new modification
to the contents of the two vectors can be made. This process is, anyway, guaranteed to termi-
nate in polynomial time, given that the number of implied inconsistent concepts and roles is
polynomially bounded by the size of the TBox.

1: for R′, R′′ such that roleDisj[R′][R′′] 6=∞ do
2: for R such that ri[R][R′] 6=∞ and ri[R][R′′] 6=∞ do
3: if ri[R][R′] + ri[R][R′′] + disj[R′][R′′] < rUnsat[R] then
4: rUnsat[R] = ri[R][R′] + ri[R][R′′] + disj[R′][R′′]
5: nextRole[R] = (R′, R′′)
6: end if
7: end for
8: end for
9: for R,R′ such that ri[R][R′] 6=∞ and rUnsat[R′] 6=∞ do

10: if ri[R][R′] + rUnsat[R′] < rUnsat[R] then
11: rUnsat[R] = ri[R][R′] + rUnsat[R′]
12: nextRole[R] = (R′)
13: end if
14: end for
15: for R such that cUnsat[∃R] 6=∞ do
16: if cUnsat[∃R] < rUnsat[R] then
17: rUnsat[R] = cUnsat[∃R]
18: nextRole[R] = (∃R)
19: end if
20: end for

Algorithm I.9: function COMPUTERUNSAT(T )

Finally, Algorithm I.10 and I.11 compute the explanation of the unsatisfiability of a concept
or role by distinguishing the different cases and applying the different structural rules.

Correctness of the algorithm The algorithm works upon the three different structural rules
that can be used to determine the inconsistency of a concept or role. Also, the fact that the
content of the two vectors is computed in a inductive fashion, it guarantees that every possible
unsatisfiability source is inspected and that we always compute minimal solutions.
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1: if Av⊥ ∈ T then
2: print Given Av⊥
3: return
4: end if
5: if Av ¬A ∈ T then
6: print Given Av ¬A
7: return
8: end if
9: if nextCon[A] == (C,D) with A,B concepts then

10: print explainPCI (A,C) + explainPCI (A,D) + explainDisj (C,D)
11: end if
12: if nextCon[A] == (C,R) with R role then
13: print explainPCI (A,C) + explainRoleUnsat(R)
14: end if
15: if nextCon[A] == (B) then
16: print explainPCI (A,B) + explainConceptUnsat(B)
17: end if

Algorithm I.10: function EXPLAINCONCEPTUNSAT(A)

1: if Rv⊥ ∈ T then
2: print Given Rv⊥
3: return
4: end if
5: if Av ¬A ∈ T then
6: print Given Rv ¬A
7: return
8: end if
9: if nextRole[R] == (R′, R′′) with R′, R′′ concepts then

10: print explainRCI (R,R′) + explainRCI (R,R′′) + explainDisj (R′, R′′)
11: end if
12: if nextRole[R] == (∃R) then
13: print explainConceptUnsat(∃R)
14: end if
15: if nextRole[R] == (R′) then
16: print explainRCI (A,R′) + explainRoleUnsat(R′)
17: end if

Algorithm I.11: function EXPLAINROLEUNSAT(R)
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Complexity of the algorithm The computation of the two vectors does not require more than
a polynomial number of steps in the size of the TBox. The reason is that the number of concept
and role that one can deduce to be unsatisfiable is polynomially bounded by the size of the TBox.
Also, computing the cost of an unsatisfiable concept or role can be done in polynomial-time,
since the computation is based on the Floyd-Warshall algorithm. Hence, the whole algorithm
runs in polynomial time.

In this supplementary chapter, we have introduced new algorithms for the explanation of
key reasoning tasks over DL-LiteA TBoxes. The procedures are built upon the famous Floyd-
Warshall algorithm for finding shortest paths over weighted graphs. This basis allows us to
provide algorithms which are both polynomial in time and space with respect to the size of the
TBox.
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APPENDIX A
Dijkstra’s Algorithm

1 INPUT: A query graph G, a source query.
2 OUTPUT: A binary tuple: the first component contains all the costs of all shortest path

from s, the second component contains information on how to reconstruct the paths.
1:

2: for vertex v in G do
3: dist[v] := infinity
4: previous[v] := undefined
5: end for
6: dist[source] := 0
7: Q := the set of all nodes in Graph
8: while Q is not empty do
9: u := vertex in Q with smallest dist[]

10: if dist[u] = infinity then
11: break
12: end if
13: remove u from Q
14: for neighbor v of u where v has not yet been removed from Q do
15: alt := dist[u] + distbetween(u, v)
16: if alt < dist[v] then
17: dist[v] := alt
18: previous[v] := u
19: end if
20: end for
21: end while
22: return (dist[], previous[])

Algorithm A.1: function Dijkstra(G, s)
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