
Detecting failed attacks on human-interactive security

protocols

A.W. Roscoe
Oxford University Department of Computer Science

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail address: Bill.Roscoe@cs.ox.ac.uk

Abstract

One of the main challenges in pervasive computing is how we can establish secure commu-
nication over an untrusted high-bandwidth network without any initial knowledge or a Public
Key Infrastructure. An approach studied by a number of researchers is building security though
involving humans in a low-bandwidth “empirical” out-of-band channel where the transmitted
information is authentic and cannot be faked or modified. A survey of such protocols can be
found in [21]. Many protocols discussed there achieve the optimal amount of authentication for
a given amount of human work. However it might still be attractive to attack them if a failed
attack might be misdiagnosed as a communication failure and therefore remain undetected. In
this paper we show how to transform protocols of this type to make such misdiagnosis essentially
impossible.

1 Introduction

Human interactive security protocols (HISPs) achieve authentication by having one or more human
users form part of a non-spoofable out-of-band (oob) channel between the devices that are involved.
They do this without involving PKIs, shared secrets or trusted third parties (TTPs). The fact of
humans’ involvement severely limits the amount of data transferred on the oob channel, meaning
that a compromise is required between the certainty of the authentication supplied by the protocol
and ease of use. Therefore practical implementations frequently have a small, but not totally
negligible, probability of a man-in-the-middle attack succeeding. For example if the humans have
to compare six decimal digits, this probability cannot be below 10−6. Protocols can be designed
that essentially achieve this bound by preventing an attacker from performing combinatorial search
to improve its chances.

A survey of the known approaches to creating such protocols can be found in [21]. They all work
(in the sense of avoiding combinatorial attack) by the protocol participants becoming committed
to one or more pieces of data such as a nonce, Diffie-Hellman token gx or hash key before knowing
that data. We give some examples as background (Section 2). In this paper we will only consider
protocols that work in this way.

Though such protocols only give an attacker Eve a single guess against each protocol run
between Alice and Bob, she will get further attempts if they try again after seeing that have a
failed run. They are of course much more likely to try again if they believe the failure was due to
a communication glitch, or a mistake on their part, rather than an abortive attack.

If it can be demonstrated to them that the strings they had to compare were different, then both
they and the application which implements the protocol should know that an attack has occurred.
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However if the attacker can abort before they have this information it may be impossible for them
to distinguish the two possibilities.

In this paper we show that on published protocols the attacker can prevent certain knowledge
of an attack, but that all the protocols we consider can be transformed so that any meaningful
failed attack is definitely detectable.

In the next section we give background including a variety of protocols. In Section 3 we describe
the mechanism behind our improvement, which depends on the addition of extra messages into the
protocols based on the delayed decommitment of data from the protocol. Section 4 examines
options for delayed decommitment, and potential attacks against them.

2 Background

This paper is set in the world of authentication protocols where either recipients need to authenti-
cate the origins of messages, or where one or more people want to set up a secure network between
a number of devices, but where there is no usable PKI or other pre-installed network of secrets to
prove identities. Instead we assume that a high bandwidth network with no security guarantees at
all is supplemented by out of band channels implemented by the human(s) using the devices. The
assumption is made that these channels are authentic, in the sense that the humans know that they
are correctly either transferring data between devices or correctly comparing pieces of data appear-
ing on separate ones. We make no assumption, however that the out-of-band communications are
private.

We assume that, in common with all the protocols in [21], the protocol succeeds (and authen-
tication is assumed) if short strings generated on all the devices are equal in addition to all other
messages conforming to the pattern expected of them. We will primarily concentrate on the case
where this comparison is the final step of the protocol that confirms security. The reader will find
other forms of protocol in [21].

It is easy to demonstrate that the strongest security guarantee that can be achieved with such
a protocol is that an attacker can do no better than as a man in the middle who divides the group
into two disjoint parts and runs the protocol separately with each, purporting to be the nodes
missing for each (see Figure 1), succeeding with with probability 1/D where D is the number of
short strings in the set from which the values compared via the humans are drawn. For the man in
the middle will succeed in this strategy with at least this probability, on average, by using random
values for the constants he has to introduce into the two partitioned runs, and without stronger
guarantees on the network used to transport messages between the participants it is impossible to
prevent such attempted attacks.

Protocols that meet this requirement are characterised by their use of techniques that prevent
the man in the middle from choosing his constants more intelligently than by this random approach.
For simplicity we primarily discuss the situation involving the pairing of Alice and Bob, but this
discussion applies equally to situations like Figure 1, at least for protocols capable of handing
groups.

The most basic and challenging aim of these protocols is to authenticate: either one party to
other(s) or all parties to each other. Most of them take advantage of this authentication to agree
a key between the parties. The intruder’s aim is to have them believe they have completed the
protocol with each other when in fact they have different values for the “agreed” data. He will
succeed in this just when he gets Alice’s and Bob’s short strings to agree though they have not run
the protocol properly with each other. The best protocols are designed so that he cannot perform
a useful search to make them agree.

2



A

B

C

D

E

D’

B’

Intruder

’

E’

C’

D’

B’

A’’

Figure 1: Attacker replacing intended group of 5 with two groups of 5 that have fake nodes.

More discussion of this issue, and examples of protocols susceptible to such attacks, can be
found in [21]. The following are a few examples of protocols that are not susceptible in this way.
We use a message-sending notation A −→X B : M means that M is sent by A to B over the
medium X. Two mediums are used: N is a high-bandwidth network with no security assumptions,
typified by the internet. If A sends the message there is no guarantee that B gets it; if B apparently
gets this message there is no guarantee that it comes from A (it might have been constructed by
Eve); and even if the message gets through successfully it might have been overheard by Eve. In
other words N is a Dolev-Yao channel [8]. E is the out-of-band, or empirical channel which is low
bandwidth and implemented by human(s). It has the guarantee that if B thinks he has received
M from A over E, then A really has sent this message to him.

The following protocol between A and B is adapted from the usual group version:

Symmetrised HCBK protocol (SHCBK), [18, 19]

1a. A −→N B : A, INFOA, hash(A, kA)
1b. B −→N A : B, INFOB, hash(B, kB)
2a. A −→N B : kA
2b. B −→N A : kB
3. A←→E B : digest(kA ⊕ kB, INFOS)

Here, ⊕ is bitwise XOR and INFOS = (INFOA, INFOB) is the information A and B are
authenticating to each other. kA and kB are cryptographic length, e.g. 256, strings of random bits
and hash is a standard cryptographic hash function. digest(k,M) is a function that chooses a b-bit
short string representing a short “hash” of M with respect to k. It must ideally satisfy:

Definition 1 [18, 19] A b-bit digest function: digest : K × M → Y where K, M and Y =
{0...(2b − 1)} are the set of all keys, input messages and digest outputs, and moreover:

• for every m ∈M and y ∈ Y , Pr{k∈K}[digest(k,m) = y] = 2−b

• for every m,m′ ∈M (m 6= m′) and θ ∈ K: Pr{k∈K}[digest(k,m) = digest(k ⊕ θ,m′)] ≤ 2−b
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In practice the final 2−b is often replaced by some ε slightly greater than 2−b, and the θ is only
required in some protocols, not including the pairwise version above. Digest functions are closely
related to universal hash functions: some methods of computing them are discussed in [22].

This protocol works because each of A and B is completely committed to the value of its final
digest before it releases its contribution to the digest key. They therefore each know that Eve had
no knowledge whatsoever of the digest key in time to have sent them material that could have been
the result of a search for a value that will give a particular digest result.

We can characterise the two keys kA and kB as independent randomisers of the short string,
thanks to the properties of ⊕ and the specification of a digest. Choosing either value randomly,
and independently of however the other is chosen, maps the short string to a random value in its
domain. In this protocol each party chooses a randomiser r and ensures that it itself is committed
to the value of the short string before it tells anyone the value of r.

[21] terms SHCBK a direct binding protocol because the agreed short string is a type of hash
of the information Alice and Bob are trying to authenticate. This is analogous to the traditional
use of signed cryptographic hashes in authenticating data: here the signature is replaced by the
communication of the digest over the authentic oob channel, and the digest can be much shorter
than a hash because of the care taken to avoid combinatorial attacks.

The following protocol, on the other hand, is termed indirect binding because the short string is
chosen independently of the message and bound to it during the protocol. This particular protocol
only transmits an authenticated message one way. Here, RA and RB are b-bit short strings chosen
at random by the two agents.

Vaudenay pairwise one-way authentication protocol, [32]

[A] c ‖ d := commit(INFOA, RA),
1. A −→N B : INFOA, c
2. B −→N A : RB

3. A −→N B : d
[B] RA := open(INFOA, c, d)
4. A −→E B : RA ⊕RB

B verifies the correctness of RA ⊕RB

Here, commit(M,R) is a pair c ‖ d (following the notation of [32]) where knowledge of c commits
the recipient to the values of M and R, through the said recipient may not yet know M and must
not (even with the knowledge of M) be able to deduce the short string R. d reveals R and confirms
(and if necessary reveals) M . Thus c is not a function of M and R, since if it were, a search through
the relatively few possible values of R would reveal the real one. Rather it is in a one-to-many
relationship with M and R, as possibly implemented by

• c = hash(M,R,X) where X is a random nonce: a string of say 256 random bits.

• d = (R,X)

The purpose of RB here is to make sure that if Alice sends Message 3 in response to a Message
2 faked by Eve before Bob has received Message 1, the chances of Eve’s RB equalling the real one
are 2−b. This normally prevents the final comparison being a success for Eve.

Note that RA and RB are independent randomisers for the short string, that B only sends
RB when it is committed to the final value of the short string (as well as INFOA) and that
A only reveals RA when it is also committed to the final value of RA ⊕ RB. Thus, though the
appearance of this protocol is rather different from pairwise SHCBK, the modus operandi using
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a committed-before-reveal randomiser, and a pair of independent randomisers, is actually rather
similar.

The two protocols above can be used to send or agree authenticated cryptographic material
between Alice and Bob, but not in a way that is directly secret. Therefore the most obvious
approach to building privacy for Alice and Bob is to make the authenticated material contain either
an asymmetric “public” key or Diffie-Hellman style tokens such as gxA and gxB . Our final example
is a direct binding protocol that uses cryptographic material in the authentication exchange: gxAxB

becomes an authenticated session key between A and B. It is an interesting example chiefly because
it is widely implemented [3]. The core of this protocol is:

ZRTP protocol (Zimmerman [33])

1. A −→N B : hash(gxA)
2. B −→N A : gXB

3. A −→N B : gXA

4. A←→E B : shorthash(gxA , gxB )

(The shorthash can equally be of the shared key gxAxB .) This works in a way very similar
to the shortened pairwise version of SHCBK mentioned above. The only difference is that the
randomisation present in the authentication re-uses the Diffie-Hellman exchange that establishes the
key. This is clearly efficient, but the properties of modular exponentiation and the b-bit shorthash
need to be carefully managed and studied to provably achieve the same security bounds attained by
the first two protocols. In other words, XA and XB are both used as randomisers for this protocol,
and while intuitively this should work well it is not mathematically obvious, as it was with the
previous protocols.

In each of these protocols, it is the scheme of commitment to the randomisers that avoids
combinatorial attacks based on searching, and they all, seemingly inevitably, use a method of
commitment before knowledge. [Of course the protocols also have to be immune to conventional
attacks possible without such searching.] One assumption implicit in these protocols is that all the
cryptographically important values and operations used in them, other than short values for human
comparison, are strong enough to withstand any imaginable brute-force attack with probability so
close to one that we can disregard the difference.

3 Attack detection

Although these protocols prevent the attacker from searching against the short string on a single
run of the protocol, they do not prevent repeated attempts to have a correct guess against multiple
independent runs, whether the users try over and over again to bootstrap security in a single group of
devices, or attempts are made against a variety of groups as they form until one succeeds. Realising
this, we should think about how the attacker might execute a single attack. Again restricting for
simplicity to the pairing of Alice and Bob:

1. When a run between Alice and Bob begins, initiated by Alice, the intruder Eve will play the
part of Bob in that run and herself initiate a run with Bob, pretending to be Alice. These two
runs will progress through a number of stages of interaction leading to the final comparison of
short strings (which unbeknownst to them are the strings generated by the two separate runs)
by Alice and Bob. Because we are assuming our protocol is optimal in the sense discussed
above, Eve just introduces a random value when she has to contribute something like a key
or nonce to either of her versions of the protocol. Of course the attack only succeeds if the
separate short stings sA and sB in the two runs happen to co-incide.
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2. At some point in the run between Alice and Eve (qua Bob), each of the two participants will
have the data to allow them to compute their short string sA. One of them will necessarily
have this information before the other, inevitably the one to send the last message before
they both know it. The same thing happens in the run between Eve (qua Alice) and Bob.

3. In organising her attack, Eve is free to interleave the messages she sends/receives to Alice and
Bob so that their own order of sends and receipts exactly follows what would have happened
if they had really been running the protocol with each other. If she does this, Eve is bound to
have first knowledge of the digest in one of the two runs and second knowledge in the other.
Furthermore Eve will know both sA and sB before one of Alice and Bob knows his or her own
short string. In some protocols (particularly the more symmetric group protocols) it may be
possible for Eve to choose a schedule so that she knows both of these values before any of the
honest participants do. In pairing protocols she will be playing the two roles in the two runs:
one of these will be the one that gets knowledge of s first.

4. It follows that Eve will know whether her attack will succeed or fail before all of the devices
that are being have the information that will allow them to know. If she is going to succeed,
she will naturally press on and break into what Alice and Bob will both regard as a successfully
completed session. However if she is going to fail, the logical move for her will be not to send
the messages remaining to Alice and/or Bob that will reveal the short string to them.

5. In that last case, Alice and Bob will never both have their short strings, and so will not be in
a position to compare them. They will therefore lack conclusive evidence that an attack was
taking place and may very well conclude that the failure of the protocol to complete is down
to a communications glitch.

What would it take for Alice and Bob to be able to know that someone was attacking them? If
it can be shown that some parties had progressed a long way in interacting with the two of them
and then aborted runs which would have had differing short strings, this would represent conclusive
evidence. Alice and Bob are still connected by their out-of-band channel, and so can compare notes
on what has happened. Let us suppose we could achieve, following an aborted run, a state where
each of Alice and Bob knows one of the following for certain:

• No conceivable intruder could have known the digest their own run was heading to at the
point of the abort.

• Has direct evidence, through inconsistency of messages received, that an attack was at-
tempted.

• Knows the digest value that he or she would have calculated and compared, and whether
their device would have raised any further inconsistencies before the and of the protocol.

Then by conferring over the oob channel they can conclude one of the following trichotomy of
outcomes.

(a) No intruder knew both short strings at the point of the abort, and therefore had no way of
knowing at that point that any attack being carried out would succeed or not. An intruder
would have no benefit from this other than denial of service.

(b) That the protocol failed even though the short strings would have agreed: this is almost
certainly due to a communications failure.
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(c) That Alice and Bob were heading towards different short strings, meaning that an attacker
was almost certainly involved, or that some other sort of attack was taking place.

One might imagine that in the last eventuality Alice and Bob would take countermeasures such
as

1. Upping the security level of any subsequent connection attempt (for example by increasing
the length of the short string)

2. Notifying any servers associated with the applications running the protocol, so that they can
take appropriate defensive or forensic action.

3. Changing the communications network being used.

We term a protocol that achieves this auditable because when things go wrong we can scrutinise
the run and determine what when wrong.

The above trichotomy is unachievable in any of our example protocols thanks to our earlier
analysis which showed that in the man in the middle attack the attacker can know both sA and sB
before the moment when these values are known by Alice and Bob respectively, and can stop at
least one of them knowing its value if they are not equal. What we will now demonstrate is a way of
modifying the protocols so that they do achieve it: we introduce time-dependent data and time-outs
into modified protocols. We can ensure that the new protocol behaves like the old one within some
time limit T , and unless it completes before then either any intruder had no information about
success before T or there is some later time T ′ at which Alice and Bob both know the short strings
from their runs. There is no need to know exactly what the times T and T ′ are, merely that they
exist. The best way to describe this is by modifying the three protocols set out above so that they
have this property. We assume that there is an additional cryptographic primitive delay(x, t) with
the properties

• Anyone who knows delay(x, t) can know x, but not until at least t units of time since its first
creation.

• No-one can deduce anything about x from it before that point.

• In the same agent that created delay(x, T ), the boolean intime(x) returns true if before T
since the call of delay(x, T ), and false otherwise.

We will discuss potential implementations of delay(x, t) in Section 4.
In the adapted protocol descriptions below the statement [C]x := delay(k, T ) is the creation of

one of these time locked means of calculating x by agent C. The strategy we follow is to make sure
that Alice and Bob both have in their possession the means to calculate their short strings perhaps
at a later time before Eve knows both sA and sB.

We suggest four strategies below of how to use delay(x, t) in modified protocols.

1. Observe that delay(x, T ) has the interesting property of both committing the recipient to the
value x before any but the sender knows it, and later releasing it. Therefore there is no a
priori need to send the commitment and opening message openly any more. Of course such
a protocol cannot complete before all the delayed data has opened.

The simplest protocol which works in this context is
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Delay commit protocol

[A] dA := delay(kA, T )
1. A −→N B : A, INFOA, dA, hash(A, kA)
2. B −→N A : B, INFOB, kB
[A] intime(kA)
3. A←→E B : digest(kA ⊕ kB, INFOS)

Here A knows that she was committed to the final digest before the delay opened, meaning
that the value received apparently from B cannot have aimed at creating any particular value
of the digest. Similarly B knows that he is completely committed to the final value of the
digest at the point he sends Message 2, and that he has randomised it. Therefore, although
the attacker can send a fake Message 1 to B at any time (even after the delay has opened),
there is nothing it can do to bias B’s digest value.

Furthermore, if an attack is attempted where both digests are known to the attacker, then if
A has not already abandoned the protocol on the time-out A also knows (i) her own value of
the digest (because she will have received Message 2) and (ii) that if there was no attack then
B will also know his value of the digest without further communication once T has passed.
This allows auditing.

2. Replace the existing commitment mechanisms (i.e. hashes and commit) by instances of
delay. Time out the protocol unless all delayed data is released in the open by the protocol
before the delayed version of it opens. These extra messages can have advantages in protocol
design, but because of the necessity of checking the consistency of the commitment against
the second communications the users will still have to wait for the delays to open. This latter
inconvenience (and a perhaps a lot of work) will be avoidable if a receiving party can check
for this consistency without having to open the delay. If, for example, delay(x, T ) is created
using a function that is much easier to compute directly than invert, it will be easier for the
receiving party, upon receiving x directly, to re-create delay(x, T ) and test for equality.1

Depending on the means of opening a delay(x, t), this (needed for both this approach and
(1) above) might well be a lot of work. Generally we prefer to use delay(x, t) in such a way
that it does not have to be checked in a completed run of a protocol, only when auditing a
failed run.

3. Accompanying each instance of a hash or commit in the original protocol with a corresponding
delay (i.e. what was sent in the original protocol together with what was sent in the first
approach above). This would achieve our aims completely provided suitable time-outs were
included in the amended protocol, as above.

This approach achieves our objectives, but we term it Weak because its security depends on
the correctness of the delay operator. We will discuss in the next section why it may be wise
not to rely on delay so much. Therefore we prefer the following approach.

4. Develop a protocol which is auditable in the sense that we achieve the trichotomy set out
above, but does not depend on the correctness of delay (in other words it would still be secure,
but not auditable, if the intruder were able to extract x from delay(x, T ) immediately.)

The adapted protocols we present below are designed in line with this final option.

1If the value x has had to be salted to make the delay secure, it would then be necessary for the direct communi-
cation of x to include the salt as well.
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Auditable SHCBK

1a. A −→N B : A, INFOA, hash(A, kA)
1b. B −→N A : B, INFOB, hash(B, kB)
[A] dA := delay(kA, T )
2a. A −→N B : dA
[B] dB := delay(kB, T )
2b. B −→N A : dB
3a. A −→N B : kA
3b. B −→N A : kB
[A] intime(kA)
[B] intime(kB)
4. A←→E B : digest(kA ⊕ kB, INFOS)

In other words, after each of the two parties is completely committed to the final value of the
digest it sends the other one the delayed reveal of its hash key, and is only prepared to do the digest
comparison if it has received the unencrypted hash key from the other before any party can have
extracted the data from the respective dX . It follows that in order to know whether the usual man
in the middle attack will work, Eve either has to wait for delay(kA, T ) and delay(kB, T ) to open
or to get A to send the open kA and B to send kB. If she does the first she will know if her attack
would have succeeded earlier, but it will not now because the booleans tested by A and B before
Message 4 will be false. If she takes the second approach she will have to have at the very least
sent data representing dA to B and dB to A as a continuation of her man in the middle attack.
However if she does, gets the values of kA and kB and abandons the attack, all A and B have to
do is wait. After time T they can endeavour to open the delayed values and one of two things will
happen:

• The ds they hold open successfully, are consistent with the hashes they hold, and A and B
can compare sA and sB and find that they are different.

• The d do not open successfully or are not consistent with the Message 1 contents.

The second of these possibilities is unlikely, for if it happens then it would provide post-hoc evidence
that the intruder was involved even if Eve had got lucky with the short strings: she would have
had to have provided a d inconsistent with the Message 1 she sent to the same party before she
knew if the two runs’ short strings agreed.

In either case A and B can jointly deduce that an effort had been made to attack them. The
revised protocol achieves the trichotomy above. Note that we can be confident that even if the
delay function does not work at all, this protocol is still as secure as the original SHCBK presented
above: for the original protocol fully reveals kA and kB at the points where the two delayed versions
are revealed.

This approach readily extends to the group version of SHCBK of [18, 19])
The following is an auditable version of ZRTP. Note that we have ad to defer the release of gxB

via hash commitment to make this possible.
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Auditable ZRTP

1. A −→N B : hash(gxA)
[B] dB := delay(gkB , T )
2. B −→N A : dB, hash(B, gXB )
3. A −→N B : gXA

4. B −→N A : gXB

[B] intime(gkB )
5. A←→E B : shorthash(gxA , gxB )

The reason for including B’s name in the hash in Message 2 is the same reason it is included in
SHCBK: it prevents reflection attacks where A’s own gXA is replayed to her in Message 2.

Finally we move on to the indirect binding Vaudenay protocol. To do this we must, in much
the same way as in the previous case, both delay RB and allow its eventual send to be checked
against an earlier commitment. Because RB is short the best way of doing this is using the same
sort of commit construct as for RA, and in that context we might as well add in any information
B wants to authenticate to A (which could of course be null).

Auditable Vaudenay style protocol

cA ‖ dcA := commit(INFOA, RA),
1. A −→N B : INFOA, cA

cB :=‖ dcB = commit(INFOB, RB),
dyB := delay(RB, T )

2. B −→N A : INFOB, cB, dyB
3. A −→N B : dcA
[B] RA := open(INFOA, cA, dA)

B computes RA = open(INFOA, c, d)
4. B −→N A : dcB
[A] RB := open(INFOB, cB, dB)
5. A←→E B : RA ⊕RB

4 Options for time delay

The solution above depends on a construct that locks data away for a given period. It is recognised –
see [1, 27], where many ideas similar to the ones presented below can be found – that there are two
basic options for this

• The use of trusted third parties.

• Creating a computation that simply takes at least a given time to perform by any party.

Neither of these is ideal: trusted third parties are potentially corruptible and is hard to guarantee
that no-one can perform some computation quickly while relatively low-power computers such as
smartphones must nevertheless be able to do the same calculations rapidly enough to audit a failed
run.

This seeming fragility is one very good reason why we have been careful, in our auditable
protocols, not to rely on the delay construct to provide protocols’ basic security. Of course the
incentive for at attacker overcoming whatever delay mechanism is used is reduced if it is being used
for auditability only.

We also remark that, in common with the traditional cryptographic one-way functions of hashing
and public-key cryptography, it may well be necessary to salt a value that is being delayed to prevent
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searching attacks by other parties. (This is also analogous to the nonce X used to prevent searching
attacks against the c of commit schemes as referred to earlier.)

The most obvious way of creating the delay(x, t) construct used in the last section appears to
be using a trusted third party. Such a server S would perform the following service:

• When sent some data x encrypted under S’s public key together with time t it will reply with
a token y combined with a hash of (x, t).

• When sent y at least t beyond the point where it sent this reply, it reveals x.

• The values sent by S are signed by it.

In practice y might or might not contain the information S needs to recover the value of x without
resorting to its own memory. That would affect whether the two instances of S used must be the
same, or merely share keys with each other.

The usability of this, like the other forms of delay discussed below, will depend heavily on the
context in which the HISP is being used. This particular one is unlikely to work well if Alice and
Bob are likely to be cut off from any server when the protocol is run, but would be very suitable
when they have to depend on the presence of a TTP for other reasons in their exchange. This
would be true, for example, in the models of electronic transactions anticipated in [7].

Note that the form of time used in delay(x, t) is relative: t is a delay from the present time,
rather than an absolute time at which x will open. There is an advantage in this in that we would
otherwise have to worry about how accurate the knowledge of the present time in each node might
be. However the work required of the TTP above might be considerable if it was serving a lot of
clients. The following alternative approach, similar alleviates this.

We create a server TL that issues a series of asymmetric “time-lock” keys, each labelled with
the time it was created and the time it will open, each signed by TL. When the appointed times
for opening these keys, come round, TL issues them. So all this TTP has to do is post a series of
signed keys.

For example our server might issue one key every 10 seconds, with a delay of one minute before
the counterpart was issued. The key pairs might then be made available online for several days to
enable auditing.

Agents can still implement delay(x, t) using this service, but only if they can bound the di-
vergence between their own system time and that employed by TL. This knowledge will enable
them to pick an already posted key that will not be opened by TL for at least t units of time, and
encrypt x under it.

The final option is to do without a TTP and make anyone who wants to open delay(x, t) do
a lot of work. Given that we expect these objects to be created a lot more often than opened it
makes sense to want a version that is cheap to create. Given our application we want a method
that will allow the sort of device running our protocols to be able (as part of the auditing process)
to be able to open such an object in a small multiple (say 10) of the time it will take an attacker
with essentially unbounded computing resources to do this. As discussed in [1], this means that the
computation must be sequential, in the sense that it is impossible to parallelise. Several potential
schemes are given there, based on a long sequence of operations. One possibility is

• A large prime p of the form 3m+ 2 is chosen2, the number of digits determining a time delay
t. delay(x, t) = x3 mod p is fast to compute, but to uncover x from this we have to compute
xd mod p where d is chosen so that p − 1 divides 3d − 1. This will typically take (log2 p)/2

2These are exactly the primes in which cubing x3 is invertible. Squaring is not invertible for primes other than 2.
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times longer to compute, namely a computational advantage proportional to the number of
digits.3 To achieve a sufficient delay it may be necessary to make p very large indeed; as an
alternative we could repeat this operation with several increasing primes in turn. The primes
in this example could be published and used by all nodes.

While this computation has at its core the need to repeatedly square numbers in some modulus,
it is hard to exclude, particularly in cases where pre-computations can be done for a particular
modulus, special purpose hardware being used to speed up the individual multiplications, or there
may be better algorithms employed than are widely known.

In any case it is likely to be very hard to prove that a particular calculation will certainly take
a given time t, particularly when for auditing purposes we want relatively low power devices to
be able to do the same calculation in a relatively small multiple of t. Of course the smaller we
can make t, which will be determined by our confidence in the infrastructure implementing the
protocol, the larger.

Thus each of our alternative implementations of delay(x, t) is subject either to the corruption
of TTPs or to imponderables about the limits of computation and parallelisability. In the author’s
mind it is this which makes it highly advisable to use the approach to auditability we have, in
which the basic security of the protocol is not compromised by it.

5 Conclusions

We have shown how a variety of protocols can be made auditable by the addition of additional
data fields and/or messages. All of these transformations involve the addition of time-dependent
data to replace or supplement the mechanisms already present to commit agents to data before
they know it. We have shown that this can be done straightforwardly if we can rely sufficiently on
the security of the delay mechanism, and in a way that does not risk the security of the original
protocols otherwise.

Finally we have given some examples of how delay might be implemented, observing that
what method is preferable will depend on context. Indeed, one can imagine that a single protocol
implementation might well use different delays as alternatives (e.g. depending on the availability
of TTPs.)

One of the assumptions we have made in this paper is that when a message is received by a
node over −→N that is not consistent with the protocol, an attack is diagnosed. In order to make
this reasonable, protocol implementers should ensure that accidental corruptions, mis-deliveries and
abbreviations of messages are not accepted as “messages” at all. This will typically be achieved by
using very explicit message formatting, e.g. in XML, and by including integrity information such
as hashing to ensure that accidental issues relating to messages sent between trustworthy parties
will essentially never lead to a node thinking it has received a message that was not sent to it in
the form that was sent. Such precautions will not prevent an attacker from sending messages that
look real, but should mean that agents can reject accidentally corrupted messages.

All the protocols we have considered so far in this paper have three properties:

• The oob channel is used simply for comparing two short strings.

• This comparison takes place at the end of the protocol.

3The calculation of x3 will clearly take more time, the more digits there are. Note that there are multiplication
algorithms faster than the usual “schoolbook” one that can be expected to give significant advantages when p is very
long.
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• Each side of the protocol introduces something that randomises these strings.

Other protocols that have these properties and can easily be made auditable using the techniques
set out here are Bluetooth V2 [2],
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