

Extending Consequence-Based Reasoning to *SRJQ*

<u>Andrew Bate</u>, Boris Motik, Bernardo Cuenca Grau, František Simančík, and Ian Horrocks

> Department of Computer Science University of Oxford

Motivation

- Most reasoners based on (hyper)tableau
 - FaCT++ HermiT Pellet Konclude Racer
- Work reasonably well in practice
- But building many counter models is expensive
 - To prove $\mathcal{O} \models C \sqsubseteq D$ show $C \sqcap \neg D$ is unsat
 - Bottleneck: large number of concepts
 - Rebuilds entire model for each test

Consequence-based Features

Optimal worse-case complexity

One pass classification

No need for several counter models

Pay as you go

Deterministic

State of the art

ELK (Java) Snorocket (Java) CEL (Common LISP) $\mathcal{F} \mathcal{F}$ jcel (Java) Elephant (C) Horn- $\mathcal{SHIQ}^{CB (OCaml)}$ ALCI Horn-*SROJQ*

ALCH

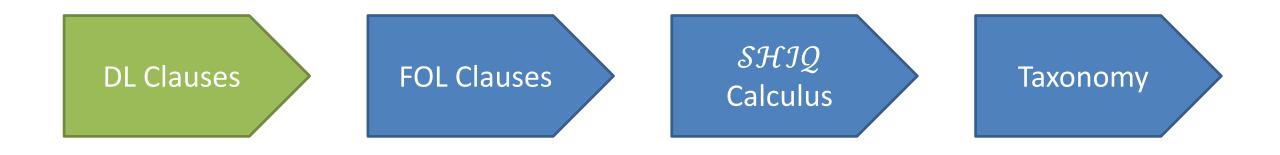
Condor (C++)

Key Facts

Algorithm does not build models
 → Apply inference rules to derive local consequences of ontology

 ② Derived consequences not all stored together
 → Contexts store consequences corresponding to a conjunction of concepts and roles

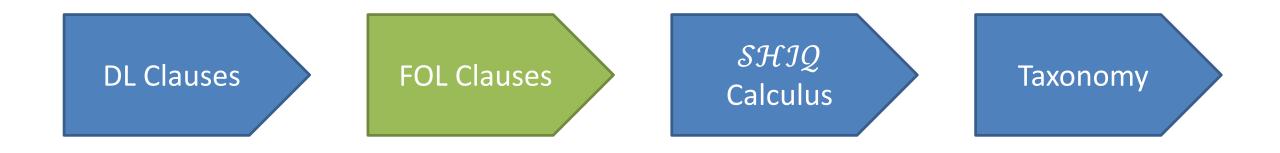
Reasoning Stages



Example

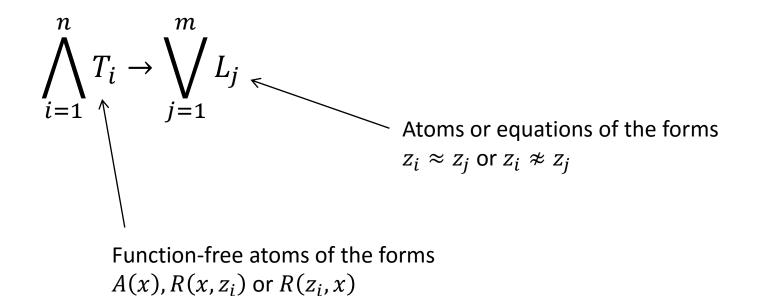
Vegetarian \sqsubseteq AnimalAnimal $\sqsubseteq \ge 5$ eatsMeat \sqcap SideDish $\sqsubseteq \bot$ Vegetarian $\sqsubseteq \lor$ eats.SideDish ≥ 5 eats. \neg Meat \sqsubseteq HealthyPersonHealthyPerson \sqsubseteq Person

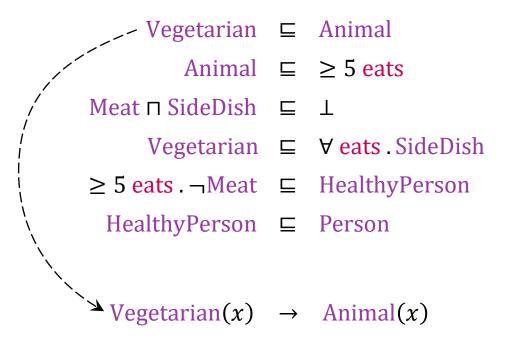


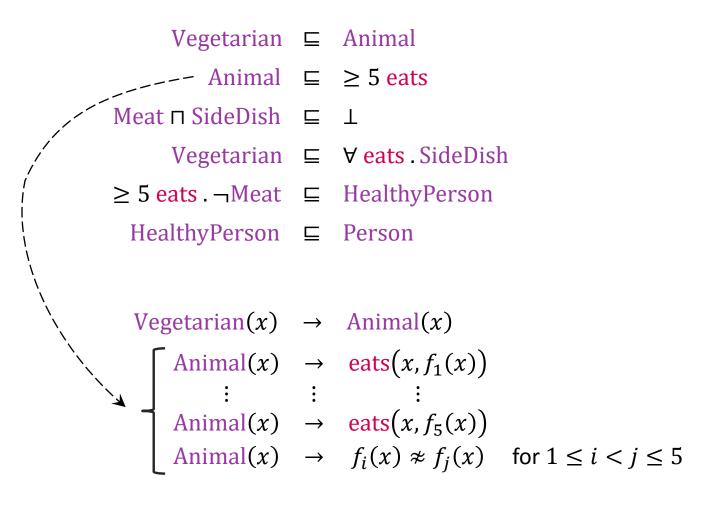


Structural transformation

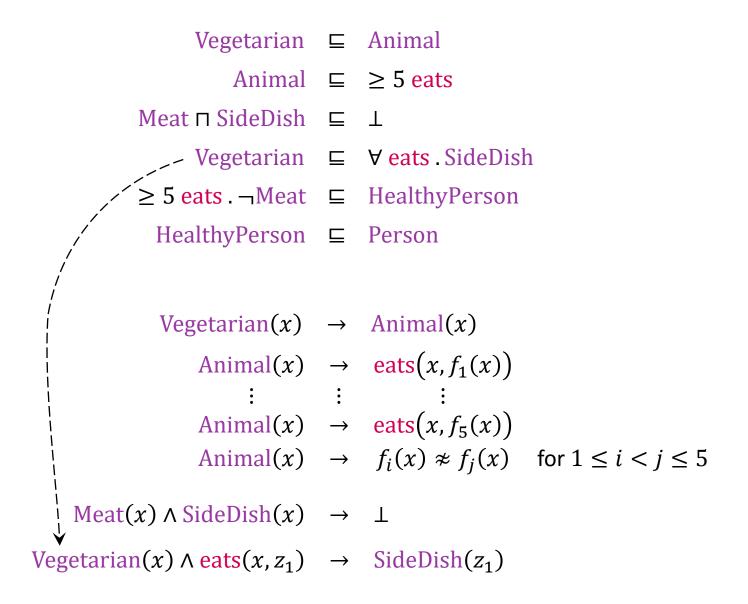
Translate into first-order clauses with equality

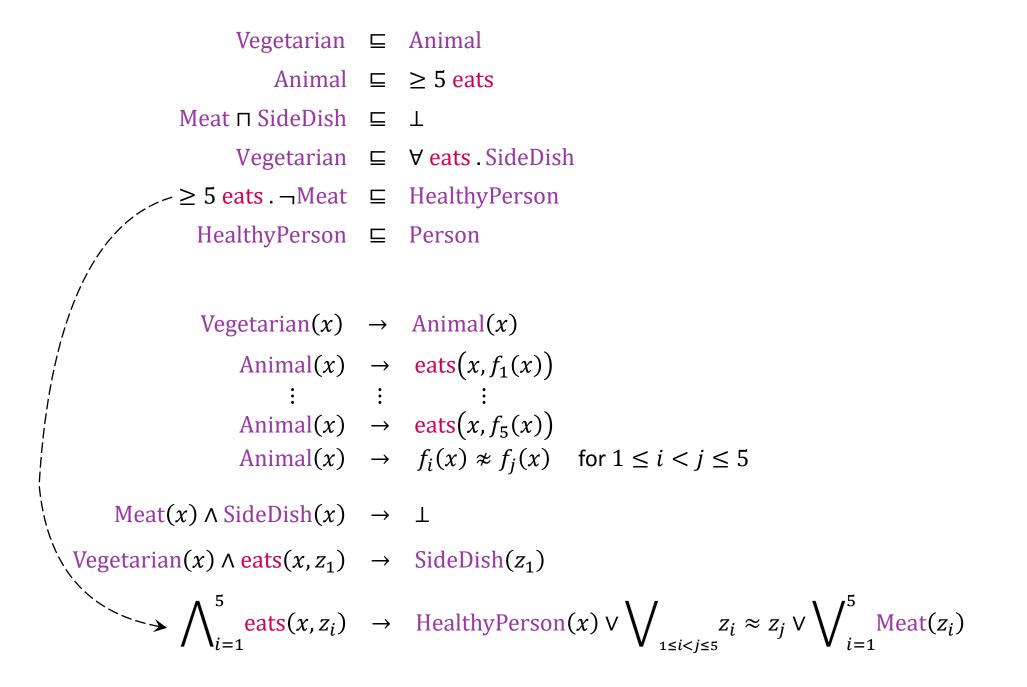






Vegetarian ⊑ Animal Animal $\sqsubseteq \ge 5$ eats Meat \sqcap SideDish \sqsubseteq \bot Vegetarian ⊑ ∀ eats . SideDish \geq 5 eats. \neg Meat \sqsubseteq HealthyPerson HealthyPerson ⊑ Person Vegetarian(x) \rightarrow Animal(x) Animal(x) $\rightarrow \text{eats}(x, f_1(x))$ Animal(x) $\rightarrow \text{eats}(x, f_5(x))$ Animal(x) $\rightarrow f_i(x) \approx f_j(x)$ for $1 \le i < j \le 5$ $Meat(x) \land SideDish(x) \rightarrow \bot$





Vegetarian ⊑ Animal Animal $\sqsubseteq \ge 5$ eats Meat \sqcap SideDish \sqsubseteq \bot Vegetarian \sqsubseteq \forall eats.SideDish \geq 5 eats. \neg Meat \sqsubseteq HealthyPerson Vegetarian(x) \rightarrow Animal(x) Animal(x) $\rightarrow \text{eats}(x, f_1(x))$: : : Animal(x) $\rightarrow \text{eats}(x, f_5(x))$ Animal(x) $\rightarrow f_i(x) \approx f_j(x)$ for $1 \le i < j \le 5$ $Meat(x) \land SideDish(x) \rightarrow \bot$ Vegetarian(x) \land eats(x, z_1) \rightarrow SideDish(z_1) $\bigwedge_{i=1}^{5} \operatorname{eats}(x, z_{i}) \rightarrow \operatorname{HealthyPerson}(x) \lor \bigvee_{1 \le i \le j \le 5} z_{i} \approx z_{j} \lor \bigvee_{i=1}^{5} \operatorname{Meat}(z_{i})$ HealthyPerson(x) \rightarrow Person(x)

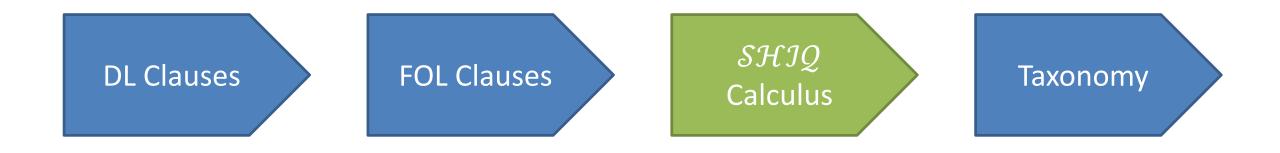
Vegetarian \sqsubseteq AnimalAnimal \sqsubseteq \ge 5 eatsMeat \sqcap SideDish \sqsubseteq \bot Vegetarian \sqsubseteq \forall eats . SideDish \ge 5 eats . \neg Meat \sqsubseteq HealthyPersonHealthyPerson \sqsubseteq Person

 $Vegetarian(x) \rightarrow Animal(x)$ $Animal(x) \rightarrow eats(x, f_1(x))$ $\vdots \qquad \vdots \qquad \vdots$ $Animal(x) \rightarrow eats(x, f_5(x))$ $Animal(x) \rightarrow f_i(x) \approx f_i(x) \text{ for } 1 \leq i < j \leq 5$

 $Meat(x) \land SideDish(x) \rightarrow \bot$

Vegetarian(x) \land eats(x, z_1) \rightarrow SideDish(z_1)

 $\bigwedge_{i=1}^{5} \operatorname{eats}(x, z_{i}) \to \operatorname{HealthyPerson}(x) \lor \bigvee_{1 \leq i < j \leq 5} z_{i} \approx z_{j} \lor \bigvee_{i=1}^{5} \operatorname{Meat}(z_{i})$ $\operatorname{HealthyPerson}(x) \to \operatorname{Person}(x)$



Set \mathcal{V} of contexts

Each context $v \in \mathcal{V}$:

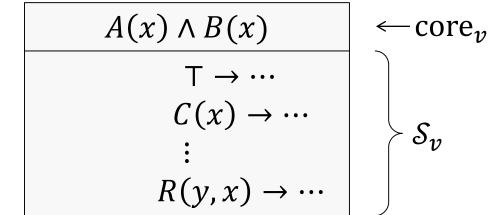
$$P: \begin{array}{c|c} A(x) \land B(x) & \leftarrow \operatorname{core}_{v} \\ & \operatorname{core}_{v} \rightarrow \cdots \\ & \operatorname{core}_{v} \land C(x) \rightarrow \cdots \\ & \vdots \\ & \operatorname{core}_{v} \land R(y, x) \rightarrow \cdots \end{array}$$

Edges between contexts labelled with functions

Context structure $\ensuremath{\mathcal{D}}$ is a the graph of labelled contexts and edges

Set \mathcal{V} of contexts

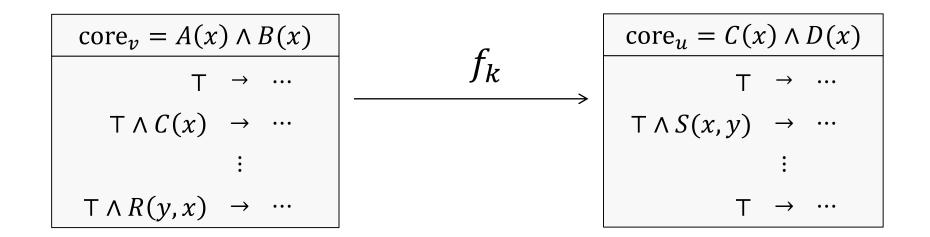
Each context $v \in \mathcal{V}$:



Edges between contexts labelled with functions

Context structure ${\mathcal D}$ is a the graph of labelled contexts and edges

Sound Context Structures

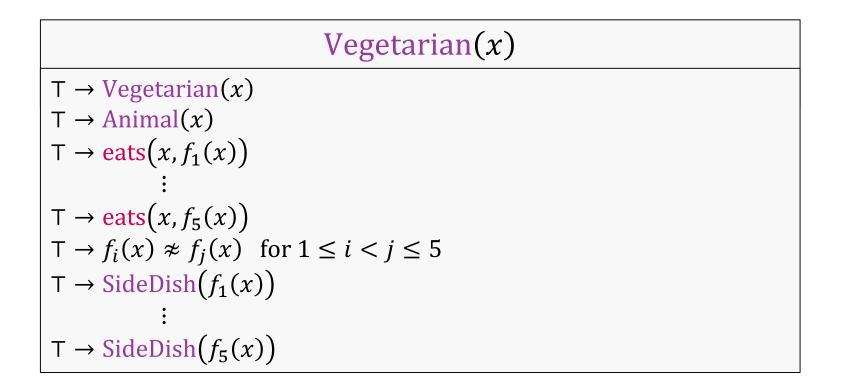


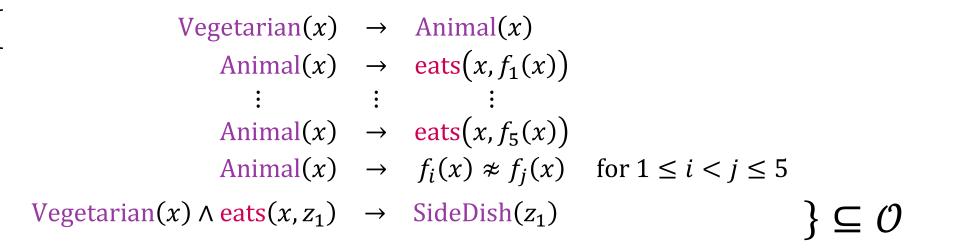
(1) $\mathcal{O} \models \operatorname{core}_{v} \land \Gamma \to \Delta$ for each $v \in V$ and each $\Gamma \to \Delta \in S_{v}$

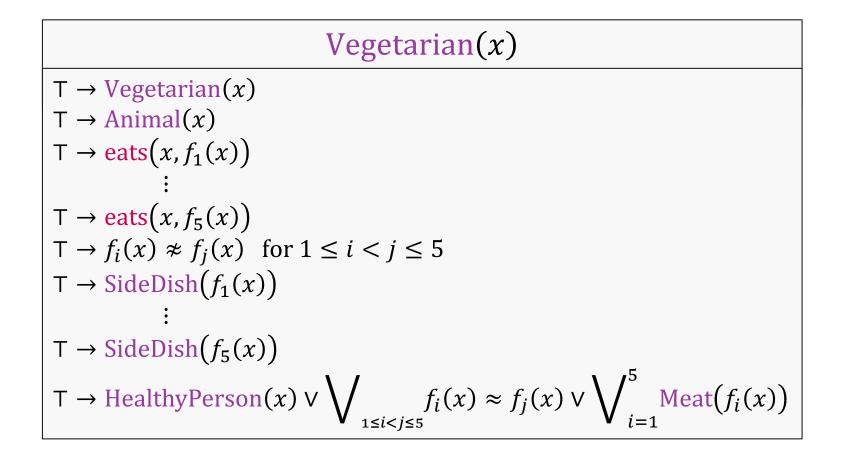
(2) $\mathcal{O} \models \operatorname{core}_u \rightarrow \operatorname{core}_v \{ x \mapsto f_k(x), y \mapsto x \}$ for each $\langle u, v, f_k \rangle \in \mathcal{E}$

Vegetarian(*x*)

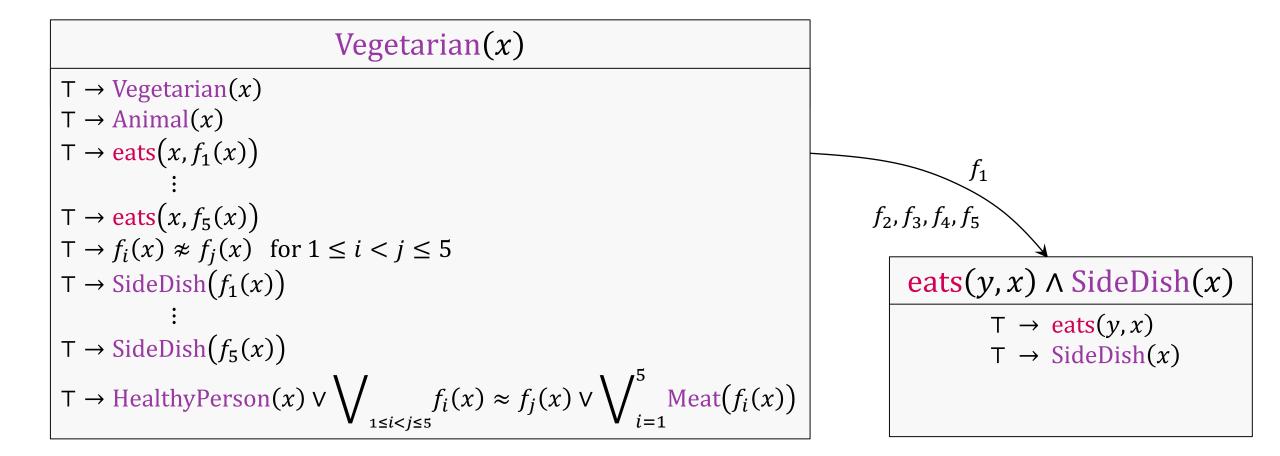
 $T \rightarrow Vegetarian(x)$

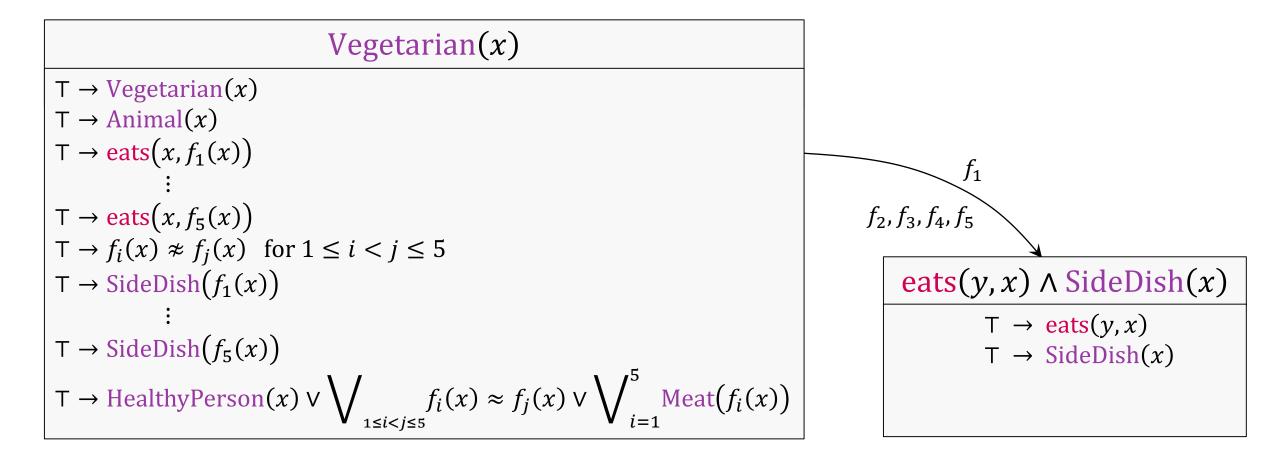




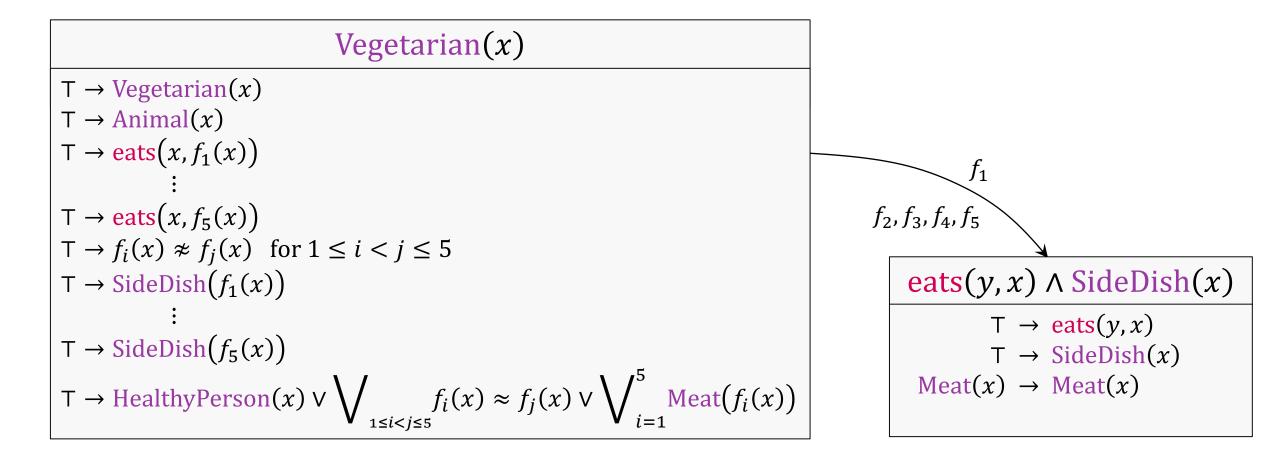


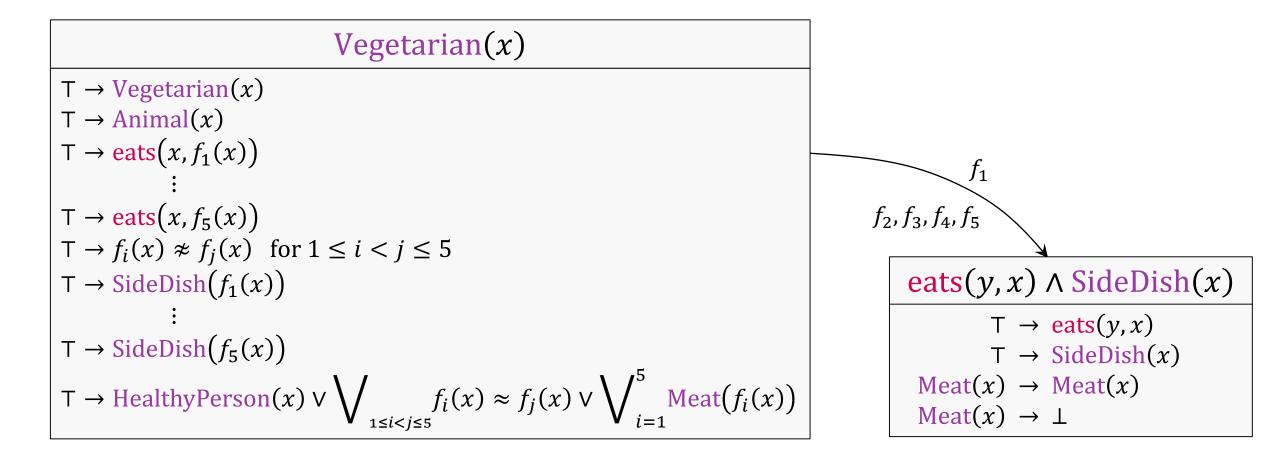
$$\left\{ \bigwedge_{i=1}^{5} \operatorname{eats}(x, z_{i}) \to \operatorname{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} z_{i} \approx z_{j} \lor \bigvee_{i=1}^{5} \operatorname{Meat}(z_{i}) \right\} \subseteq \mathcal{O}$$





$$\left\{ \bigwedge_{i=1}^{5} \operatorname{eats}(x, z_{i}) \rightarrow \operatorname{HealthyPerson}(x) \lor \bigvee_{1 \leq i < j \leq 5} z_{i} \approx z_{j} \lor \bigvee_{i=1}^{5} \operatorname{Meat}(z_{i}) \right\} \subseteq \mathcal{O}$$





 $\{ \operatorname{Meat}(x) \land \operatorname{SideDish}(x) \to \bot \} \subseteq \mathcal{O}$

$$Vegetarian(x)$$

$$T \rightarrow Vegetarian(x)$$

$$T \rightarrow Animal(x)$$

$$T \rightarrow eats(x, f_{1}(x))$$

$$\vdots$$

$$T \rightarrow eats(x, f_{5}(x))$$

$$T \rightarrow f_{i}(x) \approx f_{j}(x) \text{ for } 1 \leq i < j \leq 5$$

$$T \rightarrow SideDish(f_{1}(x))$$

$$\vdots$$

$$T \rightarrow SideDish(f_{5}(x))$$

$$T \rightarrow HealthyPerson(x) \lor \bigvee_{1 \leq i < j \leq 5} f_{i}(x) \approx f_{j}(x) \lor \bigvee_{i=1}^{5} Meat(f_{i}(x))$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow 1$$

$$Vegetarian(x)$$

$$T \rightarrow Vegetarian(x)$$

$$T \rightarrow Animal(x)$$

$$T \rightarrow eats(x, f_{1}(x))$$

$$\vdots$$

$$T \rightarrow eats(x, f_{5}(x))$$

$$T \rightarrow f_{i}(x) \approx f_{j}(x) \text{ for } 1 \leq i < j \leq 5$$

$$T \rightarrow SideDish(f_{1}(x))$$

$$\vdots$$

$$T \rightarrow SideDish(f_{5}(x))$$

$$T \rightarrow HealthyPerson(x) \lor \bigvee_{1 \leq i < j \leq 5} f_{i}(x) \approx f_{j}(x) \lor \bigvee_{i=1}^{5} Meat(f_{i}(x))$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow L$$

$$Vegetarian(x)$$

$$T \rightarrow Vegetarian(x)$$

$$T \rightarrow Animal(x)$$

$$T \rightarrow eats(x, f_1(x))$$

$$\vdots$$

$$T \rightarrow f_i(x) * f_j(x) \text{ for } 1 \le i < j \le 5$$

$$T \rightarrow SideDish(f_1(x))$$

$$\vdots$$

$$T \rightarrow SideDish(f_5(x))$$

$$T \rightarrow HealthyPerson(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \lor \bigvee_{i=1}^5 Meat(f_i(x))$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow 1$$

$$\frac{\text{Vegetarian}(x)}{\begin{array}{c} T \rightarrow \text{Vegetarian}(x) \\ T \rightarrow \text{Animal}(x) \\ T \rightarrow \text{eats}(x, f_1(x)) \\ \vdots \\ T \rightarrow \text{eats}(x, f_5(x)) \\ T \rightarrow f_i(x) * f_j(x) \text{ for } 1 \le i < j \le 5 \\ T \rightarrow \text{SideDish}(f_1(x)) \\ \vdots \\ T \rightarrow \text{SideDish}(f_5(x)) \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \lor \bigvee_{i=1}^5 \text{Meat}(f_i(x)) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_j(x) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_i(x) \\ \vdots \\ T \rightarrow \text{HealthyPerson}(x) \lor \bigvee_{1 \le i < j \le 5} f_i(x) \approx f_i(x) \\ \vdots \\ \end{array}$$

$$Vegetarian(x)$$

$$T \rightarrow Vegetarian(x)$$

$$T \rightarrow Animal(x)$$

$$T \rightarrow eats(x, f_1(x))$$

$$i$$

$$T \rightarrow eats(x, f_5(x))$$

$$T \rightarrow f_i(x) \approx f_j(x) \text{ for } 1 \leq i < j \leq 5$$

$$T \rightarrow SideDish(f_1(x))$$

$$i$$

$$T \rightarrow SideDish(f_5(x))$$

$$T \rightarrow HealthyPerson(x) \lor \bigvee_{1 \leq i < j \leq 5} f_i(x) \approx f_j(x) \lor \bigvee_{i=1}^5 Meat(f_i(x))$$

$$Meat(x) \rightarrow Meat(x)$$

$$Meat(x) \rightarrow I$$

$$HealthyPerson(x) \lor \bigvee_{1 \leq i < j \leq 5} f_i(x) \approx f_j(x)$$

$$HealthyPerson(x) \lor \bigvee_{1 \leq i < j \leq 5} f_i(x) \approx f_i(x)$$

$$HealthyPerson(x) \rightarrow Person(x) \rbrace \subseteq O$$

But that's not all...

Strategies

Context overloading

Triggers to restrict rule applications

– PAYG behaviour on fragments of \mathcal{SRIQ}

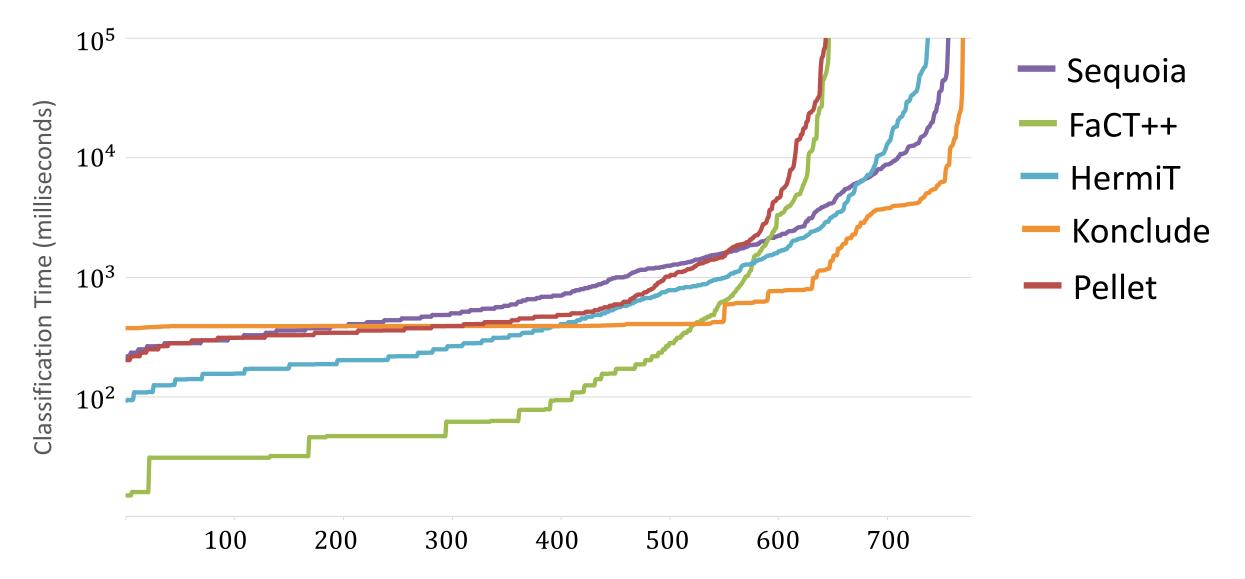
Ordering on atoms and Skolem functions

e	If	$A \in \operatorname{core}_{v},$		
Core		and $\top \to A \notin \mathcal{S}_{v}$,		
0	then	add $\top \to A$ to \mathcal{S}_v .		If $\langle u, v, f \rangle \in \mathcal{E}$,
	If	$\bigwedge_{i=1}^{n} A_i \to \Delta \in \mathcal{O},$		$\bigwedge_{i=1}^{m} A_i \to \bigvee_{i=m+1}^{m+n} A_i \in \mathcal{S}_v,$
Hyper		σ is a substitution such that $\sigma(x) = x$,	Pred	Γ , A) A , C C with A) A for $1 < 1 < 1$
		$\Gamma_i \to \Delta_i \lor A_i \sigma \in \mathcal{S}_v$ with $\Delta_i \not\succeq_v A_i \sigma$ for $i \in \{1, \ldots, n\}$,		$A_i \in \Pr(\mathcal{O})$ for each $m+1 \le i \le m+n$,
		and $\bigwedge_{i=1}^{n} \Gamma_i \to \Delta \sigma \vee \bigvee_{i=1}^{n} \Delta_i \hat{\not\in} \mathcal{S}_v$,		and $\bigwedge_{i=1}^{m} \Gamma_i \to \bigvee_{i=1}^{m} \Delta_i \vee \bigvee_{i=m+1}^{m+n} A_i \sigma \notin S_u$,
	then	add $\bigwedge_{i=1}^{n} \Gamma_i \to \Delta \sigma \vee \bigvee_{i=1}^{n} \Delta_i$ to \mathcal{S}_v .		then add $\bigwedge_{i=1}^{m} \Gamma_i \to \bigvee_{i=1}^{m} \Delta_i \lor \bigvee_{i=m+1}^{m+n} A_i \sigma$ to \mathcal{S}_u ;
Eq	If	$\Gamma_1 \to \Delta_1 \lor s_1 \approx t_1 \in \mathcal{S}_v \text{ with } s_1 \succ_v t_1 \text{ and } \Delta_1 \not\succeq_v s_1 \approx t_1,$		where $\sigma = \{x \mapsto f(x), y \mapsto x\}.$
		$\Gamma_2 \to \Delta_2 \lor s_2 \circ t_2 \in \mathcal{S}_v$ with $\circ \in \{\approx, \not\approx\}$ and $s_2 \succ_v t_2$ and $\Delta_2 \not\succeq_v s_2 \circ t_2$,	$v t_2$ and $\Delta_2 \not\geq_v s_2 \circ t_2$, —	If $\Gamma \to \Delta \lor A \in \mathcal{S}_u$ where $\Delta \succeq_u A$ and A contains $f(x)$, and
		$ s_2 _p = s_1,$		no edge $\langle u, v, f \rangle \in \mathcal{E}$ exists such that $A \to A \in \mathcal{S}_v$ for each $A \in K_2 \setminus \operatorname{core}_v$,
		and $\Gamma_1 \wedge \Gamma_2 \to \Delta_1 \vee \Delta_2 \vee s_2[t_1]_p \circ t_2 \notin \mathcal{S}_v$,		then $ \det \langle v, \operatorname{core}', \succ' \rangle := \operatorname{strategy}(K_1, \mathcal{D});$
	then	add $\Gamma_1 \wedge \Gamma_2 \to \Delta_1 \vee \Delta_2 \vee s_2[t_1]_p \circ t_2$ to \mathcal{S}_v .		if $a \in \mathcal{V}$ then let $\lambda := \lambda = 0 \lambda^{1}$ and
lneq	If	$\Gamma \to \Delta \lor t \not\approx t \in \mathcal{S}_v \text{ with } \Delta \not\succeq_v t \not\approx t,$	Succ	otherwise let $\mathcal{V} := \mathcal{V} \cup \{v\}$, core _v := core', $\succ_v := \succ'$, and $\mathcal{S}_v := \emptyset$;
		and $\Gamma \to \Delta \hat{\not\in} \mathcal{S}_v$,		add the edge $\langle u, v, f \rangle$ to \mathcal{E} ; and
	then	add $\Gamma \to \Delta$ to \mathcal{S}_v .		add $A \to A$ to S_v for each $A \in K_2 \setminus \operatorname{core}_v$;
Factor	If	$\Gamma \to \Delta \lor s \approx t \lor s \approx t' \in \mathcal{S}_v$ with $\Delta \cup \{s \approx t\} \not\geq_v s \approx t'$ and $s \succ_v t'$,		where $\sigma = \{x \mapsto f(x), y \mapsto x\},\$
		and $\Gamma \to \Delta \lor t \not\approx t' \lor s \approx t' \hat{\not\in} \mathcal{S}_v,$		$K_1 = \{ A \in Su(\mathcal{O}) \mid \top \to A\sigma \in \mathcal{S}_u \}, \text{ and }$
	then	add $\Gamma \to \Delta \lor t \not\approx t' \lor s \approx t'$ to \mathcal{S}_v .		$K_2 = \{ A \in Su(\mathcal{O}) \mid \Gamma' \to \Delta' \lor A\sigma \in \mathcal{S}_u \text{ and } \Delta' \not\succeq_u A\sigma \}.$
Elim	If	$\Gamma \to \Delta \in \mathcal{S}_v$ and		
		$\Gamma \to \Delta \in \mathcal{S}_v \setminus \{\Gamma \to \Delta\}$		
	then	remove $\Gamma \to \Delta$ from \mathcal{S}_v .		

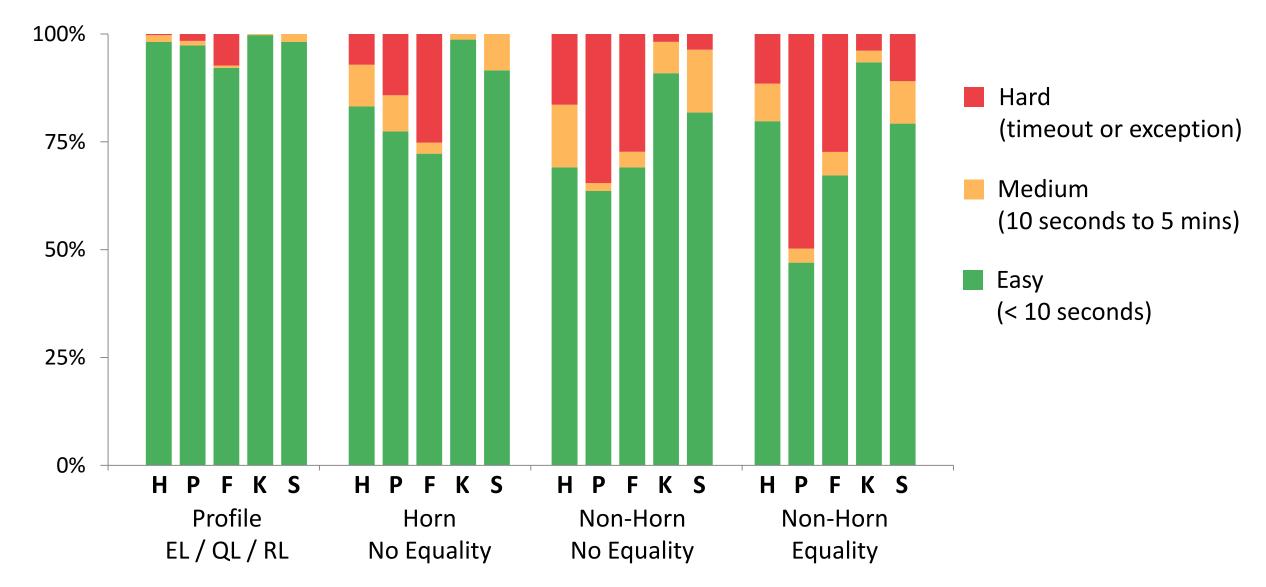
Evaluation

- Prototype implementation called *Sequoia*
- Evaluated using the Oxford Ontology Repository
 - Nominal \rightarrow fresh class
 - Datatype \rightarrow fresh class
 - Data property \rightarrow fresh object property
 - Removed ABox assertions
- 777 ontologies
- Timeout 5 minutes
- Average over 3 runs, reporting exception or timeout as failure

Classification Times



Percentage of Easy, Medium & Hard Ontologies



Consequence-based classification for SRJQ

Optimal worst-case complexity

Pay as you go

One pass classification

Competitive preliminary evaluation