The category of matroids

Chris Heunen, Vaia Patta

February 19, 2016

Objects

What's a matroid? No really, what's a matroid?

Terminology

Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Objects

Objects
What's a matroid?
No really, what's a
matroid?
Terminology
Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Objects	Λ
What's a matroid?	
No really, what's a matroid?	gr
Terminology	-
Morphisms	
Basic properties	
Functors	
Limits and colimits	
Adjunctions	

Factorisation

Constructions

Greedy algorithm

A matroid describes a dependence relation on a ground set E.

Example: Linearly dependent columns of a matrix.

Objects	A mat
What's a matroid? No really, what's a matroid? Terminology	ground
Morphisms	Fx
Basic properties	
Functors	ma
Limits and colimits	Ex
Adjunctions	
Factorisation	Ve
Constructions	
Greedy algorithm	

- Example: Linearly dependent columns of a matrix.
- Example: Linearly dependent vectors in a vector space.

Objects What's a matroid? No really, what's a matroid?	A mat groun
Terminology <u>Morphisms</u> <u>Basic properties</u> Functors	■ E> m
Limits and colimits Adjunctions	E>
Factorisation Constructions	■ E>
Greedy algorithm	

- Example: Linearly dependent columns of a matrix.
- Example: Linearly dependent vectors in a vector space.
 - Example: Cycles in a graph.

Objects	A ma
What's a matroid?	
No really, what's a	<u>arko III</u>
matroid?	groui
Terminology	C
Morphisms	- E
Basic properties	
Functors	n
Limits and colimits	E E
Adjunctions	
Factorisation	V
Constructions	E E
Greedy algorithm	E F

- Example: Linearly dependent columns of a matrix.
- Example: Linearly dependent vectors in a vector space.
 - Example: Cycles in a graph.
 - Example: Algebraic dependence.

No really, what's a matroid?

Objects

What's a matroid? No really, what's a matroid?

Terminology

Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Independent subsets ${\cal I}$ of E

- downwards closed
- nontrivial
- independence augmentation
- Flats (closed sets) ${\cal F}$
 - nontrivial
 - closed under intersection
 - partitioning

Rank function $r: 2^E \to \mathbb{N}$

- bounded
- monotonic
- valuation

Closure $cl: 2^E \rightarrow 2^E$ Bases \mathcal{B}

Objects What's a matroid? No really, what's a matroid? Terminology	loop isthmus (coloop) parallel elements
Morphisms	
Basic properties	
Functors	
Limits and colimits	
Adjunctions	
Factorisation	
Constructions	

Greedy algorithm

Objects

What's a matroid? No really, what's a matroid?

Terminology

Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

loop isthmus (coloop) parallel elements geometric lattice lattice of flats

ObjectsIOOPWhat's a matroid?isthrNo really, what's a
matroid?isthrTerminologyparaMorphismsgeonBasic propertieslatticFunctorsdeletLimits and colimitsembodAdjunctionscontFactorisationminoGreedy algorithm"quot

isthmus (coloop) parallel elements geometric lattice lattice of flats deletion embedding contraction minor "quotient"

Objects loop What's a matroid? No really, what's a matroid? Terminology Morphisms Basic properties Functors Limits and colimits Adjunctions Factorisation Constructions Greedy algorithm free

isthmus (coloop) parallel elements geometric lattice lattice of flats deletion embedding contraction minor "quotient" loopless simple simplification representable

Objects

Morphisms

Strong maps

Subcategories

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Morphisms

Strong maps

Objects Morphisms Strong maps Subcategories Basic properties Functors Limits and colimits

- Adjunctions
- Factorisation
- Constructions
- Greedy algorithm

Strong map $f: M \to N$:

preimage of a closed set is closed $r(f(Y)) - r(f(X)) \le r(Y) - r(X)$ for all $X \subseteq Y \subseteq E(M)$ $L(f) : L(M) \to L(N)$ preserves joins and sends atoms to atoms or bottom

Subcategories

cts	
	cts

Morphisms

Strong maps

Subcategories

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Pointed matroid:Matroid with distinguished loopMatroid categoriesPointedAllLooplessLMatr.LMatr.

A 11	IVIALI 🖕	IVIALI
Loopless	LMatr.	LMatr
Simple	SMatr.	SMatr
Free	$FMatr_{ullet}$	FMatr
Pointad catagorias ha	vo pointo	d mane ac

Pointed categories have pointed maps as morphisms

Objects

Morphisms

Basic properties

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Basic properties

Objects

Morphisms

Basic properties

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

 $Matr_{\bullet} \xrightarrow{\top} Matr_{\bot} Set$

Objects

Morphisms

Basic properties

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

 $Matr_{\bullet} \xrightarrow{} Matr_{\bullet} Set$

Monomorphism=injective

Morphisms
Basic properties

Basic properties

Functors

Objects

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

 $Matr_{\bullet} \xrightarrow{} Matr_{\bot} Set$

Monomorphism=injective Epimorphism=surjective



Greedy algorithm

 $Matr_{\bullet} \xrightarrow{\neg} Matr_{\bot} \xrightarrow{>} Set$

Monomorphism=injective Epimorphism=surjective Isomorphism=bijective and flats map to flats



 $Matr_{\bullet} \xrightarrow{\neg} Matr_{\bot} \xrightarrow{>} Set$

Monomorphism=injective Epimorphism=surjective Isomorphism=bijective and flats map to flats "quotient"=bijective

 $Matr_{\bullet} \xrightarrow{\neg} Matr_{\bot} > Set$

Monomorphism=injective Epimorphism=surjective Isomorphism=bijective and flats map to flats "quotient"=bijective In pointed categories, contraction is a strong map.

Objects

Morphisms

Basic properties

Functors

General notions

Geometric lattices

Vector spaces

Vector Spaces

Vector spaces and

geometric lattices

 Graphs

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Functors

General notions

Functor $F: C \to D$

Morphisms

Basic properties

Functors

Objects

General notions

Geometric lattices

Vector spaces

Vector Spaces

Vector spaces and

geometric lattices

Graphs

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

"nearly full" =surjective on morphisms "nearly faithful": M monoid, C enriched in left M-actions, $F(g) = F(g) \Rightarrow f = m \cdot g$ for some $m \in M$

\sim			
()	hı	ec	ts
\sim	~J		LJ

Morphisms

Basic properties

Functors

General notions

Geometric lattices

Vector spaces

Vector Spaces

Vector spaces and

geometric lattices

Graphs

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

 $\begin{array}{c} Matr_{\bullet} \xrightarrow{L} GLat \\ \bigcirc & \searrow \\ si_{\bullet} = S \circ L \end{array}$

Objects

Morphisms

Basic properties

Functors

General notions

Geometric lattices

Vector spaces

Vector Spaces

Vector spaces and

geometric lattices

Graphs

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

 $\underbrace{Matr_{\bullet} \xrightarrow{L} GLat}_{Si_{\bullet}=S\circ L}$

L full (nearly full for unpointed)

- Objects
- Morphisms
- Basic properties
- Functors
- General notions
- Geometric lattices
- Vector spaces
- Vector Spaces Vector spaces and geometric lattices
- Graphs
- Limits and colimits

- Adjunctions
- Factorisation
- Constructions
- Greedy algorithm

 $Matr_{\bullet} \xrightarrow{L} GLat$ $si = S \circ L$

L full (nearly full for unpointed) L maps "quotients" to quotients (and the associated restriction is nearly full)

Objects	
Morphisms	
Basic properties	
Functors	
General notions	
Geometric lattices	
Vector spaces	_
Vector Spaces	
Vector spaces and	_
geometric lattices	
Graphs	
Limits and colimits	
Adjunctions	
Factorisation	

Constructions

Greedy algorithm

 $Matr_{\bullet} \xrightarrow{L} GLat$ $\bigcup_{si_{\bullet}=S \circ L} S$

L full (nearly full for unpointed) L maps "quotients" to quotients (and the associated restriction is nearly full) L maps minors to subobjects

Objects

Geometric lattices

Objects
Morphisms
Basic properties
Functors
General notions
Geometric lattices
Vector spaces
Vector Spaces
Vector spaces and
geometric lattices
Graphs
Limits and colimits
Adjunctions
Factorisation
Constructions

Greedy algorithm

 $Matr_{\bullet} \xrightarrow{L} GLat$ $\bigcup_{si_{\bullet}=S \circ L} S$

L full (nearly full for unpointed) L maps "quotients" to quotients (and the associated restriction is nearly full) L maps minors to subobjects Epimorphisms are surjections in *GLat*

Objects

Geometric lattices

Morphisms	
Basic properties	
Functors	
General notions	
Geometric lattices	
Vector spaces	
Vector Spaces	
Vector spaces and geometric lattices	
Graphs	
Limits and colimits	
Adjunctions	
Factorisation	
Constructions	
Greedy algorithm	

 $Matr_{\bullet} \xrightarrow{L} GLat$ $\bigcup_{si_{\bullet}=S \circ L} S$

- L full (nearly full for unpointed)
 L maps "quotients" to quotients (and the associated restriction is nearly full)
 L maps minors to subobjects
 Enimorphisms are surjections in *CL at*
- Epimorphisms are surjections in *GLat* S embedding

- Objects
- Morphisms
- Basic properties
- Functors
- General notions
- Geometric lattices
- Vector spaces
- Vector Spaces Vector spaces and geometric lattices
- Graphs
- Limits and colimits
- Adjunctions
- Factorisation
- Constructions
- Greedy algorithm

 $Matr_{\bullet} \xrightarrow{L} GLat$ $\bigcup_{si_{\bullet}=S \circ L} S$

- L full (nearly full for unpointed)
- L maps "quotients" to quotients (and the associated restriction is nearly full)
- L maps minors to subobjects
- Epimorphisms are surjections in *GLat*
- S embedding

 $SMatr_{\bullet}$ is the category of Eilenberg-Moore algebras of si_{\bullet}

Vector spaces

- Objects
- Morphisms
- Basic properties
- Functors
- General notions
- Geometric lattices
- Vector spaces
- Vector Spaces
- Vector spaces and
- geometric lattices
- Graphs
- Limits and colimits
- Adjunctions
- Factorisation
- Constructions
- Greedy algorithm

 $FVect_k \xrightarrow{M} Matr_{\bullet}$ $MVect_k$

- Objects
- Morphisms
- Basic properties
- Functors
- General notions
- Geometric lattices
- Vector spaces
- Vector Spaces Vector spaces and geometric lattices
- Graphs
- Limits and colimits
- Adjunctions
- Factorisation
- Constructions
- Greedy algorithm

 $FVect_k \xrightarrow{M} Matr_{\bullet}$ $MVect_k$

 \overline{M} left Kan extension of M

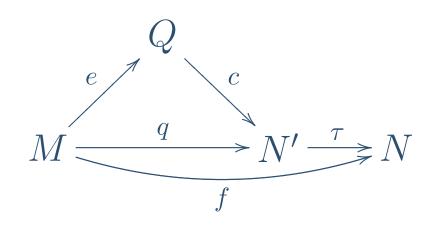
Vector Spaces

Morphisms
Basic properties
Functors
General notions
Geometric lattices
Vector spaces
Vector spaces
Vector spaces and
geometric lattices
Graphs
Limits and colimits
Adjunctions
Factorisation

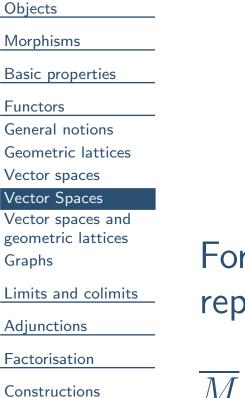
Constructions

Objects

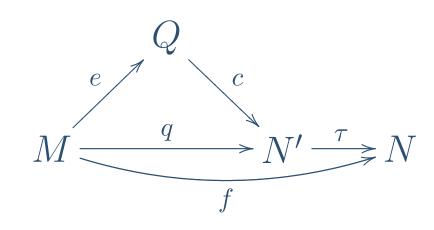
Greedy algorithm



For M and N representable over $k, \ Q$ representable over extension of k



Greedy algorithm



For M and N representable over k, Q representable over extension of k $\downarrow \downarrow$ \overline{M} nearly full for $k = \mathbb{Q}$

Vector spaces and geometric lattices

Objects	$L \circ M$
Morphisms	
Basic properties	
Functors	$FVect_k \xrightarrow{M} Matr_{\bullet} \xrightarrow{L} GLat$
General notions	
Geometric lattices	
Vector spaces	\overline{M} $si_{\bullet}=S\circ L$
Vector Spaces	
Vector spaces and	$MVect_k$
geometric lattices	
Graphs	$I \sim M$ poorly foithful
Limits and colimits	$L \circ M$ nearly faithful

Adjunctions

Factorisation

Constructions

Greedy algorithm

Graphs

Objects	A
Morphisms	-
Basic properties	n
Functors	С
General notions	Ŭ
Geometric lattices	
Vector spaces	
Vector Spaces	
Vector spaces and geometric lattices	
Graphs	
Limits and colimits	
Adjunctions	
Factorisation	
Constructions	
Greedy algorithm	

Any functor $Graph \rightarrow Matr$ giving the cycle matroid on a graph cannot be surjective on objects, injective on objects, full or faithful.

\sim		
()	h	loctc.
~ /		
\sim	~	10000

Basic properties

Functors

Limits and colimits

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Limits and colimits

Limits and colimits

Objects		
Morphisms		
Basic properties		
Functors		
Limits and colimits		
Limits and colimits		
Adjunctions		

Factorisation

Constructions

Greedy algorithm

FMatr is isomorphic to Set and FMatr. is isomorphic to Set. SMatr, LMatr, Matr, SMatr., LMatr. and Matr. have all coproducts, all equalisers and do not generally have products, coequalisers, pullbacks, pushouts or exponentials.

Every contraction is a coequaliser in $Matr_{\bullet}$.

Objects	\sim		
Objects	()	h	octo
	\mathbf{v}	U	IECTS
	-	~	

Basic properties

Functors

Limits and colimits

Adjunctions

Pointed Categories Unpointed Categories

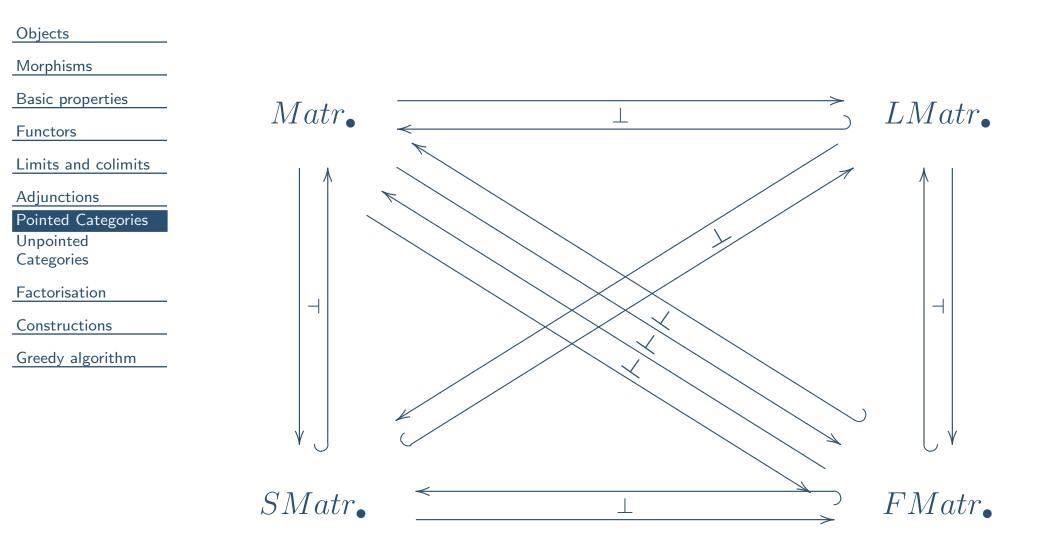
Factorisation

Constructions

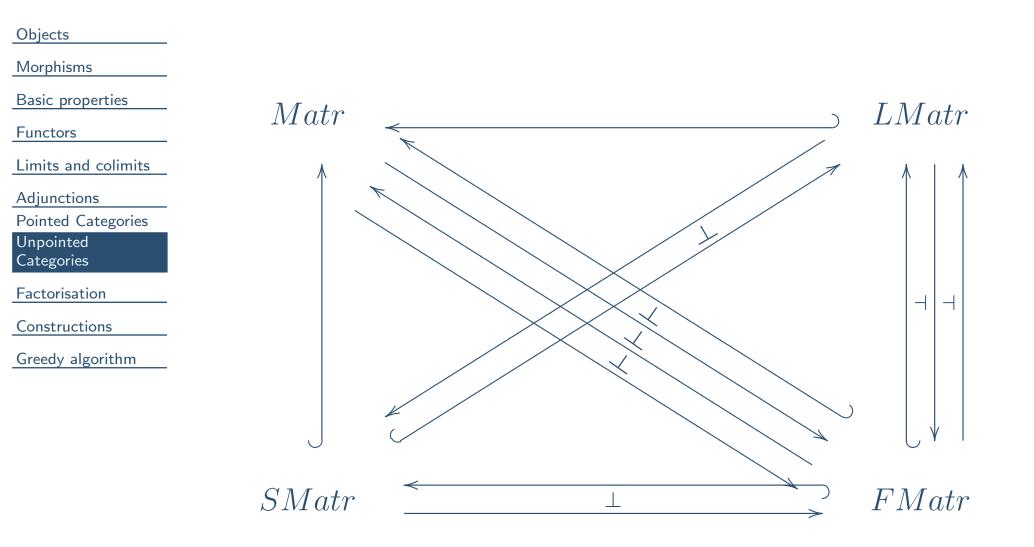
Greedy algorithm

Adjunctions

Pointed Categories



Unpointed Categories



\sim		
()	h	octo
\sim	~	

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation Factorisation

systems

Constructions

Greedy algorithm

Factorisation

Factorisation systems

Objects

Morphisms

- Basic properties
- Functors

Limits and colimits

Adjunctions

Factorisation Factorisation systems

Constructions

Greedy algorithm

$Matr_{\bullet}$

Orthogonal: (Epimorphisms, embeddings)
 Orthogonal: (Lattice-preserving maps, maps injective on elements of each rank-1 flat)

Factorisation systems

Objects

Morphisms

- Basic properties
- Functors
- Limits and colimits
- Adjunctions
- Factorisation Factorisation systems
- Constructions
- Greedy algorithm

$Matr_{\bullet}$

- Orthogonal: (Epimorphisms, embeddings)
 Orthogonal: (Lattice-preserving maps, maps injective on elements of each rank-1 flat)
- GLat
 - Contraction in *GLat*
 - Embedding in *GLat*
 - Weak: (Embedding, contraction)

Factorisation systems

|--|

Morphisms

- Basic properties
- Functors
- Limits and colimits
- Adjunctions
- Factorisation Factorisation systems
- Constructions
- Greedy algorithm

$Matr_{\bullet}$

- Orthogonal: (Epimorphisms, embeddings)
 Orthogonal: (Lattice-preserving maps, maps injective on elements of each rank-1 flat)
- GLat
 - Contraction in *GLat*
 - Embedding in *GLat*
 - Weak: (Embedding, contraction)

Any orthogonal factorisation system (\mathcal{L}, R) in GLat induces an orthogonal factorisation system $(L^{-1}(\mathcal{L}), \mathcal{R}')$ in $Matr_{\bullet}$

Objects

Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Functors

Monoidal structure

Greedy algorithm

Constructions

Functors

()hiocte	
ODIECLS	

Morphisms

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Functors

Monoidal structure

Greedy algorithm

Adding loops $Matr \rightarrow Matr$ Adding isthmuses $Matr \rightarrow Matr$

Functors

Objects	
Morphisms	
Basic properties	
Functors	
Tunctors	
Limits and colimits	_
Adjunctions	
Factorisation	
Constructions	
Functors	
Monoidal structure	

Greedy algorithm

Adding loops Matr → Matr
Adding isthmuses Matr → Matr
Category Matr_{*}
Category Matr_{*n}
Contraction Matr_{*n+1} → Matr_{*n}
Deletion Matr_{*n+1} → Matr_{*n} (right adjoint to inclusion)

Taking minors is functorial.

Monoidal structure

Objects Morphisms Basic properties Functors Limits and colimits

Adjunctions

Factorisation

Constructions

Functors

Monoidal structure

Greedy algorithm

 $Matr_{\times}$ (matroids with a distinguished element) has parallel connection as coproduct and series connection, its dual operation, as an affine monoidal structure.

\sim				
()	hı	0	\sim t	- C
	IJ			
-	~	-		

Basic properties

Functors

Limits and colimits

Adjunctions

Factorisation

Constructions

Greedy algorithm

Greedy algorithm

Greedy algorithm

Greedy algorithm

Objects Morphisms Basic properties Functors Limits and colimits Adjunctions Factorisation Constructions

Greedy algorithm Greedy algorithm Every run of the greedy algorithm produces a maximal chain of epimorphisms in a subcategory of $Vect^b_{\mathbb{R}}$. The greedy algorithm solves the optimization problem if and only if the chains in $Vect^b_{\mathbb{R}}$ induced by all runs have the same limit.