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A matroid describes a dependence relation on a
ground set E.

■ Example: Linearly dependent columns of a
matrix.

■ Example: Linearly dependent vectors in a
vector space.

■ Example: Cycles in a graph.
■ Example: Algebraic dependence.
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■ Independent subsets I of E

◆ downwards closed
◆ nontrivial
◆ independence augmentation

■ Flats (closed sets) F

◆ nontrivial
◆ closed under intersection
◆ partitioning

■ Rank function r : 2E → N

◆ bounded
◆ monotonic
◆ valuation

■ Closure cl : 2E → 2E

■ Bases B
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loop
isthmus (coloop)
parallel elements

geometric lattice
lattice of flats
deletion
embedding
contraction
minor
“quotient”
loopless
simple
free
simplification
representable
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Strong map f : M → N :

■ preimage of a closed set is closed
■ r(f(Y )) − r(f(X)) ≤ r(Y ) − r(X) for all

X ⊆ Y ⊆ E(M)
■ L(f) : L(M) → L(N) preserves joins and

sends atoms to atoms or bottom
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Pointed matroid:
Matroid with distinguished loop •
Matroid categories Pointed Unpointed

All Matr• Matr
Loopless LMatr• LMatr
Simple SMatr• SMatr
Free FMatr• FMatr

Pointed categories have pointed maps as
morphisms
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Matr• >
// Matrii ⊥

// Setgg

■ Monomorphism=injective
■ Epimorphism=surjective
■ Isomorphism=bijective and flats map to flats
■ “quotient”=bijective
■ In pointed categories, contraction is a strong

map.
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Functor F : C → D

■ “nearly full”=surjective on morphisms
■ “nearly faithful”: M monoid, C enriched in

left M -actions, F (g) = F (g) ⇒ f = m ∙ g for
some m ∈ M
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Matr•

si•=S◦L

UU
L

⊥
// GLat

S

ii

■ L full (nearly full for unpointed)
■ L maps “quotients” to quotients (and the

associated restriction is nearly full)
■ L maps minors to subobjects
■ Epimorphisms are surjections in GLat
■ S embedding
■ SMatr• is the category of Eilenberg-Moore

algebras of si•
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For M and N representable over k, Q
representable over extension of k

⇓
M nearly full for k = Q
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Any functor Graph → Matr giving the cycle
matroid on a graph cannot be surjective on
objects, injective on objects, full or faithful.
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■ FMatr is isomorphic to Set and FMatr• is
isomorphic to Set•.

■ SMatr, LMatr, Matr, SMatr•, LMatr•
and Matr• have all coproducts, all equalisers
and do not generally have products,
coequalisers, pullbacks, pushouts or
exponentials.

■ Every contraction is a coequaliser in Matr•.
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■ Matr•

◆ Orthogonal: (Epimorphisms, embeddings)
◆ Orthogonal: (Lattice-preserving maps, maps

injective on elements of each rank-1 flat)

■ GLat

– Contraction in GLat
– Embedding in GLat

◆ Weak: (Embedding, contraction)

Any orthogonal factorisation system (L, R) in GLat induces

an orthogonal factorisation system (L−1(L),R′) in Matr•
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■ Adding loops Matr → Matr
■ Adding isthmuses Matr → Matr

– Category Matr∗
– Category Matr∗n
■ Contraction Matr∗n+1 → Matr∗n
■ Deletion Matr∗n+1 → Matr∗n (right adjoint

to inclusion)

Taking minors is functorial.
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Matr× (matroids with a distinguished element)
has parallel connection as coproduct and series
connection, its dual operation, as an affine
monoidal structure.
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Every run of the greedy algorithm produces a
maximal chain of epimorphisms in a subcategory
of V ectbR.The greedy algorithm solves the
optimization problem if and only if the chains in
V ectbR induced by all runs have the same limit.
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