
Universal Access in the Information Society
accepted article / 2015

Experiencing OptiqueVQS: A Multi-paradigm and
Ontology-based Visual Query System for End Users

Ahmet Soylu · Martin Giese · Ernesto Jimenez-Ruiz · Guillermo

Vega-Gorgojo · Ian Horrocks

Received: date / Accepted: date

Abstract Data access in an enterprise setting is a de-

termining factor for value creation processes, such as

sense making, decision making, and intelligence analy-

sis. Particularly, in an enterprise setting, intuitive data

access tools that directly engage domain experts with

data could substantially increase competitiveness and

profitability. In this respect, the use of ontologies as a

natural communication medium between end users and

computers has emerged as a prominent approach. To

this end, this article introduces a novel ontology-based

visual query system, named OptiqueVQS, for end users.

OptiqueVQS is built on a powerful and scalable data ac-

cess platform and has a user-centric design supported by

a widget-based flexible and extensible architecture allow-

ing multiple coordinated representation and interaction

paradigms to be employed. The results of a usability
experiment performed with non-expert users suggest

that OptiqueVQS provides a decent level of expressivity

and high usability, and hence is quite promising.

Keywords Visual query formulation · visual query

systems · ontology-based data access · data retrieval

1 Introduction

A tremendous amount of data is being generated ev-

ery day both on the Web and in public and private

organisations; IBM estimates that 40 Zettabytes of data

Ahmet Soylu
Gjøvik University College, and University of Oslo
E-mail: ahmet.soylu@hig.no, ahmets@ifi.uio.no

Martin Giese · Guillermo Vega-Gorgojo
Department of Informatics, University of Oslo

Ernesto Jimenez-Ruiz · Ian Horrocks
Department of Computer Science, University of Oxford

will be created by 2020 (an increase of 300 times from

2005) and 2.5 Quintillion bytes of data are created each

day, while most companies in U.S. have at least 100

Terabytes of data stored1. By all accounts, any individ-

ual or organisation who possesses necessary knowledge,

skills, and tools to make value out of data at such scales,

bears a considerable advantage. In an organisational set-

ting, ability to access and use data in business processes

such as sense making and intelligence analysis is key

for the value creation potential (cf. [64]). Today, how-

ever, data access/data retrieval (cf. [1]) still stands as

a major bottleneck for many organisations. One of the

key reasons is the sharp distinction between employees

who have technical skills and knowledge to extract data

from databases (i.e., database/IT experts, skilled/expert

users) and those who lack technical skills but have do-
main knowledge and know how to interpret and use data

(i.e., domain experts, non-skilled/non-expert users). The

result is a workflow where domain experts either have to

use pre-defined queries embedded in applications or com-

municate their information needs to database experts,

who in turn translate them into formal queries possi-

bly over disparate data sources. The former scenario is

quite limiting, since it is not possible to enumerate every

possible information need beforehand, while the latter

scenario is hampered by the ambiguity in communica-

tion. In such a workflow, the turn-around time from the

initial information need of a user to receiving an answer

can be in the range of weeks, incurring significant costs

(cf. [33]). Therefore, for instance in an enterprise set-

ting, engaging domain experts directly with data could

substantially increase competitiveness and profitability.

Approaches that eliminate the man-in-the-middle

and allow end users who have no technical skills to di-

1 http://www.ibm.com/big-data/us/en/

http://www.ibm.com/big-data/us/en/

2 Ahmet Soylu et al.

rectly engage with data and extract it on their own have

been of interest to the researchers for many years now

(cf. [17]). As anticipated, for end users, the accessibility

of traditional structured query languages such as SQL

and XQuery fall far short, since formal textual languages

do require end users to have a set of technical skills and

to recall domain concepts, and the terminology and syn-

tax of the language being used. Visual query systems

and languages (VQSs and VQLs) (cf. [17]) emerged to

alleviate the end-user data access problem by provid-

ing intuitive and natural end-user experiences. A visual
system or language follows the direct-manipulation idea

(cf. [74]), where domain and query language are repre-

sented with a set of visual elements. End users recognise

the relevant fragments of domain and language and

formulate queries basically by directly manipulating

them. A visual approach increases user engagement and

enables users to easily digest/grasp, communicate, and

interact even with larger amounts of information (cf. [88,

44]), hence are more accessible (cf. [26,56]). A good deal

of research on visual query formulation exists both for

structured (e.g., relational data) and semi-structured

data (e.g., XML), such as QBE [93] and Xing [28]. Al-

though early approaches (cf. [17,16]) successfully estab-

lish the research field, their success, in practical terms,

remains within the confines of abstraction levels they op-

erate on; database schemas, object-oriented models, etc.

are not meant to capture a domain per se and are not

truly natural for end users (cf. [75,71,42]). The use of

ontologies as a natural communication medium for end

users appeared as a prominent approach; however, early

attempts on ontology-based visual query formulation

(e.g., [18,3]) did not develop much and remained at ex-
perimental stages mostly due to the lack of appropriate

frameworks that bridge ontologies and relational data

sources. It goes without saying that today relational

databases accommodate the most of world’s enterprise

data; nevertheless, the gap is almost closed with the
Semantic Web (cf. [6,8]) and ontology-based data ac-

cess (OBDA) technologies (cf. [69,54,63]), which enable

access to legacy relational data over ontologies.

The aforementioned advances led to the reappraisal

of the role that ontologies have to play for visual query

formulation. There exist numerous works on ontology-

based/semantic search interfaces (e.g., [18,3,40,41]).

However, they either focus on browsing rather than

querying and hence are largely instance oriented, or

are attached to one predominant interaction and/or

representation paradigm, and hence are very limited in

terms of usability and expressivity, or lack adequate

architectures, with which a query tool can be extended

and enriched as needed. These are mostly due to de-

sign approaches that focus on functionality concerns

rather than usability. Yet, the challenge is mostly one

of usability, which should therefore steer and dominate

any functionality consideration. An ongoing EU project,

named Optique – Scalable End-user Access to Big Data2,

promises to deliver a platform that provides an end-to-

end solution for scalable end-user data access both in

terms of query formulation and query answering through

a visual query interface and an OBDA framework. The

platform bridges ontologies and relational databases

and is supported by other components such as for query

parallelisation, optimisation, distributed query execution,
and time and stream management (cf. [33]).

This article, having Optique as a motivating sce-

nario, is concerned with ontology-based visual query

formulation for querying relational databases for end

users with no technical skills and knowledge, such as

on programming, databases, query languages, and with

low/no tolerance, intension, or time to use and learn

formal languages. The primary contributions presented

in this article are a novel and easy-to-use concept and a

flexible and extensible widget-based architecture for an

ontology-based VQS, based on multiple coordinated rep-

resentation and interaction paradigms for graph naviga-

tion and facet refinement, along with a prototype named

OptiqueVQS [77,81]. The design of the OptiqueVQS is

guided through industrial use cases provided by two

large energy companies, namely Statoil3 and Siemens4.

The article discusses the expressivity of the OptiqueVQS,

presents the results of the first usability study, and iden-

tifies a set of open research challenges.

The rest of the article is structured as follows. Sec-

tion 2 presents and discusses the motivating scenario

and data access interfaces. Section 3 presents the back-

ground and related work on VQSs, while Section 4 sets a

set of requirements for expressiveness and usability. Sec-

tion 5 and Section 6 describe the OptiqueVQS approach

and its implementation respectively. Section 7 presents

the usability experiment, while Section 8 provides a

discussion. Finally, Section 9 concludes the article.

2 Research context

The capacity to find, access, and process data forms

the intellectual bandwidth of an organisation, which is

leveraged through appropriate methodologies for value

creation (cf. [64]). The value creation potential of an

organisation is dependent on how data is stored, accessed

and used, in other words, on how an organisation utilises

its data, hardware, software, and human capitals, not

2 http://www.optique-project.eu
3 http://www.statoil.com
4 http://www.siemens.com

http://www.optique-project.eu
http://www.statoil.com
http://www.siemens.com

A Multi-paradigm and Ontology-based Visual Query System for End Users 3

only individually but as an ecosystem (e.g., collaboration

and interoperability). Data access is one of the principal

components of intellectual bandwidth and today stands

as a major bottleneck in many organisations; domain

experts spend considerable amount of time on data

access problems, which could be redeployed so as to

lead to even greater value creation (cf. [33,24]).

A data access system requires interfaces that elicit

the information needs of users and transform them into

formal queries, and a backend system that manages data

sources and evaluates queries against them, which are,
in many cases, structured and are described through

a data model. This section provides an overview of

the Optique platform to demonstrate the role of visual

query systems and languages in data access and to

introduce key technologies for the practical applicability

of ontology-based visual query formulation and data

access in general. Then, different types of data access

interfaces are presented and compared.

2.1 Motivating scenario: Optique

The Optique platform addresses end-user data access

problems primarily by bringing a visual query system

together with an OBDA framework for relational data

sources, which leads to a semantic end-to-end connection,

between end users and data sources, allowing maximum

data exploitation. The visual query formulation tool is

meant to enable end users to rapidly formulate queries

using familiar vocabularies and conceptualisations, while

the OBDA framework is to ensure seamless integration

of data, spread across multiple distributed data sources

including streaming, temporal, and spatial ones, and is

powered with query optimisation and massive paral-

lelism. Ontologies not only act as a super structure over

distributed data sources (i.e., federation) and as a natu-

ral communication medium, but also provide reasoning

support, which is precious both at query formulation

and answering stages. This is because reasoning provides

the capability of expressing more with less by relating

the whole set of implied information instead of what is

explicitly stated and available (cf. [84]).

The overall approach is depicted in Figure 1; briefly,

end users interface with the system through a visual

query formulation tool, which also supports IT experts

through a textual editor. The tool relies on an OBDA

framework that allows access to underlying data sources

over ontologies. Once a visual query is translated into a

textual form (e.g., SPARQL), it is passed through two

rewrite phases to transform it into a complete, correct,

and highly optimised query over data sources (cf. [69,

68]). The first phase rewrites the query by taking onto-

logical constraints into account, while the second one

translates the query into the language of underlying

data sources (e.g., SQL) through mappings (cf. [82,69])

that relate the concepts and relations of the ontology

to data sources. The mapping approach separates trans-

actional and domain perspectives (cf. [61]), in other

words, while exploiting ontologies for data access and

reasoning, one can continue to use legacy relational

data sources in their original form, without migrating

or transforming any data, and enjoy the benefits of well

established query optimisation and evaluation support

available for traditional database management systems.
In order to aid ontology and mapping development, a

bootstrapping component (cf. [73]) automatically har-

vests existing schemas and ontologies and generates an

initial ontology and mappings; this is followed by a

manual fine-tuning and enhancement process.

The OBDA framework and other components that

form the Optique platform are beyond the scope of this

article; interested readers are referred to Giese et al. [33]
and Kharlamov et al. [50].

2.2 Data access interfaces

One could distribute well-known data access interfaces

for querying structured data into five categories, namely
formal textual languages, keyword search, natural lan-

guage interfaces, visual query languages, and visual query

systems. A VQL is visual programming language based

on well-defined formal semantics with a visual notation

and syntax, while a VQS is a system of interactions that
generate queries (cf. [27]).

A qualitative summary of these approaches are given

in Table 1 with respect to expressiveness and usability.

Usability and expressiveness are the two sides of a coin,

when it comes to the evaluation of a data access inter-

face. Usability is mainly defined as the extent to which

a tool is competent of meeting its identified aim with

effectiveness, efficiency, and user satisfaction (i.e., user

attitude such as trust, engagement, and acceptance)

(cf. [7]) – among the other aspects of usability such as
accessibility and learnability. In this context, effective-

ness refers to the ability of a query interface to translate

user inputs into complete and accurate queries, while

efficiency refers to time and effort required for users to

complete a task (cf. [7]). Learnability is the capability

of a tool to enable users to learn how to use it, while

accessibility5 is the degree to which a tool is available

to as many people as possible. Accessibility and learn-

ability are integral parts of usability in this context,

5 Though accessibility often focuses on people with disabil-
ities or special needs, in the present context with a broader
interpretation, it relates to knowledge and skill barriers.

4 Ahmet Soylu et al.

Q
ue

ry
	
 P
la
nn

in
g	

SQL	

REWRITE	
 REWRITE	

Ontology	

(OWL)	
 mappings	

Q	
 QI	

Visual	
 Query	
 System	

End	
 user	

SPARQL	
 SPARQL	

QII	

Ontology	
 &	
 Mapping	
 Management	

Query	
 TransformaAon	

Query	

execuAon	

Bo
ot
st
ra
pp

in
g	

di
sp
ar
at
e	

so
ur
ce
s	

schemas	

standard	
 	

ontologies	

SELECT	
 I	

IT	
 expert	

manage	

co
lla
bo

ra
te
	

Fig. 1 Visual query formulation and ontology-based data access.

since end-user query formulation prominently demands

more skills and knowledge, introducing comprehensibil-

ity and availability barriers. Finally, expressiveness is

the breadth of a data access interface in characterising

a domain and information need (cf. [27]).

Formal textual languages typically allow users to ex-

press their information needs completely and accurately

with high expressivity in a programmatic way; however,

their accessibility and learnability are quite low, since

they demand expert knowledge and skills – though some

textual query editors assist users by suggesting terms

and concepts (e.g., [15]). Keyword search (e.g., [9]) in-

terprets a query as a bag of words, hence is the worst

when it comes to completeness, accuracy and expressive-

ness. There exists studies for increasing completeness

and accuracy of keyword search, so that it can be used

over structured data (e.g., [59]); however, the inherent

limits of keyword search are still valid. Nevertheless,

keyword search stands as a good option in terms of

accessibility, learnability and efficiency, since it does not

demand any expert knowledge and skills. Natural query

interfaces (e.g., [48,91]) go beyond the keyword search;

this is due to the fact that they interpret a query as

whole and take linguistic considerations into account.

However, they do not achieve much in terms of accu-

racy and completeness due to the ambiguity of natural

language; some approaches try to alleviate this issue,

such as by acquiring feedback and clarification through

user dialogues (e.g., [25,58]), yet this increases the user

cognitive load. Finally, visual query languages and sys-

tems (cf. [17]), which pursue the direct manipulation

idea, come particularly with high effectiveness and ex-

pressiveness; however, visual query languages (e.g., [29,

55,76,31,43]) usually perform badly in terms of accessi-

bility and learnability, because users still have to respect

syntactic and semantic constraints.

Aforementioned approaches have varying degrees of

achievement in each dimension; however, their successes

depend on the context of use. On the one hand, for

instance, although keyword search performs worst in

terms of effectiveness, the high tolerance of the tasks

in the Web to low accuracy and completeness makes

accessibility and learnability aspects predominant for

the usability and success of keyword search. On the

other hand, unlike information retrieval in the Web,

data retrieval in traditional database systems heavily

relies on complex structures and semantics with no tol-

erance to irrelevant and missing results and vaguely

described information needs (cf. [1]). Therefore, it is

concluded that VQSs are a viable option for end-user

querying structured data, since they can effectively hide

the complexity of a domain, hence demanding low ex-

pert knowledge and skills, and provide high expressivity,

completeness, and accuracy.

3 Visual Query Systems

Visual query formulation based on ontologies is indeed

a multi-front endeavour situated on a set of interrelated

research challenges, such as ontology-driven information

systems (more specifically ontology-driven user inter-

faces) (cf. [71,4]), visual computing (more specifically

visual programming) (cf. [13,12]), and end-user devel-

opment/programming6 (cf. [57]).

6 End-user development is defined as a set of methods,
techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, to
create, modify, or extend software artefacts [57]; and forms
the definition of end user in the context of this article.

A Multi-paradigm and Ontology-based Visual Query System for End Users 5

Table 1 A qualitative comparison of data access interfaces for querying structured data.

Approach/ Criteria Effectiveness
(Completeness &
Accuracy)

Efficiency
(Time &
Effort)

Accessibility &
Learnability

Expressiveness

Formal languages ? ? ? ? ? ? ? ? ? ? ? ?

Keyword search ? ? ? ? ? ? ? ? ? ? ? ?

Natural language interfaces ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Visual query languages ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Visual query systems ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Therefore one needs to address a variety of issues

ranging from the formal aspects of the underlying rep-

resentation paradigm and its visual representation to

overall visual coherence and affordances provided for
the interaction, as discussed in the following.

3.1 Background

A VQS could use a VQL, could be built on ad-hoc rep-

resentations, or could directly generate queries in target

formal textual form; however, in any case, it is the in-

teractions that matter rather than the visual formalism.

Nevertheless, there are two types of activities that a

visual query formulation tool needs to support for end

users, namely exploration (aka understanding the reality

of interest) and construction (cf. [17]). Exploration is

the process of understanding the conceptual space de-

scribing the domain of interest, while the construction is

the process of formalising the information need through

the elements of the underlying conceptualisation.

The success of a visual query formulation tool is

grounded on how appropriately the following three no-

tions are selected and intertwined (see Figure 2): visual

representation paradigms (e.g., diagrams and forms),

interaction paradigms (e.g., navigation and range se-
lection), and visual attributes and metaphors (cf. [17]).

These notions refer to visual constructs that correspond

to domain elements, the way users manipulate the visual

objects and hence interact with the system, general vi-

sual characteristics of the tool (e.g., size and colour), and

analogies with the real life objects, situations, processes,

etc. respectively. The ultimate goal is the maximum

exploitation of the human visual channel and cognitive

capacity, while demanding less skills, such as communi-

cation and motor, and knowledge, such as semantic and

syntactic, from users (cf. [74,90]). These basically in-

clude non-volatile semantic knowledge acquired through

general explanation, analogy and example, and common

skills for manipulating physical objects.

A VQL usually has one-to-one correspondence with

the underlying formality, while a VQS is often intention-

ally kept less expressive. This is firstly due to distinct

goals of a VQL and VQS; the former is mainly meant to

be a visual replica of the underlying textual language,

while the latter is largely meant to generate fragments

of it without necessarily reflecting any formal aspects to
users. Secondly, there is trade-off between expressiveness

and usability, which commonly necessitates sacrificing

some complex query and domain constructs, which are

hard to deal with in visual form, in the favour of usabil-

ity. In this regard, particularly for a VQS, a key concern

is to reach a usability and expressiveness balance.

3.2 Related work

Early examples of VQSs, as mentioned earlier, built on

low level models (cf. [17]), while recent ontology-based

approaches mostly target web data (i.e., linked data)

(cf. [8]). End users generally have a better affinity with

data access approaches available for the Web than the
ones available for traditional database systems. Their

apparent success makes it a sensible direction to adapt

them for relational data sources. In this regard, Faceted

search (cf. [89]) and Query by Navigation (QbN) (cf. [87])

are prominent in terms of their suitability for ontologies

and their inherent compatibility to each other.

3.2.1 Faceted search and QbN

Faceted search, being an advanced form-based approach,

is based on a series of orthogonal dimensions, which can

be applied in combination to filter the information space;

each dimension, called facet, corresponds to a taxonomy.

Typically, each facet is derived from the properties of

the corresponding concept. In its most common form,

facet options are accompanied with the number of acces-

sible instances, called numeric volume indicators (NVI),

for each possible selection to prevent users from reach-

ing empty result sets. A track of user selections, called

bread crumbs, are also kept for user awareness and ma-

nipulation. QbN exploits the graph-based organisation

of information to allow users to construct queries by

traversing the conceptual space through relationships

between concepts; each pass from one concept to an-

other indeed corresponds to a join operation. End users

6 Ahmet Soylu et al.

Explora(on	
 Construc(on	

Visual	
 a2ributes	

and	
 metaphors	

Interac(on	

paradigms	

Visual	
 representa(on	

paradigms	

Seman(cs	

Syntax	

VQS	
 A	

Seman(cs	

Syntax	

VQL	

Skills	

Communica(on,	

motor,	
 cogni(ve,	

and	
 perceptual	

Knowledge	
 Syntac(c	
 and	

seman(c	

Expressiveness	
 U
sa
bi
lit
y	
 VQS	
 B	

Textual	
 language	

Fig. 2 A conceptual view on end users and visual query formulation.

are quite familiar with both types of search approaches;

faceted search is widely used in commercial websites such

as eBay and Amazon for listing and filtering products,

while the navigation is the backbone of web browsing.

Examples of QbN are Tabulator [5], a linked data

browser; SWC [79], a data navigation tool for the Se-
mantic Web; SEWASIE project [18], an ontology-based

query formulation tool; Visor [66], a data exploration

tool for the Semantic Web; and ViziQuer [94], a tool

for exploring and querying SPARQL end-points. QbN

is either a predominant or sole paradigm in these tools.
Well-known examples of faceted search are Flamenco

[92], a faceted search interface for images – not ontology-

based; mSpace [72], a faceted search framework for the

Semantic Web; and Exhibit [46], a lightweight frame-

work for publishing structured data. Examples of faceted

search are quite typical and well accepted by end users;

however, faceted search interfaces commonly allow fil-

tering on a single concept and breaks down as soon as

a “join”, which is a harder operation for end users to

comprehend, between information about several objects

is required.

SEWASIE, ViziQuer, and Visor provide a diagram-

based pane, where selected concepts appear as nodes,

and they support selection and join through form-based

dialogs, which are not primarily visible. In SEWASIE

and ViziQuer navigation starts with a single concept

(i.e., kernel), while in Visor a user can start with multi-

ple concepts. In order to support end users, ViziQuer

allows users to draw links between any two nodes, so

that the system can recommend connections. A more

advanced form of similar support is provided by Visor,

where users can select multiple concepts, initially un-

connected, and then the system finds and suggests links

connecting all the nodes. Both in ViziQuer and Visor,

concepts are not necessarily required to be directly con-

nected, intermediary nodes can also be found and a path

can be suggested – mostly the shortest path. Although

this type of support is quite important, particularly

for large ontologies and connecting concepts that are

multiple hops away from each other, a plain shortest

path approach, in many cases, is not expected to lead

to sensible connections.

3.2.2 Hybrid approaches

Generally, the examples of QbN provide weak or no

support for select and projection operations; similarly

the examples on the faceted search provide weak or no

support for join operations. The combination of QbN

and faceted search is a promising direction, since there

is a fair share of primary query construction operations,

i.e., select and project for faceted search and join for

QbN. The hybrid of QbN and faceted search is available

in two forms in the literature. The first one is built on

menu-based QbN ; the prominent examples are Paral-

lax [45], a set-based browsing application for the Web;

Humboldt [53], a user interface for browsing RDF data;

VisiNav [40], a system for search and navigation of web

data; and tFacet [10], a tool for hierarchical visual ex-

ploration of semantic data. The second hybrid form is

built on diagram-based QbN ; the prominent examples

are OZONE [86], an interface for navigating ontology in-

formation, and gFacet [41], a tool for visual exploration

of semantic data.

A Multi-paradigm and Ontology-based Visual Query System for End Users 7

In menu-based QbN with faceted search, the process

is often initiated with a keyword search and then a set

of matching concepts and instances are displayed. After

the selection of a concept, a set of facets are displayed

along with a set of domain concepts that are related

to the current concept. In Humboldt, rather than de-

riving a facet for each relationship, only a single facet

is derived per associated concept. Such an approach

decreases the number of facets to be displayed; how-

ever, it also introduces ambiguity problems. In tFacet,

facets are displayed in a tree form; the first level of the
tree represents the facets derived from the direct rela-

tionships and attributes of the base concept, while the

children of a tree item represent the facets of another

concept associated through the relationship that its par-

ent tree item represents. However, for large ontologies

the depth of the tree is an issue, since each tree item

would probably have a high number of children, which

in turn hinders the usability. An important problem

with menu-based hybrid approaches is poor support for

providing an overview of the overall task (i.e., a global

view of connected concepts, constraints imposed, and

attributes selected for the output).

In a diagram-based QbN with faceted search, con-

cepts are represented as nodes in a graph and a user

navigates by expanding and retracting nodes. Moving

from one concept to another changes the focus (i.e., piv-

oting) and the user can impose constraints on the active

concept (e.g., pivot) by selecting options within each

facet. Both in OZONE and gFacet, the search process

starts with the selection of a kernel concept from a

hierarchical list of concepts and through a keyword

search respectively; the selected concept appears in a

graph-based pane as a rectangle and facets constitute

the inner content. Users can expand relationships into

new nodes by selecting the desired relationship from

a menu-item attached to each node. In diagram-based

hybrid approaches, a better overview is provided, since

diagram-based approaches are naturally good at pro-

viding a global view. However, this time the problem

becomes poor support for view (i.e., focus), that is abil-

ity to channel user to a specific part of an active task.

Finally, a common problem for both type approaches

is their inability to aggregate information from different

concepts. Usually the attributes of kernel concept form

the output; although in many cases users can change

the kernel concept, they cannot select output attributes

from different concepts.

3.2.3 Discussion

A general problem with the presented tools is the utili-

sation of only one predominant representation or inter-

action paradigm. Usually, one representation or integra-

tion paradigm is not sufficient to accommodate different

functionality and usability concerns; Catarci et. al [17]

suggest that interfaces combining different types of vi-

sual representation and interaction paradigms are more

promising. Another problem is the lack of flexible and

extensible architectures, which ensure the sustainability

of the interface with respect to changing requirements.

The majority of tools presented have a strong focus

on browsing, which leads them to be highly explorative

and instance oriented. This being very adequate for open
Web, in the present context represents a set of issues.

Firstly, user navigation in a conceptual space is

mostly for data browsing purposes; a final query, which

encompasses the visited concepts, is not generated. Note

that, albeit related, browsing and querying are different

notions.

Secondly, there is no clear distinction between ex-

plorative and constructive user actions and there is a

lack of support for view (i.e., the active phase of a query

task) and overview (i.e., the general snapshot of a query

task).

Thirdly, a frequent interaction with the data is re-

quired (i.e., database-intensive). Indeed, supporting end

users with cues (cf. [72]) and statistics concerning the

underlying data is an effective method; however, scal-

ability issues have to be addressed for large instance

sets.

Finally, most of these tools extract domain knowl-

edge from the instance sets rather than an ontology. This

leaves end users with poor domain knowledge, since the

amount of domain knowledge inferable from instances

is very limited.

4 Design requirements

A VQS should primarily match the level of users and

should drive the capabilities of the output medium and

human visual system at an optimum level, while bridg-

ing the gap between the domain representation and user

mental model. One first has to decide what type of

domain knowledge and information needs are to be ad-

dressed. This, in turn, concerns the selection of ontology

constructs and semantics that should be communicated

at the interface level and the type of queries that end

users should be able to formulate. A sustainable design

and evolution plan is required to establish and maintain

a balance between usability and expressivity during the

life cycle of the tool.

Although a VQS could potentially address a broad

spectrum of users, the primary concern in this article

is end users who have no technical skills and knowl-

edge and need to extract data from databases without

8 Ahmet Soylu et al.

ever needing to know a formal query language. These

could be casual users who occasionally use computers

for entertainment and basic tasks in their daily life/work

(e.g., surfing on the Web and checking e-mails), or could

be domain experts who have an in-depth knowledge and

understanding of the semantics of their expertise do-

main and use computers for their work. SPARQL [39] is

assumed as the query language, and OWL 2 [36] as the

ontology language in the present case. In what follows,

the level of expressiveness (i.e., functional requirements)

and core quality attributes (i.e., non-functional require-
ments) required in order to meet the goal of this research

are discussed.

4.1 Expressiveness

Expressiveness is addressed from the point of view of

exploration and construction.

4.1.1 Exploration

Two forms of exploration are distinguished, namely pas-

sive and active exploration. The former refers to the

implicit flow of domain knowledge to end users during

query formulation and is an integral part of a VQS. The

latter refers to the explicit acquisition of domain knowl-

edge by end users purely for exploration purposes, such

as traversing a conceptual space through an ontology

visualisation component (cf. [47]).

An ontology is as a formal, explicit specification of a

shared conceptualisation, which is an abstract represen-

tation of a phenomenon in the world based on identifica-

tion of relevant concepts, attributes, relationships, and

constraints (cf. [85]). Considering a typical ontology, the

following ontology constructs should be delivered visu-

ally to aid users: classes (i.e., concepts), class hierarchy,

object type properties (i.e., relationships), data type prop-

erties (i.e., attributes), multiple inheritance, enumerated

classes, inverse relationships, multiple ranges, disjoint-

ness, and subproperties. The remaining constructs, such

as role chains and transitivity, are not deemed to be

necessarily visualised, since they are rather valuable at

the query answering stage in terms of classification, in-

ference, and consistency checking. Nonetheless, multiple

inheritance, disjointness, subproperties, inverse proper-

ties, and multiple ranges are comparatively harder to

communicate, while others are mostly well established

as far as visualisation methods and tools are concerned

(cf. [47]).

Regarding reasoning, the propagation of property

restrictions also has to be considered and is twofold: top-

down propagation of property restrictions and bottom-up

propagation of property restrictions (cf. [35]). These

are based on the facts that an ontology class inherits

property restrictions of its parent classes and includes

interpretations of all its subclasses. Therefore for a given

ontology class, the properties of its subclasses and su-

perclasses can also be suggested.

An ontology alone is not sufficient to successfully

communicate domain knowledge. It often needs to be

enriched with visualisation related information, such

as labels and descriptions for ontology elements. The

common practice in the literature is to use concept,

relationship, and attribute identifiers as they appear in

the ontology; however, these identifiers are not meant

for end-user consumption and could deliver a sense of

complexity.

4.1.2 Construction

Queries could be classified with respect to their topolog-

ical form into three categories, namely linear queries,

queries with branching, and cyclic queries. Linear queries

refer to queries only with a sequential path expres-

sion (i.e., serial joins of concepts), while queries with
branching include branching path expressions combined

through “AND” and “OR” connectives (cf. [34,19]).

Given a query graph pattern, there exists a cycle, if there

is at least one (undirected) path in the graph whose first

node corresponds to the last. Queries including disjunc-

tion and cycles are more problematic compared to the
linear and tree-shaped conjunctive queries (cf. [17]).

From a non-topological perspective, queries with

quantification, negation, and aggregation are notable

(cf. [63,84]). Two fundamental forms of quantification

are existential quantification (i.e., “there exists”) and

universal quantification (e.g., “for all”). Negation is an
operation that may be applied on a proposition, truth

value, etc. and, in the simplest terms, is used to re-

verse a condition, while aggregation functions such as

count, sum and max are used to group values of multi-

ple attributes to form a single value. While the use of

existential quantification remains implicit, queries that

include universal quantification, negation, and aggrega-

tion are quite esoteric for end users; this even applies to

expert users, particularly for universal quantifiers [49].

Based on the aforementioned categorisations, queries

could be prioritised in three levels with respect to the

user perceived complexity and need:

– First level : linear and tree-shaped conjunctive queries

(i.e., queries with branching and without cycles);

– Second level : disjunctions, cycles and aggregation;

– Third level : universal quantifiers and negation.

The first level is considered as the ground challenge

and is the primary goal in the context of this article.

A Multi-paradigm and Ontology-based Visual Query System for End Users 9

This is justified with a set of example end-user queries

delivered by one of the use case partners, where 80

percent of queries fall into the first level.

4.2 Quality attributes and features

As suggested in the discussion of related work, usability

and modularity are considered as primary and interre-

lated quality attributes. A set of features that support

these attributes are listed in the following.

4.2.1 User-friendly design

Generally, the design should be intelligible, intuitive, suc-

cinct, and stimulative. More specifically, a visual query

formulation tool has to be instant, i.e., the result of

user actions should immediately be reflected; gradual,

i.e., particularly for large ontologies and query tasks,
users should be able to gradually explore and construct;

reversible, i.e., during query construction a user typi-

cally does several explorative actions (e.g., add/remove
constraint), which requires every query state to be recov-

erable; and iterative, i.e., often a query is only complete

after several iterations, therefore users should be allowed

to modify and use the existing queries.

4.2.2 Multi-paradigm

Various types of representation (form-based, diagram-

based, icon-based, etc.) and interaction paradigms (nav-

igation, range selection, etc.) exist in the literature

(cf. [17]). One should be aware that not every repre-

sentation and interaction style goes well with every type

of domain and query construct and affordance (cf. [47]).

Therefore, a visual query formulation tool should har-

monise multiple representation and interaction styles,

each best suited for particular type of constructs and

affordances. A multi-paradigm approach is promising to

address a broad range of tasks and user types.

4.2.3 View/Overview

End users should feel and be in full control of the

tool and have continuous awareness of the active state

(i.e., perceived control and user situation awareness);

this is expected to have a major effect on the attitude

of end users (cf. [83]). In a visual query formulation

scenario, the balance between view and overview is the

primary contributor for such a control and awareness.

A persistent query overview and view empower a user

to have an overall understanding of the task at hand

and provide ability to switch to and focus on different

parts of it at any moment.

4.2.4 Exploration/Construction

Exploration and construction have adverse yet comple-

mentary roles. In exploration, a user aims to navigate a

conceptual space as broadly as possible, while in con-

struction the goal of user is only to traverse the part of

the conceptual space that corresponds to his/her infor-

mation need with as few deviations and backtracks as

possible. Therefore explorative and constructive facilities

should be intertwined and supported with due diligence,

allowing smooth and frequent transitions between each

phase.

4.2.5 Modular architecture

A modular architecture ensures flexibility and extensibil-

ity, so that new components could easily be introduced in

order to adapt to changing requirements. This could in-

clude alternative/complementary components for query

formulation, exploration, visualisation, etc. It also under-

pins the sustainability and a multi-paradigm design, as

each component could employ a different representation

and interaction paradigm.

5 OptiqueVQS approach

The requirements presented previously are foundational

for the OptiqueVQS approach. This section describes

the design and design rationale behind the OptiqueVQS

interface, after briefly introducing the key technical

concepts, which are to be described in detail in Section 6.

OptiqueVQS is designed as a widget-based user-

interface mashup (i.e., UI mashups); an UI mashup

aggregates a set of applications in a common graphical

space, in the form of widgets, and orchestrates them

for achieving common goals (cf. [80]). In the present

context, widgets are the building blocks of UI mashups

and refer to portable, self-contained, full-fledged, and

mostly client side applications with less functionality

and complexity. In a query formulation scenario, a set

of widgets could be employed together. For instance, a

widget for QbN and a widget for faceted search could

handle query construction synchronously, and another

widget could present query results.

5.1 Interface

Initially there are three widgets in the design as depicted

in Figure 3. The first widget (W1 – see the bottom-

left part of Figure 3) is a menu-based QbN widget

and allows users to navigate concepts through pursuing

relationships between them, hence joining relations in

10 Ahmet Soylu et al.

a database. The second widget (W2 – see the bottom-

right part of Figure 3) is a form-based widget, which

presents the attributes of a selected concept for selection

and projection operations. The third widget (W3 – see

the top part of Figure 3) is a diagram-based widget

and provides an overview of the constructed query and

affordances for manipulation. These three widgets are

orchestrated by the system, through harvesting event

notifications generated by each widget as a user interacts,

so that they could jointly extract and represent the

information need of the user.

In a typical query construction scenario, a user first

selects a kernel concept, i.e., the starting concept, from

W1, which initially lists all domain concepts accompa-

nied with icons, descriptions, and the potential/approx-
imate number of results. The selected concept appears

on the graph (i.e., W3) as a variable-node and becomes

the focus/pivot/active node (i.e., the node coloured in

orange or highlighted). W2 displays its attributes in the
form of text fields, range sliders, etc. The user can select

attributes to be included in the result list (i.e., using the

“eye” button) and/or impose constraints on them through

form elements in W2. Currently, the attributes selected

for output appear on the corresponding variable-node

in black with a letter “o”, while constrained attributes

appear in blue with letter “c”. The user can further

refine the type of variable-node from W2, by selecting

appropriate subclasses, which are treated as a special

attribute (named “Type”) and presented as a multi-

selection combo-box form element. Note that once there

is a pivot node, W1 does not purely lists concepts any-

more but a set of (sub)paths. Each item/path in W1

represents a combination of a possible relationship with

its range concept pertaining to the pivot (i.e., indeed a

path of length one). The user can select any available

item from the list; this results in new path with a new

variable-node of type specified by the selected item, a

join between the pivot and the new variable-node over

the specified relationship, and a move in focus to the

new variable-node. The user has to follow the same steps

to involve new concepts in the query and can always

jump to a specific part of the query by clicking on the

corresponding variable-node in W3. The arcs that con-

nect variable-nodes do not have any direction, but it is

implicitly left to right. This is because for each active

node only outgoing relationships and inverses of incom-

ing relationships are presented for selection in W1; this

allows queries to be always read from left to right. In W3,

it is preferable to employ node duplication approach for

cyclic queries for the sake of having tree-shaped query

representations, hence avoiding a graph representation.

An example query is depicted in Figure 3 for the Statoil

use case. The query asks for all fields that has facility,

with a water depth of “305,25” meters, and are oper-

ated by a company, which also operates a field named

“COD”. In the output, one would like to see the names

of the fields and the short names of the companies (first

“Field” variable-node is the kernel, while the second one

is the pivot in the snapshot).

The user can delete nodes, access the query cata-

logue, save/load queries, and undo/redo actions through
affordances provided by the buttons at the bottom part

of W3. W3 indeed acts as a master widget, since it pos-

sesses the whole query, and deals with its persistence.

The user can also switch to SPARQL mode and see the

textual form of a query by clicking on “SPARQL Query”

button at the bottom-right part of the W3 as depicted

in Figure 4. The user can keep interacting with the

system in the textual form and continue to the formula-

tion process by interacting with the widgets. For this

purpose, pivot/focus variable-node text is highlighted

and every variable-node text is associated with a hy-

perlink to allow users to change the focus. Currently,

the textual SPARQL query is not manually editable

and is for didactical purposes only. More advanced end

users, who are eager to learn the textual query language,

could switch between two modes and see the new query

fragments being added/deleted after each interaction.

5.2 Expressiveness

The expressiveness of a visual query language or system

concerns the underlying formal ontology and query lan-

guage (i.e., formal limits) and the fragments of them

represented visually (i.e., what and how). In the fol-

lowing, the visual expressiveness of the OptiqueVQS

is discussed from exploration (i.e., what it is able to

communicate) and construction perspectives (i.e., what

it allows users to communicate) and the details of un-

derlying formalisms are given in Section 6.

A VQS is not expected to be fully expressive; this is

due to the fact that advanced query constructs, even in

visual form, could be hard to comprehend and use for end

users, while for IT experts textual mode would probably

be more efficient and comfortable. In this respect, only

domain and query constructs, which are frequently used

and have a reasonable user perceived complexity, are

realised. Perceived user complexity plays a binding role,

since a visually expressed domain or query construct is

virtually non-existent, even counterproductive, if end

users are not able to comprehend and use it.

OptiqueVQS relies on passive exploration. The in-

terface communicates the following ontology constructs

visually to aid users to reach an understanding of the

underlying domain of interest: classes, class hierarchy,

A Multi-paradigm and Ontology-based Visual Query System for End Users 11

Fig. 3 OptiqueVQS – an example query is depicted for the Statoil use case.

object type properties, data type properties, multiple in-

heritance, enumerated classes, inverse relationships, and

multiple ranges. Visual representations of disjointness

and subproperties are also of use; however, the interface
does not accommodate them currently. The interface

also supports the propagation of property restrictions.

The interface allows construction of linear and tree-

shaped conjunctive queries, i.e., first level, as this is

set as the ground challenge (cf. Section 4). As far as

the second level is concerned, three types of cycles that

matter for end users at the interface level are identi-

fied; type I cycles are formed when a variable-node is

referred more than once, for instance, “give me all the

people who live and work in the same city”. Type II

cycles occur when there exist at least one comparison

between the attributes of two distinct variable-nodes, for

instance, “give me all the people whose fathers are older

than their mothers”. Lastly, Type III cycles occur when

there exists at least two variable-nodes of the same type.

Cycles of type III are supported naturally, since at the

interface level every variable-node is implicitly typed

rather than having concept-nodes for typing. Type I

cycles are expected to be supported through node dupli-

cation, where end users can assert that two variables are

indeed the same (cf. “Same Node” button in Figure 3);

as already stated, this is to keep queries in tree-shape

for the usability purposes (cf. [16]). Queries that involve

disjunction and aggregation are not accommodated by

the interface. Concerning the third level of queries, ex-
istential quantification is implicitly supported through

the interface; however, queries that include universal

quantification and negation are not supported.

Note that support for disjunctions, universal quanti-

fiers, and negation is also a concern for the underlying

OBDA framework, which is introduced in Section 6.

5.3 Design rationale

A VQS, rather than a formal VQL, has been inten-

tionally chosen, since a VQS typically employs ad-hoc

representations and affordances and relies on common

knowledge and skills rather than users’ ability to learn

a new language and syntax (cf. [74,27]). This allows to

avoid rigid boundaries of a formal language and provides

a good basis for usability and expressivity balance.

In order to address the usability and expressiveness

trade-off, as stated previously, the focus is on user per-

ceived complexity and the frequency of use – the former

being the predominant decision criteria. End users are

12 Ahmet Soylu et al.

Fig. 4 OptiqueVQS – the example query is depicted in SPARQL text view.

also enabled to modify existing queries to fit them to

the task at hand and to formulate more complex queries.

Query reuse is a passive collaboration technique (cf. [60]),

which saves user effort and time and has a didactic role,
in terms of knowledge share through examples, for the

training of end users.

OptiqueVQS provides an instant, reversible and it-

erative experience and addresses the scalability issue

against large ontologies by gradually loading on demand

the information about classes, and offering search fields

to find classes and properties without having to navigate
endless lists.

The visual representation and interaction paradigms

along with underlying metaphors, analogies, etc. are of

primary importance for a VQS. A single representation

and interaction paradigm are not sufficient for address-

ing main data access activities, i.e., exploration and

construction, at an acceptable level of expressiveness

and usability. Therefore, OptiqueVQS combines differ-

ent paradigms and the best practices to reach its goal

succesfully. The architectural choice of OptiqueVQS,

which is described in Section 6, plays a crucial role in

this respect; the mashup approach built on widgets un-

derpins the flexibility and extensibility of OptiqueVQS,

so that one can combine different representation and

interaction styles (i.e., multi-paradigm). In this respect,

the following address each widget on an individual basis.

W1 follows a list/menu-based representation style

and is capable of presenting a considerably high number

of items, along with supportive icons and meta infor-

mation. Navigational interaction employed by W1 is a

familiar paradigm for end users as stated earlier (cf. [87]).

In W1, each selection is a combination of a relation with

its range concept; this helps to reduce the number of

navigational levels that the user has to pass through

(cf. [79]).

In W2, the form-based representation style and range

selection interaction style are employed; these paradigms

are well known by end users and known to be intuitive

as well (cf. [17]). A limited amount of faceted search

flavour is provided in W2, since frequent database access
is not feasible in the present context (i.e., due to the large

data size). W2 realises subclass refinement through a flat

list, rather than a tree-based structure. Although tree-

based structures are commonly employed for visualising

hierarchies, trees immediately become problematic for

large hierarchies (cf. [47]).

Last but not the least, in W3, a diagram-based ap-

proach is used; diagrams are good at communicating

relationships over a spatial dimension (cf. [47]). In W3,

A Multi-paradigm and Ontology-based Visual Query System for End Users 13

queries are represented in the form of trees, including

the cyclic queries (cf. [16]), since graphs representing

information needs could easily get complex and hard

to comprehend, due to cycles, and lack of a kernel con-

cept and query flow direction. One could consider the

query visualisation provided by W3 in terms of a VQL;

however, it is rather ad-hoc and informal.

Holistically, W3 is meant to provide a constant

overview of the active query task, while W1 and W2

are meant to keep the focus on the pivot concept and

to enable users to iteratively formulate their queries. In

this way, OptiqueVQS provides a clear distinction and

support for view and overview. Furthermore, each wid-

get employs human readable labels of ontology elements

rather than using their identifiers.

6 Implementation and architecture

A prototype was implemented as a proof of concept; an

extensive demo video is available online7. The client side

is based on the HTML 5, JavaScript, and CSS, more

specifically, on jQuery (a cross-platform Javascript li-

brary), jQuery Mobile (a mobile web framework built

on jQuery), and InfoVis (a visualisation library built on

JavaScript). A mobile web framework was particularly

selected for the implementation, since the fact that it

tailors the look and feel for small screens and provides a
touch optimised experience enables cross-device experi-

ences (e.g., the use of OptiqueVQS or any of its widgets

in the field through mobile devices).

The backend is built on the Information Workbench8

(IWB) [38]. IWB is a generic platform for semantic data

management, which provides a shared triple store for

managing the OBDA system assets (such as ontolo-

gies, mappings, query logs, (excerpts of) query answers,

database metadata, etc.), generic interfaces, APIs for

semantic data management (e.g., ontology processing

APIs), and other end-user related components, such as

for result visualisation and textual query editing. IWB

does not only host the widget backends, but also inte-

grates all the components and APIs developed by the

project partners (cf. Section 2), such as ontop9 [69,70]

for query rewriting and optimisation and mapping man-

agement, and ADP [52] for distributed query processing.

A special API was also developed to allow widgets to

access and query the triple store and ontologies.

The OBDA framework behind OptiqueVQS supports

OWL 2 QL [62] and a conjunctive fragment of SPARQL

1.1 [39]. In OBDA, the main concern, while selecting

7 http://youtu.be/ks5tcPZVHp0
8 www.fluidops.com/information-workbench/
9 http://ontop.inf.unibz.it

an ontology language, is to achieve reasonable computa-

tional complexity with respect to the size of data; it is

now well known that efficiency of query answering can-

not be guaranteed if the ontology is expressed in a logic

whose expressive power exceeds the one of lightweight

language [20]. OWL 2 QL is a profile of OWL 2 and

is based on the DL-Lite family of description logics

(DL) (cf. [36]). OWL 2 QL is particularly meant for

applications for query answering with a large amount

of instance data and in this profile query answering can

be implemented by rewriting queries into a standard re-
lational query language [62]. Note that although within

the scope of Optique one is restricted to OWL 2 QL,

OptiqueVQS is generic and could be used with more

expressive profiles of OWL.

6.1 Formal behaviour

The way the ontology controls the behaviour of Op-
tiqueVQS should be seen from two perspectives: from

a knowledge representation (KR) perspective, Optique

exploits the graph-based organisation of ontological ele-

ments and data for representing the domain and query

structures (cf. query by navigation); from a logic per-

spective, it uses ontological axioms to constrain the

behaviour of the interface and to extend the available

knowledge.

On a purely structural level, OptiqueVQS could

be controlled directly by a graph G that captures the

concepts and the properties of an ontology O. An OWL

ontology can be viewed as a labelled directed RDF graph

G = (N,E), where N is a finite set of labelled nodes and

E is a finite set of labelled edges (cf. [36]). A pairwise

disjoint alphabets U , a set of URIs, L, a set of terminal

literals, and B, a set of blank nodes are considered. An

edge is a triple written in the form of 〈s, p, o〉 ∈ (U∪B)×
U×(U∪L∪B). The nodes of the graph mainly represent

concepts and edges represent properties. A SPARQL

query is formally represented by a tuple defined as Q =

(A, V,D, P,M,R). A is the set of prefix declarations, V

is the output form, D is the RDF graph being queried,

P is a graph pattern, M are query modifiers, which allow

to modify the results by applying projection, order, limit,

and offset options. SPARQL is based on matching graph

patterns against RDF graphs. P is composed of a set

of triple patterns and describes a subgraph of D. The

main difference between a triple pattern and RDF triple

comes from the fact that the former may have each

of subject, predicate and object as a variable. However,

once variables in triple patterns are substituted with

constants or blank nodes, an RDF graph P ′(N ′, E′),

which could be considered as a subgraph of the actual

RDF data graph, is obtained.

http://youtu.be/ks5tcPZVHp0
www.fluidops.com/information-workbench/
http://ontop.inf.unibz.it

14 Ahmet Soylu et al.

Every query generated by OptiqueVQS has a graph

pattern represented by a set of triple patterns, where

each triple pattern is a tuple t ∈ V ar×U×(U∪V ar∪L)

and V ar is an infinite set of variables. An example

SPARQL graph pattern is depicted in Figure 5 for the

query example presented in Figure 3 and Figure 4. The

state of an edited query is composed of a partial graph

pattern and a cursor position (cf. pivot). The cursor

position is either blank (i.e., empty query) or points

to a variable in the query. If the query is empty, the

selection of a concept v from W2 results in a new tuple
〈x, rdf:type, v〉 ∈ V ar × U × U in P , where x is a

fresh variable. If the cursor points to a variable x, of

type v, then each selection of an object property o

with target class w from W1 (corresponding to an edge

〈v, o, w〉 ∈ G) adds the following two triple patterns to

P : 〈x, o, y〉 ∈ V ar × U × V ar and 〈y, rdf:type, w〉 ∈
V ar×U×U , where y is a fresh variable. Every selection

and projection operation realised over a data property d

in W3, while cursor is on a variable x, adds a new tuple

〈x, d, y〉 ∈ V ar×U×(V ar∪L) to P . Finally, the selection

of a subclass v for a typed variable x in W3 results in a

new triple in P: 〈x, rdf:type, v〉 ∈ V ar × U × U .

Comparing the SPARQL graph pattern given in

Figure 5 to the visual representation given in Figure 3,

it can be seen that the concept-nodes, variable-nodes

referring to literals, and literal-nodes are omitted along

with the edges connecting them; and variable-nodes

only represent individuals. The type information, output

form, and constraints on attributes are embedded into

each corresponding variable-node.

6.2 Backend support

The domain knowledge that needs to be visualised
through the visual query interface is often richer than

what an OWL 2 QL ontology can express. In this case

the resulting ontology will fall outside the OWL 2 QL

(e.g., cardinality restrictions); in the OBDA framework,

this issue is addressed through approximation techniques

(cf. Figure 6), which transform the ontology into one

that is as expressive as possible, while still falling within

the required profile (cf. [65,22,21]).

For instance, multiple property domains and ranges

are not permitted in OWL 2 QL. Thus an OWL 2

QL approximator is provided [22,21] to approximate or

remove such axioms. However, although this information

is not used in the rewriting process, it does have an

important role in the OptiqueVQS. Hence, in order

to be able to keep this non OWL 2 QL information,

annotations are added to the ontology about the multiple

domains and ranges based on OWL 2 annotations10.

Moreover the ontology is enriched with more anno-

tations. These are user-friendly labels for concept and

properties and annotations pre-computed from the un-

derlying data for increasing the responsiveness of the

interface. For instance, values that are frequently used

and rarely changed are pre-computed; this includes the

list of values and numerical ranges in an OWL data

property range (i.e., for max/min sliders and drop-down

boxes in W2), which also fall outside OWL 2 QL.

The OBDA framework helps to increase the expres-

siveness of the interface through delegating some com-

plex notions to the mapping layer. This layer allows to

define mappings from a relational database to an RDF

or OWL vocabulary of concepts/properties and let the

system view the database as if it was an RDF graph.

This layer also allows to abstract complex notions into

new relationships and concepts, and define built-in func-

tions. Listing 1 and Listing 2 together form a mapping

(i.e., for ontop [2]) and present a simplified example from
the Statoil use case.

Listing 1 Mapping target – triple template.

<"&:;M1 -{ $M1_id}">

:intersects

<"&:;M2 -{ $M2_id }}"> .

Listing 2 Mapping source – SQL code.

SELECT M1.id as M1_id , M2.id as M2_id

FROM Measurement1 as M1, Measurement2 as M2

WHERE M1.id = M2.id

AND (M1.top BETWEEN M2.top AND M2.bottom

OR M1.bottom BETWEEN M2.top AND M2.bottom)

Two relations are assumed in a relational database,

namely Measurement1 and Measurement2, which are

mapped to their corresponding concepts in an ontology

(omitted). In Listing 1 and Listing 2, a new complex

relationship named “intersects” is defined in the ontol-

ogy. Then, it is instantiated by asserting a new triple for

every tuple emerging as a result of the joining of Mea-

surement1 and Measurement2 relations on the condition

that there is an overlap between their intervals defined

with top and bottom attributes. The source given in

Listing 2 is an arbitrary SQL query over the database

and the target given in Listing 1 is a triple template con-

taining the placeholders that reference attribute names

mentioned in the source query. This way an end user

can simply use the new relationship rather than com-

paring top and bottom intervals of two variable-nodes

10 http://www.w3.org/TR/owl2-new-features/#Extended_

Annotations

http://www.w3.org/TR/owl2-new-features/#Extended_Annotations
http://www.w3.org/TR/owl2-new-features/#Extended_Annotations

A Multi-paradigm and Ontology-based Visual Query System for End Users 15

?c1	
 ?c2	

?c3	

?c4	

ns1:Field	

ns1:Company	

?a1	

?a2	

?a3	
 ?a4	

ns1:Facility	

ns3:operatedby	
 ns3:operates	

ns1:type	

ns2:waterDepth	

ns2:Field_nam
e	

ns3:hasFacility	

Fig. 5 An example SPARQL graph pattern is depicted for the Statoil use case.

OWL	
 2	

ontology	

OWL	
 2	
 QL	

ontology	

Annota/ons	
 +	

OII	
 OI	

Answering	
 ontology	
 Visualisa/on	
 ontology	

Query	

Answers	

approxima+on	

Fig. 6 Ontology approximation for query answering and visualisation.

through the interface; another similar example could

be for checking whether a geographical area contains a

given location – both represented by their coordinates.

This approach empowers end users to formulate more

complex queries and could increase the usability of the

interface.

6.3 Interface architecture

Widgets are managed by a widget runtime environment,

which provides basic communication and persistence

services to the widgets, while the presence of widgets

(location, size, etc.) on the interface is managed by wid-

get containers. The orchestration of widgets relies on the

requirement that each widget discloses its functionality

to the environment through a client side interface and

notifies any other widget in the environment (e.g., broad-

cast and subscription) and/or the widget environment

upon each user action. Then, either each widget decides

what action to execute in response, by considering the

syntactic or semantic signature of the received event, or

the environment decides on widgets to invoke. The core

benefits of such an approach are as follows:

– It becomes easier to deal with complexity, since the

management of functionality and data could be del-

egated to different widgets.

– Each widget could employ a different representa-

tion and interaction paradigm that best suits its

functionality.

– Widgets could be used alone or together, in different

combinations, for different contexts and experiences.

– The functionality of the overall interface could be

extended by introducing new widgets.

16 Ahmet Soylu et al.

The current architecture of OptiqueVQS is depicted

in Figure 7. The architecture assumes that each widget

has client side and server side components (for complex

processing), and that widgets can communicate with

each other and with the runtime environment through

a communication channel. The communication channel

resides at the client side and is built on post message

method of HTML 5. Each widget also has a data port,

which allows widgets to access server side data sources –

through REST calls in this case. Widget runtime envi-

ronment have an environment controller at the client
side and a component control logic at the server side.

The former is responsible for operational tasks such as

collecting event notifications from widgets and submit-

ting control commands to them. The latter is responsible

for the orchestration logic, that is, it decides on which

widgets should react to which events. Widgets follow

the specification of the W3C [14] and the architecture is

adopted from the authors’ earlier work on UI mashups

[80].

Note that the architecture depicted here only con-

cerns the visual query formulation system; the overall
Optique architecture, which includes other core compo-

nents, such as for query evaluation, ontology manage-

ment and evolution, mappings, and distributed query

execution, is discussed in another publication (cf. [50]).

7 Usability evaluation

The development of OptiqueVQS follows a user-centred

design approach (cf. [37]). Accordingly, the development

of OptiqueVQS was initiated by collecting generic user

requirements through observing and talking with the

target users in their work context. Then, early ideas

were discussed with a set of representative users through

sketches illustrating the proposed design step by step;

early and continuous prototypes followed soon after.

An evolutionary development approach with a holistic

perspective is at the core of the development cycle, that

is, the development is iterative and incremental and

follows a systematic approach by taking future needs
and broad user context into account.

OptiqueVQS was integrated into the Optique plat-

form and end-user workshops were organised in the

premises of both uses case partners (i.e., Statoil and

Siemens) in order to allow representative end users to

have their first full experience with the Optique platform

over their own data sources (i.e., end-to-end). After a

short demo, participants, i.e., domain experts, experi-

mented with the OptiqueVQS and formulated queries.

The feedback delivered by the domain experts was posi-

tive; along with some minor requests, domain-specific

components were demanded, such as maps for selecting

locations.

The first experiment was carried out on a generic

setting with users with no technical background, this

was due to fact that such an experiment allows to test

the system in a general context and to identify and fix

major flaws before experimenting on domain experts,

given their highly constrained availability. Note that

these users are representative of the target group as

they have no/very limited technical knowledge. The

experiment carried out and the results obtained are
presented in the following.

7.1 Experimental setting

The experiment was designed as a think-aloud study

(cf. [30]), since the goal of the experiment was not purely

summative, but to a large extent formative. The experi-

ment is built on a “movie ontology”. A visual excerpt
from the vocabulary of ontology is given in Figure 8;

note that inverse properties are omitted in the figure

for the sake of brevity. In total, the ontology includes 6

concepts, 16 relationships (including inverse properties),

and 17 attributes, which already allow to design complex

queries. A larger ontology was avoided in order to omit

the effect of ontology size on the query formulation in

this phase.

A total of 15 participants took part in the exper-

iment; the profiles of participants are summarised in

Table 2. Participants were selected particularly among

non-technical people, since they are the primary target

of OptiqueVQS. A five minutes introduction of the topic

and tool had been delivered to the participants along

with an example, before they were asked to fill in a

profile survey. The survey asks users about their age,

occupation and level of education, and asks them to rate

their technical skills, such as on programming and query

languages, and their familiarity with similar tools on a

Likert scale (i.e., 1 for “not familiar at all”, 5 for “very

familiar”). Participants were then asked to formulate a

set of information needs into queries with OptiqueVQS,

given at most three attempts for each. An attempt is an

iteration that consists of a formulation of a query and

execution of it and in a subsequent attempt a user usu-

ally modifies what s/he has constructed in the previous

attempt. Each participant performed the experiment in

a dedicated session, while being watched by an observer.

Participants were instructed to think aloud, including

any difficulties they encountered (e.g., frustration and

confusion), while performing the given tasks.

There were 6 tasks, representing the information

needs used in the experiment (see Table 3). Each in-

formation need maps to a query at a different level

A Multi-paradigm and Ontology-based Visual Query System for End Users 17

Controller	

Listener	

Messenger	

Widget	
 core	

Listener	

Messenger	

Widget	
 Backend	

Widget	
 Backend	
 Data	
 provider	

Control	
 logic	

Widget	
 run+me	
 environment	

<JavaScript>	

O	

O	

O	

O	

C	

C	

S	

Data	
 port	

W
id
ge
t	
 e

ng
in
e	

<J
av
aS
cr
ip
t>
	

Client	
 side	
 C	

S	

O	

Server	
 side	

Communica+on	
 channel	

Widget	
 B	
 Widget	
 A	

W
id
ge
t	
 c
on

ta
in
er
	

<H
TM

L>
	

Fig. 7 OptiqueVQS architecture based on widget-based UI mashups.

Award	

î	
 "tle:	
 string	

î	
 year:	
 date	

Company	

î	
 name:	
 string	

î	
 value:	
 integer	

Country	

î	
 name:	
 string	

î	
 language:	
 string	

Music	

î	
 "tle:	
 string	

î	
 dura"on:	
 +me	

Movie	

î	
 date:	
 date	

î	
 "tle:	
 string	

Person	

î	
 name:	
 string	

î	
 gender:	
 string	

Class	
 name	

LEGENDS	

object	
 property	

wins	

acts	
 in	

bo
rn
	
 in
	

released	
 in	

located	
 in	

di
st
rib

ut
es
	

has	
 music	

wins	

distributes	

wins	

î	
 datatype	
 property	

Fig. 8 A visual excerpt from the vocabulary of movie ontology used in the experiment.

of complexity with respect to its topology and length,

in an increasing order of complexity (all conjunctive):

short linear (T1), long linear (T2), short with branching

(T3), long with branching (T4), short with branching

and type III cycle (T5), and long with branching and

type III cycle (T6). A query is classified as “long” if it

has a maximum tree depth of at least 3, and as “short”

otherwise.

Once users completed their tasks, they were asked to

fill an exit survey concerning their experiences with the

tool. The survey asks users to rate whether the questions

were easy to do with the tool (S1), the tool was easy

to learn (S2), easy to use (S3), gave a good feeling of

control and awareness (S4), was aesthetically pleasing

(S5), overall satisfactory (S6), and enjoyable to use (S7)

on a Likert scale (i.e., 1 for “strongly disagree” and 5

for “strongly agree”). Users were also asked to comment

18 Ahmet Soylu et al.

Table 2 Profile information of the participants.

Age Occupation Education Technical
skills

Similar tools

P1 32 Chemist PhD 2 3

P2 26 Math teacher Bachelor 1 1

P3 43 Law student Master 1 1

P4 21 Political science student Bachelor 1 2

P5 22 Criminology student Bachelor 1 3

P6 31 Hydrology student Master 2 4

P7 26 Complex systems student Master 2 3

P8 23 Psychology student Bachelor 1 3

P9 24 Finance student Bachelor 2 3

P10 21 Law student Bachelor 2 2

P11 21 Law student Bachelor 1 1

P12 21 Biology student Bachelor 1 1

P13 23 Natural sciences student Bachelor 1 1

P14 24 History student Bachelor 1 3

P15 22 Biology student Bachelor 1 1

Avg. 25 - - 1.3 2.1

Table 3 Information needs used in the experiment.

Query type Information need

T1 Short linear Find the names of all the companies that distribute a movie titled “Titanic”.

T2 Long linear Find the names of all the people who acted in a movie released between 1970 and
1980 and distributed by a company located in Germany.

T3 Short with branching Find the titles of all the musics that won an award titled “Best of Movie Musics”
and are played in a movie titled “The Red Warrior”.

T4 Long with branching Find the titles of all the movies that are distributed by a company owned by a person
born in USA and have a music that won award between 1980 and 1990.

T5 Short with branching
and type III cycle

Find the names of all the companies that distribute a movie titled “Titanic” and
distribute a music played in a movie released in 1980.

T6 Long with branching
and type III cycle

Find the titles of all the musics distributed by a company located in the UK and
played in a movie that has an actor named “George” who was born in a country in
the African continent and won an award in 1990.

on what they did like and dislike and to provide more

feedback.

7.2 Results

The results of the experiment are presented in Table 4.

A total of 90 tasks were completed by the participants

with an 80 percent first-attempt correct completion

rate11 (i.e., ratio of correctly formulated queries in first

attempt to the total number of tasks). On average a

task needed 74 seconds to complete on 1.2 attempts;

the first and fourth tasks needed the shortest and the

11 Lopez et al. [58] suggest using precision, recall, and f-
measure over the returned result set; however, contrary to
information retrieval, in data retrieval a query is meant to
retrieve all and only those objects that match the criteria. In
other words, even a single erroneous object implies a total
failure (cf. [67,1]). Therefore a binary measure of success (i.e.,
correct/incorrect query) rather than a fuzzy one is used.

longest times to complete, on average 34 seconds and

93 seconds respectively. The third task had the highest

average in the number of attempts with 1.5, while the

first and the sixth tasks had the lowest average in the

number of attempts with 1 and 1.1 respectively.

According to the results and the observations, par-

ticipants solved the first task (i.e., short linear) quite

easily. However, when it came to the third task (short

with branching), half of the participants failed in their

first attempts. This is particularly due to fact that they

were mostly not expecting a branching after two lin-

ear queries and did not pay attention to the text of

the information need. Yet, as soon as they realised the

case, they did quickly recover and manipulated their

queries accordingly. The average number of attempts

then decreased for the subsequent tasks (i.e., all with

branching) as users became more aware. The fourth task

(i.e., long with branching) needed the longest time on

average, since after the third task participants paid more

A Multi-paradigm and Ontology-based Visual Query System for End Users 19

Table 4 The results of the experiment (c for complete, t for time in seconds, and a for attempt count).

T1 T2 T3 T4 T5 T6 Avg.

c t a c t a c t a c t a c t a c t a c t a

P1 1 50 1 1 70 1 1 94 2 1 55 1 1 53 1 1 68 1 1 65 1.2

P2 1 48 1 1 83 1 1 80 1 1 113 2 1 60 1 1 70 1 1 76 1.2

P3 1 81 1 1 87 1 1 80 2 1 180 2 1 141 2 1 145 1 1 119 1.5

P4 1 18 1 1 44 1 1 41 1 1 124 2 1 73 1 1 90 1 1 65 1.2

P5 1 32 1 1 85 1 1 62 1 1 74 1 1 82 1 1 85 1 1 70 1.0

P6 1 16 1 1 136 2 1 125 2 1 86 1 1 108 1 1 100 1 1 95 1.3

P7 1 27 1 1 105 2 1 102 2 1 126 2 1 122 2 1 135 1 1 103 1.7

P8 1 75 1 1 47 1 1 78 2 1 54 1 1 48 1 1 71 1 1 62 1.2

P9 1 23 1 1 59 1 1 54 1 1 82 1 1 45 1 1 81 1 1 57 1.0

P10 1 14 1 1 54 1 1 41 1 1 73 1 1 47 1 1 80 1 1 52 1.0

P11 1 17 1 1 42 1 1 65 1 1 53 1 1 105 2 1 60 1 1 57 1.2

P12 1 29 1 1 72 1 1 84 2 1 103 1 1 56 1 1 83 1 1 71 1.2

P13 1 38 1 1 54 1 1 44 1 1 75 1 1 46 1 1 80 1 1 56 1.0

P14 1 28 1 1 96 1 1 65 1 1 58 1 1 54 1 1 60 1 1 60 1.0

P15 1 19 1 1 125 2 1 112 2 1 144 1 1 50 1 1 168 2 1 103 1.5

Avg. 1 34 1 1 77 1.2 1 75 1.5 1 93 1.3 1 72 1.2 1 91 1.1 1 74 1.2

attention to clearly understand the information need.

Participants solved the fifth task (i.e., short with branch-

ing and type III cycle) comparatively quickly; this was
due to the short length of the query and due to the fact

that participants did not have any confusion, when a con-

cept appeared twice in the query (only one participant

had this confusion and raised it). Finally, participants

solved the last task (i.e., long with branching and type

III cycle) quite smoothly and with confidence, although

it was the longest and the most complex one (i.e., with

two branches and one type III cycle). A snapshot from

the final query is given in Figure 9.

The feedback provided by the participants through

the exit survey is presented in Table 5 and Table 6.

Participants overall rated the tool as “good” with 4

out of 5 on average. The first statement (cf. S1 – the

questions were easy to do with the tool) had the lowest

rank with 3.7; according to the observations, this was

mostly due to the texts of the information needs, rather

than the tool. The texts describing the information needs

(cf. Table 3) include a number of relative pronouns along

with a passive sentence structure, which make them hard

to understand at a first glance and to keep in the short-

term memory. Although, this structure was intentionally

selected in order to avoid a step-by-step question form,

for subsequent evaluations, a different form could be

considered. As listed in Table 6, participants mainly

found the tool orderly. Participants liked the way that

queries were visualised, i.e., a diagrammatic overview.

They also appreciated the fact that the tool allows them

to formulate detailed information needs easily and in

an organised way. The introduction given to the users

was only around five minutes with an example query,

therefore participants were mostly expected to learn on

the way, since one of the goals was to have a tool with a

low learning curve and effort. This case is reflected and

confirmed by the participants’ comments.

Observing the participants in action allowed to ac-

quire some specific insights about the tool. One major

issue was that while formulating the fourth task, partic-

ipants initially looked for a “birth place” field in W2,

since the information need was specifying a person born

in the USA. It took only a while for participants to

realise that this information is only accessible through a

relationship rather than an attribute. A participant first

considered the branches as “OR” rather than “AND”

and asked whether it was possible to construct “OR”
branches. Two participants realised that indeed they do

not have to follow the logical order given in the descrip-

tions of information needs (i.e., to join the concepts in

the given order), and the alternatives exist. One of these

participants solved one of the tasks successfully with an

alternative order. Finally, from a general perspective,
users did not have any major difficulties in using and

learning the tool and were quick in realising the given

tasks. After the experiment, many of the participants

raised their interest regarding the tool, asked further

questions, mostly concerning the context in which the
tool is going to be used, and stated that their experience

with the tool was comparable to the games in terms of

the joy they had.

8 Discussion

The results suggest that OptiqueVQS is a promising

tool for end-user visual query formulation with high

effectiveness and efficiency. The tool provides a decent

20 Ahmet Soylu et al.

Fig. 9 An excerpt from a query formulated by the participants during the experiment.

Table 5 The results of the exit survey.

S1 S2 S3 S4 S5 S6 S7 Avg.

P1 5 5 5 5 4 4 5 4.7

P2 4 4 5 5 5 4 5 4.6

P3 4 4 4 4 4 4 4 4.0

P4 3 4 2 3 4 4 4 3.4

P5 4 4 4 4 4 4 5 4.1

P6 4 5 4 5 5 4 4 4.4

P7 3 3 4 4 4 4 4 3.7

P8 5 5 5 5 4 5 5 4.9

P9 3 4 4 4 4 4 4 3.9

P10 3 3 4 4 3 4 4 3.6

P11 3 4 4 4 4 4 4 3.9

P12 4 4 4 4 4 4 4 4.0

P13 4 3 4 4 4 4 4 3.9

P14 3 3 4 3 4 4 4 3.6

P15 4 4 3 3 4 4 4 3.7

Avg. 3.7 3.9 4.0 4.1 4.1 4.1 4.3 4.0

level of expressivity and demands only common user

knowledge and skills, hence has a high accessibility and

low learning curve. The authors’ experiences both with

the domain experts of the presented use case partners, as

well as with end users without almost any technical skills

reveal that the tool has an engaging nature and provides

a good level of user satisfaction. OptiqueVQS could be

used with different OBDA frameworks, independent of

an OBDA framework directly on SPARQL endpoints,

or on different data models and structures, such as

relational models, due to its compliance with graph-

based structures. Having said these, the following discuss

the most prominent limitations and potential extensions

and the plan to address them.

A Multi-paradigm and Ontology-based Visual Query System for End Users 21

Table 6 The feedback given by the participants.

Like Dislike

P1 “Visual, easy to use, fast and easy to correct mistakes.” “...can be visually improved.”

P2 “Easy to jump on [diagram] and suggestions [of the
W1] were relevant”

-

P3 “Easy and organised. Good for an organised and fo-
cused search.”

“Nothing”

P4 “I like that it can make search process go faster and
make it more specific”

“It could get complicated as you have to link and
sometimes go back to previous boxes.”

P5 “It was OK to find what the tasks asked for without
having to look too long for the right variables.”

-

P6 “The schematic diagram” “It has fixed options.”

P7 “Good overview” -

P8 “The way you connect the nodes, the way it was easy
to incorporate a lot of information in the right way,
and it was easy to be organised.”

“Maybe seems a bit simple at the first glance, but
then it was good!”

P9 “Nice visualisation [for diagram]” “Many steps”

P10 “Easy to use” -

P11 “It was quite simple.” “It felt I did not have much time [to learn].”

P12 “The organisation in images and scheme” -

P13 “The scheme on top is pretty helpful to see where you
are actually getting to what you are looking for”

“It took me some time to get used to it, but then I
think it works!”

P14 “You could really go in to details and ask many things
about same person/company etc.”

“It was a bit tricky to learn, but I think that it is
possible to get a hang on it if you use it for a while”

P15 “Easy access for specific information regarding the
search options: movies, music etc.”

“Some difficulties [for] managing the correct search
option”

The very first concern is to increase the expressive-

ness of OptiqueVQS, without compromising its usability.

This involves extending the expressivity of OptiqueVQS

with new representations and affordances, and the in-

troduction of alternative means for the existing ones.

Concerning the former, the categorisation and discus-

sion given in Section 4 provide a systematic perspective.

Therefore, the authors intend to extend the expressivity

of OptiqueVQS towards level II. At this point the plan

is to avoid addressing negation and universal quanti-

fiers and leave them completely to IT experts through
a textual editor. Generally, the benefit gained by incor-

porating rarely used complex query constructs does not

make up for the loss in usability. Concerning the latter,

a particular example is the one observed during the user

study, that is attribute and relationship controversy. A

convenient solution would be to use every relationship

also as an attribute in W2, while forming its value space

from a representative attribute of its range concept. For

instance, take the “born in” relationship as an example

in Task 4, a user can directly select the appropriate

country from a “Birth place” attribute derived from the

“born in” relationship, in case no other criteria are given

for the country of birth; otherwise, the user can follow

the “born in” relationship and impose the constraints

on the “country” type variable-node.

As far as usability is concerned, scalability is an im-

portant challenge. Firstly, a large instance set makes

the extraction of meta information, such as number

of possible results upon each possible path selection

(cf. W1), a challenging issue. At any point of a query

task, the interface needs to execute a set of partial

queries, each corresponding to the current partial query

with a possible new path presented in W1. This is, in

many cases, not feasible online within a reasonable time,

and requires a pre-computation to derive relevant statis-

tics. Secondly a large ontology could easily make the

interface overcrowded and cluttered, and in turn could

hinder users’ ability to find the ontology elements that

he/she is interested in (cf. [47]). Furthermore, even for

small ontologies, constraint propagation, as discussed

in Section 4, increases the number of possible proper-

ties for each concept. Although OptiqueVQS provides

a gradual access to domain knowledge, this could not

be a solution alone for such cases. Approaches that fil-

ter out unnecessary domain knowledge at every stage

of interaction are necessary in order to ensure success-

ful user experiences against large ontologies. This fact

points to another research question, which concerns the

22 Ahmet Soylu et al.

capability of a system to adaptively suggest concepts, re-

lationships, and attributes. Interested readers can refer

to the authors’ ongoing work on adaptive visual query

formulation for OptiqueVQS, which exploits the query

history of users to rank and suggest ontology elements

with respect to an incomplete query that a user has

constructed so far [78].

A visual query formulation tool should be dynam-

ically tailored to the context (cf. [23]), such as per-

sonal, data-related, task-related, hardware-related, organ-

isational, and environmental. This, on the one hand, in-
cludes automatic alterations of an application behaviour

and presentation with respect to context (i.e., adap-

tivity), and on other includes user-managed customi-

sations of the application for adapting, extending, and

enriching its functionality and presentation (i.e., adapt-

ability) (cf. [11]). Adaptivity and adaptability will not

only help in tackling scalability issues, but will also

help to provide improved user experiences. As discussed,

a notable example is to find, rank, and suggest only

the most relevant relationships, paths, and attributes

at any point with respect to query logs (cf. [51]), and

a set of heuristics defined over data (e.g., number of

related instances between two type of concepts) and

ontology (e.g., number of incoming and outgoing links

for a concept). The widget-based architecture has a pri-

mary role in the adaptability of the OptiqueVQS. For

instance, it enables end users to distribute widgets into

multiple-screens, in order to open up a larger visual

working space, and with an ubiquitous communication

support users could remotely collaborate on the same

query (i.e., distributed user interfaces – cf. [32]).

One final concern is the manual effort required for
the annotation of large ontologies with human readable

labels, descriptions, and icons. OptiqueVQS uses annota-

tions when provided and identifiers otherwise; however,

a sustainable solution would involve an initial set of

annotations for the core ontology elements along with
a mechanism to enable end-users to annotate ontology

elements through the interface over time. Such an ap-

proach considers an ontology as an outcome/artefact of

the work process, rather than a mere input, and is a

valuable practice, since it adds end users to the loop.

9 Conclusion

This article has presented a novel multi-paradigm and

ontology-based VQS, named OptiqueVQS, for end users

with no technical knowledge and skills. It is built on

a powerful OBDA framework and has a flexible and

extensible architecture allowing to combine and orches-

trate different representation and interaction paradigms.

The results of the usability experiment suggest that

OptiqueVQS provides a decent level of expressivity and

high usability.

Finally a set of future research challenges, which in-

cludes a higher level of expressiveness, scalability, adap-

tivity, and annotation management, were elaborated.

The systematic design and architecture of OptiqueVQS

offer a sufficient and convenient room to accommodate

these next level challenges. Further usability studies are

planned with larger user groups and in real scenarios

provided by the industrial use case partners.

Acknowledgements This research is funded by the Seventh
Framework Program (FP7) of the European Commission un-
der Grant Agreement 318338, “Optique”. Ian Horroks and
Ernesto Jimenez-Ruiz were also supported by the EPSRC
projects MaSI3, Score! and DBOnto.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval. Addison Wesley (1999)

2. Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti,
D., Rezk, M., Rodriguez-Muro, M., Slusnys, M., Xiao,
G.: The Ontop Framework for Ontology Based Data Ac-
cess. In: Proceedings of the 8th Chinese Semantic Web
Symposium and Web Science Conference (CSWS 2014),
CCIS, vol. 480, pp. 67–77. Springer-Verlag (2014). DOI
10.1007/978-3-662-45495-4 6

3. Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: On-
tology Enabled Graphical Database Query Tool for End-
Users. In: Proceedings of the 8th International Baltic Con-
ference on Databases and Information Systems (DB&IS
2008), Frontiers in Artificial Intelligence and Applica-
tions, vol. 187, pp. 105–116. IOS Press (2009). DOI
10.3233/978-1-58603-939-4-105

4. Bechhofer, S., Stevens, R., Ng, G., Jacoby, A., Goble,
C.: Guiding the user: an ontology driven interface. In:
Proceedings of the User Interfaces to Data Intensive Sys-
tems, pp. 158–161. IEEE Computer Society (1999). DOI
10.1109/UIDIS.1999.791472

5. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dha-
naraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator:
Exploring and Analyzing linked data on the Semantic
Web. In: Proceedings of the 3rd International Semantic
Web User Interaction Workshop (SWUI 2006) (2006)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic
web - a new form of web content that is meaningful to
computers will unleash a revolution of new possibilities.
Scientific American 284(5), 34–43 (2001)

7. Bevan, N., Macleod, M.: Usability measurement in context.
Behaviour and Information Technology 13(1-2), 132–145
(1994). DOI 10.1080/01449299408914592

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the
story so far. International Journal on Semantic Web and
Information Systems 5(3), 1–22 (2009). DOI 10.4018/
jswis.2009081901

9. Bobed, C., Esteban, G., Mena, E.: Enabling keyword
search on Linked Data repositories: An ontology-based
approach. International Journal of Knowledge-Based and
Intelligent Engineering Systems 17(1), 67–77 (2013). DOI
10.3233/KES-130255

A Multi-paradigm and Ontology-based Visual Query System for End Users 23

10. Brunk, S., Heim, P.: tFacet: Hierarchical Faceted Explo-
ration of Semantic Data Using Well-Known Interaction
Concepts. In: Proceedings of the International Workshop
on Data-Centric Interactions on the Web (DCI 2011),
CEUR Workshop Proceedings, vol. 817, pp. 31–36. CEUR-
WS.org (2011)

11. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The adap-
tive web: methods and strategies of web personalization.
Springer-Verlag, Berlin, Heidelberg (2007)

12. Burnett, M.M.: Visual Programming. In: J.G. Webster
(ed.) Wiley Encyclopedia of Electrical and Electronics
Engineering. John Wiley & Sons Inc. (1999). DOI 10.
1002/047134608X.W1707

13. Burnett, M.M., Baker, M.J.: A Classification System
for Visual Programming Languages. Journal of Visual
Languages and Computing 5(3), 287–300 (1994). DOI
10.1006/jvlc.1994.1015

14. Cáceres, M.: Packaged Web Apps (Widgets) - Packaging
and XML Configuration (Second Edition). W3C Recom-
mendation, W3C (2012). URL http://www.w3.org/TR/

widgets/
15. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R.,

Tummarello, G.: Introducing RDF Graph Summary with
Application to Assisted SPARQL Formulation. In: Pro-
ceedings of the 23rd International Workshop on Database
and Expert Systems Applications (DEXA 2012), pp. 261–
266. IEEE Computer Society (2012). DOI 10.1109/DEXA.
2012.38

16. Catarci, T.: What happened when database researchers
met usability. Information Systems 25(3), 177–212 (2000).
DOI 10.1016/S0306-4379(00)00015-6

17. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Vi-
sual query systems for databases: A survey. Journal of
Visual Languages and Computing 8(2), 215–260 (1997).
DOI 10.1006/jvlc.1997.0037

18. Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., San-
tucci, G., Tessaris, S.: An ontology based visual tool for
query formulation support. In: Proceedings of the 16th Eu-
reopean Conference on Artificial Intelligence (ECAI 2004),
Frontiers in Artificial Intelligence and Applications, vol.
110, pp. 308–312. IOS Press (2004)

19. Claussen, J., Kemper, A., Moerkotte, G., Peithner, K.,
Steinbrunn, M.: Optimization and evaluation of dis-
junctive queries. IEEE Transactions on Knowledge
and Data Engineering 12(2), 238–260 (2000). DOI
10.1109/69.842265

20. Console, M., Lenzerini, M., Mancini, R., Rosati, R., Ruzzi,
M.: Synthesizing Extensional Constraints in Ontology-
Based Data Access. In: Proceedings of the 26th Interna-
tional Workshop on Description Logics (DL 2013), CEUR
Workshop Proceedings, vol. 1014, pp. 628–639. CEUR-
WS.org (2013)

21. Console, M., Mora, J., Rosati, R., Santarelli, V.,
Fabio Savo, D.: Effective Computation of Maximal Sound
Approximations of Description Logic Ontologies. In: Pro-
ceedings of the 13th International Semantic Web Con-
ference (ISWC 2014), LNCS, vol. 8797, pp. 164–179.
Springer-Verlag (2014). DOI 10.1007/978-3-319-11915-1
11

22. Console, M., Santarelli, V., Savo, D.F.: Efficient Approxi-
mation in DL-Lite of OWL 2 Ontologies. In: Proceedings
of the 26th International Workshop on Description Logics
(DL 2013), CEUR Workshop Proceedings, vol. 1014, pp.
132–143. CEUR-WS.org (2013)

23. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context
is key. Communications of the ACM 48(3), 49–53 (2005).
DOI 10.1145/1047671.1047703

24. Crompton, J.: Keynote talk, the W3C Workshop
on Semantic Web in Oil & Gas Industry: Houston,
TX, USA, 9–10 December (2008). Available from
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf

25. Damljanovic, D., Agatonovic, M., Cunningham, H.,
Bontcheva, K.: Improving habitability of natural language
interfaces for querying ontologies with feedback and clari-
fication dialogues. Web Semantics: Science, Services and
Agents on the World Wide Web 19, 1–21 (2013). DOI
10.1016/j.websem.2013.02.002

26. Dowse, R., Ehlers, M.: Medicine labels incorporating pic-
tograms: do they influence understanding and adherence?
Patient Education and Counseling 58, 63–70 (2005). DOI
10.1016/j.pec.2004.06.012

27. Epstein, R.G.: The TableTalk Query Language. Journal
of Visual Languages and Computing 2(2), 115–141 (1991).
DOI 10.1016/S1045-926X(05)80026-6

28. Erwig, M.: Xing: a visual XML query language. Journal
of Visual Languages and Computing 14(1), 5–45 (2003).
DOI 10.1016/S1045-926X(02)00074-5

29. Fadhil, A., Haarslev, V.: GLOO: A Graphical Query Lan-
guage for OWL Ontologies. In: Proceedings of the OWL:
Experiences and Directions (OWLED 2006), CEUR Work-
shop Proceedings, vol. 216. CEUR-WS.org (2006)

30. Ferre, X., Juristo, N., Windl, H., Constantine, L.: Usability
basics for software developers. IEEE Software 18(1), 22–
29 (2001). DOI 10.1109/52.903160

31. Gaines, B.R.: Designing Visual Languages for Description
Logics. Journal of Logic, Language and Information 18(2),
217–250 (2009). DOI 10.1007/s10849-008-9078-1

32. Gallud, J.A., Lozano, M.D., Vanderdonckt, J.: Distributed
user interfaces: Usability and collaboration. International
Journal of Human-Computer Studies 72(1), 44 (2014).
DOI http://dx.doi.org/10.1016/j.ijhcs.2013.10.006

33. Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y.,
Klappi, H., Koubarakis, M., Lenzerini, M., Moller, R.,
Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte,
R., Soylu, A., Waaler, A.: Scalable End-user Access to
Big Data. In: A. Rajendra (ed.) Big Data Computing.
Chapman and Hall/CRC (2013)

34. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive
query answering for the description logic SHIQ. Journal
of Artificial Intelligence Research 31(1), 157–204 (2008)

35. Grau, B.C., Giese, M., Horrocks, I., Hubauer, T.,
Jimenez-Ruiz, E., Kharlamov, E., Schmidt, M., Soylu,
A., Zheleznyakov, D.: Towards Query Formulation and
Query-Driven Ontology Extensions in OBDA Systems. In:
Proceedings of 10th OWL: Experiences and Directions
Workshop (OWLED 2013), CEUR Workshop Proceedings,
vol. 1080. CEUR-WS.org (2013)

36. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-
Schneider, P., Sattler, U.: OWL 2: The Next Step for
OWL. Web Semantics: Science, Services and Agents
on the World Wide Web 6(4), 309–322 (2008). DOI
10.1016/j.websem.2008.05.001

37. Gulliksen, J., Goransson, B., Boivie, I., Blomkvist,
S., Persson, J., Cajander, A.: Key principles for user-
centred systems design. Behaviour & Information
Technology 22(6), 397–409 (2003). DOI 10.1080/
01449290310001624329

38. Haase, P., Schmidt, M., Schwarte, A.: The Information
Workbench as a Self-Service Platform for Linked Data Ap-
plications. In: Proceedings of the 2nd International Work-
shop on Consuming Linked Data (COLD 2011), CEUR
Workshop Proceedings, vol. 782. CEUR-WS.org (2011)

39. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language.
W3C Recommendation, W3C (2013). URL http://www.

w3.org/TR/sparql11-query/

http://www.w3.org/TR/widgets/
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

24 Ahmet Soylu et al.

40. Harth, A.: VisiNav: A system for visual search and nav-
igation on web data. Web Semantics: Science, Services
and Agents on the World Wide Web 8(4), 348–354 (2010).
DOI 10.1016/j.websem.2010.08.001

41. Heim, P., Ziegler, J.: Faceted visual exploration of seman-
tic data. In: Proceedings of the 2nd IFIP WG 13.7 con-
ference on Human-computer interaction and visualization
(HCIV 2009), LNCS, vol. 6431, pp. 58–75. Springer-Verlag
(2011). DOI 10.1007/978-3-642-19641-6 5

42. Henderson-Sellers, B.: Bridging metamodels and ontolo-
gies in software engineering. Journal of Systems and
Software 84(2), 301–313 (2011). DOI 10.1016/j.jss.2010.
10.025

43. Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.:
RDF-GL: A SPARQL-Based Graphical Query Language
for RDF. In: R. Chbeir, Y. Badr, A. Abraham, A.E. Has-
sanien (eds.) Emergent Web Intelligence: Advanced Infor-
mation Retrieval, Advanced Information and Knowledge
Processing, pp. 87–116. Springer-Verlag (2010). DOI
10.1007/978-1-84996-074-8 4

44. Holcomb, P.J., Grainger, J.: On the Time Course of Vi-
sual Word Recognition: An Event-related Potential In-
vestigation using Masked Repetition Priming. Journal of
Cognitive Neuroscience 18(10), 1631–1643 (2006)

45. Huynh, D.F., Karger, D.R.: Parallax and companion:
set-based browsing for the data web. available online
(2009). URL http://davidhuynh.net/media/papers/

2009/www2009-parallax.pdf

46. Huynh, D.F., Karger, D.R., Miller, R.C.: Exhibit:
lightweight structured data publishing. In: Proceedings
of the 16th International Conference on World Wide
Web (WWW 2007), pp. 737–746. ACM (2007). DOI
10.1145/1242572.1242672

47. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Gi-
annopoulou, E.: Ontology visualization methods - A sur-
vey. ACM Computing Surveys 39(4), 10:1–10:43 (2007).
DOI 10.1145/1287620.1287621

48. Kaufmann, E., Bernstein, A.: Evaluating the usability
of natural language query languages and interfaces to
Semantic Web knowledge bases. Web Semantics: Science,
Services and Agents on the World Wide Web 8(4), 377–
393 (2010). DOI 10.1016/j.websem.2010.06.001

49. Kawash, J.: Complex Quantification in Structured Query
Language (SQL): A Tutorial Using Relational Calculus.
Journal of Computers in Mathematics and Science Teach-
ing 23(2), 169–190 (2004)

50. Kharlamov, E., Jiménez-Ruiz, E., Zheleznyakov, D., Bil-
idas, D., Giese, M., Haase, P., Horrocks, I., Kllapi, H.,
Koubarakis, M., Özçep, O., Rodŕıguez-Muro, M., Rosati,
R., Schmidt, M., Schlatte, R., Soylu, A., Waaler, A.: Op-
tique: Towards OBDA Systems for Industry. In: Proceed-
ings of the Semantic Web: ESWC 2013 Satellite Events,
LNCS, vol. 7955, pp. 125–140. Springer (2013). DOI
10.1007/978-3-642-41242-4 11

51. Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.:
SnipSuggest: Context-aware Autocompletion for SQL.
Proceedings of the VLDB Endowment 4(1), 22–33 (2010)

52. Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.:
Schedule Optimization for Data Processing Flows on the
Cloud. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD
2011), pp. 289–300. ACM (2011). DOI 10.1145/1989323.
1989355

53. Kobilarov, G., Dickinson, I.: Humboldt: Exploring Linked
Data. In: Proceedings of the Linked Data on the Web
Workshop (2008)

54. Kogalovsky, M.R.: Ontology-Based Data Access Systems.
Programming and Computer Software 38(4), 167–182
(2012). DOI 10.1134/S0361768812040032

55. Krivov, S., Williams, R., Villa, F.: GrOWL: A Tool for Vi-
sualization and Editing of OWL Ontologies. Web Seman-
tics: Science, Services and Agents on the World Wide Web
5(2), 54–57 (2007). DOI 10.1016/j.websem.2007.03.005

56. Levie, W.H., Lentz, R.: Effects of text illustrations: A
review of research. Educational Technology Research
and Development 30(4), 195–232 (1982). DOI 10.1007/
BF02765184

57. Lieberman, H., Paternó, F., Klann, M., Wulf, V.:
End-User Development: An Emerging Paradigm. In:
H. Lieberman, F. Paternó, V. Wulf (eds.) End-User De-
velopment, Human-Computer Interaction Series, vol. 9,
pp. 1–8. Springer, Netherlands (2006). DOI 10.1007/
1-4020-5386-X 1

58. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating
question answering over linked data. Web Semantics:
Science, Services and Agents on the World Wide Web 21,
3–13 (2013). DOI 10.1016/j.websem.2013.05.006

59. Lopez-Veyna, J.I., Sosa-Sosa, V.J., Lopez-Arevalo, I.: KE-
SOSD: Keyword Search over Structured Data. In: Pro-
ceedings of the Third International Workshop on Keyword
Search on Structured Data (KEYS 2012), pp. 23–31. ACM
(2012). DOI 10.1145/2254736.2254743

60. Marchionini, G., White, R.: Find what you need, under-
stand what you find. International Journal of Human-
Computer Interaction 23(3), 205–237 (2007). DOI
10.1080/10447310701702352

61. Martinez-Cruz, C., Blanco, I.J., Amparo Vila, M.: Ontolo-
gies versus relational databases: are they so different? A
comparison. Artificial Intelligence Review 38(4), 271–290
(2012). DOI 10.1007/s10462-011-9251-9

62. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A.,
Lutz, C.: OWL 2 Web Ontology Language Profiles. W3C
Recommendation, W3C (2009). URL http://www.w3.

org/TR/owl-profiles/
63. Munir, K., Odeh, M., McClatchey, R.: Ontology-driven

relational query formulation using the semantic and asser-
tional capabilities of OWL-DL. Knowledge-based Systems
35, 144–159 (2012). DOI 10.1016/j.knosys.2012.04.020

64. Nunamaker, J.F., Briggs, R.O., de Vreede, G.J.: From
Information Technology to Value Creation Technology.
In: Information Technology and the Future Enterprise:
New Models for Managers, pp. 102–124. Prentice-Hall,
New York (2001)

65. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontolo-
gies. In: Proceedings of the 22nd National Conference on
Artificial Intelligence (AAAI 2007), pp. 1434–1439 (2007)

66. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.:
Connecting the Dots: A Multi-pivot Approach to Data
Exploration. In: Proceedings of the 10th International
Semantic Web Conference (ISWC 2011), LNCS, vol.
7031, pp. 553–568. Springer-Verlag (2011). DOI 10.1007/
978-3-642-25073-6 35

67. van Rijsbergen, C.J.: Information Retrieval, 2 edn.
Butterworth-Heinemann (1979)

68. Rodriguez-Muro, M., Calvanese, D.: High Performance
Query Answering over DL-Lite Ontologies. In: Proceed-
ings of the Principles of Knowledge Representation and
Reasoning (KR 2012), pp. 308–318. AAAI Press (2012)

69. Rodriguez-Muro, M., Calvanese, D.: Quest, a System for
Ontology Based Data Access. In: Proceedings of the 9th
OWL: Experiences and Directions Workshop (OWLED
2012), CEUR Workshop Proceedings, vol. 849. CEUR-
WS.org (2012)

http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-profiles/

A Multi-paradigm and Ontology-based Visual Query System for End Users 25

70. Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M.,
Bagosi, T., Calvanese, D.: Evaluating SPARQL-to-SQL
Translation in Ontop. In: Proceedings of the 2nd Inter-
national Workshop on OWL Reasoner Evaluation (ORE
2013), CEUR Workshop Proceedings, vol. 1015, pp. 94–
100. CEUR-WS.org (2013)

71. Ruiz, F., Hilera, J.R.: Using Ontologies in Software Engi-
neering and Technology. In: C. Calero, F. Ruiz, M. Piattini
(eds.) Ontologies for Software Engineering and Software
Technology, pp. 49–102. Springer-Verlag (2006). DOI
10.1007/3-540-34518-3 2

72. Schraefel, M.C., Wilson, M., Russell, A., Smith, D.A.:
mSpace: improving information access to multimedia
domains with multimodal exploratory search. Com-
munications of the ACM 49(4), 47–49 (2006). DOI
10.1145/1121949.1121980

73. Segev, A., Sheng, Q.Z.: Bootstrapping Ontologies for Web
Services. IEEE Transactions on Services Computing 5(1),
33–44 (2012). DOI 10.1109/TSC.2010.51

74. Shneiderman, B.: Direct manipulation: A step beyond
programming languages. Computer 16(8), 57–69 (1983).
DOI 10.1109/MC.1983.1654471

75. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query com-
plexity and learning on novice user query performance
with conceptual and logical database interfaces. IEEE
Transactions on Systems, Man and Cybernetics - Part
A: Systems and Humans 34(2), 276–281 (2004). DOI
10.1109/TSMCA.2003.820581

76. Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao,
J., Shadbolt, N.: A Visual Approach to Semantic Query
Design Using a Web-Based Graphical Query Designer.
In: Proceedings of the 16th International Conference on
Knowledge Engineering: Practice and Patterns (EKAW
2008), LNCS, vol. 5268, pp. 275–291. Springer (2008).
DOI 10.1007/978-3-540-87696-0 25

77. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E.,
Zheleznyakov, D., Horrocks, I.: OptiqueVQS – Towards
an Ontology-based Visual Query System for Big Data. In:
Proceedings of the International Conference on Manage-
ment of Emergent Digital EcoSystems (MEDES 2013),
pp. 119–126. ACM (2013). DOI 10.1145/2536146.2536149

78. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E.,
Zheleznyakov, D., Horrocks, I.: Towards Exploiting Query
History for Adaptive Ontology-based Visual Query For-
mulation. In: Proceedings of the 8th International Confer-
ence on Metadata and Semantic Research (MTSR 2014),
CCIS, vol. 478, pp. 107–119. Springer (2014). DOI
10.1007/978-3-319-13674-5 11

79. Soylu, A., Modritscher, F., De Causmaecker, P.: Ubiq-
uitous web navigation through harvesting embedded se-
mantic data: A mobile scenario. Integrated Computer-
Aided Engineering 19(1), 93–109 (2012). DOI 10.3233/
ICA-2012-0393

80. Soylu, A., Moedritscher, F., Wild, F., De Causmaecker, P.,
Desmet, P.: Mashups by orchestration and widget-based
personal environments: Key challenges, solution strategies,
and an application. Program: Electronic Library and
Information Systems 46(4), 383–428 (2012). DOI 10.
1109/ICC.2010.5502398

81. Soylu, A., Skjæveland, M., Giese, M., Horrocks, I.,
Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: A
Preliminary Approach on Ontology-based Visual Query
Formulation for Big Data. In: Proceedings of the 7th Inter-
national Conference on Metadata and Semantic Research
(MTSR 2013), CCIS, vol. 390, pp. 201–212. Springer
(2013). DOI 10.1007/978-3-319-03437-9 21

82. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational
databases into the Semantic Web: A survey. Semantic
Web 3(2), 169–209 (2012). DOI 10.3233/SW-2011-0055

83. Spiekermann, S.: User Control in Ubiquitous Computing:
Design Alternatives and User Acceptance. Shaker Verlag,
Aachen (2008)

84. Staab, S., Studer, R. (eds.): Handbook on Ontologies. In-
ternational Handbooks on Information Systems. Springer,
Berlin, Heidelberg (2009)

85. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engi-
neering: Principles and methods. Data & Knowledge
Engineering 25(1-2), 161–197 (1998). DOI 10.1016/
S0169-023X(97)00056-6

86. Suh, B., Bederson, B.B.: OZONE: a zoomable interface
for navigating ontology information. In: Proceedings of
the Working Conference on Advanced Visual Interfaces
(AVI 2002), pp. 139–143. ACM (2002). DOI 10.1145/
1556262.1556284

87. Ter Hofstede, A.H.M., Proper, H.A., Van Der Weide, T.P.:
Query formulation as an information retrieval problem.
Computer Journal 39(4), 255–274 (1996). DOI 10.1093/
comjnl/39.4.255

88. Thorpe, S., Fize, D., Marlot, C.: Speed of Processing in
the Human Visual System. Nature 381, 520–522 (1996)

89. Tunkelang, D., Marchionini, G.: Faceted Search. Synthesis
Lectures on Information Concepts, Retrieval, and Services.
Morgan and Claypool Publishers (2009)

90. Turk, M., Robertson, G.: Perceptual user interfaces (in-
troduction). Communications of the ACM 43(3), 32–34
(2000). DOI 10.1145/330534.330535

91. Valencia-Garcia, R., Garcia-Sanchez, F., Castellanos-
Nieves, D., Fernandez-Breis, J.: OWLPath: An OWL
Ontology-Guided Query Editor. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Hu-
mans 41(1), 121–136 (2011). DOI 10.1109/TSMCA.2010.
2048029

92. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted
metadata for image search and browsing. In: Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI 2003), pp. 401–408. ACM (2003).
DOI 10.1145/642611.642681

93. Zloof, M.M.: Query-by-example: a database language.
IBM System Journal 16(4), 324–343 (1997). DOI 10.
1147/sj.164.0324

94. Zviedris, M., Barzdins, G.: ViziQuer: a tool to explore
and query SPARQL endpoints. In: Proceedings of the
8th Extended Semantic Web Conference (ESWC 2011),
LNCS, vol. 6644, pp. 441–445. Springer-Verlag (2011).
DOI 10.1007/978-3-642-21064-8 31

	Introduction
	Research context
	Visual Query Systems
	Design requirements
	OptiqueVQS approach
	Implementation and architecture
	Usability evaluation
	Discussion
	Conclusion

