
Efficient Deadlock-Freedom Checking using
Local Analysis and SAT Solving

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. We build upon established techniques of deadlock analysis
by formulating a new sound but incomplete framework for deadlock
freedom analysis that tackles some sources of imprecision of current
incomplete techniques. Our new deadlock candidate criterion is based
on constraints derived from the analysis of the state space of pairs of
components. This new characterisation represents an improvement in the
accuracy of current incomplete techniques; in particular, the so-called
non-hereditary deadlock-free systems (i.e. deadlock-free systems that
have a deadlocking subsystem), which are neglected by most incomplete
techniques, are tackled by our framework. Furthermore, we demonstrate
how SAT checkers can be used to efficiently implement our framework in
a way that, typically, scales better than current techniques for deadlock
analysis. This is demonstrated by a series of practical experiments.

1 Introduction

Deadlock freedom is usually an important goal when developing and verifying
a concurrent system. A system is deadlock free if and only if it cannot reach
a state in which it can perform no further actions. Moreover, many safety
properties can be reduced to verifying deadlock freedom of modified systems [12].
Unsurprisingly, even when restricted to deadlock analysis, existing automated
verification techniques still suffer from the state explosion problem.

Incomplete techniques for deadlock analysis [6, 15, 14] have been proposed in
attempts to circumvent the state explosion problem. These frequently scale far
better than the full state analysis required by model checking, and are sound
in proving deadlock freedom, but (i) tend not to provide examples of deadlocks
when they fail and (ii) can fail even for some deadlock-free systems; the latter is
what is meant by “incomplete”. One can see this incompleteness as the price to
pay for achieving scalability.

Current incomplete techniques are typically built around the principle that a
deadlock state, under reasonable assumptions, always presents a cycle of ungranted
requests between components of the system1. An ungranted request arises from

1 Depending on the properties of the underlying communicating system, one might
be able to restrict such cycles to proper cycles which have at least three nodes, and
where all the nodes are distinct.

a component to another if and only if the former is trying to communicate
with the latter, but they cannot agree on any event. To prove the absence of
such a cycle, these methods rely on local properties of the system, derived from
the analysis of individual components or pairs of them, to construct (either
explicitly or implicitly) and analyse a dependency graph. These approaches have
two important sources of imprecision. Firstly, under our assumptions, a cycle is a
necessary condition for a deadlock state but not a sufficient one. So, despite being
deadlock free, some deadlock-free systems present these cycles and, as such, they
cannot be handled by these methods. For instance, non-hereditary deadlock-free
systems, namely, deadlock-free systems that have a subsystem that can deadlock,
cannot be tackled by current techniques using local analysis. Secondly, to keep
the analysis of these dependency graphs efficient, some local properties, which
could be used to improve accuracy, are ignored because they focus on proposing
polynomially checkable conditions in terms of the local information collected.

In this paper, we present a new incomplete method for establishing deadlock
freedom that alleviates these sorts of imprecision. Instead of looking for cycles,
we look for complete snapshots of the system that are fully consistent with
derived local properties. A complete snapshot is an assignment of component
states to components that depicts a possible state of the concurrent system.
Unlike others, our method uses a condition that is not known to be polynomially
checkable. While unsurprising in itself, this new criterion has proved to be
efficiently determinable using the power of SAT checking. Our work has been
inspired by Martin’s definition of the State Dependency Digraph [15] (see Section
3), and by the successful use of SAT checkers for livelock analysis reported in [17].
Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be under-
stood purely in terms of communicating systems of LTSs, and knowledge of CSP
is not a prerequisite. Section 3 presents some current incomplete techniques for
deadlock analysis. In Section 4, we introduce our technique. Section 5 outlines
the accuracy of our method. In the following section, we give an encoding of our
deadlock-freedom analysis as a SAT problem. Section 7 presents some experiments
conducted to assess the accuracy and efficiency of our framework. Finally, in
Section 8, we present our concluding remarks.

2 Background

Communicating Sequential Processes (CSP) [13, 20] is a notation used to model
concurrent systems where processes interact, exchanging messages. Here we de-
scribe some structures used by the refinement checker FDR3 [10] in implementing
CSP’s operational semantics. As this paper does not depend on the details of
CSP, we do not describe the details of the language or its semantics. These can
be found in [20].

2

CSP’s operational semantics interpret language terms in a labelled transition
system (LTS)2.

Definition 1. A labelled transition system is a 4-tuple (S,Σ,∆, ŝ) where:

– S is a set of states;
– Σ is the alphabet (i.e. a set of events);
– ∆ ⊆ S ×Σ × S is a transition relation;
– ŝ ∈ S is the starting state.

For the purposes of this paper, the events τ (the silent event) and X (the
termination signal) are considered members of Σ, since there is no difference
between them and regular events in the context of deadlock analysis, and their
behaviour can be accommodated in the supercombinator framework we use.

As a convention, Σ− =̂ Σ∪{−}, where − /∈ Σ. We write s
e−→ s′ if (s, e, s′) ∈

∆. There is a path from s to s′ with the sequence of events 〈e1, . . . , en〉, represented

by s
〈e1,...,en〉−−−−−−→ s′, if there exist s1, . . . , sn−1 such that s

e1−→ s1 . . . sn−1
en−→ s′. A

trace of a transition system is a path such that the initial state is ŝ.
While CSP, in common with many other languages, can have its operational

semantics given in SOS (Structural Operational Semantics) style, FDR3 repre-
sents them as combinators, a notation which is itself compositional and allows
complex CSP constructs, including communicating systems, to be represented
as supercombinator machines. A supercombinator machine consists of a set of
component LTSs along with a set of rules that describe how the transitions
should be combined. A rule combines transitions of (a subset of) the components
and determines the event the machine performs. We also use these machines to
analyse the behaviour of communicating systems. For simplicity in our analysis,
we restrict FDR3’s normal definition of supercombinator machines in a way that
corresponds to there being a static communicating system with all communication
between components being pairwise:

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:
• e ∈ (Σ−)n specifies the event that each component must perform, where
− indicates that the component performs no event. e must also be triple-
disjoint, that is, at most two components must be involved in a rule.
∗ triple disjoint(e) =̂ ∀ i, j, k : {1 . . . n} | i 6= j ∧ j 6= k ∧ i 6= k •

ei = − ∨ ej = − ∨ ek = −
• a ∈ Σ is the event the supercombinator performs.

This restriction is similar to ones adopted in related work to ours [15, 6].
Henceforth, we omit the mention of triple-disjoint.

Given a supercombinator machine, a corresponding LTS can be constructed.

2 FDR3 uses a more general representation of a process called a generalised labelled
transition system (GLTS). Nevertheless, this extension can be simply converted into
a traditional LTS and working with LTS makes our definitions considerably simpler.

3

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi, ∆i, ŝi). The LTS induced by S is the tuple (S,Σ,∆, ŝ) such that:

– S = S1 × . . .× Sn;
– Σ =

⋃n
i=1Σi;

– ∆ = {((s1, . . . , sn), a, (s′1, . . . , s
′
n)) | ∃((e1, . . . , en), a) : R • ∀ i : {1 . . . n} •

(ei = − ∧ si = s′i) ∨ (ei 6= − ∧ (si, ei, s
′
i) ∈ ∆i)}

;

– ŝ = (ŝ1, . . . , ŝn).

From now on, we use system state (component state) to designate a state in
the system’s (component’s) LTS.

Definition 4. A LTS (S,Σ,∆, ŝ) deadlocks in a state s if and only if deadlocked(s)
holds, where:

– deadlocked(s) =̂ reachable(s) ∧ blocked(s)

– reachable(s) =̂ ∃ tr : Σ∗ • ŝ tr−→ s

– blocked(s) =̂ ¬∃ s′ : S ; e : Σ • s e−→ s′

When considering the deadlock detection problem, for the sake of decidability,
we only analyse supercombinator machines with a finite number of components,
which are themselves represented by finite LTSs with finite alphabets.

3 Related Work

Two of the authors of this paper have previously investigated the role played
by local analysis in establishing deadlock freedom in [18, 8, 1, 4]. These works
introduce a formalisation of design patterns that can be used for designing
deadlock-free systems. Despite being efficient, as these techniques analyse com-
ponents in isolation, they can be restrictive since only a handful of behavioural
patterns are available.

In [6, 5, 14, 15], fully-automated but incomplete techniques for deadlock free-
dom are introduced. These techniques are proposed for different contexts and
types of concurrency: [6] proposes a method for analysing syntactically-restricted
shared-variable concurrent programs, [5] adapts [6] to a more general setting
meant to describe component-based message-passing systems, [14] proposes a
method for architecturally-restricted component-based systems interacting via
message passing, and [15] proposes a method for syntactically-restricted message-
passing concurrent systems. All these methods were designed, to some extent,
around the principle that under reasonable assumptions about the system, any
deadlock state would contain a proper cycle of ungranted requests. So, to prove
deadlock freedom, they would use local properties of the system, derived from
analysing individual components and communicating pairs of components, to
construct an ungranted-requests graph and show that such a cycle cannot arise
in any conceivable state of the system.

4

To discuss in more detail how such approaches work, we present the SDD
framework3 developed by Martin in [15]. We regard our framework as a develop-
ment on the SDD. Martin’s analysis of SDDs is one of the most general prior
approaches to local deadlock analysis.

In that work [15], the local properties used to prove deadlock freedom are
derived from the analysis of pairs of components, or rather a projection of the
system over a pair of its components.

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {((ei, ej), a)|(e, a) ∈ R ∧ (ei 6= − ∨ ej 6= −)})

In Martin’s approach, a dependency digraph is constructed and then analysed
for absence of cycles. The dependency digraph constructed has a node for each
state of each component, and an edge from a state s of component i to a state s′

of component j if and only if reachablei,j((s, s
′)) and ungranted requesti,j(s, s

′)
hold where: reachablei,j denotes the reachable predicate for the LTS induced
by Si,j ; ungranted requesti,j(s, s

′) holds when, in their respective states (i in s
and j in s′), component i is willing to synchronise with j (according to Si,j), but
they cannot agree on any event.

Under the assumption that components neither terminate nor deadlock, a
cycle of ungranted requests is a necessary condition for a system deadlock. Hence,
the absence of cycles in the dependency digraph is a proof of deadlock freedom,
whereas a cycle represents a potential deadlock which we call a SDD candidate.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi, ∆i, ŝi). Let U be the disjoint union of all Si and si,j denotes
state j of the component i. A sequence of component states c ∈ U∗ is a SDD
candidate if and only if for all i ∈ {1 . . . |c|}, given that ci = sj,k and ci⊕1 =
sl,m, reachablej,l((sj,k, sl,m)) and ungranted requestj,l(sj,k, sl,m) hold, where ⊕
denotes addition modulo the length of c.

This method can carry out deadlock-freedom verification very efficiently: a
digraph can be shown to have no cycles in linear time using a modified depth-
first-search. This efficiency, however, comes with a price as the use of a cycle
as a candidate makes this method imprecise in several ways. Firstly, a cycle
might not be consistent with basic sanity conditions such as it must have a single
node per component (after all no component can be in two different states in
a single deadlock). Secondly, a cycle is only partially consistent with the local
reachability and local blocking properties derived from the analysis of pairs of
components. Note that only adjacent elements in the cycle are guaranteed to be
pairwise reachable and pairwise blocked. So, there may be local properties of
non-adjacent component states not tested for that might eliminate some SDD
candidate. Finally, a cycle, as a necessary condition, is bound to arise in some
deadlock-free systems. Thus, in such cases, this framework is ineffective. The

3 SDD stands for State Dependency Digraph.

5

reason why these sources of imprecision are not addressed is that these methods
look for polynomially checkable conditions for guaranteeing deadlock freedom
and tackling any of these sources of imprecision is likely to make the problem of
finding a candidate in the dependency digraph NP-complete.

4 A New Framework for Deadlock-freedom Verification
using Local Analysis

In this section, we propose a new way of detecting potential deadlocks. Instead
of looking for cycles, we look for complete snapshots of the system that are
fully consistent with the local reachability and blocking information. A complete
snapshot is a tuple containing a component state per component in the system.
So, a deadlock candidate for this framework, which we call a pair candidate, is
given as follows.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,∆, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a pair candidate if
and only if pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j : {1 . . . n} | i 6= j • reachablei,j((si, sj))

This new characterisation creates a framework that uses more information
to disprove potential deadlock candidates if compared to prior techniques using
pairwise analysis of components. By analysing complete snapshots, only complete
states of the system are examined, and as a consequence, our framework is able
to prove that systems possessing ungranted-requests cycles are deadlock free.

Two remarks about the blocked condition deserve mention. Firstly, the blocking
condition seems to be global, but in fact, it can be validated using individual
and pairwise component analyses. As systems are triple disjoint, a state is
blocked if and only if all components can neither perform an individual event nor
communicate with another component. Secondly, this blocking condition is exact,
so in our framework, false negatives can only arise from the fact that the derived
local reachability properties may not prove the unreachability of a candidate.

Our framework is sound, as absence of pair candidates implies deadlock
freedom. The following theorem follows from the fact that reachability implies
pair-reachability. Its proof can be found in [3].

Theorem 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and
(S,Σ,∆, ŝ) its induced LTS. For any s ∈ S,

¬pair candidate(s) =⇒ ¬deadlocked(s)

This criterion will be shown to be more accurate than the SDD one, but it
remains incomplete because it relies on local analysis to approximate reachability:
there may well be pair candidates that are not actually reachable.

6

p0 p1

a

b

q0 q1

b

c
r0

r1

r2 r3

a

c
c

a

c

Fig. 1. LTSs of components L1, L2 and L3, respectively.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
the components are described graphically in Figure 1 and they must synchronise
on shared events. That is, R = {((a,−, a), a), ((b, b,−), b), ((−, c, c), c)}.

For this system, the state (p0, q0, r3) is pairwise-reachable and blocked, but
not reachable. Thus, it constitutes a pair candidate but not a deadlock. ut

What we have done here is to use a characterisation of what a deadlock state
looks like in conjunction with an approximation to the reachability criterion for
states. What it searches for are not reachable deadlocks, but rather pair-consistent
deadlocks. Therefore, we call it Pair. One could easily imagine using different local
groups of components to determining consistency, or applying similar approaches
to analyse communicating systems for individual states that have properties
other than being deadlocked.

5 Accuracy of the Pair Framework

In this section, we shed light on the class of systems that can be successfully
proved deadlock free by Pair by comparing it to the SDD framework. In this
comparison, we first outline the class of systems tackled by SDD and then we
show that our approach tackles a strictly larger class of systems.

The SDD framework has been able to successfully prove deadlock freedom for
some relevant classes of system. Martin has shown that his framework can prove
deadlock freedom for systems designed using two well-known design rules: the
resource-allocation and client-server rules. The resource allocation rule has been
proposed initially as a mechanism for avoiding deadlocks when allocating the
resources of an operating system to programs [9], whereas client-server protocols
constitute a very common paradigm for the interaction of distributed system.
Both rules prevent cycles of ungranted requests from arising.

5.1 Pair is at least as good as SDD

A deadlocked state is only guaranteed to exhibit a cycle of ungranted requests if
a system (or supercombinator machine) is live, namely all its components are
deadlock-free and termination-free. So, in this section, to compare Pair with
SDD, we limit ourselves to live systems.

7

pi,0 pi,1 pi,2 pi,3 pi,4 pi,5

sitsi picksupi,i picksupi,i⊕1 putsdowni,i putsdowni,i⊕1

getsupi

Fig. 2. LTS of philosopher i.

In this restricted setting, we show that our approach can prove deadlock
freedom for a system whenever SDD can. This follows from the claim that for a
live system, a blocked state must exhibit a cycle of ungranted requests.

Lemma 1 (Theorem 1 in [15]). Let S be a live supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, and U the disjoint union of all the component states
of each component.

∃ s : S • blocked(s) =⇒ ∃ c : U∗ • sdd candidate(c)

Theorem 2. Let S be a live supercombinator machine, (S,Σ,∆, ŝ) its induced
LTS, and U the disjoint union of all the component states of each component.

¬∃ c : U∗ • sdd candidate(c) =⇒ ¬∃ s : S • pair candidate(s)

5.2 Pair is more accurate than SDD

Even though SDD is accurate for a reasonably large and relevant class of systems,
it is unable to prove deadlock freedom for non-hereditary deadlock-free systems.
This is shown by Lemma 1: if a subsystem deadlocks then there must exist a
cycle of ungranted requests between the states of components in this subsystem
that constitutes a SDD candidate. Roughly speaking, SDD can be seen as a
method that tries to prove hereditary deadlock freedom (i.e. that no subsystem
can deadlock) using local analysis. On the other hand, our method can prove
deadlock freedom for both hereditary and non-hereditary deadlock-free systems,
such as the following example.

Example 2. This well-known example system is composed of three different
components: forks, philosophers and a butler. We parametrise our system with N ,
which denotes the number of philosophers in the system.

A philosopher has access to a table at which it can pick up two forks to eat:
one at its left-hand side and the other at its right-hand side. A fork is placed, and
shared, between philosophers sitting adjacently in the table. The behaviour of
philosopher (fork) i is depicted in Figure 2 (3). ⊕ stands for addition modulo N .

Given that these components synchronise on their shared events, the philoso-
phers and forks can reach a deadlock state in which all philosophers have acquired
their left-hand side forks and, as a consequence, no right-hand side fork is left
to be acquired. The butler is introduced to prevent all the philosophers from
sitting at the table at the same time, thereby precluding this deadlock state. We

8

fi,0

fi,1

fi,2

picksupi,i

picksupi⊕1,i

putsdowni,i

putsdowni⊕1,1

bS bS∪{i}

bS bS−{i}

sitsi

if i /∈ S ∧ |S| < N

getsupi

if i ∈ S

Fig. 3. LTS of fork i and transitions of the butler process.

use bS to depict the state in which the butler has allowed the philosophers in
S to the table. So, the butler states space is given by the set of all bS where
S ∈ P({1 . . . N})− {{1 . . . N}}. Its transitions are created as depicted in Figure
3, and its initial state is given by b∅.

The complete system has N philosophers, N forks and a butler, and these
components synchronise on their shared events. Despite being deadlock free, this
system has a cycle of component states that forms a SDD candidate, namely,
where all the philosphers have acquired their left-hand fork:

〈p0,2, f1,1, p1,2, f2,1, . . . , pN−2,2, fN−1,1, pN−1,2, f0,1〉

However, this SDD candidate cannot be extended to a pair candidate, because
the latter would have to include a butler state, and no butler state is consistent
with this combination of philosopher states. ut

This example shows that the Pair method is strictly more accurate than
SDD. Going a step further, this can be seen as representative of the class of non-
hereditary deadlock-free systems where one or more components prevent some
subsystem’s deadlock from being reached. Note that many concurrent systems
use components implementing mutual exclusion algorithms or semaphores to
prevent other components reaching undesired states such as a deadlock.

Moreover, our method has better accuracy than SDD even for hereditary
deadlock-free systems, thanks to the fact that we use local reachability and
blocking information to its full extent. This increase in accuracy, however, comes
with a price. The explicit exploration of, only, localised state spaces helps to
tame the complexity of checking our deadlock-freedom condition. Nevertheless,
by strengthening the candidate’s definition in relation to prior techniques, we
end up with an NP-complete problem [3].

6 Pair Candidate Detection using a SAT Solver

In this section, we propose a procedure that encodes the pair-candidate detection
problem in terms of propositional satisfiability, which can later be checked by
a SAT solver. Given a supercombinator machine as an input, our procedure
creates a propositional formula in conjunctive normal form (CNF). A satisfying

9

assignment for this formula gives a pair candidate: the variables assigned to true
correspond to a combination of component states that forms a pair candidate,
whereas a proof of unsatisfiability entails deadlock freedom for the input system.
The use of intermediate structures in our encoding procedure and the application
of a SAT solver in the process of deadlock checking was inspired by the success
of the SLAP tool [17], which uses SAT solvers for the verification of livelocks4.

We consider for the sake of presentation that we are translating the supercom-
binator machine S = (〈L1, . . . , Ln〉,R), where Li = (Si, Σi, ∆i, ŝi). Additionally,
we assume component states are unique across the system and that si,j denotes
the state j of the component i. Our encoding procedure can be divided into
two parts: an initial one where intermediate structures are calculated from the
supercombinator machine, and a final one where the boolean formula is generated
based on these intermediate structures.

The intermediate structures can be seen as storing information that is later
used to filter out combinations of component states that do not belong to a valid
pair candidate. The first intermediate structure created, RequireSynci, stores
for each component the states in which cooperation is required. So, it provides
information to filter out component states that can act independently and are,
therefore, trivially not blocked.

Definition 8. RequireSynci = {s|s ∈ Si ∧ ¬independenti(s)}

– independenti(s) =̂ ∃(e, a) : R • (ei 6= − ∧ ∀ k : {1 . . . n} | k 6= i • ek = −)

∧ (∃ s′ : Si • (s, ei, s
′) ∈ ∆i)

The structure CanSync stores blocking information about pairs of compo-
nents. It provides information to filter out pairs of component states in which
components can interact. The triple disjointness assumption means that this
pairwise information is enough to determine whether a system state is blocked.

Definition 9.

CanSync =
⋃

i,j∈{1...n}∧i 6=j

{
(s, s′)

∣∣∣∣ s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧reachablei,j((s, s
′)) ∧ synci,j(s, s′)

}
– synci,j(s, s

′) = ∃(e, a) : R ; t : Si ; t′ : Sj • (s, ei, t) ∈ ∆i ∧ (s′, ej , t
′) ∈ ∆j

The last structure NPR (Not Pairwise Reachable) collects local reachability
information and is used to filter out pairs of components that are not mutually
reachable.

Definition 10.

NPR =
⋃

i,j∈{1...n}∧i 6=j

{
(s, s′)

∣∣∣∣s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧¬reachablei,j((s, s′))

}
4 There are some significant differences with SLAP: here the propositional formula

is satisfied by a possible deadlock, whereas in SLAP the propositional formula is
satisfied by a proof of livelock freedom. We might also note that livelock arises from a
sequence of states, whereas deadlock arises in a single one.

10

In the second phase of our encoding procedure, we construct a boolean formula
based on these derived structures. The formula generated is a conjunction of three
constraints; each of them uses the information encompassed in a derived structure
to filter out invalid combinations of component states. For the construction of
our formula, we use our state representation si,j to denote the boolean variable
representing this state. So, the assignment si,j = true might be seen as claiming
that this state belongs to a pair candidate, whereas si,j = false means it does
not.

The first constraint, State, restricts the space of valid combinations of com-
ponent states to complete snapshots. As discussed, only states in RequireSync
structure are relevant.

Definition 11.

State =̂
∧

i∈{1...n}
(

∨
s∈RequireSynci

s) ∧
∧

i∈{1...n}
(

∧
s,s′∈RequireSynci∧s6=s′

(¬s ∨ ¬s′))

The second constraint restricts the space of valid combinations of component
states to the ones respecting local reachability properties.

Definition 12. Reachable =̂
∧

(s,s′)∈NPR

(¬s ∨ ¬s′)

Finally, the last constraint ensures that the space of valid combinations of
component states are the ones respecting our blocking requirement.

Definition 13. Blocked =̂
∧

(s,s′)∈CanSync

(¬s ∨ ¬s′)

7 Practical Evaluation

In this section, we evaluate our framework in practice; we modified FDR3 to
generate our SAT encoding which is then checked by the Glucose 4.0 solver [7].
Our prototype and the models used in this section are available at [2]. We describe
two experiments in this section: the first one evaluates deadlock freedom for
randomly generated systems, the second one evaluates deadlock freedom for
some deadlock-free benchmark problems. The experiments were conducted on a
dedicated machine with a quad-core Intel Core i5-4300U CPU @ 1.90GHz, 8GB
of RAM, and the Fedora 20 operating system. In these experiments, we compare
our prototype with the Deadlock Checker [16] and FDR3’s deadlock freedom
assertion [10]. Deadlock Checker implements the SDD framework, whereas
FDR3 is a complete method that performs explicit space exploration. When
appropriate, we combine FDR3’s explicit state exploration with partial order
reduction (FDRp) [11] or compression techniques (FDRc) [19].

In the first experiment, we verify models of randomly-generated live systems,
but with fixed communication topologies. Our goal with this experiment is to test
our tool against scripts made by non-experts. We verify systems whose communi-
cation topologies are grid-like, fully connected, or a pair of rings. The parameter

11

N is related to the size of these systems. The choice of these communication
topologies was based on the fact that many CSP benchmark problems use one
of these or a variation. For each of topology and N , we generate 900 random
systems.

Rings Grid Fully
N Pair SDD Pair SDD Pair SDD
3 99.13 64.34 100 34.44 93.98 18.67
4 99.67 68.19 (599) (106) 98.76 6.4
5 99.71 73.57 (635) (96) 98.11 1.8
6 98.98 77.41 (644) (92) 99.25 1.1
7 100 76.14 (771) (30) 99.28 0.1
8 (469) (385) (773) (57) 99.65 0
9 (500) (422) (779) (28) 99.83 0
10 (517) (444) (774) (8) 99.52 0
15 (590) (491) (900) (0) (692) (0)
20 (645) (547) (900) (0) (703) (0)
25 (680) (566) (887) (0) (742) (0)

Table 1. Accuracy comparison; the num-
bers not in parentheses depict the percent-
ages of deadlock free systems proved as
so. The numbers in parentheses represent
the total number of deadlock free systems
proved as so.

In Table 1, we summarise the ac-
curacy results obtained. For the ac-
curacy comparison, we take FDR3’s
deadlock assertion out, as it is a com-
plete method. Also, the reason why we
sometimes present the absolute num-
ber of deadlock-free systems is that we
use FDR3 to get the exact number of
deadlock-free systems, but when FDR3
times out, this number is unavailable.
In Table 2, for FDR3, we present the
figures for the method that worked best.
So, for the pair of rings, applying par-
tial order reduction made FDR3 scale
better, whereas for the other two cases,
explicit state exploration was the best
option.

Based on the data gathered in this
first experiment, we can conclude that
our prototype provides a far better com-
promise between accuracy and speed
than the Deadlock Checker for the sys-
tems checked. The fact that hereditary
deadlock freedom is more difficult to

Rings Grid Fully

N Pair SDD FDR3p Pair SDD FDR3 Pair SDD FDR3

3 37.38 66.04 40.91 40.47 71.01 70.27 37.39 65.64 42.74

4 37.88 67.65 42.89 44.89 76.57 * 39.04 70.02 43.36

5 39.00 68.30 51.60 52.67 90.50 * 39.74 74.19 43.97

6 39.67 69.97 103.83 60.85 104.07 * 42.46 83.18 48.96

7 41.07 71.69 788.03 70.39 113.95 * 45.50 92.91 61.47

8 41.12 73.11 * 84.67 128.41 * 49.24 103.08 118.78

9 41.90 73.71 * 101.18 142.65 * 53.91 115.87 415.87

10 42.67 75.31 * 124.80 157.76 * 60.32 125.60 1897.71

15 46.75 80.52 * 326.56 249.27 * 108.99 210.65 *

20 52.09 89.03 * 797.25 385.99 * 208.37 372.44 *

25 57.48 95.74 * 1745.72 566.27 * 382.89 645.74 *
Table 2. Efficiency comparison; we measure in seconds the time taken to check deadlock
freedom for the 900-systems batch, and * means that the methods has timed out. We
establish a time out of 2000 seconds for checking each batch.

12

achieve than deadlock freedom seems to be the reason why our approach is
substantially more accurate. In terms of efficiency, we see that our method scales
fairly well for the generated systems. It fared better than FDR3 even when
combined with sophisticated techniques to combat the state space explosion
problem. For most of the cases, our method also fared better than the Deadlock
Checker. For the cases in which the Deadlock Checker scales better, we can see
a considerable difference in the accuracy of the two methods that justifies the
difference in their speed.

Our second experiment consists of applying deadlock verification methods to
some benchmark problems that are carefully designed to be deadlock free. We
chose four benchmark problems that are proved deadlock free by Pair. These
problems are the sliding window protocol (SWP), a binary telephone switch
(Telephone), the mad postman routing algorithm (Routing), and the butler
solution to the dining philosophers (Butler). These problems are discussed in
detail in [20]. For each of these benchmarks, we vary a parameter N which relates
to the size of these systems. Table 3 presents the results of this second experiment,
which suggests that our method scales similarly to the combination of FDR3’s
assertion techniques with compression techniques. We point out that the effective
use of compression techniques requires a careful and skilful application of those,
whereas our method is fully automatic. In fact, our strategy seems to be the
most efficient option for all but the Routing problem in which both the Deadlock
Checker and FDR3’s assertion with compression techniques outperform us.

SWP

N FDR3 SDD Pair FDR3c FDR3p

3 0.29 0.88 0.14 0.24 0.21

4 2.83 40.83 0.58 1.13 3.57

5 42.79 * 3.23 4.62 *

6 * * 18.38 25.25 *

7 * * * * *

Telephone

N FDR3 SDD Pair FDR3c FDR3p

3 * - 0.06 0.17 *

4 * - 0.11 2.93 *

5 * - 0.32 * *

6 * - 1.34 * *

7 * - 6.27 * *

8 * - 31.68 * *

Butler

N FDR3 SDD Pair FDR3c FDR3p

3 0.06 - 0.06 0.09 0.06

4 0.07 - 0.6 0.10 0.07

5 0.26 - 0.6 0.10 0.43

6 0.11 - 0.7 0.12 0.08

7 0.32 - 0.9 0.14 0.13

8 1.91 - 0.12 0.17 0.22

9 16.80 - 0.19 0.22 0.52

Routing

N FDR3 SDD Pair FDR3c FDR3p

3 * 0.10 0.06 0.10 *

4 * 0.11 0.09 0.14 *

5 * 0.13 0.13 0.18 *

10 * 0.30 0.99 0.71 *

20 * 1.11 13.27 4.45 *

30 * 3.30 * 16.72 *

Table 3. Benchmark efficiency comparison. We measure in seconds the time taken to
check deadlock freedom for each system. * means that the methods has timed out; we
establish a time out of 40 seconds for checking each system. - means that the method is
unable to prove deadlock freedom for the system.

13

Unsurprisingly, for some other benchmark problems our method is not able
to prove deadlock freedom. The reason is that, for these cases, deadlock freedom
depends on some global invariant preserved by the system (or perhaps by larger
subsets of the system than the pairs used here), and as argued, this type of
reasoning is beyond the capabilities of our method. For instance, proving deadlock
freedom for the Milner’s scheduler problem, which is a fairly simple benchmark
problem, is out of our method’s reach. The issue with Milner’s scheduler is that it
is essentially a token ring which depends on the fact that there is always precisely
one token present; this latter property cannot be proved by local analysis of the
sort we employ.

8 Conclusion

We have introduced a new test for deadlock freedom that extends the capabilities
of current state-of-the-art incomplete approaches. To do so, we introduced a
stronger deadlock candidate definition and we brought the power of SAT checking
to bear on a style of local analysis of systems that reaches back decades. Like
other incomplete methods, we sacrifice completeness to achieve scalability. This
incomplete nature makes, for instance, our technique (and any other one that
uses local analysis) unable to prove deadlock freedom for systems in which this
property is guaranteed by some invariant on the global behaviour of systems.

Our method rivals the speed of current incomplete approaches but gives a
considerable increase in accuracy. For the systems tested, it appears to perform
strongly in terms of speed when compared to SDD, compression and partial order
techniques. As for accuracy, our method is strictly more accurate than SDD, and
in particular, it is able to tackle non-hereditary deadlock-free systems, a class
of systems neglected by most incomplete techniques. Our ambition is to have a
deadlock checker which can be used on systems developed by non-experts who do
not necessarily have any knowledge of established design patterns for deadlock
freedom, such as those previously proposed by two of the authors.

As a future work, we plan to improve accuracy, without excessively damaging
speed, by proposing methods to efficiently calculate some global invariants.
This should not make our method complete, but it should enable the handling
of systems which are deadlock free by some global property of the system.
Additionally, we intend to extend our framework to produce counter-examples
and/or other useful debugging information.

Acknowledgments

We are grateful to Jöel Ouaknine and James Worrell for many fruitful discussions
concerning this work. The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The second and third authors are partially sponsored
by DARPA under agreement number FA8750-12-2-0247.

14

References

1. Pedro Antonino, Marcel Medeiros Oliveira, Augusto C.A. Sampaio, Klaus E. Kris-
tensen, and Jeremy W. Bryans. Leadership election: An industrial SoS application
of compositional deadlock verification. In NFM, volume 8430 of LNCS, pages 31–45,
2014.

2. Pedro Antonino, A. W. Roscoe, and Thomas Gibson-Robinson. Experiment package,
2015. http://www.cs.ox.ac.uk/people/pedro.antonino/exp.zip.

3. Pedro Antonino, A.W. Roscoe, and Thomas Gibson-Robinson. Efficient deadlock
analysis using local analysis and SAT solving. Tech report, University of Oxford,
2015. http://www.cs.ox.ac.uk/people/pedro.antonino/techreport.pdf.

4. Pedro Antonino, Augusto Sampaio, and Jim Woodcock. A refinement based strategy
for local deadlock analysis of networks of CSP processes. In FM, volume 8442 of
LNCS, pages 62–77, 2014.

5. Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis,
and Fadi A. Zaraket. An abstract framework for deadlock prevention in BIP. In
FORTE, number 7892 in LNCS, pages 161–177. Springer, 2013.

6. Paul C. Attie and Hana Chockler. Efficiently verifiable conditions for deadlock-
freedom of large concurrent programs. In VMCAI, pages 465–481. Springer, 2005.

7. Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009.

8. Stephen D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communi-
cating processes. Distributed Computing, 4:209–230, 1991.

9. Edward G. Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM
Computing Surveys (CSUR), 3(2):67–78, 1971.

10. Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. FDR3 — a modern refinement checker for CSP. In TACAS, volume 8413
of LNCS, pages 187–201, 2014.

11. Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical
partial order reduction for CSP. In NFM, volume 9058 of LNCS, pages 188–203.
Springer International Publishing, 2015.

12. Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. FMSD, 2(2):149–164, 1993.

13. C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.
14. Christian Lambertz and Mila Majster-Cederbaum. Analyzing Component-Based

Systems on the Basis of Architectural Constraints. In FSEN, pages 64–79. Springer,
April 2011.

15. Jeremy M. R. Martin. The design and construction of deadlock-free concurrent
systems. PhD thesis, University of Buckingham, 1996.

16. Jeremy M. R. Martin and S. A. Jassim. An efficient technique for deadlock analysis
of large scale process networks. In FME ’97, pages 418–441, 1997.

17. Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell. A static
analysis framework for livelock freedom in CSP. LMCS, 9(3), 2013.

18. A. W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Inf. Comput.,
75(3):289–327, 1987.

19. A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood. Hierarchical compression for model-checking CSP
or how to check 1020 dining philosophers for deadlock. In TACAS, pages 133–152,
1995.

20. A.W. Roscoe. Understanding concurrent systems. Springer, 2010.

15

