

Department of Computer Science

CS-RR-16-03

Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD

Compositional Strategy Synthesis for Stochastic Games

with Multiple Objectives

Nicolas Basset, Marta Kwiatkowska and Clemens Wiltsche

Compositional Strategy Synthesis for Stochastic Games
with Multiple Objectives

N. Basseta, M. Kwiatkowskaa,∗, C. Wiltschea

aDepartment of Computer Science, University of Oxford, United Kingdom

Abstract

Design of autonomous systems is facilitated by automatic synthesis of controllers
from formal models and specifications. We focus on stochastic games, which
can model interaction with an adverse environment, as well as probabilistic be-
haviour arising from uncertainties. Our contribution is twofold. First, we study
long-run specifications expressed as quantitative multi-dimensional mean-payoff
and ratio objectives. We then develop an algorithm to synthesise ε-optimal
strategies for conjunctions of almost sure satisfaction for mean payoffs and ratio
rewards (in general games) and Boolean combinations of expected mean-payoffs
(in controllable multi-chain games). Second, we propose a compositional frame-
work, together with assume-guarantee rules, which enables winning strategies
synthesised for individual components to be composed to a winning strategy
for the composed game. The framework applies to a broad class of properties,
which also include expected total rewards, and has been implemented in the
software tool PRISM-games.

Contents

1 Introduction 3
1.1 Related Work . 6

2 Preliminaries 7
2.1 Stochastic Models . 8

2.1.1 Stochastic games . 8
2.1.2 Probabilistic automata . 9
2.1.3 Discrete-time Markov chains 10

2.2 Strategies . 11
2.2.1 Strategy application . 11
2.2.2 Determinising strategies 13

∗Corresponding author
Email addresses: nicolas.basset@cs.ox.ac.uk (N. Basset),

Marta.Kwiatkowska@cs.ox.ac.uk (M. Kwiatkowska), clemens.wiltsche@cs.ox.ac.uk
(C. Wiltsche)

Preprint submitted to Elsevier January 21, 2016

2.3 Winning Conditions . 13
2.3.1 Rewards and long-run behaviours 13
2.3.2 Specifications and objectives 14
2.3.3 Multi-objective queries and their Pareto sets 15
2.3.4 Problem statement . 16
2.3.5 Comparison of ratio rewards and mean payoffs 16

2.4 A Two-Step Semantics for Stochastic Games 17
2.4.1 First step: inducing the PA 17
2.4.2 Second step: inducing the DTMC 18

3 Conjunctions of Pmp Objectives 19
3.1 Decision Procedures . 19
3.2 Finite Memory Strategies . 21

3.2.1 ε-optimality with finite DU Player ♦ strategies 21
3.2.2 Succinctness of SU strategies 22

3.3 Inter-Reduction between Pmp and EE 22
3.3.1 Finite Player � strategies sufficient for EE 22
3.3.2 Transforming between EE and Pmp 23

3.4 Strategy Synthesis . 23
3.4.1 Geometry of SU strategies 24
3.4.2 Shortfall computation by iteration of a Bellman operator 24
3.4.3 The synthesis algorithm 27

4 Boolean Combinations for Expectation Objectives 29
4.1 From Conjunctions to Arbitrary Boolean Combinations 29
4.2 Emp Objectives in Controllable Multichain Games 32

4.2.1 Controllable multichain games 33
4.2.2 Strategy construction . 34
4.2.3 Emp MQs in CM Games 36

5 Compositional Strategy Synthesis 37
5.1 Game Composition . 37

5.1.1 Normal form of a game 37
5.1.2 Composition . 38

5.2 Strategy Composition . 39
5.2.1 Composing SU strategies 40

5.3 Properties of the Composition . 40
5.3.1 Functional simulations . 40
5.3.2 From PA composition to game composition 41

5.4 Composition Rules . 41
5.4.1 Verification rules for PAs 42
5.4.2 Under-approximating Pareto sets 43

5.5 The Compositional Strategy Synthesis Method 43

6 Conclusion 44

2

Appendix A 49
Appendix A.1. 49
Appendix A.2. 50
Appendix A.3. 52

Appendix B 52
Appendix B.1. 52
Appendix B.2. 53
Appendix B.3. 55
Appendix B.4. 61
Appendix B.5. 61
Appendix B.6. 62
Appendix B.7. 63
Appendix B.8. 65
Appendix B.9. 67
Appendix B.10. 69

Appendix C 70
Appendix C.1. 70
Appendix C.2. 70
Appendix C.3. 71
Appendix C.4. 71
Appendix C.5. 71
Appendix C.6. 72
Appendix C.7. 73
Appendix C.8. 73

Appendix D 77
Appendix D.1. 77
Appendix D.2. 78

1. Introduction

Game theory has found versatile applications in the past decades, in areas
ranging from artificial intelligence, through modelling and analysis of financial
markets, to control system design and verification. The game model consists of
an arena with a number of positions and two or more players that move a token
between positions, sometimes called games on graphs [26]. The rules of the
game determine the allowed moves between positions, and a player’s winning
condition captures which positions or sequences of positions are desirable for the
player. When a player decides on a move, but the next position is determined by
a probability distribution, we speak of a stochastic game [53]. Since stochastic
games can model probabilistic behaviour, they are particularly attractive for
the analysis of systems that naturally exhibit uncertainty.

In this article we focus our attention on the development of correct-by-
construction controllers for autonomous systems via the synthesis of strategies

3

that are winning for turn-based zero-sum stochastic games. When designing
autonomous systems, often a critical element is the presence of an uncertain
and adverse environment. The controllable parts are modelled as Player ♦, for
which we want to find a strategy, while the non-cooperative behaviour of the
environment is modelled as Player �. Modelling that Player � tries to spoil
winning for Player ♦ expresses that we do not make any assumptions on the
environment, and hence a winning strategy for Player ♦ has to be winning
against all possible behaviours of the environment. We take the view that
stochasticity models uncertain behaviour where we know the prior distribution,
while nondeterminism models the situation where all options are available to
the other player.

In addition to probabilities, one can also annotate the model with rewards
to evaluate various quantities, for example profit or energy usage, by means
of expectations. Often, not just a single objective is under consideration, but
several, potentially conflicting, objectives must be satisfied, for example max-
imising both throughput and latency of a network. In our previous work [19, 20],
we studied multi-objective expected total reward properties for stochastic games
with certain terminating conditions. Expected total rewards, however, are un-
able to express long-run average (also called mean-payoff) properties. Another
important class of properties are ratio rewards [58], with which one can state,
e.g., speed (distance per time unit) or fuel efficiency (distance per unit of fuel).
In this paper we extend the repertoire of reward properties for stochastic games
by considering winning conditions based on long-run average and ratio rewards,
both for expectation and almost sure satisfaction semantics. These can be ex-
pressed as single or multi-objective properties with upper or lower thresholds on
the expected target reward to be achieved, for example “the average energy con-
sumption does not exceed 100 units per hour almost surely”, or “the expected
number of passengers transported is at least 100 per hour, while simultaneously
ensuring that the expected fuel consumption is at most 50 units per hour”.
Multi-objective properties allow us to explore trade-offs between objectives by
analysing the Pareto curve. The difficulty with multi-objective strategy syn-
thesis compared to verification is that the objectives cannot be considered in
isolation, but the synthesised Player ♦ strategy has to satisfy all simultaneously.
Another issue is that monolithic strategy synthesis may be computationally
infeasible, as a consequence of algorithmic complexity bounds [16, 20].

We thus formulate a compositional framework for strategy synthesis, which
allows us to derive a strategy for the composed system by synthesising only
for the (smaller) individual components; see e.g. [13] for an approach for non-
stochastic systems. To this end we introduce a game composition operation
(‖), which is closely related to that of probabilistic automata (PAs) in the sense
of [52]. PAs correspond to stochastic games with only one player present, and
can be used (i) for verification, to check whether all behaviours satisfy a speci-
fication (when only Player � is present), and (ii) for strategy synthesis, to check
whether there exists a strategy giving rise to behaviors satisfying a specification
(when only Player ♦ is present) [37]. In verification, the nondeterminism that is
present in the PA models an adverse, uncontrollable, environment. By applying

4

a Player ♦ strategy to a game to resolve the controllable nondeterminism, we are
left with a PA where only uncontrollable nondeterminism for Player � remains.
This observation allows us to reuse rules for compositional PA verification, such
as those in [36], to derive synthesis rules for games. Similarly to [36], which
employs multi-objective property specifications to achieve compositional verifi-
cation of PAs, multi-objective properties are crucial for compositional strategy
synthesis, as elaborated below.

In our framework, we assume that the designer provides games G1,G2, . . .
representing components of a larger system, which is modelled as their compo-
sition G = G1 ‖ G2 ‖ · · · . By giving a local specification ϕi for each component
game Gi, we deduce global specifications ϕ for the composed game G, so that,
given local strategies πi achieving the respective specifications ϕi, the global
specification ϕ is satisfied in G by applying the local strategies. We deduce
the global specifications independently of the synthesised strategies, by instead
deducing the global specification ϕ from the local specifications ϕi using com-
positional verification rules, that is, rules for systems without controllable non-
determinism (such as PAs) to determine whether ϕ holds for all strategies given
that, for each component Gi, ϕi holds for all strategies. In Theorem 15 we show
that, whenever there is a PA verification rule deducing ϕ from ϕi, then there
is a corresponding synthesis rule for games, justifying the use of local strategies
for ϕi in the composed game G to achieve ϕ.

The compositional synthesis problem is thus reduced to finding the local
strategies πi achieving ϕi, which is the classical monolithic strategy synthesis
question from (quantitative) objectives that are compatible with the compo-
sition rules. By allowing general Boolean combinations of objectives, we can,
for example, synthesise for one component a strategy satisfying an objective
ϕA, and for a second component a strategy that satisfies an objective ϕG un-
der the assumption ϕA, that is, the implication ϕA → ϕG, so that the global
specification that these strategies satisfy is ϕG.

Contributions. The paper makes the following main contributions.

• Section 3: We show that the strategy synthesis problem for conjunctions
of almost sure mean payoffs, which maintain several mean payoffs almost
surely above the corresponding thresholds, is in co-NP (Corollary 2) and
present a synthesis algorithm for ε-optimal strategies (Theorem 7).

• Section 4: For expectation objectives, we show how to reduce synthesis
problems for Boolean combinations to those for conjunctions (Theorem 8),
which allows us to obtain ε-optimal strategies for Boolean combinations
of expected mean-payoff objectives (Theorem 14) in a general class of
controllable multi-chain (CM) games that we introduce.

• Section 5: We develop a composition of stochastic games that synchro-
nises on actions, together with composition rules that allow winning strate-
gies synthesised for individual components to be composed to a winning
strategy for the composed game (Theorem 15).

5

Previous Work. Preliminary versions of this work appeared as [4] for syn-
thesis of ε-optimal strategies for multi-objective mean payoff, and as [5] for the
compositional framework. We additionally draw inspiration for Boolean com-
binations from [19]. By introducing controllable multichain games, we can syn-
thesise Boolean combinations of long-run objectives, which allows more general
assume-guarantee rules than in [5, 4]. Further, due to our decision procedure,
we can present the semi-algorithm of [4] as an algorithm.

The techniques presented here have been implemented in the tool PRISM-
games 2.0 [38], a new release of PRISM-games [17]. The implementation sup-
ports compositional assume-guarantee synthesis for long-run properties studied
here, as well as total expected reward properties of [19, 20]. PRISM-games
has been employed to analyse several case studies in autonomous transport and
energy management, see e.g. [60, 55, 39] and references therein.

1.1. Related Work

Multi-objective strategy synthesis. Our work generalises multi-objective strat-
egy synthesis for MDPs by introducing nondeterminism arising from an adver-
sarial environment. Previous research on multi-objective synthesis for MDPs
discusses PCTL [3], total discounted and undiscounted expected rewards [59,
15, 29], ω-regular properties [27], expected and threshold satisfaction of mean-
payoffs [6, 14], percentile satisfaction of mean-payoffs [48, 14], as well as condi-
tional expectations for total rewards [1]; recent work on mixing types of objec-
tives appeared in [10, 47].

In contrast to the case for MDPs, synthesis for games needs to take into
account the uncontrollable Player �. For non-stochastic games, multi-objective
synthesis has recently been discussed in the context of mean-payoff and energy
games [8, 11], for mean-payoffs and parity conditions [16, 9], and robust mean-
payoffs [57]. Non-zero-sum games in the context of assume-guarantee synthesis
arise in [13]. For stochastic games, PCTL objectives are the subject of [7]. The
special case of precisely achieving a total expected reward is discussed in [18],
which is extended to Boolean combinations and LTL specifications for stopping
games in [19, 20, 55]. Under stationary strategies and recurrence assumptions on
the game, [54] approximate mean-payoff conjunctions. Non-zero-sum stochastic
games for more than two players, where each player has a single discounted
expected total reward objective, are discussed in [41].

Stochastic games with shift-invariant objectives. To formulate our deci-
sion problem for almost-sure satisfaction of conjunctions of mean-payoff ob-
jectives (Corollary 2), we rephrase this multi-objective property in terms of
shift-invariant winning condition studied in [32] and [33]. These papers state
general properties about qualitative determinacy (there is always a winner) and
half-positionality (one player needs only memoryless deterministic strategies)
for a general class of games, in which the winning condition (possibly multi-
objective) is shift-invariant. [32] also consider the problem of satisfaction prob-
ability being above an arbitrary given threshold, which is more general than the
problem of almost-sure satisfaction considered here. In fact, [32] explain how

6

to solve the former problem using an oracle for the latter, but were not con-
cerned with synthesis nor ε-optimal winning strategies. We believe that ideas
could be borrowed from [32] to extend our synthesis algorithm from almost sure
satisfaction to arbitrary threshold satisfaction.

Compositional modelling and synthesis. Our compositional framework re-
quires a notion of parallel composition of components, so that composing win-
ning strategies of the components yields a winning strategy for the composition.
Several notions of parallel composition of non-stochastic games have been pro-
posed, for example [31], but player identity is not preserved in the composition.
In [30] the strategies of the components have to agree in order for the composed
game not to deadlock. Similarly, the synchronised compositions in [42] and [43]
require the local strategies to ensure that the composition never deadlocks.

Composition of probabilistic systems is studied for PAs in [52], where, how-
ever, no notion of players exists. Compositional approaches that distinguish
between controllable and uncontrollable events include [25] and probabilistic
input/output automata (PIOA) [21]. However, when synthesising strategies
concurrent games have to be considered, as there is no partitioning of states
between players. In contrast, we work with turn-based games and define a
composition that synchronises on actions, similarly to that for PAs [52]. This
is reminiscent of single-threaded interface automata (STIA) [24] that enforce
a partition between running and waiting states, which we here interpret as
Player ♦ and Player � respectively.

The problem of synthesising systems from components whose composition
according to a fixed architecture satisfies a given global LTL specification is
undecidable [44]. Strategies in the components need to accumulate sufficient
knowledge in order to make choices that are consistent globally, while only being
able to view the local history, as discussed in [35]. In our setting, each strategy
is synthesised on a single component, considering all other components as black
boxes, and hence adversarial. Assume-guarantee synthesis is a convenient way
of encoding assumptions on other components and the overall environment in
the local specifications; see [13] for a formulation as non-zero-sum non-stochastic
games.

2. Preliminaries

In this section we introduce notations and definitions for stochastic games,
their strategies and winning conditions. We work with two representations of
strategies, (standard) deterministic update and stochastic update of [6], and
prove that they are equally powerful if their memory size is not restricted.
We then define strategy application and discuss behaviour of stochastic games
under strategies. In particular, we define the induced probabilistic automata
and Markov chains obtained through strategy application. First, we give general
notation used in the article and refer to [49, 50] for basic concepts of topology
and probability theory.

Probability distributions. A distribution on a countable set Q is a function

µ : Q → [0, 1] such that
∑
q∈Q µ(q) = 1; its support is the set supp(µ)

def
= {q ∈

7

s0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1) s2 (−2, 2)

3
4

1
4

1

Figure 1: An example game. Moves and states for Player ♦ and Player � are
respectively shown as©, ♦ and �. States are annotated with a two-dimensional
reward structure. Moves (also called stochastic states) are labelled with actions.

Q |µ(q) > 0}. We denote by D(Q) the set of all distributions over Q with finite
support. A distribution µ ∈ D(Q) is Dirac if µ(q) = 1 for some q ∈ Q, and if
the context is clear we just write q to denote such a distribution µ.

The vector space Rn. When dealing with multi-objective queries comprising
n objectives, we operate in the vector space Rn of dimension n over the field of
reals R, one for each objective, and consider optimisation along n dimensions.
We use the standard vector dot product (·) and matrix multiplication. We

use the uniform norm ‖~x‖∞
def
= maxi=1..n |xi| and the corresponding notion of

distance between vectors. For a set X ⊆ Rn, we denote by conv(X) its convex
hull, that is, the smallest convex set containing X. We use the partial order on
Rn defined for every ~x, ~y ∈ Rn by ~x ≤ ~y if, for every 1 ≤ i ≤ n, xi ≤ yi. The

downward closure of a set X is defined as dwc(X)
def
= {~y ∈ Rn | ∃~x ∈ X . ~y ≤ ~x}.

Its upward closure is upc(X)
def
= {~y ∈ Rn | ∃~x ∈ X .~x ≤ ~y}. We denote by C(X)

the set of extreme points of dwc(X) for a closed convex set X.

2.1. Stochastic Models

We give the definition of stochastic games and discuss their relationship to
probabilistic automata in the sense of [52].

2.1.1. Stochastic games

Primarily, we consider turn-based action-labelled stochastic two-player games
(henceforth simply called games), which distinguish two types of nondetermin-
ism, each controlled by a separate player. Player ♦ represents the controllable
part for which we want to synthesise a strategy, while Player � represents the
uncontrollable environment.

Definition 1. A game G is a tuple 〈S, (S♦, S�, S©), ς,A, χ,∆〉, where S is a
nonempty, countable set of states partitioned into Player ♦ states S♦, Player �
states S�, and stochastic states S©; ς ∈ D(S♦ ∪ S�) is an initial distribution;
A is a set of actions; χ : S© → A∪{τ} is a (total) labelling function; and ∆ :
S×S → [0, 1] is a transition function, such that ∆(s, t) = 0 for all s, t ∈ S♦∪S�,
∆(s, t) ∈ {0, 1} for all s ∈ S♦ ∪ S� and t ∈ S©, and

∑
t∈S♦∪S�

∆(s, t) = 1 for
all s ∈ S©.

8

s′0

(1, 0)

s′′0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1) s2 (−2, 2)

1
2

1
2

3
8

3
8

1
4

1

Figure 2: An example PA.

We call S♦ ∪S� the player states. Define the successors of s ∈ S as ∆(s)
def
=

{t ∈ S |∆(s, t) > 0}. For stochastic states s, we sometimes write s = (a, µ)

(called move), where a
def
= χ(s), and µ(t) = ∆(s, t) for all t ∈ S. If ∆(s, (a, µ)) >

0, we write s
a−→ µ for the transition labelled by a ∈ A ∪ {τ}, called an a-

transition. The action labels a ∈ A on transitions model observable behaviours,
whereas τ can be seen as internal: it is not synchronised in the composition that
we formulate in this paper. A move (a, µ) is incoming to a state s if µ(s) > 0,

and is outgoing from a state s if s
a−→ µ.

We remark that we work with finite games; more precisely, all our statements
are for finite stochastic games, except for the induced PAs which may be infinite.
In the rest of this paper, if not explicitly stated otherwise, we assume that games
have no deadlocks, that is, |∆(s)| ≥ 1 for every s ∈ S.

A path λ = s0s1s2 . . . is a (possibly infinite) sequence of states such that, for
all i ≥ 0, ∆(si, si+1) > 0. Note that paths of games alternate between player
and stochastic states. Given a finite path λ = s0s1 . . . sN , we write last(λ) = sN ,
and write |λ| = N + 1 for the length of λ. We denote the set of finite (infinite)
paths of a game G by Ωfin

G (ΩG), and by Ωfin
G,♦ (Ωfin

G,�) the set of finite paths

ending in a Player ♦ (Player �) state.
A finite (infinite) trace is a finite (infinite) sequence of actions. Given a path

λ, its trace trace(λ) is the sequence of actions that label moves along λ, where
we elide τ . We write A∗ (resp. Aω) for the set of finite (resp. infinite) sequences
over A.

Example 1. Figure 1 shows a stochastic game, where Player ♦ and Player �
states are respectively shown as ♦ and �, and moves as ©. A path of the game
is s0s1s0s3s2s3 and its trace is abb.

2.1.2. Probabilistic automata

If S♦ = ∅ then the game is a probabilistic automaton (PA) [52], which we
sometimes write as 〈S, (S�, S©), ς,A, χ,∆〉. The model considered here is due
to Segala [52], and should not be confused with Rabin’s probabilistic automata
[46]. Segala’s PAs have strong compositionality properties, as discussed in [56].

9

s0

(1, 0)

s1 a : (−1, 0)

s3b : (0, 1)

s′2 (−2, 2)

s′′2 (−2, 2)

1
21

2

3
4

1
4

1

1

1

Figure 3: An example DTMC. The labelling function is partial: only s1 and s3

have labels.

Note that, in contrast to Markov decision processes1, we allow PAs to have
several moves associated to each action, and similarly for games. An example
PA is shown in Figure 2.

An end component (EC) is a sub-PA that is closed under the transition
relation and strongly connected. Formally, an EC E of a PAM is a pair (SE ,∆E)
with ∅ 6= SE ⊆ S and ∅ 6= ∆E ⊆ ∆, such that (i) for all s ∈ SE ∩ S©,∑
t∈S�

∆E(s, t) = 1; (ii) for all s ∈ SE , ∆E(s, t) > 0 only if t ∈ SE ; and

(iii) for all s, t ∈ SE , there is a finite path s0s1 . . . sl ∈ Ωfin
M within E (that is,

si ∈ SE for all 0 ≤ i ≤ l), such that s0 = s and sl = t. An end component is a
maximal end component (MEC) if it is maximal with respect to the pointwise
subset ordering.

2.1.3. Discrete-time Markov chains

In contrast to games and PAs, the discrete-time Markov chain model contains
no nondeterminism.

Definition 2. A discrete-time Markov chain (DTMC) D is a tuple 〈S, ς,A, χ,∆〉,
where S is a nonempty, countable set of states, ς ∈ D(S) is an initial distribu-
tion on states, A is a finite alphabet of action, χ : S → A is a partial labelling
function and ∆ is a transition function such that

∑
t∈S ∆(s, t) = 1.

An example DTMC is shown in Figure 3.
Note that, as opposed to games and PAs, there are no player states in

DTMCs but only stochastic states. The labelling function is partial to allow for
states that correspond to stochastic states of a game, which are labelled, as op-
posed to states that correspond to player states of a game, which are unlabelled
(see Example 2 below). Note also that DTMCs cannot have deadlocks.

Paths and traces of DTMCs are defined as for games, where the set of finite
(infinite) paths is denoted by Ωfin

D (resp. ΩD).

1A Markov decision process (MDP) is a PA where all successors of any player state have
pairwise distinct labels.

10

2.2. Strategies

Nondeterminism for each player is resolved by a strategy, which keeps in-
ternal memory that can be updated stochastically. For the remainder of this
section, fix a game G = 〈S, (S♦, S�, S©), ς,A, χ,∆〉.

Definition 3. A strategy π of Player ♦ is a tuple 〈M, πc, πu, πd〉, where M is a
countable set of memory elements; πc : S♦ ×M→ D(S©) is a choice function

s.t. πc(s,m)(a, µ) > 0 only if s
a−→ µ; πu : M×S → D(M) is a memory update

function; and πd : S♦ ∪ S� → D(M) is an initial distribution on M. A strategy
σ of Player � is defined analogously.

We will sometimes refer to Player ♦ strategy as a controller. For a given
strategy, the game proceeds as follows. It starts in a player state with memory
sampled according to the initial distribution. Every time a (stochastic) state s
is entered, both players update their current memory m and n according to these
states; the updated memory m′ and n′ are πu(m, s)(m′) and πu(n, s)(n′). Once
the memory is updated, if s is a stochastic state then the next state is picked
randomly according to the probability t 7→ ∆(s, t); otherwise, s is a player state
and the next stochastic state t is chosen according to the distribution πc(s,m

′)
when s ∈ S♦, and according to σc(s, n

′) if s ∈ S�.
If the memory update function maps to Dirac distributions, we speak of

deterministic memory update (DU) strategies, and sometimes use the alterna-
tive, equivalent, formulation where π : Ωfin

G,♦ → D(S©) is a function such that

π(λ)(a, µ) > 0 only if last(λ)
a−→ µ for all λ ∈ ΩG,♦ (and symmetrically for

Player �). If we want to emphasise that memory might not be deterministically
updated, we speak of stochastic memory update (SU) strategies. The set of
Player ♦ (resp. Player �) strategies is denoted by Π (resp. Σ), and we use super-
scripts DU and fin to refer to DU and finite (memory) strategies, respectively. If
a DU strategy can be represented with only one memory element and its choice
functions maps to a Dirac distribution in every state, it is called memoryless
deterministic (MD).

2.2.1. Strategy application

Definition 4. Given a game G = 〈S, (S♦, S�, S©), ς,A, χ,∆〉, Player ♦ strategy
π and Player� strategy σ, we define the induced DTMC Gπ,σ = 〈S′, ς ′,A, χ′,∆′〉,
where S′ ⊆ S ×M × N is defined as the set of reachable states from supp(ς ′)
through ∆′ defined as follows. For every s ∈ supp(ς), ς ′(s,m, n) = πd(s)(m)πd(s)(n)
and ∆′ is such that

∆′((s,m, n), (s′,m′, n′)) = πu(m, s
′)(m′) · σu(n, s′)(n′) ·

πc(s,m)(s′) if s ∈ S♦
σc(s, n)(s′) if s ∈ S�
∆(s, s′) if s ∈ S©

(1)
The labelling function χ′ is defined by χ′(s,m, n) = χ(s) for every s ∈ S©.

11

The first two terms of the right-hand side of (1) correspond to the memory
updates, while the last term corresponds to the probability of moving from one
state to another depending on the type of the current state.

Note that paths of the induced DTMC include memory. We introduce a
mapping pathG((s0,m0, n0) · · · (sn,mn, nn)) = s0 · · · sn to retrieve paths of the
game from paths of the induced DTMC.

Example 2. Figure 3 shows the induced DTMC from the stochastic game of
Figure 1 by the two strategies described below. The Player ♦ strategy is memory-
less (let m its single memory element); it randomises amongst the successors of
s0 with the same probability 1

2 . The Player � strategy decides in state s2 to go
to the state visited just before entering s2. It hence requires only two memory
elements, n and n′. The current memory element is always n except when s2 is
chosen from s3, where it is updated to n′. For the sake of readability we denote
by si the state (si,m, n) for i 6= 2, by s′2 = (s2,m, n

′) and s′′2 = (s2,m, n). For
instance, pathG(s0s1s0s3s

′
2s3) = s0s1s0s3s2s3.

Similarly, given a PAM and a Player � strategy σ, one can define an induced
DTMCMσ and a mapping pathM, where a generic path of the induced PA is of

the form κ = (s0, n0) · · · (sn, nn) and is mapped to pathM(κ)
def
= s0 · · · sn. Note

that the maps pathM and pathG preserve the lengths of the paths.
We define the (standard) probability measure on paths of a DTMC D =

〈S, ς,A, χ,∆〉 in the following way. The cylinder set of a finite path λ ∈ Ωfin
D

(resp. trace w ∈ A∗) is the set of infinite paths (resp. traces) with prefix λ
(resp. w). For a finite path λ = s0s1 . . . sn ∈ Ωfin

D and a distribution ϑ ∈ D(S), we
define PD,ϑ(λ), the measure of its cylinder set weighted by the distribution ϑ, by

PD,ϑ(λ)
def
= ϑ(s0)

∏n−1
i=0 ∆(si, si+1). If ϑ = ς, i.e. the initial distribution, we omit

it and just write PD. Given a PA M and a strategy σ, one can define for every

path λ the measure of its cylinder set by PσM(λ)
def
=
∑
{PMσ (λ′) | pathM(λ′) =

λ}. Similarly, given a game G and a pair of strategies π, σ, define for every path

λ the measure Pπ,σG (λ)
def
=
∑
{PGπ,σ (λ′) | pathG(λ′) = λ}.

We introduce the remaining definitions for a generic model (game, PA or
DTMC) together with the probability measure P on its paths. Given a finite
trace w, paths(w) denotes the set of minimal finite paths with trace w, i.e.
λ ∈ paths(w) if trace(λ) = w and there is no path λ′ 6= λ with trace(λ′) = w

and λ′ being a prefix of λ. The measure of the cylinder set of w is P̃(w)
def
=∑

λ∈paths(w) P(λ), and we call P̃ the trace distribution induced by P. The mea-
sures uniquely extend to infinite paths due to Carathéodory’s extension theorem.
We denote by E[~ρ] the expectation wrt P of a measurable function ~ρ over infinite
paths, that is,

∫
~ρ(λ)dP(λ), and use the same lower- and upper-script notation

for E and P, for instance ED,ϑ denotes expectation wrt PD,ϑ.

Given a subset T ⊆ S, let P(F=k T)
def
=
∑
{P(λ) |λ = s0s1 . . . s.t. sk ∈ T ∧

∀i < k . si 6∈ T} the probability to reach T in exactly k steps, and by P(FT)
def
=∑

{P(λ) |λ = s0s1 . . . s.t. ∃i . si ∈ T} the probability to eventually reach T .

12

2.2.2. Determinising strategies

In this section we show that SU and DU strategies are equally powerful if
the memory size is not restricted (Proposition 1). The memory elements of the
determinised strategies are distributions over memory elements of the original
strategy. Such distributions can be interpreted as the belief the other player has
about the memory element, knowing only the history and the rules to update the
memory, while the actual memory based on sampling is kept secret. The term
belief is inspired by the study of partially observable Markov decision processes.
At any time, the belief attributes to a memory element m the probability of m
under the original strategy given the history.

Definition 5. Given an SU strategy π = 〈M, πc, πu, πd〉, we define its deter-
minised strategy π̄ = 〈D(π), π̄c, π̄u, π̄d〉, where D(π) ⊆ D(M) is a countable
set called the belief space defined as the reachable beliefs from the initial beliefs
π̄d(s) under belief updates π̄u along paths of the game defined as follows. The
initial belief in a state is the initial memory distribution in this state:

π̄d(s)
def
= πd(s).

Any belief d is updated according to a state s′ as follows:

π̄u(d, s
′)(m′)

def
=
∑
m∈M

d(m) · πu(m, s′)(m′).

The choice of a state s′ is made according to a belief d as follows:

π̄c(s, d)(s′)
def
=
∑
m∈M

d(m)πc(s,m)(s′).

Note that determinising a finite memory SU strategy can lead to either a
finite or an infinite memory DU strategy.

We can now state the main result of this section, namely, that the origi-
nal and the determinised strategy give exactly the same semantics. They are
indistinguishable from the Player � viewpoint.

Proposition 1. Given a game G and two strategies π, σ, it holds that Pπ,σG =

Pπ̄,σG , where π̄ is the determinisation of π.

This proposition is proved in Appendix A.1. We do not need to consider the
determinisation of Player � strategies. Note, however, that it could be defined
in the same way, and using Proposition 1 twice (once for each player) yields

Pπ,σG = Pπ̄,σG .

2.3. Winning Conditions

2.3.1. Rewards and long-run behaviours

A reward structure of a game G is a function r : S → R; it is defined on
actions Ar ⊆ A if r(a, µ) = r(a, µ′) for all moves (a, µ), (a, µ′) ∈ S© such that
a ∈ Ar, and r(s) = 0 otherwise. r straightforwardly extends to induced DTMCs

13

via r(s) = r(pathG(s)) for s ∈ SGπ,σ . Given reward structures r and r′, define

the reward structure r+ r′ by (r+ r′)(s)
def
= r(s) + r′(s) for all s ∈ S, and, given

v ∈ R, define r + v by (r + v)(s)
def
= r(s) + v for all s ∈ S.

For a path λ = s0s1 . . . (of a game or DTMC) and a reward structure r,

we define rewN (r)(λ)
def
=
∑N
i=0 r(si), and similarly for traces if r is defined on

actions. We use the following types of reward:

• the average reward (mean-payoff) is mp(r)(λ)
def
= limN→∞

1
N+1 rewN (r)(λ);

• the ratio reward is ratio(r/c)(λ)
def
= limN→∞rewN (r)(λ)/(1 + rewN (c)(λ)),

where c is a weakly positive reward structure, that is, it is non-negative
and there exists cmin > 0 such that Pπ,σG (mp(c) > cmin) = 1 for all π and
σ.

Example 3. Let r and c be the first and second component of the reward struc-
ture of the game shown in Figure 1. The reward structure c is weakly positive
because, under every pair of strategies, s2 or s3 are visited with positive fre-
quency. In the induced DTMC shown in Figure 3, every path λ that begins
with s0s1s0s3s

′′
2s3 has cumulative rewards after 6 steps equal to rew6(r)(λ) =

r(s0) + r(s1) + r(s0) + r(s3) + r(s′′2) + r(s3) = 1 + (−1) + 1 + 0 + (−2) + 0 = −1
and rew6(c)(λ) = 4, leading to a ratio of rew6(r)(λ)/(1 + rew6(c)(λ)) = −1/5
after 6 steps.

If a DTMC D has a finite state space, the limit inferior (lim) of the average
and ratio rewards can be replaced by the true limit, as it is almost surely defined
(see Lemma 15 and 16 in Appendix A.2). Ratio rewards ratio(r/c) generalise
average rewards mp(r) since, to express the latter, we can let c(s) = 1 for all
states s of G, see [58].

2.3.2. Specifications and objectives

A specification ϕ on a model (game, PA, or DTMC) is a predicate on its
path distributions. We call π winning for ϕ in G if, for every Player � strategy
σ, Pπ,σG satisfies ϕ. We say that ϕ is achievable if such a winning strategy exists,
written G |= ϕ. A specification ϕ on a PA M is satisfied if, for every Player �
strategy σ, PσM satisfies ϕ, which we write M |= ϕ. A specification ϕ on a
DTMC D is satisfied if PD satisfies ϕ, which we write D |= ϕ. A specification ϕ
is defined on traces of A if ϕ(P̃) = ϕ(P̃′) for all P,P′ such that P̃(w) = P̃′(w) for
all traces w ∈ A∗. We consider the following objectives, which are specifications
with single-dimensional reward structures.

Semantics Reward Syntax Definition
(a.s.) satisfaction mean payoff Pmp(r)(v) P(mp(r) ≥ v) = 1
(a.s.) satisfaction ratio Pratio(r/c)(v) P(ratio(r/c) ≥ v) = 1
expectation mean payoff Emp(r)(v) E[mp(r)] ≥ v
expectation ratio Eratio(r/c)(v) E[ratio(r/c)] ≥ v

Note that, when inducing a DTMC, the reward structure is carried over and
the mean-payoff and ratio reward are not affected; hence, specifications defined

14

for games are also naturally carried over to the induced models. In particular,
a Player ♦ strategy π of a game G is winning for a specification ϕ if and only
if, for every Player � strategy σ, Gπ,σ |= ϕ. The same remark holds for induced
PAs Gπ defined in Section 2.4 below.

The objective Pmp(r)(v) (resp. Emp(r)(v)) is equivalent to Pmp(r − v)(0)
(resp. Emp(r−v)(0)), i.e. with the rewards shifted by−v. Hence, if not otherwise
stated, we assume without loss of generality that mean-payoff objectives have
target 0 and write Pmp(r) (resp. Emp(r)). An objective with target v is ε-
achievable if, for all ε > 0, the objective is achievable with target v− ε by some
strategy, which we call ε-optimal. We can replace the non-strict inequality in an
ε-achievable objective by a strict inequality, and retain ε-achievability. We hence

define for expectations ¬Emp(r)(v)
def
= Emp(−r)(−v) and ¬Eratio(r/c)(v)

def
=

Eratio(−r/c)(−v). We do not consider negating a.s. satisfaction objectives here.
Additionally, we consider expected energy (EE) objectives, which we use as

an auxiliary tool in strategy synthesis. A DTMC D satisfies the EE objective
EE(r) if there exists a finite shortfall v0, such that, for every state s of D,
ED,s[rewN (r)] ≥ v0 for all N ≥ 0.

We recall known results about strategies in PAs and games.

Lemma 1 (Theorem 9.1.8 in [45]). In finite PAs, MD strategies suffice to
achieve single-dimensional Emp objectives.

Lemma 2 (see Section 2.1.1 of [34]). Given a game G, and a set A ⊆ S, the
set of states A′ from which Player ♦ can reach A almost surely is computable in
polynomial time. Moreover, an MD strategy π reaching almost surely A from
any state of A′ is computable in polynomial time.

2.3.3. Multi-objective queries and their Pareto sets

A multi-objective query (MQ) ϕ is a Boolean combination of objectives and
its truth value is defined inductively on its syntax. Given an MQ with n thresh-
olds v1, v2, . . ., call ~v = (v1, v2, . . .) the target vector. Denote by ϕ[~x] the MQ ϕ,
where, for all i, the bound vi is replaced by xi. An MQ ϕ is a conjunctive query
(CQ) if it is a conjunction of objectives. The notation Pmp(~r)(~v), Emp(~r)(~v)
stands for the CQ

∧n
i=1 Pmp(ri)(vi) and

∧n
i=1 Emp(ri)(vi), respectively. The

notation Pratio(~r/~c)(~v), Eratio(~r/~c)(~v) stands for the CQ
∧n
i=1 Pratio(ri/ci)(vi)

and
∧n
i=1 Eratio(ri/ci)(vi), respectively. We write ~ε to denote the vector (ε, ε, . . . , ε),

and, if the context is clear, we use ε instead of ~ε.
The Pareto set Pareto(ϕ) of an MQ ϕ is the topological closure of the set

of achievable vectors. Alternatively, this set can be defined as the set of ap-
proximable target vectors, namely, the vectors ~v such that, for every ε, the
target vector ϕ[~v − ε] is achievable. We denote by ParetoFDU(ϕ) the subset of
Pareto(ϕ) concerning achievability by a finite DU strategy.

In some of our results, we consider only finite memory adversaries. We de-
note by ParetoFDU,FSU(ϕ) the topological closure of the set of vectors achievable
against finite SU strategies by finite DU strategies. Note that a Pareto set is
equal to its downward closure. More precisely, we distinguish three regions in

15

s0

a : (10, 10) b : (0, 0)

s1
a : (1,−1)

s2
a : (−1, 1)

~vL

~vR

r1
−1

r2

−1

Figure 4: Left: A game. Right: Its Pareto sets for Pmp (hashed) and Emp (grey).

Vector ~vL
def
= (−1/2, 1/2) (resp. ~vR

def
= (1/2,−1/2)) and its downward closure

dwc({~vL}) is achieved by the MD strategy that chooses a (resp. b) in s0. For
p ∈ (0, 1) the strategy that chooses a with probability p and b with probability
1−p achieves Emp(~r)(p~vL+(1−p)~vR) but it achieves only Pmp(~r)(min(~vL, ~vR)),
where the minimum is taken componentwise.

a Pareto set, the interior of the Pareto set where vectors are achievable; the
boundary of a Pareto set, usually called the Pareto frontier, where vectors are
approximable but may not be achievable; and the complement of the Pareto
set, where vectors are not achievable.

Remark 1. For every game and reward structure r, if a strategy π is winning
for Pmp(~r) then it is winning for Emp(~r). In particular, Pareto(Pmp(~r)) ⊆
Pareto(Emp(~r)) and ParetoFDU(Pmp(~r)(~v)) ⊆ ParetoFDU(Emp(~r)) but the con-
verse inclusions do not hold in general. The same remark holds when replacing
mean-payoff by ratio rewards.

Indeed, given a probability distribution on paths, if the mean payoff is al-
most surely above a threshold then the expected mean payoff is also above this
threshold, leading to the inclusion claimed. Figure 4 provides an example where
the inclusion is strict.

2.3.4. Problem statement

We are mainly interested in the following synthesis problem: given a quan-
titative specification ϕ, an approximable target vector and a positive real ε,
synthesise an ε-optimal strategy for this vector. To obtain achievable specifica-
tions, we are also interested in (under-approximating) the Pareto set to provide
a choice of approximable targets as input to the synthesis problem. Specifically,
we seek to compute, for every ε > 0, ε-tight under-approximations of Pareto
sets where, given two subsets X,Y of Rn, X is an ε-tight under-approximation
of Y if Y ⊆ X and for every x ∈ X there is y ∈ Y such that ‖x− y‖∞ ≤ ε.

2.3.5. Comparison of ratio rewards and mean payoffs

We now discuss the relationship between different classes of specifications.
Firstly, note that ratio rewards are defined on traces, since we can control which
actions are counted in the denominator, and are therefore well suited to our com-
positional synthesis framework described in Section 5 that is tailored to such
properties. On the other hand, average rewards limN→∞

1
N+1 rewN (r)(λ) are

16

not defined over traces in general, since the divisor (N + 1) counts the steps
in the game, irrespective of whether the specification takes them into account.
Hence, when composing systems by interleaving transitions, the additional ac-
tions counted in the denominator of the ratio reward, in between these originally
counted, skew the value of the average rewards.

However, Pratio and Pmp are inter-reducible in the following sense, and we
will use this fact in Section 4 to obtain a reduction for expected mean payoffs.

Proposition 2. A strategy π is winning for Pratio(~r/~c)(~v) if and only if it
is winning for Pmp(~r − ~v • ~c)(0) where, for every dimension i and state s,
[~r − ~v • ~c]i(s) = ri(s)− vici(s).

This proposition is proved in Appendix A.3.

2.4. A Two-Step Semantics for Stochastic Games

PAs arise naturally from games when one considers fixing only the Player ♦
strategy, and then checking against all Player � strategies if it is winning. Later
in the paper, for instance in Theorem 15, we will show how to automatically lift
results from the PA (and MDP) world to the game domain (from the literature
or proved here). For this, we will need to map strategies of the induced PA
to Player � strategies of the original game. To facilitate the lifting, we adopt
a two-step semantics defined as follows. In the first step we apply a Player ♦
strategy to a game, leading to an induced PA. Then, in the second step, we
apply a Player � strategy to the induced PA, resulting in a probability measure
that is the same as that obtained by applying both strategies simultaneously
(Proposition 3).

2.4.1. First step: inducing the PA

We consider a DU Player ♦ strategy π (note that this is without loss of
generality by Proposition 1). The induced PA Gπ essentially corresponds to the
game where π has been applied. The memory of Player ♦ is encoded in the
states of the induced PA as depicted in Figure 5. To allow alternation between
stochastic and Player � states in the induced PA, we transform each Player ♦
state s′ into several Player � states, each of the form (s′, s′′), corresponding to
the choice of s′′ ∈ S© as a successor of s′. Any incoming transition s → s′

of the game is thus replaced by several transitions in the PA, each of the form
s→ (s′, s′′) with probability given as a product of ∆(s, s′) and the probability
of s′′ given by πc in s′. Formally, the induced PA is defined as follows.

Definition 6. Let G = 〈S, (S♦, S�, S©), ς,A, χ,∆〉 be a game and let π be a
Player ♦ DU strategy. The induced PA Gπ is 〈S′, (S′�, S′©), ς ′,A, χ′,∆′〉, where
S′� ⊆ (S� ∪ S♦ × S©) ×M and S′© ⊆ S© ×M are defined inductively as the
reachable states from the initial distribution ς ′, defined by ς ′(s, πd(s)) = ς(s);
and through the transition relation ∆′ defined as follows. Given states s ∈ S′ of
the form (s,m) and t ∈ S′ of the form (t,m′) or ((t, t′),m′), ∆′(s, t) is not null

17

s0 m0

s1 m1 s2 m2

s3 m3 s4 m4 s5 m5 s6 m6

p 1− p

a b c d

s0,m0

s1s3,m1 s1s4,m1 s2,m2

s3,m3 s4,m4
s5,m5 s6,m6

pp1 pp2 1− p

a b c d

Figure 5: Stochastic game G (left) and induced PA Gπ (right). Memory elements
are represented on the right of each state of the game, and encoded in the states
of the PA. At s1 with memory m1, the strategy π plays a and b with probability
p1 and p2, respectively.

only if m′ = πu(m, t) and is defined by

∆′(s, t)
def
= ∆(s, t) ·

{
πc(t,m

′)(t′) if t
def
= (t, t′) ∈ S♦ × S©;

1 otherwise

Every state of the form ((s, s′),m) has only one successor (thus taken with proba-
bility 1), which is (s′, πu(m, s

′)). The labelling function is defined by χ′(s) = χ(s)
for s ∈ S©.

Example 4. Figure 2 shows the PA induced from the game of Figure 1 by the
memoryless strategy that randomises in s0 between s1 and s3 with the same
probability 1

2 , as in Example 2. The single memory element m is omitted for
the sake of readability and states ((s0, s1),m), ((s0, s3),m) are called s′0 and s′′0
respectively.

Remark 2. The induced PA corresponding to a finite DU strategy has a finite
state space, which was not the case with the definition of [5]. We rely on this
fact to prove numerous results in the paper.

2.4.2. Second step: inducing the DTMC

Given a game G and a DU strategy π, every strategy σ of the induced PA
Gπ induces a DTMC (Gπ)σ. One can define a mapping, still denoted by pathG ,
from paths of this DTMC to the game. Formally, every state of the DTMC is
of the form ((s,m), n) or (((s, s′),m), n), which is mapped by pathG to s.

An associated probability measure can thus be defined by

P(π,σ)
G (λ)

def
=
∑
{P(Gπ)σ (λ′) | pathG(λ′) = λ},

called the two-step semantics.
The two-step semantics is justified by Proposition 3, showing equivalence

with the original semantics of Definition 4.

18

Proposition 3 (Equivalence of semantics). The two-step semantics is equiv-
alent to the semantics of the game of Definition 4 in the following sense. Let
G be a game and π a DU strategy, then for every strategy σ in G (resp. σ′ in

Gσ) one can build a strategy σ′ in Gσ (resp. σ in G) such that Pπ,σG = P(π,σ′)
G .

Moreover, if π has finite memory, then σ has finite memory if and only if σ′

has finite memory.

To build a Player � strategy σ in a game from a strategy σ′ in the induced
PA, it suffices to simulate the deterministic memory of π (available from the
state of the induced PA) in the memory of σ. If the strategies π and σ′ are
finite then so is the memory of σ. The other direction is straightforward; if σ is
a strategy in a game, then one can use it in an induced PA without even taking
care of the memory of π.

3. Conjunctions of Pmp Objectives

In this section we consider conjunctions of Pmp objectives, which maintain
several mean payoffs almost surely above the corresponding thresholds. We
first show in Corollary 2 that we can decide which player wins in co-NP time.
Next, to synthesise strategies, we introduce a reduction to expected energy
(EE) objectives in Lemma 5. We then construct succinct ε-optimal finite SU
strategies in Theorem 7.

3.1. Decision Procedures

In this section we present our decidability result of the achievability problem
for Pmp CQs, based on a general class of objectives defined via shift-invariant
submixing functions. A function % : ΩG → R is shift-invariant if ∀κ ∈ Ωfin

G , λ ∈
ΩG . %(κλ) = %(λ). A function % : ΩG → R is submixing if, for all κ, κ′, λ ∈ ΩG
such that λ is an interleaving of κ and κ′, it holds that %(λ) ≤ max{%(κ), %(κ′)}.
Given a measurable function %, we write P(%) for the objective P(% ≥ 0) = 1.

We obtain a co-NP algorithm by studying the strategies Player� needs to win
for Pmp objectives against Player ♦, and using that the games are qualitatively
determined for Pmp objectives. We have from [33] that MD strategies suffice
for Player ♦ to win for single-dimensional shift-invariant submixing functions.

Theorem 1 (Theorem V.2 of [33]). Let G be a game, let % : ΩG → R be
measurable, shift-invariant and submixing. Then Player ♦ has an MD strategy
π̃ such that infσ Eπ̃,σG [%] = supπ infσ Eπ,σG [%].

Further, a game G with specification ϕ is qualitatively determined if either
Player ♦ has a winning strategy, or Player � has a spoiling strategy. It is called
Player �-positional if the following implication holds: if Player � has a spoiling
strategy then it has an MD spoiling strategy.

19

Theorem 2 (Theorem 7 of [32]). Stochastic games with shift-invariant winning
condition are qualitatively determined.2

Given a measurable subset A of ΩG , we denote by 1A its indicator function,

that is, 1A(λ)
def
= 1 if λ ∈ A and 0 otherwise.

Lemma 3. Let %1, . . . , %n be shift-invariant submixing functions, and let A
def
=

{λ | ∃i . − ρi(λ) < vi}. The function 1A is shift-invariant and submixing.

Proof. Since %i is shift-invariant for all i, also 1A is shift-invariant. We now
show that 1A is submixing. Let λ, κ, κ′ ∈ ΩG such that λ is an interleaving
of κ and κ′. If 1A(κ) = 1 or 1A(κ′) = 1 then 1A(λ) ≤ max{1A(κ), 1A(κ′)}.
Otherwise, 1A(κ) = 1A(κ′) = 0, that is, −%i(κ) ≥ vi and −%i(κ′) ≥ vi for all
i. Since %i is submixing, %i(λ) ≤ max{%i(κ), %i(κ

′)}, for all i. Then, for all i,
vi ≤ min{−%i(κ),−%i(κ′)} ≤ −%i(λ). Thus, 1A(λ) = 0 ≤ max{1A(κ), 1A(κ′)}
as expected.

Theorem 3. A game G with specification P(−~%), where %1, . . . , %n are shift-
invariant submixing functions, is Player �-positional.

Proof. Assume that Player � has a spoiling strategy σ. It means that for every
Player ♦ strategy π, it holds that Eπ,σG [1A] > 0 with A as in Lemma 3. Since,
by Lemma 3, 1A is submixing and shift-invariant, by Theorem 1 (via switching

players), there exists an MD Player � strategy σ̃ in G such that ∀π .Eπ,σ̃G [1A] > 0,
concluding the proof.

Theorem 4. Let G be a game with a specification ϕ qualitatively determined and
Player �-positional. If for PAs M with specification ϕ the problem ∃σ,Mσ |= ϕ
is in the time-complexity class A, then the problem ∃π .∀σ .Gπ,σ |= ϕ is in co-NP
if A ⊆ co-NP, and in A if A ⊇ co-NP.

Proof. By qualitative determinacy, the decision problem of interest is equivalent
∀σ .∃π .Gπ,σ |= ϕ. The answer is negative exactly if ∃σ .∀π .Gπ,σ |= ¬ϕ, which
is equivalent to deciding whether some MD strategy σ satisfies ∀π .Gπ,σ |= ¬ϕ.
Such an MD spoiling strategy σ can be guessed in polynomial time. To decide
∀π .Gπ,σ |= ¬ϕ, it suffices to decide its negation ∃π .Gπ,σ |= ϕ, and this problem
is in the class A. The overall complexity is hence the maximum complexity of
co-NP and A.

Using Theorems 2 and 3, we obtain the following corollary.

Corollary 1. Let G be game, let %1, . . . , %n be shift-invariant submixing func-
tions, and suppose the problem whether there exists a strategy σ for a PA M
such that Mσ satisfies P(−~%) is in the time-complexity class A. The problem
∃π .∀σ .Gπ,σ |= P(−~%) is in co-NP if A ⊆ co-NP, and in A if A ⊇ co-NP.

2 This result was originally stated for the weaker assumption of tail conditions, see the
discussion in III.B. of [33].

20

s0 s1
(0, 1) (1, 0)

Figure 6: Player ♦ needs infinite memory to win optimally for Pmp(~r)(1
4 ,

1
4), but

finite-memory DU strategies are sufficient for ε-optimality for MDPs ([6]) and
for stochastic games as we show in Theorem 13 (example taken from [6]).

Applying this to mean-payoff, we get the following corollary.

Corollary 2. The Pmp CQ achievability problem is in co-NP.

Proof. We use the previous results and the fact that the problem ∃σ .Pmp(~r) is
decidable in polynomial time for PAs, by virtue of B.3 of [6].

Finally, we consider the complexity of Pareto set computation for Pmp CQs.
We approximate the Pareto set of an n-dimensional conjunction, Pmp(~r), via
gridding, by some grid-size ε, the set of targets in the hyperrectangle {~v ∈
Rn | ∀i . − ρ∗ ≤ vi ≤ ρ∗}, where ρ∗

def
= maxi,s∈S |ri(s)|. At every such point ~v in

the grid, we call the co-NP decision procedure of Corollary 2, and hence obtain
an ε-approximation of the Pareto set by taking the downward closure of the set
of achievable points. There are ρ∗/ε sections per dimension, and 2|S| strategies
to be checked with the polynomial-time oracle of B.3. in [6], and so we obtain
the following theorem.

Theorem 5. An ε-approximation of the Pareto set Pareto(Pmp(~r)), for an n-
dimensional conjunction of Pmp objectives, can be computed using O((ρ∗/ε)n)
calls to the co-NP oracle of Corollary 2.

3.2. Finite Memory Strategies
In general, infinite memory might be required to achieve a multi-objective

query: in the game in Figure 6, Player ♦ has to play the transitions between
s0 and s1 in order to achieve Pmp(~r)(1

4 ,
1
4), but can only do so optimally if in

the limit these transitions are never played; this fact holds already for MDPs,
see [6]. Nevertheless, we are able to show that finite-memory DU strategies are
sufficient for ε-optimality for stochastic games, see Theorem 13. For MDPs,
this was proved in [6]. We work with SU strategies, which can be exponentially
more succinct than DU strategies, and were shown to be equally powerful if the
memory is not restricted in Proposition 1.

3.2.1. ε-optimality with finite DU Player ♦ strategies

The following theorem states that Player ♦ can achieve any target ε-optimally
with a finite DU strategy if it is achievable by an arbitrary Player ♦ strategy.

Theorem 6. Given a game and a multi-dimensional reward structure ~r, then
it holds that Pareto(Pmp(~r)) = ParetoFDU(Pmp(~r)).

This theorem is proved in Appendix B.1.

21

3.2.2. Succinctness of SU strategies

We justify our use of SU strategies by showing that they can be exponentially
more succinct than DU strategies.

Proposition 4. Finite SU strategies can be exponentially more succinct than
finite DU strategies for expected and almost sure mean-payoff.

The proof method is based on similar results in [16, 55]. The proof is included
in Appendix B.2.

3.3. Inter-Reduction between Pmp and EE

We demonstrate in this section how strategy synthesis for almost sure mean-
payoff objectives reduces to synthesis for expected energy objectives, under ε-
optimality. Our use of energy objectives is inspired by [16], where non-stochastic
games are considered. We first show that for finite DU strategies of Player ♦ it
is sufficient to consider finite Player � strategies.

3.3.1. Finite Player � strategies sufficient for EE

We explain the intuition behind the reduction. When Player ♦ fixes a fi-
nite DU strategy π, aiming to satisfy a conjunction of EE objectives, then
the aim of Player � is to spoil at least one objective in the finite induced
PA Gπ. In the following we use boldface notation for vectors over the state
space, reserving the arrow notation for vectors over the reward dimensions. Let
M = 〈S, (S�, S©), ς,A, χ,∆〉 be a PA, and let r be a single-dimensional reward
structure. For a given Player � strategy σ, write ∆σ for the transition function
of the induced DTMCMσ. The sequence of expected non-truncated energies is

inductively defined by e0
s,m

def
= 0, and, for all k > 0,

eks,m
def
= r(s) +

∑
(t,m′)∈∆σ(s,m)

∆σ((s,m), (t,m′)) · ek−1
t,m′ ,

for all states (s,m) ofMσ. Player � spoils if for every shortfall v0 there exists a
state (s,m) such that eks,m ≤ v0. To witness whether Player � can spoil, without

needing to induce the DTMCMσ, we also define the sequence (uk)k≥0 of single-
dimensional truncated energy, parametrised by states of the PA M. That is,

for all states s of M put u0
s

def
= 0, and, for every k > 0, we define

uk+1
s

def
=

{
min(0, r(s) + mint∈∆(s) u

k
t) if s ∈ S�

min(0, r(s) +
∑
t∈∆(s)∆(s, t)ukt) if s ∈ S©.

(2)

One can see by induction that (uk)≥0 is a non-increasing sequence. We denote

by u∗ its limit in (R≤0 ∪ {−∞})|S|. Let Sfin (resp. S∞) be the set of states s of
M such that u∗s is finite (resp. infinitely negative). We now show that S∞ 6= ∅
witnesses that Player � can spoil the EE objective with a finite strategy.

22

Proposition 5. Let M be a finite PA with a one-dimensional reward structure
r. If S∞ 6= ∅, then Player � has a finite strategy to spoil EE(r − ε), for every
ε > 0.

The proof proceeds by showing that, for k large enough and for states in
S∞ 6= ∅, there is no cut-off used to define (uk), and hence (uk) satisfies the
same linear equations as the expected non-truncated energy (ek), see Appendix
B.3.

We also require the following lemma proved in Appendix B.4.

Lemma 4. If Player � can spoil EE(r), in a finite PA with a one-dimensional
reward structure r, then S∞ 6= ∅.

Finally, with the help of Lemma 4 and Proposition 5, we can show that it is
sufficient to consider finite memory Player � strategies for EE objectives.

Proposition 6. Let π be a finite DU Player ♦ strategy. If π wins for EE(~r− ~ε)
for some ε > 0 against all finite Player � strategies, then it wins for EE(~r) for
all Player � strategies.

Proof. We show the contrapositive. Assume the strategy π loses for EE(~r)
against an arbitrary strategy of Player �. Then there is a coordinate r of the
rewards ~r such that Player � wins EE(r) in the induced PA Gπ. By Lemma 4
this implies that S∞ 6= ∅, which by Proposition 5 yields that Player � spoils
EE(r − ε), and hence EE(~r − ~ε) for every ε, with a finite memory strategy.

3.3.2. Transforming between EE and Pmp

We are now ready to show that EE and Pmp objectives are equivalent up to
ε-achievability, and the proof is included in Appendix B.5.

Lemma 5. Given a finite strategy π for Player ♦, the following hold:

(i) if π achieves EE(~r), then π achieves Pmp(~r); and

(ii) if π is DU and achieves Pmp(~r), then π achieves EE(~r + ~ε) for all ε > 0.

The above reduction to energy objectives enables the formulation of our main
method, see Theorem 7 below, for computing strategies achieving EE(~r + ~ε),
and hence, by virtue of Lemma 5(i), deriving ε-optimal strategies for Pmp(~r).
Lemma 5(ii) guarantees completeness of our method, in the sense that, for any
target ~v such that Pmp(~r)(~v) is achievable, we compute an ε-optimal strategy. If
Pmp(~r)(~v) is not achievable, it is detected by the decision procedure of Corollary
2.

3.4. Strategy Synthesis
This section describes the strategy synthesis method and proceeds as fol-

lows. We first show in Section 3.4.1 that strategies that can be geometrically
represented via what we call an ε-consistent memory mapping are ε-optimal for
EE objectives (and hence for Pmp objectives as shown in the previous section).
We describe the synthesis algorithm in Section 3.4.3, which is based on the
construction of a memory mapping obtained by iterating a Bellman operator
studied in Section 3.4.2.

23

3.4.1. Geometry of SU strategies

Given a strategy π and an n-dimensional reward structure ~r, a memory map-
ping is a partial function fπ : M× S → Rn; we typically abbreviate fπ(m, s) =
~ms. A memory mapping is ε-consistent for ~v0 if

∑
s ς(s)

∑
m∈M πd(s)(m)~ms ≥

~v0, and, for all s ∈ S, s′ ∈ ∆(s), m ∈M,∑
t∈∆(s) πc(s,m)(t)·~a(t, m)≥ ~ms − ~r(s)− ε if s ∈ S♦,

~a(s′,m)≥ ~ms − ~r(s)− ε if s ∈ S�, and∑
t∈supp(µ) µ(t)·~a(t, m)≥ ~ms − ~r(s)− ε if s = (a, µ) ∈ S©,

where ~a(t,m)
def
=
∑

m′∈M πu(m, t)(m′) · ~m′t.

Lemma 6. Let π be a strategy. If there is a memory mapping that is ε-consistent
for ~v0, then π achieves EE(~r + ~ε).

This lemma is proved in Appendix B.6.

3.4.2. Shortfall computation by iteration of a Bellman operator

Before we introduce the Bellman operator, we outline the construction of
the space that it acts on. Note that, in a game with a specification consist-
ing of n objectives, we need to keep a set of n-dimensional real-valued vectors
for each of the |S| states and moves, where each such n-dimensional vector ~v
intuitively corresponds to an achievable target for multi-dimensional truncated
energy. Thus, we require that each element of our space is an |S|-dimensional
vector of subsets of Rn.

Formally, the construction is as follows. Given M ≥ 0 and a set A ⊆
Rn, define the M -downward closure of A by dwc(A) ∩ BoxM , where BoxM

def
=

[−M, 0]n. The set of convex closed M -downward-closed subsets of Rn is denoted
by Pc,M and endowed with the partial order v defined by A v B if dwc(B) ⊆
dwc(A). For a set X ⊆ (Rn)|S| and state s, we denote by Xs the sth component

of X. We define the space CM
def
= P |S|c,M and endow it with the product partial

order v defined by Y v X if, for every s ∈ S, Ys v Xs. The set ⊥M
def
= Box

|S|
M

is a bottom element for this partial order (that is, for all X ∈ CM , ⊥M v X).
More precisely, we have an algebraic characterisation of CM as a complete partial
order (CPO) shown in Appendix B.7.

Proposition 7. (CM ,v) is a complete partial order.

We now define operations on the CPO CM . Given A,B ∈ Pc,M , let A +

B
def
= {~x + ~y | ~x ∈ A, ~y ∈ B} (the Minkowski sum). Given A ∈ Pc,M , let

α×A def
= {α · ~x | ~x ∈ A} for α ∈ R, and let A+ ~x

def
= {~x′ + ~x | ~x′ ∈ A} for ~x ∈ Rn.

Given Y ∈ CM , which is a vector of sets, define [Y + ~y]s
def
= Ys + ~y.

The Bellman operator FM . In games, in order to construct Player ♦ strate-
gies for EE objectives, we consider the truncated energy for multi-dimensional
rewards, which we capture via a Bellman operator FM,G over the CPO CM ,
parameterised by M ≥ 0. Our operator FM,G is closely related to the operator

24

s0

d q1

s1

a b

s2
τ

a

t0

a q2

t1

b b

t2
τ

s2, t2
τ

s0, t2

d q1

s1, t2

τ

s1, t0

a

q2

τ
s2, t0

a q2

s2, t1

τ

s0, t1
d

q1
s1, t1

b

b

Figure 7: Example games G1 (left) and G2 (centre), with their composition G
(right). All distributions are uniform.

for expected total rewards in [19], but here we cut off values outside of BoxM ,
similarly to the controllable predecessor operator of [16] for computing energy
in non-stochastic games. Bounding with M allows us to use a geometric argu-
ment to upper-bound the number of iterations of our operator (Proposition 10
below), replacing the finite lattice arguments of [16]. We define the operator
FM,G : CM → CM by

[FM,G(X)]s
def
= BoxM ∩ dwc

~r(s) +

conv(

⋃
t∈∆(s)Xt) if s ∈ S♦⋂

t∈∆(s)Xt if s ∈ S�∑
t∈∆(s)∆(s, t)×Xt if s ∈ S©

 ,

for all s ∈ S. If the game G is clear from context, we write just FM . The
operator FM computes the expected truncated energy Player ♦ can achieve
in the respective state types. In s ∈ S♦, Player ♦ can achieve the values in
successors (union), and can randomise between them (convex hull). In s ∈ S�,
Player ♦ can achieve only values that are in all successors (intersection), since
Player � can pick arbitrarily. Lastly, in s ∈ S©, Player ♦ can achieve values
with the prescribed distribution.

Fixpoint of FM . A fixpoint of FM is an element Y ∈ CM such that FM (Y) =
Y . We show that iterating FM on ⊥M converges to the least fixpoint of FM .

Proposition 8. FM is order-preserving, and the increasing sequence F kM (⊥M)

converges to fix(FM) defined by [fix(FM)]s
def
= [
⋂
k≥0 F

k
M (⊥M)]s. Further, fix(FM)

is the unique least fixpoint of FM .

This proposition is a consequence of Scott continuity of FM and the Kleene
fixpoint theorem. For the proof see Appendix B.7.

25

t0

r′1

− 3
4

r′3

− 3
4

m1

m0

t0,0(a)

r′1

− 3
4

r′3

m0

t0,1(q1)

r′1

− 1
4

r′3

− 1
2

− 3
4

m0

t1

r′1

− 1
4

r′3

− 1
2

− 3
4

m0

t1,0(b)

r′1

− 1
2

r′3

− 1
4

− 3
4

m0

t1,1(b)

r′1

− 1
4

r′3

− 1
2

− 3
4

m0

t2

r′1

− 3
4

r′3

− 3
4

m1

m0

t2,0(τ)

r′1

− 3
4

r′3

− 3
4

m1

m0

Figure 8: Fixpoint for FM in G2 of Figure 7. For easier reference, moves are
given state names. Each state s has an associated set fix(FM)(s) pointed to by
the blue (dashed) arrows, we do not show the box BoxM . A partial memory
mapping is annotated at the corner points.

Example 5. In Figure 8 we show the fixpoint fix(FM) for game G2 of Figure 7
for the reward structures r′1 and r′3 defined by r′1(a) = − 3

4 , r′1(b) = 1
4 , r′3(a) = 3

4 ,
r′3(a) = − 1

4 , and zero otherwise.

Non-emptiness of the fixpoint. Non-emptiness of the fixpoint of FM for some
M > 0 is a sufficient condition for computing an ε-optimal strategy. To show
the completeness of our method, stated in Theorem 7 below, we ensure in the
following proposition that, when an ε-optimal strategy exists, then the fixpoint
of FM for some M > 0 is non-empty.

Proposition 9. For every ε > 0, if EE(~r − ~ε) is achievable by a finite DU
strategy, then [fix(FM)]s 6= ∅ for every s ∈ supp(ς) for some M ≥ 0.

This proposition is proved in Appendix B.8.
An ε-approximation of the fixpoint. We approximate fix(FM) in a finite

number of steps, and thus compute the set of shortfall vectors required for
Player ♦ to win for EE(~r + ~ε) given ε > 0. By Proposition 8, the fixpoint

fix(FM) is the limit of F kM (⊥M) as k → ∞. We let Xk def
= F kM (⊥M). Hence,

by applying FM k times to ⊥M we compute the sets Xk
s of shortfall vectors

at state s, so that, for any ~v0 ∈ Xk
s , Player ♦ can keep the expected energy

26

X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(a) Player ♦ state s.

X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(b) Player � state s.

X
k−1
t1

X
k−1
t2

Xks

−6 −4 −2

−6

−4

−2

r1

r2

−M

−M

(c) Move s = (a, µ); µ uniform.

Figure 9: Illustration of the fixpoint computation for a state s with successors
t1, t2, and rewards r1(s) = 0.5 and r2(s) = 0.

above ~v0 during k steps of the game. We illustrate this fixpoint computation
in Figure 9: at iteration k, the set Xk

s of possible shortfalls until k steps is
computed from the corresponding sets Xk−1

t for successors t of s at iteration
k− 1. The values are restricted to be within BoxM , so that obtaining an empty
set at a state s in the value iteration is an indicator of divergence at s. Moreover,
given some ε > 0, if, after a finite number of iterations k, successive sets Xk+1

and Xk satisfy Xk+1 + ε v Xk and Xk
s 6= ∅ for every s ∈ supp(ς), then we

can construct a finite-memory strategy achieving EE(~r+ ~ε). The strategies use
memory corresponding to the extreme points C(Xk

s).
In Proposition 10 below we state a bound on the number of steps k necessary

to obtain Xk+1 + ε v Xk.

Proposition 10. Given M , ε > 0, and a sequence (Xk)k≥0 over CM such that

Xk v Xk+1 for every k ≥ 0, there exists k ≤ k∗∗
def
=
[
n((dMε e+ 1)2 + 2)

]|S|
,

such that Xk+1 + ε v Xk.

This proposition is proved in Appendix B.9 using Theorem 4.5.2 of [51] on
graphs.

3.4.3. The synthesis algorithm

The synthesis algorithm for Pmp CQs (Algorithm 1) computes an SU strat-
egy by constructing it together with an ε-consistent memory mapping.

Construction of the memory mapping. We define a Player ♦ strategy π
achieving EE(~r + ~ε) in a game G = 〈S, (S♦, S�, S©), ς,A, χ,∆〉, for a given
ε ≥ 0. Let X ∈ CM , and denote by TX ⊆ S the set of states and moves s
for which [FM (X)]s 6= ∅. For any point ~p ∈ Xs, there is some ~q ≥ ~p that
can be obtained by a convex combination of extreme points C(Xs), and so the
strategy we construct uses C(Xs) as memory, randomising to attain the convex
combination ~q. We define π = 〈M, πc, πu, πd〉 as follows.

• M
def
=
⋃
s∈TX{(s, ~p) | ~p ∈ C(Xs)};

• πd is defined by πd(s) = (s, ~q s0) for any s ∈ TX and arbitrary ~q s0 ∈ C(Xs);

27

t0

m1

m0

q1 m0

a m0

t1 m0

b m0

b m0

t2
m1

m0

τ

m1

m0

1
3

1
3

Figure 10: Strategy constructed from the fixpoint in Figure 8, using the memory
mapping shown therein.

• The update πu and next move function πc are defined as follows: at state
s with memory (s, ~p), for all t ∈ ∆(s), pick n vectors ~q ti ∈ C(Xk

t) for
1 ≤ i ≤ n and distributions βt ∈ D([1, n]), such that

for s ∈ S♦: ∃α ∈ D(∆(s) ∩ TX) .
∑
t α(t) ·

∑
i β

t(i) · ~q ti ≥ ~p− ~r(s)− ε,
for s ∈ S�: ∀t ∈ ∆(s) .

∑
i β

t(i) · ~q ti ≥ ~p− ~r(s)− ε,
for s ∈ S©, with s = (a, µ):

∑
t∈supp(µ) µ(t) ·

∑
i β

t(i) · ~q ti ≥ ~p− ~r(s)− ε,

and let, for all t ∈ ∆(s) ∩ TX ,

πu((s, ~p), t)(t, ~q ti)
def
= βt(i) for all i

πc(s, (s, ~p))(t)
def
= α(t) if s ∈ S♦.

Example 6. In Figure 10 we give the strategy constructed from the fixpoint
fix(FM) shown in Figure 8.

We now show that the strategy π defined above is well defined if FM (X)+ε v
X for X ∈ CM , and achieves EE(~r + ~ε) if [FM (X)]s 6= ∅ for every s ∈ supp(ς).

Lemma 7. Let ε ≥ 0, let X ∈ CM , and let fπ(s, ~p)
def
= ~p be the memory mapping

for the Player ♦ strategy π defined above. If FM (X) + ε v X and [FM (X)]s 6= ∅
for every s ∈ supp(ς), then fπ is ε-consistent for M .

Proof of this lemma can be found in Appendix B.10.
The Algorithm. We can now summarise our synthesis algorithm. Given a

game G, a reward structure ~r with target ~v, and ε > 0, Algorithm 1 computes
a strategy winning for Pmp(~r)(~v − ε). The algorithm terminates if the speci-
fication is achievable, as a large enough value for M in BoxM exists according
to Proposition 9, and, if the specification is not achievable, this is captured by
our decision procedure of Corollary 2. Note, however, that before starting the
algorithm we do not have an a-priori bound on M .

28

Algorithm 1 PMP Strategy Synthesis

1: function SynthPMP(G, ~r, ~v, ε)
2: if Corollary 2 for Pmp(~r − ~v) yields no then return null;
3: else
4: Set the reward structure to ~r − ~v + ε

2 ; M ← 2; X ← ⊥M ;
5: while true do
6: while FM (X) + ε

2 6v X do
7: X ← FM (X);

8: if [FM (X)]s 6= ∅ for every s ∈ supp(ς) then
9: Construct π for ε

2 using Lemma 7; return π;
10: else
11: M ←M2; X ← ⊥M ;

Theorem 7. Algorithm 1 terminates, returning a finite ε-optimal strategy for
Pmp(~r)(~v) if it is achievable, and returning null otherwise.

Proof. The case when Pmp(~r − ~v) is not achievable is covered by Corollary 2.
Suppose Pmp(~r−~v) is achievable then, by Theorem 6, Pmp(~r−~v− ε

8) is achievable
by a finite DU strategy. By Lemma 5 (ii), the objective EE(~r−~v+ ε

4) is achievable

by a finite DU strategy. Applying Proposition 9 with ~r′
def
= ~r − ~v + ε

4 + ε′ and
ε′ = ε

4 , we have that there exists an M such that, for every s ∈ supp(ς),
[fix(FM)]s is nonempty for the reward structure ~r − ~v + ε

2 . The condition in
Line 8 is then satisfied. Further, due to the bound M on the size of the box
BoxM in the value iteration, the inner loop terminates after a finite number
of steps, as shown in Proposition 10. Then, by Lemma 7 and Lemma 6, the
strategy constructed in Line 9 (with degradation factor ε

2 for the reward ~r−~v+ ~ε
2)

satisfies EE(~r−~v+~ε), and hence, using Lemma 5(i), we have Pmp(~r)(~v−~ε).

4. Boolean Combinations for Expectation Objectives

In this section we consider Boolean combinations of expectation objectives.
First, in Section 4.1 we show how to transform Boolean combinations of a gen-
eral class of expectation objectives to conjunctions of the same type of objective.
Then, in Section 4.2, we show how to synthesise strategies for Emp objectives
using Pmp objectives for games with the controllable multichain property. These
two main results of this section then allow us to synthesise (ε-optimally) strate-
gies for arbitrary Boolean combinations of Emp objectives.

4.1. From Conjunctions to Arbitrary Boolean Combinations

In this section we consider generic expectation objectives of the form E[%] ≥
u and their Boolean combinations. We only require that the function % is
integrable, that is, for every pair of strategies π and σ, Eπ,σG [|%|] is well-defined
and finite. A function % is called globally bounded by B if, for every π and σ,

29

Eπ,σG [|%|] ≤ B. Given n integrable functions %i : ΩG → R for 1 ≤ i ≤ n and
a target vector ~u ∈ Rn, we denote by E(~%)(~u) the conjunction of objectives∧n
i=1 E[%i] ≥ ui.

We are mainly interested in the following objectives, expressible in terms of
integrable and globally bounded functions.

• The expected total rewards in stopping games. They were studied
in [19, 20], where a preliminary and specialised version of the results of
this section was presented.

• The expected mean-payoff objectives. A global bound for this objec-
tive is B = maxS r(s).

• The expected ratio rewards. They are particularly well suited to our
compositional framework, as they are defined on traces and admit synthe-
sis methods for Boolean combinations. A global bound for ratio(r/c) is
B = maxS r(s)/cmin. This result is proved in Appendix C.1.

We establish that Boolean combinations of expectation objectives reduce
to conjunctions of linear combinations of expectation objectives. Any Boolean
combination of objectives can be converted to conjunctive normal form (CNF),
that is, of the form

∧n
i=1

∨mi
j=1 E

π,σ
G [%i,j] ≥ ui,j . The total number of objectives

is denoted by N def
=
∑n
i=1mi. We denote by ~ui the vector whose jth component

is ui,j for 1 ≤ j ≤ mi and by ~u = (~u1, . . . , ~un) ∈ RN the concatenation of all the
~ui for 1 ≤ i ≤ n. We use the same notational convention for other vectors (e.g.
the vector of weights ~x below) and the reward structure ~ρ. Given two vectors

~u, ~x ∈ RN , we denote by ~x ·n ~u
def
= (~x1 · ~u1, · · · , ~xn · ~un).

Theorem 8. Let G be a game, let ~%i : ΩG → Rmi be integrable functions,
and ~ui ∈ Rmi , for 1 ≤ i ≤ n and let π be a Player ♦ strategy. The following
propositions are equivalent:

• There exist non-zero weight vectors ~xi ∈ Rmi≥0 for 1 ≤ i ≤ n such that π is
winning for E(~x ·n ~%)(~x ·n ~u);

• π is winning for ψ =
∧n
i=1

∨mi
j=1 E[%i,j] ≥ ui,j.

Here winning means either winning against all strategies or winning against all
finite memory strategies.

The theorem is a straightforward consequence of the following lemma that
shows how disjunctions of expectation objectives reduce to single-dimensional
expectation objectives.

Lemma 8. Given a game G, an integrable function ~% : ΩG → Rm, a target
~u ∈ Rm, and a Player ♦ strategy π, there is a non-zero vector ~x ∈ Rm≥0 such that

ϕ = Eπ,σG [~x·~%] ≥ ~x·~u holds for all (finite) σ if and only if ψ =
∨m
j=1 E

π,σ
G [%j] ≥ uj

holds for all (finite) σ.

30

Proof. The proof method is based on a similar result in [19]. Fix a strategy π.

“If” direction. Assume π achieves ψ. Let U
def
= upc({~y ∈ Rm | ∃σ .Eπ,σG [~%] =

~y}). Note that this set is convex. Indeed, for every two vectors ~y1, ~y2 ∈ U and
weight p one can construct a strategy for p~y1 + (1− p)~y2 by choosing, with the
initial memory distribution, with probability p to play a strategy for ~y1 and
with probability 1− p to play a strategy for ~y2. Moreover, the strategy is finite
if constructed from finite strategies. Since π achieves ψ, there is a j satisfying
yj ≥ uj for every ~y ∈ U . We have that ~u 6∈ int(U) where int(U) is the interior of
U . Suppose otherwise, then there is ε > 0 s.t. ~u− ~ε ∈ U , contradicting that for
all ~y ∈ U there is a j satisfying yj ≥ uj (take ~y = ~u−~ε to derive the contradiction
uj − ~ε ≥ uj). By the separating hyperplane theorem (Theorem 11.3 of [49]),
there is a non-zero vector ~x ∈ Rm, such that for all ~w ∈ U , ~w · ~x ≥ ~u · ~x. We
now show ~x ≥ 0. Assume for the sake of contradiction that xj < 0 for some j.
Take any ~w ∈ U , let d = ~w ·~x−~u ·~x ≥ 0, and let ~w′ be the vector obtained from
~w by replacing the jth coordinate with wj + d+1

−xj . Since d+1
−xj is positive and U

is upwards closed in Rm, we have ~w′ ∈ U . So

~w′ · ~x =

m∑
h=1

w′h · xh = −(d+ 1) +

m∑
h=1

wh · xh = −(d+ 1) + ~w · ~x = ~u · ~x− 1,

implying ~u · ~x > ~w′ · ~x, which contradicts ~w′ ∈ U .
Now fix a strategy σ. Since Eπ,σG [~%] ∈ U , it follows that Eπ,σG [~x · %] = ~x ·

Eπ,σG [~%] ≥ ~x · ~u.

“Only If” direction. Assume there is a non-zero vector ~x ∈ Rm≥0 such that
π achieves ϕ. Assume for the sake of contradiction that π does not achieve ψ.
Fix σ such that ¬(Eπ,σG [%j] ≥ uj) for all j, which exists by assumption. Since
~x is such that π achieves ϕ, we have ~x · Eπ,σG [~%] = Eπ,σG [~x · ~%] ≥ ~x · ~u. Because
~x is non-zero and has no negative components, there must be a j such that
Eπ,σG [%j] ≥ uj , a contradiction.

The above theorem enables us to transfer results from conjunctions of linear
combinations to Boolean combinations of objectives. In particular, we state
below two transfer theorems, one for Pareto sets and the other for strategy
synthesis.

For the remainder of this section we continue with the same notation as
above. We now show how to compute, for every ε > 0, an ε-tight under-
approximation of the Pareto set of ψ when one knows how to compute ε-tight
under-approximations of the Pareto set of E(~x ·n ~%) and when the functions
%ij are globally bounded by a constant B. We denote by Pε(~x) an ε-tight
under-approximation of Pareto(E(~x ·n ~%)). We define Grid, the set of vectors
~x ∈ [0, 1+ε/(4B)]N , such that each ~xi is non-zero, has norm satisfying ‖~xi‖∞ ∈
[1− ε/(4B), 1 + ε/(4B)] and whose components are multiples of ε/(4B).

The first transfer theorem, proved in Appendix C.2, is for Pareto sets.

31

Theorem 9. The following set is an ε-tight under-approximation of the Pareto
set of

∧n
i=1

∨mi
j=1 E[%i,j] ≥ ui,j:⋃

~x∈Grid

{~u ∈ RN | ~x ·n ~u ∈ Pε(~x)}.

The second transfer theorem deals with ε-optimal synthesis. Proof can be
found in Appendix C.3.

Theorem 10. If we know how to compute an ε-optimal strategy for E(~x ·n ~%)(~v)
for every ~x, then we can compute an ε-optimal strategy for

∧n
i=1

∨m
j=1 E[%i,j] ≥

ui,j.

Another consequence of Theorem 8 is that synthesis for Pmp CQs enables us
to synthesise strategies that are winning for Boolean combinations of expected
ratio objectives against every finite strategy.

Theorem 11. Let G be a game. For 1 ≤ i ≤ n, let ~ri : S → Rmi be
mi-dimensional reward structures, ci be one-dimensional weakly positive re-

ward structures, ~ui ∈ Rmi and ~xi ∈ Rmi≥0 non-null weight vectors. Let ψ
def
=∧n

i=1

∨mi
j=1 E(ratio(ri,j/ci)) ≥ ui,j and ϕ~x

def
=
∧n
i=1 P(mp(~xi · ~ri − (~xi · ~ui)ci) ≥

0) = 1. Every finite strategy winning for ϕ~x is winning for ψ against finite
strategies. For every ε > 0, there exists ε′ > 0 such that every ε′-optimal strat-
egy for ϕ~x is ε-optimal for ψ against finite strategies.

For the proof see Appendix C.4.

Example 7. Consider the game G1 depicted in Figure 7 with the MQ ϕ1[(1
4 ,

9
8)] =

Eratio(r1/c)(1/4)∨ Eratio(r2/c)(9/8). Consider the weight vector (1, 2
3) and de-

fine the single-objective reward structure r′ by

r′(a) = (1, 2
3) · (r1(a), r2(a))− ((1, 2

3) · (1
4 ,

9
8))c(a) = 0

r′(b) = (1, 2
3) · (r1(b), r2(b))− ((1, 2

3) · (1
4 ,

9
8))c(b) = − 1

3

r′(d) = (1, 2
3) · (r1(d), r2(d))− ((1, 2

3) · (1
4 ,

9
8))c(d) = 2

3 ,

and zero everywhere else. Then, by Theorem 11, every winning strategy for
Pmp(r′) is winning for ϕ1[(1

4 ,
9
8)] against finite memory strategies. The optimal

strategy for Player ♦ here clearly is to always take d. To spoil, the best Player �
can do is play b, but, due to the distribution, the expected number of times b is
taken is at most

∑
k≥0 2−k = 2 before a is taken again, balancing exactly the

mean-payoff to zero. Hence, Player ♦ wins for Pmp(r′), and also for ϕ1[(1
4 ,

9
8)].

4.2. Emp Objectives in Controllable Multichain Games

We now consider synthesis of Boolean combinations of Emp objectives. Our
methods are based on the observation that Pmp and Emp are equivalent in
MECs of PAs. We define the class of controllable multichain (CM) games, in
which Player ♦ can approximate any distribution between the possible MECs
(cf. Lemma 12); therefore, we can construct strategies that induce PAs with a

32

single MEC. Strategies synthesised for Pmp straightforwardly carry over to Emp
(Remark 1). The main result of this section is a completeness result, showing
that, if Emp(~r) is ε-achievable by a finite DU strategy, then we can synthesise
a ε-optimal strategy for Pmp(~r).

First we note that, in the special case where an induced PA contains only a
single MEC, achievability for Emp and Pmp coincide. The lemma is proved in
Appendix C.5.

Lemma 9. If a PA contains only one MEC, then it achieves Emp(~r) against
finite strategies if and only if it achieves Pmp(~r) against finite strategies.

We define, for each MEC E of an induced PA, the worst possible mean-
payoff ~z E as follows. Given an n-dimensional reward structure ~r, and a MEC
E = (V,U) of a PA M, we define the vector ~z E = (z E1 , . . . , z

E
n) by

z Ei
def
= min

t∈SE
inf
σ

EσE,t[mp(ri)] = min
t∈SE

inf
σ

EσE,t
[
limN→∞

rewN−1(ri)

N

]
(3)

Note that Pmp(~r) is satisfied if and only if ~z E ≥ ~0 for every E , because
Player � can reach any MEC with positive probability. A weaker condition is
satisfied when Emp(~r) is satisfied. In that case, there is a distribution γ over

MECs, such that
∑
E γ(E)~z E ≥ ~0 (Lemma 10).

The idea underlying the definition of controllable multichain games (intro-
duced below) is to make all the MECs of an induced PA almost-surely reachable
from each other, so that then the distribution γ can be realised by Player ♦ by
the frequencies of visits of each E in a new strategy, as formalised in Lemma 12.
The strategy constructed ε-optimally achieves Emp(~r), and induces a PA with
a single MEC, and hence also satisfies Pmp(~r) ε-optimally.

Lemma 10. LetM be a finite PA for which Emp(~r) is satisfied and let E be the

set of MECs in M. Then there exists γ ∈ D(E) such that
∑
E∈E γ(E)~z E ≥ ~0.

This lemma is proved in Appendix C.6.

4.2.1. Controllable multichain games

A game G is irreducible if, for all finite DU Player ♦ strategies π, the induced
PA Gπ with states SGπ and transitions ∆Gπ forms a single MEC (SGπ ,∆Gπ).
We define a subgame H of a game G = 〈S, (S♦, S�, S©), ς,A, χ,∆〉 as a game
〈S′, (S′♦, S′�, S′©), s′init,A, χ′,∆′〉, such that S′ ⊆ S; S′♦ ⊆ S♦; S′� ⊆ S�; S′© ⊆
S©; s′init ∈ S′♦ ∪ S′� is the unique initial state (the initial distribution is Dirac);
χ′ ⊆ χ; ∆′ ⊆ ∆; and where s ∈ S′ if and only if s is reachable from s′init via ∆′.

A subgame H is Player �-closed if, for all s ∈ S′�, all transitions s
a−→ µ in G

are also in H, i.e. s
a−→′µ, and so Player � cannot escape from H. An irreducible

Player �-closed subgame of G is called an irreducible component (IC) of G. A
game G is a controllable multichain (CM) game if each IC H of G is reachable
almost surely from any state s ∈ S of G, see Figure 11.

Theorem 12. The problem of whether a game is CM is in co-NP.

33

s0

s1 s2

t0

t1 t2

Figure 11: CM game (left) and non-CM game (right). ICs are annotated using
dashed rectangles; note that ICs can overlap, as opposed to MECs in PAs. On
the right, the IC containing only t1 cannot be reached by Player ♦ from t2;
Player ♦ can achieve an expectation by randomising between t1 and t2, but, for
almost-sure satisfaction, cooperation with Player � is required to not loop in t0.

Proof. A game is not a CM game if it has an IC H and a state s ∈ SG , such
that H is not reachable almost surely from s. One can guess in polynomial time
such a subgame H and a state s, and check in polynomial time whether H is an
IC, and whether H is not reachable almost surely from s (Lemma 2). Hence,
the problem lies in co-NP.

The main property we use below is that, for any CM game and any finite DU
strategy, MECs in the induced PA are almost surely reachable from everywhere
in the PA. This property is in fact equivalent to the definition of CM games as
stated in the following lemma. Given a MEC E = (SE ,∆E) of an induced PA
Gπ, define the set SG,E of G-states s occurring in E (we recall that states of E
are of the form (s,m) or ((s, s′),m)). We have the following lemma, which is
proved in Appendix C.7.

Lemma 11. A game G is a CM game if and only if, for every finite DU strategy
π, for every MEC E of Gπ, SG,E is almost surely reachable from every state of
s.

While a Player ♦ strategy π achieving an Emp CQ may randomise between
several MECs, a strategy π for Pmp CQ must be winning in every reached
MEC. Given a strategy π achieving Emp(~r) in a CM game G, we can construct
a strategy π that ε-achieves Pmp(~r), by inducing a single MEC in Gπ, and
simulating the distribution over the MECs in Gπ.

4.2.2. Strategy construction

We construct π by looping between MECs, where each MEC El is of a PA

Gπl and has an associated finite step count Nl.
Since G is CM, from each s ∈ SG , each MEC E can be reached almost surely

by an MD strategy πE : S → S© (see Lemma 11 and Lemma 2). We first
explain the intuition of our construction of π. We start π by playing πE1 , the
MD strategy to reach E1. As soon as E1 is reached, π switches to π1, which is
played for N1 steps, that is, π stays inside E1 for N1 steps. Then, from whatever

34

E1 E2 E3 . . . EL

πE1

πE2 πE3 πE4 πEL

πE1

Figure 12: Illustrating the strategy π to simulate the distribution γ between
MECs E1, E2, . . . , EL.

state s in E1 the game is in, π plays πE2 , and then in a similar fashion switches
to π2 for N2 steps within E2. This continues until EL is reached, at which point
π goes back to E1 again. The strategy π keeps track in memory of whether
it is going to a MEC E , denoted BE , or whether it is at a MEC E and has
played j steps, denoted j@E . We emphasise that the strategies are finite DU.
See Figure 12 for an illustration of π.

Definition 7. Let πl = 〈Ml, πlc, π
l
u, π

l
d〉 be finite DU Player ♦ strategies, for

1 ≤ l ≤ L, with respective MECs El and step counts Nl. The step strategy π is
defined as 〈M, πc, πu, πd〉, where

M
def
= (M× {j@El | l ≤ L, j ≤ Nl}) ∪

⋃L
l=1{BEl},

and where, for all s, t, u ∈ SG, l ≤ L, j ≤ Nl, and m ∈M,

πd(s)
def
=

{
BE1 if s 6∈ SG,E1
(π1

d(s), 0@E1) if s ∈ SG,E1

πu(BEl, t)
def
=

{
BEl if t 6∈ SG,El
(πld(t), 0@El) if t ∈ SG,El

πu((m, j@El), s)
def
=

{
BEl′ if j = Nl and l′ = 1 + (l mod L)

(πlu(m, s), j + 1@El) if j < Nl

πc(s,BEl)(u)
def
= πEl(s)(u)

πc(s, (m, j@El))(t)
def
= πl(s,m)(t).

The following lemma justifies that, for appropriate choices of the step counts
Nl, the strategy π approximates a distribution between MECs of Gπ, while only
inducing a single MEC in Gπ.

Lemma 12. Let G be a CM game, let πl be finite DU strategies with associated

MECs El of Gπl , for 1 ≤ l ≤ L, and let E be the set of MECs {El | 1 ≤ l ≤ L}.
Then, for all γ ∈ D(E) and ε > 0, there exists a finite DU strategy π such that
Gπ contains only one MEC, and for all finite Player � strategies σ

Eπ,σG [mp(~r)] ≥
∑
E∈E

γ(E)~z E − ε.

35

For the proof of the above lemma see Appendix C.8.
We now show in Theorem 13, the main result of this section, that in CM

games, for any ε > 0, we can find a strategy π that achieves Pmp(~r+ε) whenever
Emp(~r) is achievable. The ε degradation is unavoidable for finite strategies, due
to the need for infinite memory in general, see Figure 6. Here, the strategy
π has to minimise the transient contribution, which only vanishes if the step
counts Nl go to infinity.

Theorem 13. In CM games, it holds that

ParetoFDU,FSU(Emp(~r)) = ParetoFDU(Emp(~r)) = Pareto(Pmp(~r))

Proof. By Theorem 6 and Remark 1 it holds that

Pareto(Pmp(~r)) = ParetoFDU(Pmp(~r)) ⊆ ParetoFDU(Emp(~r)) ⊆ ParetoFDU,FSU(Emp(~r)).

It then remains to show that ParetoFDU,FSU(Emp(~r)) ⊆ Pareto(Pmp(~r)). For
this purpose, it suffices to show that if a finite DU strategy π achieves Emp(~r)
against finite Player � strategies then, for all ε > 0, there is a finite DU strategy
π achieving Pmp(~r+~ε). We find a winning strategy π such that the induced PA
Gπ contains only a single MEC (which is reached w.p. 1, potentially via some
transient states). Then we apply Lemma 9 to conclude that π also wins for Pmp.
Let ε > 0 and let π be a finite DU strategy such that Gπ |= Emp(~r). The induced
PA Gπ contains a set E of L MECs. If L = 1, we let π = π. If, on the other
hand, L > 1, we construct a strategy π such that Gπ |= Emp(~r + ~ε) as follows.

First, from Lemma 10, we obtain a distribution γ such that
∑
E∈E γ(E)~z E ≥ ~0.

We then apply Lemma 12 with πl = π for each MEC El ∈ Gπ, to find a strategy
π, so that Gπ contains only one MEC, and for all finite Player � strategies σ, it
holds that

Eπ,σG [mp(~r)] ≥
L∑
l=1

γ(El)~z El − ε ≥ −ε.

We conclude that π achieves Pmp(~r + ~ε) using Lemma 9.

4.2.3. Emp MQs in CM Games

We can now summarise the results of this section in Theorem 14, which
allows us to synthesise ε-optimal strategies for Emp objectives in CM games.

Theorem 14. In CM games with Emp MQs ψ, one can solve the two following
problems using the algorithms for Pmp CQs.

1. Compute an ε-tight under-approximation of the Pareto set ParetoFDU,FSU(ψ).

2. Synthesise a strategy winning against every finite strategy for every target
vector ~u such that ~u+ ~ε ∈ ParetoFDU,FSU(ψ).

Proof. 1. According to Theorem 9, it suffices to determine, for every ~x ∈
Grid, an ε-tight under-approximation of ParetoFDU,FSU(E(~x ·nmp(~r))). By

36

Proposition 13 and Theorem 13 we have ParetoFDU,FSU(E(~x ·n mp(~r))) =
ParetoFDU,FSU(Emp(~x ·n~r)) = Pareto(Pmp(~x ·n~r)). By Theorem 5, ε-tight
under-approximation can be computed for these sets.

2. According to Theorem 10, it suffices to solve the synthesis problem for
E(~x·nmp(~r)). Take a vector in ParetoFDU,FSU(E(~x·nmp(~r))) = Pareto(Pmp(~x·n
~r)), then with Algorithm 1 we synthesise a finite strategy winning for
Pmp(~x ·n ~r)(−ε), and hence for Emp(~x ·n ~r)(−ε). This strategy is also
winning against any finite Player � strategy for E(~x ·n mp(~r)) thanks to
Proposition 13.

5. Compositional Strategy Synthesis

In this section we develop our framework for compositional strategy synthe-
sis. We consider synthesis rules of the form

(Gi)πi |=
∧m
j=1 ϕ

i
j i ∈ I

(‖i∈I Gi)‖i∈Iπi |= ϕ,

which hold for all Player ♦ strategies πi. Thus, strategies πi synthesised for
the components Gi yield a strategy ‖i∈I πi for the composed game ‖i∈I Gi.
We develop the game and strategy composition operators (‖), and show how to
instantiate sound synthesis rules. Note that, in this section, we allow deadlocks
in the composed games.

5.1. Game Composition

We provide a synchronising composition of games so that controllability is
preserved for Player ♦, that is, actions controlled by Player ♦ in the components
are controlled by Player ♦ in the composition. Our composition is inspired by
interface automata [24], which have a natural interpretation as (concurrent)
games. Each component game is endowed with an alphabet of actions A, where
synchronisation on shared actions in A1 ∩A2 is viewed as a (blocking) commu-
nication over ports, as in interface automata, though for simplicity we do not
distinguish inputs and outputs. Synchronisation is multi-way and we do not
impose input-enabledness of IO automata [21]. Strategies can choose between
moves, and so, within a component, nondeterminism in Player ♦ states is com-
pletely controlled by Player ♦. In our game composition, synchronisation is over
actions only, and hence the choice between several moves with the same action
is hidden to other components.

5.1.1. Normal form of a game

The first step of our composition ensures games are in normal form. We can
transform every game into its corresponding normal form, which does not affect
achievability of specifications defined on traces.

37

Definition 8. A game is in normal form if every τ -transition s
τ−→ µ is from

a Player � state s to a Player ♦ state s′ with a Dirac distribution µ = s′; and
every Player ♦ state s can only be reached by an incoming move (τ, s).

In particular, every distribution µ of a non-τ -transition, as well as the initial
distribution, assigns probability zero to all Player ♦ states. Given a game G
without τ -transitions, one can construct its normal form by splitting every state
s ∈ S♦ into a Player � state s and a Player ♦ state s, such that (a) the incoming
(resp. outgoing) moves of s (resp. s) are precisely the incoming (resp. outgoing)
moves of s, with every Player ♦ state t ∈ S♦ replaced by t; and (b) the only
outgoing (resp. incoming) move of s (resp. s) is (τ, s). Intuitively, at s the game
is idle until Player � allows Player ♦ to choose a move in s. Hence, any strategy
for a game carries over naturally to its normal form, and for specifications
defined on traces we can operate w.l.o.g. with normal-form games. Also, τ can
be considered as a scheduling choice. In the transformation to normal form, at
most one such scheduling choice is introduced for each Player � state, but in
the composition several scheduling choices may be present at a Player � state,
so that Player � resolves nondeterminism arising from concurrency.

5.1.2. Composition

Given games Gi, i ∈ I, in normal form with respective player states Si♦∪Si�,
the set of player states S♦ ∪ S� of the composition is a subset of the Cartesian
product

∏
i∈I S

i
♦∪Si�. Due to the normal form, each state ~s ∈ S♦∪S� contains

either no Player ♦ component, in which case ~s ∈ S�, or contains exactly one
Player ♦ component, in which case ~s ∈ S♦. We denote by si the ith component
of ~s ∈

∏
i∈I S

i. We denote by ~µ the product distribution of µi ∈ D(Si) for i ∈ I,

defined on
∏
i∈I S

i by ~µ(~s)
def
=
∏
i∈I µ

i(si). We say that a transition ~s
a−→ ~µ

involves the ith component if si
a−→iµi, otherwise the state remains the same

µi(si) = 1. Note that, due to the normal form, ~ς for the composed game is
such that supp(~ς) ⊆ S�. We define the set of actions enabled in a state s by

En(s)
def
= {a ∈ A | ∃µ . s a−→ µ}.

Definition 9. Given normal-form games Gi = 〈Si, (Si♦, Si�, Si©), ςi,Ai, χi,∆i〉,
i ∈ I, their composition is the game ‖i∈I Gi

def
= 〈S, (S♦, S�, S©),

∏
i∈I ς

i,
⋃
i∈I Ai, χ,∆〉,

where the sets of Player ♦ and Player � states

S♦ ⊆ {~s ∈
∏
i∈I

(Si♦ ∪ Si�) | ∃!ι . sι ∈ Sι♦} and S� ⊆
∏
i∈I

Si�,

are defined inductively to contain the reachable states, where S©, χ, and ∆ are
defined via

• ~s a−→ ~µ for a 6= τ if at least one component is involved and the involved
components are exactly those with a in their action alphabet, and if ~s is a
Player ♦ state then its only Player ♦ component Gι is involved; and

• ~s τ−→ ~t if exactly one component Gi is involved, ~s ∈ S�, and En(~t) 6= ∅.

38

We take the view that the identity of the players must be preserved through
composition to facilitate synthesis, and thus Player ♦ actions of the individual
components are controlled by a single Player ♦ in the composition. Player �
in the composition acts as a scheduler, controlling which component advances
and, in Player � states, selecting among available actions, whether synchronised
or not. Synchronisation in Player ♦ states means that Player ♦ in one compo-
nent may indirectly control some Player � actions in another component. In
particular, we can impose assume-guarantee contracts at the component level,
so that Player ♦ of different components can cooperate to achieve a common
goal: in one component Player ♦ satisfies the goal B under an assumption A on
its environment behaviour (i.e. A→ B), while Player ♦ in the other component
ensures that the assumption is satisfied, against all Player � strategies.

Under specifications defined on traces, our game composition is both asso-
ciative and commutative, facilitating a modular model development. We define
the relation ' between games so that G1 ' G2 means that, for all specifications
ϕ defined on traces, G1 |= ϕ if and only if G2 |= ϕ.

Proposition 11. Given normal-form games G1, G2 and G3, we have G1 ‖
G2 ' G2 ‖ G1 (commutativity), and (G1 ‖ G2) ‖ G3 ' G1 ‖ (G2 ‖ G3) |= ϕ
(associativity).

Our composition is closely related to PA composition [52], with the added
condition that in Player ♦ states the Player ♦ component must be involved.
As PAs are games without Player ♦ states, the game composition restricted
to PAs is the same as classical PA composition. The condition En(~t) 6= ∅ for
τ -transitions ensures that a Player ♦ state is never entered if it were to result
in deadlock introduced by the normal form transformation. Deadlocks that
were present before the transformation are still present in the normal form.
In the composition of normal form games, τ -transitions are only enabled in
Player � states, and Player ♦ states are only reached by such transitions; hence,
composing normal form games yields a game in normal form.

Example 8. The game in Figure 7 (right) is the composition of the two games
on the left, which are already in normal form. Actions a and b are synchronised.
Player � controls b in both s1 and t1, and so in the composition Player � controls
b at (s1, t1). Player � controls a in s1 and s2, but Player ♦ controls a in t0, and
so it is controlled by Player ♦ in (s1, t0) and (s2, t0) in the composition.

5.2. Strategy Composition

For compositional synthesis, we assume the following compatibility condition
on component games, which is analogous to that for single-threaded interface
automata [24]: we require that moves controlled by Player ♦ in one game are
enabled and fully controlled by Player ♦ in the composition.

Definition 10. Games (Gi)i∈I are compatible if, for every Player ♦ state ~s ∈ S♦
in the composition with sι ∈ Sι♦, if sι

a−→ιµι then there is exactly one distribution

~ν, denoted by 〈µι〉~s,a, such that ~s
a−→ ~ν and νι = µι. (That is, for i 6= ι such

that a ∈ Ai, there exists exactly one a-transition enabled in si.)

39

5.2.1. Composing SU strategies

The memory update function of the composed SU strategy ensures that the
memory in the composition is the same as if the SU strategies were applied
to the games individually. We assume w.l.o.g. that from the current memory
element m one can recover the current state denoted s(m). We let Γ(~m, ~s) be
the set of indices of components that update their memory according to a new
(stochastic) state formally defined by

Γ(~m, ~s) =

{i ∈ I | si 6= s(mi)} if ~s ∈ S♦ ∪ S�
{i ∈ I | a ∈ Ai} if ~s = (a, ~µ) ∈ S© s.t. a 6= τ

{ι} if ~s = (τ,~t) ∈ S© s.t. sι ∈ Sι♦

Definition 11. The composition of Player ♦ strategies πi = 〈Mi, πu,i, πc,i, πd,i〉,
i ∈ I, for compatible games is ‖i∈I πi

def
= 〈
∏
i∈I M

i, πc, πu, πd〉, where

πc(~s, ~m)(a, 〈µι〉~s,a)
def
= πc,ι(sι,mι)(a, µι) whenever sι ∈ Sι♦

πu(~m, ~s)(~n)
def
=
∏
i∈Γ(~m,~s) π

u,i(mi, si)(ni) whenever mi = ni for i 6= Γ(~m, ~s)

πd(~s)
def
=
∏
i∈I π

d,i(si).

Remark 3. In the above definition, product was defined on SU strategies, as
this provides a more compact encoding than with DU strategies. Recall that SU
and DU strategies are equally powerful (Proposition 1). For the proofs one can
consider w.l.o.g. only products of DU strategies since, when given SU strategies,
the product of their determinisation equals the determinisation of their product.

Strategy composition is commutative and associative.

Proposition 12. Given compatible normal-form games G1, G2 and G3, and
strategies π1, π2 and π3, we have (G1 ‖ G2)π

1‖π2 ' (G2 ‖ G1)π
2‖π1

(commutativity),

and ((G1 ‖ G2) ‖ G3)(π1‖π2)‖π3 ' (G1 ‖ (G2 ‖ G3))π
1‖(π2‖π3) (associativity).

Note that strategy composition can be implemented efficiently by storing
the individual strategies and selecting the next move and memory update of
the strategies corresponding to the components Γ(act(~m), ~s) involved in the
respective transitions.

5.3. Properties of the Composition

We now show that synthesising strategies for compatible individual compo-
nents is sufficient to obtain a composed strategy for the composed game.

5.3.1. Functional simulations

We introduce functional simulations, which are a special case of classical
PA simulations [52], and show that they preserve specifications over traces.
Intuitively, a PA M′ functionally simulates a PA M if all behaviours of M are
present in M′, and if strategies translate from M to M′. Given a distribution
µ, and a partial function F : S → S′ defined on the support of µ, we write F(µ)

for the distribution defined by F(µ)(s′)
def
=
∑
F(s)=s′ µ(s).

40

Definition 12. A functional simulation from a PA M to a PA M′ is a partial
function F : S → S′ such that

(F1) F(ς) = ς ′; and

(F2) if s
a−→ µ in M then F(s)

a−→′F(µ) in M′.

Lemma 13. Given a functional simulation from a PA M to a PA M′ and a
specification ϕ defined on traces, for every (finite) strategy σ there is a (finite)
strategy σ′ such that (M′)σ′ |= ϕ⇔Mσ |= ϕ.

We have included the proof of this lemma in Appendix D.1.

5.3.2. From PA composition to game composition

When synthesising a strategy πi for each component Gi, we can induce the
PAs (Gi)πi , and compose them to obtain the composed PA ‖i∈I (Gi)πi . How-

ever, in our synthesis rule we are interested in the PA (‖i∈I Gi)‖i∈Iπ
i

, which is
constructed by first composing the individual components, and then applying
the composed Player ♦ strategy. The following lemma exhibits a functional sim-
ulation between such PAs, which together with Lemma 13 allows us to develop
our synthesis rules for specifications defined on traces.

Lemma 14. Given compatible normal form games (Gi)i∈I , and Player ♦ strate-

gies (πi)i∈I , there is a functional simulation from (‖i∈I Gi)‖i∈Iπ
i

to ‖i∈I (Gi)πi .

Proof can be found in Appendix D.2. In general, there is no simulation in
the other direction, as in the PA composition states that were originally Player ♦
states can no longer be distinguished.

5.4. Composition Rules

Our main result for compositional synthesis is that any verification rule for
PAs gives rise to a synthesis rule for games with the same side conditions,
shown in Theorem 15 below. The idea is to induce PAs from the games using
the synthesised strategies, apply PA rules, and, using Lemma 14, lift the result
back into the game domain.

Theorem 15. Given a rule P for PAs Mi and specifications ϕij and ϕ defined

on traces, then the rule G holds for all Player ♦ strategies πi of compatible games
Gi with the same action alphabets as the corresponding PAs, where

P ≡
Mi |= ϕij j ∈ J i ∈ I

‖i∈I Mi |= ϕ,
and G ≡

(Gi)πi |=
∧
j∈J ϕ

i
j i ∈ I

(‖i∈I Gi)‖i∈Iπi |= ϕ.

Proof. For all i ∈ I, let Gi be games, and let πi be respective Player ♦ strategies

such that (Gi)πi |=
∧
j∈J ϕ

i
j . By applying the PA rule P with the PAs Mi def

=

(Gi)πi , whereMi |=
∧
j∈J ϕ

i
j for all i ∈ I from how the strategies πi were picked,

we have that ‖i∈I Mi |= ϕ. From Lemma 14, there is a functional simulation

from (‖i∈I Gi)‖i∈Iπ
i

to ‖i∈I (Gi)πi . Since ‖i∈I (Gi)πi |= ϕ, applying Lemma 13

yields (‖i∈I Gi)‖i∈Iπ
i |= ϕ.

41

Monolithic synthesis is performed for components Gi, i ∈ I, by obtaining for

each i a Player ♦ strategy πi for Gi |=
∧
j∈J ϕ

i
j . We apply P with Mi

def
= (Gi)πi

(which never has to be explicitly constructed) to deduce that ‖i∈I πi is a winning
strategy for Player ♦ in ‖i∈I Gi. The rules can be applied recursively, making
use of associativity of the game and strategy composition.

Note that, for each choice, the composed strategy takes into account the
history of only one component, which is less general than using the history of
the composed game. Hence, it may be possible that a specification is achievable
in the composed game, while it is not achievable compositionally. Our rules are
therefore sound but not complete, even if the PA rules P are complete.

5.4.1. Verification rules for PAs

We develop PA assume-guarantee rules for specifications defined on traces.
Our rules are based on those in [36], but we emphasise that Theorem 15 is
applicable to any PA rule. Given a composed PAM =‖i∈I Mi, a strategy σ is
fair if each component makes progress infinitely often with probability 1 [2]. We
writeM |=u ϕ if, for all fair strategies σ ∈ Σ,Mσ |= ϕ. Note that a specification
defined on traces remains defined on traces under fairness. In games, fairness is
imposed only on Player �, and for a single component fairness is equivalent to
requiring deadlock-freedom. Our game composition does not guarantee freedom
from deadlocks, that is, states without outgoing moves. However fair, Player �
strategies avoid reaching deadlocks and hence yield induced DTMC without
deadlocks. If deadlocks are unavoidable then the set of fair Player � strategies
is empty; in that case the synthesis problem is trivial: every Player ♦ strategy
satisfies any specification under fairness.

Theorem 16. Given compatible PAs M1 and M2, specifications ϕG, ϕG1 ,
ϕG2 , ϕA1 and ϕA2 defined on traces of AG,AG1 ⊆ A1, AG2 ⊆ A2, AA1 ,AA2 ⊆
A1 ∩ A2, then the following rules are sound:

(Conj)

M1 |=u ϕG1

M2 |=u ϕG2

M1 ‖ M2 |=u ϕG1 ∧ ϕG2
and (Asym)

M1 |=u (ϕA1 → ϕG) ∧ ϕA2

M2 |=u ϕA2 → ϕA1

M1 ‖ M2 |=u ϕG
.

Proof. Let M = M1 ‖ M2. We first recall concepts of projections from [36].

Given a state s = (s1, s2) of M, the projection of s onto Mi is s�Mi
def
= si, and

for a distribution µ over states of M we define its projection by µ�Mi(si)
def
=∑

s�Mi=si
µ(s). Given a path λ ofM, the projection of λ ontoMi, denoted by

λ�Mi , is the path obtained from λ by projecting each state and distribution,
and removing all moves with actions not in the alphabet of Mi, together with
the subsequent states. Given a strategy σ of M, its projection σ�Mi onto Mi

is such that, for any finite path λi of Mi and transition last(λi)
a−→ µi,

σ�Mi(λi)(a, µi)
def
=
∑

λ�Mi=λi

∑
µ�Mi=µi

PσM(λ) · σ(λ)(a, µ)/Pσ�Mi

Mi (λi)

42

From Lemma 7.2.6 in [52], for any trace w over actionsA ⊆ Ai we have PσM(w) =

Pσ�Mi

Mi (w). Therefore, if ϕ is defined on traces of A ⊆ Ai, we have that Mσ |=
ϕ⇔ ϕ(PσM)⇔ ϕ(Pσ

i�Mi

Mi)⇔ (Mi)σ
i�Mi |= ϕ.

Take any fair strategy σ of M. From Lemma 2 in [36], the projections
σ�M2 and σ�M1 are fair. For the (Conj) rule, we have that Mi |=u ϕGi

implies (Mi)σ�Mi |= ϕGi , since σ�Mi is fair; this in turn implies Mσ |= ϕGi ,
since AGi ⊆ Ai. Since σ was an arbitrary fair strategy of M, this implies
M |=u ϕG1 ∧ ϕG2 . For the (Asym) rule, applying the (Conj) yields M |=u

(ϕA1 → ϕG) ∧ ϕA2 ∧ (ϕA2 → ϕA1), which reduces to M |=u ϕG.

5.4.2. Under-approximating Pareto sets

We now describe how to pick the targets of the specifications ϕi in a compo-
sitional rule, such as from Theorem 15, so that ϕ in the conclusion of the rule is
achievable. To this end, we compositionally compute an under-approximation
of the Pareto set for ϕ; we illustrate this approach in an example in Section 5.5
below.

Consider N reward structures, r1, . . . , rN , and objectives ϕi, i ∈ I, over
these reward structures for respective games Gi, as well as an objective ϕ, over
the same reward structures, for the composed game G =‖i∈I Gi. Note that, for
each 1 ≤ j ≤ N , the reward structure rj may be present in several objectives ϕi.
Let P i be an under-approximation of the Pareto set for Gi |= ϕi, for i ∈ I, and
so each point ~v(i) ∈ P i represents a target vector for the MQ ϕi[~v(i)] achievable
in the game Gi.

For a set P i, define the lifting ↑P i to all N reward structures by ↑P i def
= {~v ∈

RN | the coordinates of ~v appearing in ϕi are in P i}. The set P ′
def
= ∩i∈I↑P i

is the set of target vectors for all N reward structures, which are consistent
with achievability of all objectives ϕi in the respective games. The projection
↓P ′ of P ′ onto the space of reward structures appearing in ϕ then yields an
under-approximation of the Pareto set P for ϕ in the composed game G, that
is, ↓P ′ ⊆ P . A vector ~v ∈ ↓P ′ can be achieved by instantiating the objectives
ϕi with any targets ~v(i) in P ′ that match ~v.

5.5. The Compositional Strategy Synthesis Method

Our method for compositional strategy synthesis, based on monolithic syn-
thesis for individual component games, is summarised as follows:

(S1) User Input: A composed game G =‖i∈I Gi, MQs ϕi, ϕ, and matching
PA rules for use in Theorem 15.

(S2) First Stage: Obtain under-approximations of Pareto sets P i for Gi |= ϕi,
and compute the compositional under-approximated Pareto set ↓P ′.

(S3) User Feedback: Pick targets ~v for the global specification ϕ from ↓P ′;
matching targets ~v(i) for ϕi can be picked automatically from P i.

(S4) Second Stage: Synthesise strategies πi for Gi |= ϕi[~v(i)].

43

P 1

0

9/8

1.5

0 1/2 1.0

r1

r2

G1 |= Eratio(−r1/c)(−v1)

→ Eratio(r2/c)(v2)

P 2

0

1/2

3/4

1.0

0 1/2

r1

r3

G2 |= Eratio(−r1/c)(−v1)

∧ Eratio(−r3/c)(−v3)

P 1

P 2 ↓ P ′

0

1/2

3/4

1.0

0 9/8 1.5

r2

r3

r1

G |= Eratio(r2/c)(v2)

∧ Eratio(−r3/c)(−v3)

Figure 13: Pareto sets for example games in Figure 7. Specifications are given
beneath the respective sets. The rightmost figure shows the compositional
Pareto set, ↓P ′, as well as the oblique projections of P 1 and P 2 for reference.

(S5) Output: The strategy ‖i∈I πi, winning for G |= ϕ[~v] by Theorem 15.

Steps (S1), (S4) and (S5) are sufficient if the targets are known, while (S2)
and (S3) are an additional feature enabled by the Pareto set computation.

Example 9. Consider again the (controllable multichain) games in Figure 7.

We want to find a strategy for the composition G def
= G1 ‖ G2 (right) by com-

positional synthesis for the components G1 (left) and G2 (centre). We give
an example of steps (S1) to (S3). We consider reward structures r1, r2, r3

and c, and the MQs ϕ1 = Eratio(−r1/c)(−v1) → Eratio(r2/c)(v2) for G1, and
ϕ2 = Eratio(−r1/c)(−v1) ∧ Eratio(−r3/c)(−v3) for G3. The global specification
is ϕ = Eratio(r2/c)(v2) ∧ Eratio(−r3/c)(−v3) for G. This constitutes the inputs
in step (S1).

For step (S2), under-approximations of the Pareto sets for G1 and G2 are
shown in Figure 13 (left) and (centre) respectively, together with the composi-
tionally obtained under-approximated Pareto set ↓ P ′ for G (right). In step (S3),
if we want, for example, to find a strategy satisfying ϕ with (v2, v3) = (9

8 ,
3
4),

we look up a value for v1 that is consistent with both P 1 and P 2, as indicated
by the dashed lines in Figure 13 (left) and (centre), and we find v1 = 1

4 to be
consistent for both components. In step 4) we synthesise strategies for the MQs
ϕ1[(1

4 ,
9
8)] for G1 and ϕ2[(1

4 ,
3
4)] for G2. In G1 the strategy π1 always plays d (as

explained in Example 7), and the strategy π2 for G2 is illustrated in Figure 10.
Finally, we return the composed strategy π = π1 ‖ π2 in step (S5).

6. Conclusion

We presented a compositional framework for strategy synthesis in stochastic
games, where winning conditions are specified as multi-dimensional long-run

44

objectives. The algorithm proposed in Theorem 7 constructs succinct ε-optimal
stochastic memory update strategies, and we show how such winning strategies
for component games can be composed to be winning for the composed game.
Since building the composed game is not necessary in order to synthesise a
strategy to control it, our approach enhances scalability. However, this is at a
cost of restricting the class of strategies. The techniques have been implemented
and applied to several case studies, as reported separately in [38, 5, 4, 60].

Our compositional framework applies to all specifications defined on traces,
which include almost-sure and expected ratio rewards treated here, as well as
expected total rewards studied in [19, 20], but not mean payoffs. Nevertheless,
the ability to synthesise strategies for mean payoffs at the component level is
useful because, as we showed in Proposition 2 and Theorem 11, these enable us to
synthesise strategies for conjunctions of almost-sure ratio rewards and Boolean
combinations of expected ratio rewards that are well suited to the compositional
approach. We anticipate that our framework is sufficiently general to permit
further specifications defined on traces, such as Büchi specifications or ratio
rewards with arbitrary satisfaction thresholds, but the problem of synthesising
winning strategies for such specifications for individual components remains
open.

As future work, we intend to investigate satisfaction objectives with arbitrary
probability thresholds, and believe that this is possible using ideas from [32]. We
would also like to adopt a unifying view between expectation and satisfaction
objectives as done for MDPs in [14]. Finally, the compositional framework could
be augmented by automatically decomposing games and specifications given a
rule schema.

Acknowledgements. The authors thank Vojtěch Forejt, Stefan Kiefer, Benôıt
Barbot and Dave Parker for helpful discussions. The authors are partially sup-
ported by ERC Advanced Grant VERIWARE and EPSRC Mobile Autonomy
Programme Grant.

References

[1] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner. Energy-utility
analysis for resilient systems using probabilistic model checking. In Petri
Nets, pages 20–39. Springer, 2014.

[2] C. Baier, M. Größer, and F. Ciesinski. Quantitative analysis under fairness
constraints. In ATVA, volume 5799 of LNCS, pages 135–150. Springer,
2009.

[3] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller
synthesis for probabilistic systems (extended abstract). In IFIP TCS, vol-
ume 155, pages 493–506. Springer, 2004.

[4] N. Basset, M. Kwiatkowska, U. Topcu, and C. Wiltsche. Strategy synthesis
for stochastic games with multiple long-run objectives. In TACAS, volume
9035 of LNCS, pages 256–271. Springer, 2015.

45

[5] N. Basset, M. Kwiatkowska, and C. Wiltsche. Compositional controller
synthesis for stochastic games. In CONCUR, volume 8704 of LNCS, pages
173–187. Springer, 2014.

[6] T. Brázdil, V. Brožek, K. Chatterjee, V. Forejt, and A. Kučera. Two views
on multiple mean-payoff objectives in Markov decision processes. LMCS,
10(4), 2014.

[7] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with
branching-time winning objectives. In LICS, pages 349–358. ACM/IEEE,
2006.

[8] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended
vector addition systems with states. In ICALP, volume 6199 of LNCS,
pages 478–489. Springer, 2010.

[9] R. Brenguier and J.F. Raskin. Optimal values of multidimensional mean-
payoff games. Research report, Université Libre de Bruxelles (U.L.B.),
Belgium, 2014.

[10] V. Bruyère, E. Filiot, M. Randour, and J.F. Raskin. Meet your expectations
with guarantees: Beyond worst-case synthesis in quantitative games. arXiv
preprint arXiv:1309.5439, 2013.

[11] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.F. Raskin. Generalized
mean-payoff and energy games. In FSTTCS, volume 8 of LIPIcs, pages
505–516. Schloss Dagstuhl, 2010.

[12] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for max-
imal end-component decomposition and related graph problems in proba-
bilistic verification. In SODA, pages 1318–1336. ACM-SIAM, 2011.

[13] K. Chatterjee and T.A. Henzinger. Assume-guarantee synthesis. In
TACAS, volume 4424 of LNCS, pages 261–275. Springer, 2007.

[14] K. Chatterjee, Z. Komárková, and J. Křet́ınský. Unifying two views on
multiple mean-payoff objectives in Markov decision processes. In LICS,
pages 244–256. ACM/IEEE, 2015.

[15] K. Chatterjee, R. Majumdar, and T.A. Henzinger. Markov decision pro-
cesses with multiple objectives. In STACS, volume 3884 of LNCS, pages
325–336. Springer, 2006.

[16] K. Chatterjee, M. Randour, and J.F. Raskin. Strategy synthesis for multi-
dimensional quantitative objectives. Acta Informatica, 51(3–4):129–163,
2014.

[17] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-
games: A model checker for stochastic multi-player games. In TACAS,
volume 7795 of LNCS, pages 185–191. Springer, 2013.

46

[18] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, A. Trivedi, and M. Um-
mels. Playing stochastic games precisely. In CONCUR, volume 7454 of
LNCS, pages 348–363, 2012.

[19] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On
stochastic games with multiple objectives. In MFCS, volume 8087 of LNCS,
pages 266–277. Springer, 2013.

[20] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis for
multi-objective stochastic games: An application to autonomous urban
driving. In QEST, volume 8054 of LNCS, pages 322–337. Springer, 2013.

[21] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA:
Parallel composition via distributed scheduling. TCS, 365(1–2):83–108,
2006.

[22] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, 1990.

[23] L. De Alfaro. Formal verification of probabilistic systems. PhD thesis,
Stanford University, 1997.

[24] L. de Alfaro and T.A. Henzinger. Interface automata. SIGSOFT Software
Engineering Notes, 26(5):109–120, 2001.

[25] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In CONCUR, volume 2154 of LNCS, pages 351–365.
Springer, 2001.

[26] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff
games. International Journal of Game Theory, 8(2):109–113, 1979.

[27] K. Etessami, M. Kwiatkowska, M.Y. Vardi, and M. Yannakakis. Multi-
objective model checking of Markov decision processes. LMCS, 4(8):1–21,
2008.

[28] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer,
1996.

[29] V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilistic
model checking. In ATVA, volume 7561 of LNCS, pages 317–332. Springer,
2012.

[30] M. Gelderie. Strategy composition in compositional games. In ICALP,
volume 7966 of LNCS, pages 263–274. Springer, 2013.

[31] S. Ghosh, R. Ramanujam, and S. Simon. Playing extensive form games in
parallel. In CLIMA, volume 6245 of LNCS, pages 153–170. Springer, 2010.

[32] H. Gimbert and F. Horn. Solving simple stochastic tail games. In SODA,
pages 847–862. ACM-SIAM, 2010.

47

[33] H. Gimbert and E. Kelmendi. Two-player perfect-information shift-
invariant submixing stochastic games are half-positional. arXiv preprint
arXiv:1401.6575, 2014.

[34] F. Horn. Random Games. PhD thesis, Université Denis Diderot - Paris 7
& Rheinisch-Westfälische Technische Hochschule Aachen, 2008.

[35] G. Katz, D. Peled, and S. Schewe. Synthesis of distributed control through
knowledge accumulation. In CAV, volume 6806 of LNCS, pages 510–525.
Springer, 2011.

[36] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Compositional prob-
abilistic verification through multi-objective model checking. Information
and Computation, 232:38–65, 2013.

[37] M. Kwiatkowska and D. Parker. Automated verification and strategy syn-
thesis for probabilistic systems. In ATVA, volume 8172 of LNCS, pages
5–22. Springer, 2013.

[38] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A tool for
multi-objective strategy synthesis for stochastic games. In TACAS, 2016.
(submitted).

[39] Marta Kwiatkowska and Maria Svorenova. Quantitative verification and
strategy synthesis for stochastic games. In ECC, 2016. To appear.

[40] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov chains and mixing times.
AMS, 2009.

[41] L. MacDermed and C.L. Isbell. Solving stochastic games. In NIPS, pages
1186–1194. Curran Associates, Inc., 2009.

[42] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous
distributed controllers. In CONCUR, volume 7454 of LNCS, pages 145–160.
Springer, 2002.

[43] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS, volume
2914 of LNCS, pages 338–351. Springer, 2003.

[44] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthe-
size. In FOCS, pages 746–757. IEEE, 1990.

[45] M.L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. Wiley-Interscience, 2009.

[46] Michael O. Rabin. Probabilistic automata. Information and Control,
6(3):230 – 245, 1963.

[47] M. Randour, J.F. Raskin, and O. Sankur. Variations on the stochastic
shortest path problem. In VMCAI, volume 8318 of LNCS, pages 1–18.
Springer, 2014.

48

[48] M. Randour, J.F. Raskin, and O. Sankur. Percentile queries in multi-
dimensional Markov decision processes. In CAV, volume 9206 of LNCS,
pages 123–139. Springer, 2015.

[49] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

[50] S.M. Ross. Stochastic processes, volume 2. John Wiley & Sons New York,
1996.

[51] O. Sankur. Robustness in Timed Automata: Analysis, Synthesis, Imple-
mentation. Thèse de doctorat, LSV, ENS Cachan, France, 2013.

[52] R. Segala. Modelling and Verification of Randomized Distributed Real Time
Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

[53] Lloyd S Shapley. Stochastic games. PNAS, 39(10):1095, 1953.

[54] N. Shimkin and A. Shwartz. Guaranteed performance regions in Markovian
systems with competing decision makers. Automatic Control, 38(1):84–95,
1993.

[55] A. Simaitis. Automatic Verification of Competitive Stochastic Systems.
PhD thesis, University of Oxford, 2013.

[56] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, par-
allel composition and comparison. In VOSS, volume 2925 of LNCS, pages
1–43. Springer, 2004.

[57] Y. Velner. Finite-memory strategy synthesis for robust multidimensional
mean-payoff objectives. In LICS, pages 79:1–79:10. ACM/IEEE, 2014.

[58] C. von Essen and B. Jobstmann. Synthesizing efficient controllers. In
VMCAI, volume 7148 of LNCS, pages 428–444. Springer, 2012.

[59] D.J. White. Multi-objective infinite-horizon discounted Markov decision
processes. J. Math. Anal. Appl., 89(2):639–647, 1982.

[60] C. Wiltsche. Assume-Guarantee Strategy Synthesis for Stochastic Games.
PhD thesis, University of Oxford, 2016. (forthcoming).

Appendix A. Proofs of results of Section 2

Appendix A.1. Proof of Proposition 1

Proof. The belief d♦λ after seeing a path λ is defined inductively as follows:

d♦s = πd(s), dλs′
def
= πu(d♦λ , s

′). We define d�λ for Player � similarly. We first
remark that, given a game G and two strategies π, σ, then Pπ,σG enjoys the
following recursive definition Pπ,σG (s) = ς(s),

Pπ,σG (λs′) = Pπ,σG (λ)
∑
m,n

d♦λ(m)d�λ (n)
∑
m′,n′

∆((s,m, n), (s′,m′, n′)). (A.1)

49

Indeed, d♦λ(m)d�λ (n) is the probability of having memory element m and n know-
ing the path λ and

∑
m′,n′ ∆((s,m, n), (s′,m′, n′)) is the probability to have state

s′ knowing that λ ends in s with memory element m and n.
For the deterministic update strategy π̄, (A.1) can be written as:

Pπ̄,σG (λs′) = Pπ,σG (λ)
∑
n

d�λ (n)
∑
n′

∆((s, d♦λ , n), (s′, d♦λs′ , n
′)). (A.2)

To show that (A.1) and (A.2) yield the same inductive definition, it suffices
to note that the base case is satisfied since Pπ̄,σG (s) = ς(s) = Pπ,σG (s), and show
that

∆((s, d♦λ , n), (s′, d♦λs′ , n
′)) =

∑
m,m′

d♦λ(m)∆((s,m, n), (s′,m′, n′)). (A.3)

The right-hand side of (A.3) is equal to

∑
m

d♦λ(m)
∑
m′

πu(m, s′)(m′) · σu(n, s′)(n′) ·

πc(s,m)(s′) if s ∈ S♦
σc(s, n)(s′) if s ∈ S�
∆(s, s′) if s ∈ S©

(A.4)

which after simplification using
∑

m′ πu(m, s′)(m′) = 1 and πc(s, d
♦
λ)(s′) =

∑
m∈M d♦λ(m)πc(s,m)(s′)

yields σu(n, s′)(n′)·

πc(s, d

♦
λ)(s′) if s ∈ S♦

σc(s, n)(s′) if s ∈ S�
∆(s, s′) if s ∈ S©

which is equal to the left-hand side

of (A.3): ∆((s, d♦λ , n), (s′, d♦λs′ , n
′)). We have proved that Pπ,σG and Pπ̄,σG satisfy

the same inductive definition, thus they are equal.

Appendix A.2. Some properties of long-run behaviour

We state here several results about the (multi-objective) long-run behaviours
of stochastic models as introduced in Section 2.3.

We begin by recalling standard definitions for Markov chains. A bottom
strongly connected component (BSCC) of a DTMC D is a nonempty maximal
subset of states B ⊆ S s.t. every state in B is reachable from any other state in
B, and no state outside B is reachable. A state s ∈ S of a DTMC D is called
recurrent if it is in some BSCC B of D. A state which is not recurrent is called
transient. A DTMC is irreducible if its state space comprises a single BSCC.
Given a BSCC B ⊆ S of a DTMC D, the stationary distribution µB ∈ D(S)
is such that

∑
s∈B µB(s) ·∆(s, t) = µB(t) holds for all t ∈ B; its existence and

uniqueness is demonstrated, e.g., by Proposition M.2 in [28].

Theorem 17 (Theorem 4.16 in [40]). Let D be an irreducible DTMC with a
single BSCC B, and let r be a reward structure. The sequence 1

N+1 rewN (r)(λ)
almost surely converges to

∑
s∈B µB(s) · r(s), where λ ∈ ΩD.

50

Remark 4. From the previous theorem, the mean-payoff in a BSCC B is the

same at every state s ∈ B, and we define, for a reward structure ~r, mp(~r)(B)
def
=∑

s∈B ~r(s)µB(s).

Lemma 15. Given a finite DTMC D and a reward structure ~r, for λ ∈ ΩD
the limit limN→∞

1
N+1 rewN (~r)(λ) almost surely exists and takes values ~x in the

finite set {mp(~r)(B) | B is a BSCC of D} with probability∑
B s.t. mp(~r)(B)=~x

PD(FB).

Proof. Note first that, for every path λ ∈ ΩD, 1
N+1 rewN (~r)(λ) converges if and

only if, for every suffix λ′ of λ, 1
N+1 rewN (~r)(λ′) converges to the same limit.

For every recurrent state t of D, we denote by Wt the set of paths λ such that
t is the first recurrent state along λ. Paths λ ∈ Wt have suffixes λ′ distributed
according to PD,t. By Theorem 17, 1

N+1 rewN (~r)(λ′) almost surely converges
to
∑
t′∈B µB(t′)r(t′). Thus, with probability PD(FB) =

∑
t∈B PD(Wt), the se-

quence 1
N+1 rewN (~r)(λ) converges to mp(~r)(B). To conclude, it suffices to recall

that
∑
B∈B(D) PD(FB) = 1, and thus the result holds almost surely.

Remark 5. Consequently, mp(~r)(λ) ≥ 0 for almost all paths of a DTMC D if
and only if mp(~r)(B) ≥ 0 for every BSCC B of D that is reached.

Lemma 16. Given a finite DTMC and two reward structures r and c with c
weakly positive, then the sequence rewN (r)/(1+rewN (c)) converges almost surely
to mp(r)/mp(c).

Proof. Fix a finite DTMC D. By Lemma 15, the limit inferior can be replaced

by the true limit in mp(c) and mp(r). ratio(r/c)(λ) = mp(r)(λ)
mp(c)(λ) . Using the

conditions on c imposed by the definition of ratio rewards, we have that, with
probability one, mp(c) > 0. Hence,

mp(r)(λ)

mp(c)(λ)
=

limN→∞
1

N+1 rewN (r)(λ)

limN→∞
1

N+1 rewN (c)(λ)
= lim
N→∞

1
N+1 rewN (r)(λ)

1
N+1 rewN (c)(λ)

.

There is no indeterminacy for this quotient of limits, as the denominator is pos-
itive and the numerator is finite. Simplifying the 1

N+1 term yields the equality
mp(r)(λ)
mp(c)(λ) = limN→∞

rewN (r)(λ)
rewN (c)(λ)

. This is almost surely equal to ratio(r/c)(λ) =

limN→∞
rewN (r)(λ)

1+rewN (c)(λ)
since rewN (c)(λ)→ +∞ almost surely.

As a consequence of Lemma 15 and Lemma 16 it follows that mean-payoff
and ratio rewards are linear in finite DTMCs.

Proposition 13. Given a finite DTMC, let ~r be an n-dimensional reward struc-
ture and c a weakly positive reward structure. For every ~x ∈ Rn≥0, it almost
surely holds that mp(~x · ~r) = ~x ·mp(~r) and ratio(~x · ~r/c) = ~x · ratio(~r/c).

51

Appendix A.3. Proof of Proposition 2

Proof. First note that Pratio(~r/~c)(~v) holds iff Pratio((~r − ~v • ~c)/~c)(0) holds.
So, up to replacing ~r − ~v · ~c by ~r, we can assume without loss of generality
that ~v = 0. We now show equivalence between Pmp(~r)(0) and Pratio(~r/~c)(0).
Fix a Player � strategy σ and a dimension i. By weak positivity of ci, for
almost every path the sequence (1 + rewN (ci)(λ))/(N + 1) has a positive limit
inferior and, as it takes only positive values, this implies that it has a positive
lower bound. It is also upper-bounded as (1 + rewN (ci)(λ))/(N + 1) ≤ 1 +
N maxs∈S ci(s)/(N + 1) → 1 + maxs∈S ci(s). Now, note that for two real-
valued sequences aN and bN such that lim aN ≥ 0, bN is positive, inf bN > 0
and sup bN < ∞ then lim aN/bN ≥ 0. We apply this remark with sequences
aN (λ) = rewN (ri)(λ)/(N + 1) and bN (λ) = (1 + rewN (ci)(λ))/(N + 1), where
λ is a path such that mp(ci)(λ) > 0. Then for almost every path the following
equivalence holds: ratio(ri/ci)(λ) = limaN (λ)/bN (λ) ≥ 0 iff mp(ri)(λ) ≥ 0.
Thus, π is winning for Pratio(~r/~c)(0) iff it is winning for Pmp(~r − ~v • ~c)(0).

Appendix B. Proofs of results of Section 3

Appendix B.1. Proof of Theorem 6

We first state a technical lemma used in the proof of Theorem 6.

Lemma 17. Let (Xn)≥n be a sequence of real-valued random variables. If
P(limn→∞Xn ≥ v) = 1, then, for every δ > 0, P(Xn < v − δ)→ 0 as n→∞.

Proof. Assume that P(limn→∞Xn ≥ v) = 1, and fix δ > 0. Let An
def
=⋃

m≥n{e |Xm(e) < v − δ}. As An is a non-increasing sequence of events, as
n → ∞, it holds that P(An) → P(

⋂
n≥1An), which is zero by hypothesis

of the lemma. Hence P(Xn < v − δ) also tends to zero as n → ∞, since
P(Xn < v − δ) ≤ P (An).

We can now proceed to the proof of Theorem 6.

Proof. Let π be a Player ♦ strategy achieving Pmp(~r). We show that, for every
ε > 0, Player ♦ has a finite DU strategy to achieve Pmp(~r + ε). Let M = Gπ.

Denote by SM and SG the respective states spaces of M and G. Without
loss of generality, we assume that the memory of π is the set Ωfin

G of paths in G,
and so M is an infinite tree where each state is identified uniquely by a path

λ ∈ Ωfin
G . Consider the set SM,G

def
= {last(λ) ∈ SG |λ ∈ SM} of states of the game

that appear in some state ofM. For every λ ∈ SM, PσM,λ(mp(~r) ≥ 0) = 1 holds
for all Player � strategies σ. Consider, for each state s ∈ SM,G , a path λs ∈ SM
with last(λs) = s, which uniquely identifies a state inM (note that, given s, λs
is not unique, but it suffices to pick an arbitrary one). Then, for every Player �
strategy σ and every state s, it holds that PσM,λs

(limN→∞
1

N+1 rewN (~r) ≥ 0) = 1,

and hence, by Lemma 17, the quantity ps,h,σ
def
= PσM,λs

(1
h+1 rewh(~r) ≤ −ε/2)

(defined for a fixed h > 0) tends to 0 as ε → 0. We define ph,σ
def
= maxs ps,h,σ,

52

and let ph be the maximum ps,h,σ over all MD Player � strategies σ. As the
maxima are taken over finite sets, we have that ph → 0 as h→∞.

Now for a fixed positive integer h, construct the finite DU Player ♦ strategy
πh that plays as follows: starting from s ∈ SM,G , it initialises its memory to
λs and plays π for h steps; then, from whatever state t ∈ SM,G it arrived at, it
resets its memory to λt and plays π for a further h steps, and so on. Fix any MD
strategy of Player �, and a BSCC B of the finite induced DTMC D = Gπh,σ.
Given a state s ∈ SM,G , let s̃ = (s, λs, n) be the corresponding state of D (where
n is the only memory element of σ). Note that by definition of πh, a state of
the form s̃ with s ∈ SM,G is seen every h steps. In particular B must contain
at least one state s̃0 with s0 ∈ SM,G . By Remark 4, we then have PD(mp(~r) =
mp(~r)(B)) = 1, so it suffices to find a lower-bound for mp(~r)(B), which is equiva-
lent to find a lower-bound for limN→∞

1
N+1ED,s̃0 [rewN (~r)]. We have constructed

πh so that every h steps a state in SM,G is encountered, and hence it holds, for
every k ≥ 0, that ED,s̃0 [rewkh(~r)] ≥ k ·mins∈SM,G ED,s̃[rewh(~r)]. From a state
s ∈ SM,G , with probability less than ph,σ, the reward accumulated is at least
−hρ∗, where ρ∗ = maxs∈SG ,i |ri(s)|. Further, with probability greater than
1 − ph,σ the reward accumulated is at least −hε/2. Therefore, for every state
s ∈ SM,G , ED,s̃[rewh(~r)] ≥ −ph,σρ∗ − (1 − ph,σ)hε/2 ≥ −phρ∗ − hε/2. Hence,
ED,s̃[rewkh(~r)] ≥ −kh(phρ

∗+ ε/2). Dividing by kh+ 1 and letting k go towards
infinity, we get that ED,s̃0 [mp(~r)] = limk

1
kh+1ED,s̃0 [rewkh(~r)] ≥ −phρ∗ − ε/2.

We therefore have, for every BSCC B of D, that mp(~r)(B) ≥ −phρ∗ − ε/2, and
hence, by Remark 5, Player ♦ achieves Pmp(~r + phρ

∗ + ε/2) against all MD
Player � strategies. Then, by Theorem 3, Player ♦ achieves Pmp(~r+phρ

∗+ε/2)
against all Player � strategies. Since ph → 0, we can find h large enough so that
phρ
∗ ≤ ε/2, and hence have Pmp(~r + ε) against every σ.

Appendix B.2. Proof of Proposition 6

Proof. The proof method is based on similar results in [16, 55]. Consider the
game G in Figure B.14 with objective Pmp(~r)(0). From s0, when Player �
chooses a sequence w of actions with |w| ≤ n+ 1, the total rewards are shifted

by the vector −(αw, 2
|w|− 1−αw), where αw

def
=
∑|w|
j=1 δwj=a2j−1 is the number

corresponding to the binary word w represented with the least significant bit
first, with a coding for 1 and b for 0.

Exponential memory DU strategy. We show that there is a winning DU

strategy π for Player ♦ with exponential memory M
def
=
⋃n+1
k=1{a, b}k, which at

state sn+1 plays the distribution νw defined by νw(a)
def
= αw

2n+1−1 and νw(b)
def
=

1− νw(a), where w ∈M is the current memory, determining αw. This strategy
compensates the shift incurred while going through the Player � states, and
hence, for every loop, the expected total reward is (0, 0). Thus also the expected
mean-payoff is (0, 0). We now show that the almost sure mean-payoff is (0, 0).
As the strategy π has finite memory, the induced PA Gπ is finite, and it suffices
to consider MD strategies for Player � in Gπ, cf. Lemma 1. Let Ri be the
random variable equals to the total reward of the ith loop. The random variables
(Ri)i≥0 are independent identically distributed and of expectation zero, and we

53

s0 s1 s2 sn sn+1

(−20, 0)

(0,−20)

a

b

(−21, 0)

(0,−21)

a

b

(−2n, 0)

(0,−2n)

a

b

(2n+1 − 1, 0)
a

(0, 2n+1 − 1)
b

Figure B.14: Finite-memory SU strategies are exponentially more succinct than
finite-memory DU strategies for Pmp(~r).

apply the strong law of large numbers to obtain that (1/N)
∑N
i=0Ri converges

almost surely towards the common mean 0. Hence, π is winning for almost sure
convergence.

Linear memory SU strategy. We now show how the distribution νw can be
simulated by an SU strategy π that contains only 2(n + 1) memory elements.

Let M
def
=
⋃n+1
i=0 {ai, bi}, and let πc(sn+1, ln+1)

def
= l for l ∈ {a, b}, that is, li is

the memory at state si corresponding intuitively to the intention of Player ♦ to
play the action l.

We denote by P(li|w) the probability of Player ♦ being in memory li after
having read the sequence w of length i, starting from s0. We now inductively
define a memory update function such that, for i ≤ n + 1 and w ∈ {a, b}i,
P(ai|w) = αw

2i−1 (and P(bi|w) = 1 − P(ai|w)), so that, in particular, when i =
n+ 1, Player ♦ chooses the next move according to the distribution νw. In the
base case (when i = 0 and w is the empty word), P(a0|w) = 1 necessitates that
the initial memory as well as the memory when returning after each loop to s0

is πd(s0)
def
= πu(ln+1, l

′)
def
= a0.

When going from si to si+1 via an action q, the memory li ∈ {ai, bi} in si is
updated to l′i+1 in si+1, under the condition

P(l′i+1|wq) = P(ai|w) · πu(ai, q)(l
′
i+1) + P(ai|w) · πu(bi, q)(l

′
i+1). (B.1)

Taking l′ = a and taking q to be a or b in (B.1) gives as necessary conditions

P(ai+1|wa) =
αw + 2i

2i+1 − 1
=

αw
2i − 1

· πu(ai, a)(ai+1) +

(
1− αw

2i − 1

)
· πu(bi, a)(ai+1)

(B.2)

P(ai+1|wb) =
αw

2i+1 − 1
=

αw
2i − 1

· πu(ai, a)(ai+1) +

(
1− αw

2i − 1

)
· πu(bi, b)(ai+1);

(B.3)

Taking l′ = b in (B.1) gives symmetric conditions.

54

We now define the memory update function according to these conditions.

Define πu(ai, a)
def
= ai+1 and πu(bi, b)

def
= bi+1, following the intuition that there

is no need to change the intention to play a or b, corresponding to the current
memory ai and bi, respectively, when the intention is followed. Further, using

the conditions in (B.2), we obtain, for l, l̄ ∈ {a, b} with l̄ 6= l that πu(li, l̄)(li+1)
def
=

2i−1
2i+1−1 and πu(li, l̄)(l̄i+1)

def
= 2i

2i+1−1 . We have thus defined π so that at sn+1 the
choices it made were according to νw. Then, as shown above, this strategy
is winning. Moreover, π contains 2(n + 1) memory elements, and is therefore
exponentially smaller than the DU strategy described above. Note that this
strategy could have been described with only two memory elements a and b but
the strategy would still need a linear space to encode the memory updates (as
distinct game transitions lead to distinct updating rules).

No sub-exponential DU strategy. We show that every finite DU strategy
achieving Pmp(~r) requires at least exponential memory. Consider a finite DU
strategy π with less than 2n+1 − 1 memory elements. We show that it loses
against some finite strategy σ. For every memory element m ∈ M, there exist
at least two distinct sequences w1

m and w2
m such that the memory updated

from m is the same after seeing either w1
m or w2

m, denoted f(m), and such
that rew(w1

m) ≥ rew(w2
m) + 1 for r1. Consider the finite memory strategy σ1

(resp. σ2) that simulates the deterministic memory of π and plays the actions
in w1

m (resp. w2
m) from s0 and memory m. The strategy π reacts to f(m) at

state sn+1, so the rewards associated to w1
m or w2

m are not compensated. Let

Di
def
= Gπ,σi . We extend the reasoning to k loops as follows. For pairwise

associated sequences wi = wim1
l1w

i
m2
l2 · · ·wimk lk with i ∈ {1, 2}, it holds that

rew(r1)(w1) ≥ rew(r1)(w2) + k and PD1(w1) = PD2(w2). Hence, the average
rewards in the two DTMCs are separated by 1/L, where L is the length of a loop.
Hence, if π wins against σ1, then PD1

(mp(r1) = 0) = PD1
(mp(r2) = 0) = 1, and

hence, PD2
(mp(r1) ≤ −1/L) = 1. The strategy π loses against σ1 or σ2, which

concludes the proof.

Appendix B.3. Proof of Proposition 5

The proof uses notations on matrix and vectors that we introduce now.
We recall that we use boldface notation for vectors over the state space; in
particular, given a scalar a, we write a for the vector with a in each component.
With this notation a one-dimensional reward structure r is represented by the
vector r whose sth component is r(s). We use the notation [v]s to refer to the
sth component vs of a vector v. and use the notation [A]s,t to refer to the
sth row and tth column of a matrix A. We use the induced matrix norm of
A defined by ‖A‖∞

def
= max

1≤i≤m

∑n
j=1 |Aij |. This norm is sub-multiplicative, i.e.

‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞. Given a vector v with entries indexed by the state
space S, we denote by vE the vector with entries indexed by the subset E ⊆ S,
such that [vE]s = vs for all s ∈ E. Similarly, given a matrix A with entries
indexed by a set S, we denote by AE,E′ the |E| × |E′| submatrix of A with
entries indexed by E,E′ ⊆ S, such that [AE,E′]s,t = As,t for (s, t) ∈ E × E′.

55

defining U(i)

backward
U (0)U (1)· · ·U (k)U (k+1)· · ·U (k+p−1)

U
(k+p,k)
E is stochastic

defining P [m] forward,
and looping

P [0] P [1] · · · P [n] · · · P [n+p−2] P [n+p−1]

= = =

Figure B.15: Matrices U (i) and P [m] to define the ultimately periodic matrix
based strategy for Player � to spoil EE(r − ε) in the proof of Proposition 5.

For a state s ∈ S and E ⊆ S, we write As,E instead of A{s},E and AE instead
of AE,E . We denote by IS the |S| × |S| identity matrix with entries indexed
by S. A square matrix A with nonnegative real entries is (right) stochastic if∑
tAs,t = 1 for all rows s of A.

Proof. The proof is as follows. For k large enough and for states in S∞, there
is no cut-off used to define uk, and hence uk satisfies the same linear equations
as the expected non-truncated energy ek, which we proceed to express in terms
of matrices. We then construct a finite memory Player � strategy from the
sequence uk and the associated matrices, so that the expected energy with
respect to the reward r is bounded. By operating with the reward r − ε, we
substract −ε at each step, and so the expected energy goes to −∞, falsifying
EE(r − ε).

Let k0 be the least integer such that, for all k ≥ k0, uks < 0 for every s ∈ S∞.
For k ≥ 0 and s ∈ S�, let σk(s) be a successor of s, for which the minimum is
attained, that is, uk+1

s = min{0, r(s) + ukσk(s)}. Let U (k) be the S × S matrix
for M defined by

U
(k)
s,t =

1 if s ∈ S� ∧ t = σk(s)

∆(s, t) if s ∈ S©
0 otherwise,

for all s, t ∈ S. Let U (j,i) be the matrix product U (j−1) ·U (j−2) ·· · ··U (i) for j > i,
and let U (i,i) = I (the identity). We use the following block decomposition of
the matrix U (k)

U (k) =

(
U

(k)
S∞

U
(k)
S∞,Sfin

0 U
(k)
Sfin

)
. (B.4)

The zero block in the lower left corner of U (k) arises because all successors of
states in Sfin are in Sfin. In particular, U

(j,i)
S∞

= U
(j−1)
S∞

· U (j−2)
S∞

· · · · · U (i)
S∞

.

Remark 6. For every k ≥ k0, it holds that uk+1
S∞

= rS∞ + [U (k) · uk]S∞ .

56

We now proceed to show Proposition 5 as a consequence of Lemmas 18–23.

Lemma 18. For every l ≥ 0, there exists a constant bl ≥ 0, such that, for every

k ≥ k0, it holds that ‖uk+l
S∞
‖∞ ≤ ‖U (k+l,k)

S∞
‖∞ · ‖ukS∞‖∞ + bl.

Proof. We show the following more general statement by induction:

uk+l
S∞
≥ U (k+l,k)

S∞
· ukS∞ + a− lρ∗, (B.5)

where a and ρ∗ are the constant vector with equal components a
def
= mins∈Sfin

u∗s
and ρ∗

def
= maxs∈S |r(s)|, respectively.

The base case, for l = 0, is satisfied. Now assume that the result is true for
some index l, and we show that it implies that it is true for l+1. Recall that for
k ≥ k0 and s ∈ S∞, there is no cut-off of positive values in uks . We thus obtain

uk+l+1
S∞

= rS∞ + [U (k+l) · uk+l]S∞ (Remark 6)

= rS∞ + U
(k+l)
S∞

· uk+l
S∞

+ U
(k+l)
S∞,Sfin

· uk+l
Sfin

(by (B.4))

≥ −ρ∗ + U
(k+l)
S∞

· uk+l
S∞

+ U
(k+l)
S∞,Sfin

· a (definition of a and ρ∗)

≥ −ρ∗ + U
(k+l)
S∞

· (U (k+l,k)
S∞

· ukS∞ + a− lρ∗) + U
(k+l)
S∞,Sfin

· a
(induction hypothesis)

≥ U (k+l+1,k)
S∞

· ukS∞ + (U
(k+l)
S∞

+ U
(k+l)
S∞,Sfin

) · a− (l + 1)ρ∗ (rearranging)

≥ U (k+l+1,k)
S∞

· ukS∞ + a− (l + 1)ρ∗. (U (k+l) is stochastic)

It now suffices to define bl
def
= a− lρ∗, and take the norm in (B.5):

‖uk+l
S∞
‖∞ = max

s∈S∞
(−uk+l

s) (norm)

≤ max
s∈S∞

(U
(k+l,k)
S∞

· (−ukS∞) + bl) (by (B.5))

= ‖U (k+l,k)
S∞

· (−ukS∞)‖∞ + bl

≤ ‖U (k+l,k)
S∞

‖∞ · ‖ukS∞‖∞ + bl. (sub-multiplicativity)

Lemma 19. Let b ≥ 0, and let (xm)m∈N and (cm)m∈N be non-negative real
sequences. If xm → ∞ as m → ∞, and, for every m ≥ 0, xm+1 ≤ cmxm + b
and cm ≤ 1, then it holds that supm≥0 cm = 1.

Proof. Assume toward a contradiction that there exists θ < 1 such that, for
every m, cm ≤ θ. As xm → ∞, there exists m0 such that, for every m ≥ m0,
it holds that xm > b/(1 − θ), and hence that xm+1/xm ≤ cm + b/xm < θ +
b/(b/(1− θ)) = 1. This yields that, from the index m0, the sequence (xm)m≥m0

is decreasing, and thus cannot go to +∞, a contradiction.

Lemma 20. If S∞ 6= ∅, then there exists a set E ⊆ S∞ and indices j > i ≥ k0

such that U
(i,j)
E is stochastic.

57

Proof. Given a subset of states A ⊆ S, and a S×S stochastic matrix P , we define

Reach(A,P)
def
= {s′ | ∃s ∈ A .Ps,s′ > 0}. Note that PE is stochastic if and only if

Reach(E,P) ⊆ E, and further that Reach(Reach(A,P), P ′) = Reach(A,P ·P ′).
Let l = 2|S|, s ∈ S and k ∈ N. Consider the sets Reach({s}, U (k+l,k+l)),
Reach({s}, U (k+l,k+l−1)), . . ., Reach({s}, U (k+l,k)). By the pigeonhole princi-
ple, there are at least two indices i, j with k ≤ i < j ≤ k + l such that
Reach({s}, U (k+l,j)) = Reach({s}, U (k+l,i)), and we denote this common set
by Es,k. We thus have that

Reach(Es,k, U
(j,i)) = Reach(Reach({s}, U (k+l,j)), U (j,i))

= Reach({s}, U (k+l,j) · U (j,i))

= Reach({s}, U (k+l,i))

= Es,k.

Hence U
(j,i)
Es,k

is stochastic. It now suffices to prove that Es,k ⊆ S∞ for some

s ∈ S∞ and k ≥ k0. Assume for the sake of contradiction that Es,k ∩ Sfin 6= ∅
for every s ∈ S∞ and k ≥ k0. By definition of Es,k there exists i such that

Es,k = Reach({s}, U (k+l,i)) and hence such that U
(k+l,i)
s,Sfin

6= 0. Now recall that

U
(i,k)
Sfin

is stochastic, since every successor of a state in Sfin is in Sfin. We deduce

that U
(k+l,k)
s,Sfin

= U
(k+l,i)
s,Sfin

· U (i,k)
Sfin

6= 0. The matrix U (k+l,k) is the product of l
matrices, each of which has entries either zero or greater than pmin, the minimal
probability on edges of the PA M. Therefore, coefficients of U (k+l,k) are either

zero or greater than plmin, and so ‖U (k+l,k)
s,Sfin

‖∞ ≥ plmin. Since U (k+l,k) is stochas-

tic, its row-sum are equal to one, that is,
∑
s′∈Sfin

U
(k+l,k)
s,s′ +

∑
s′∈S∞ U

(k+l,k)
s,s′ = 1,

for every s ∈ S and k ≥ 0. This implies that
∑
s′∈S∞ U

(k+l,k)
s,s′ ≤ 1 − plmin, for

every s ∈ S and k ≥ 0. We let cm
def
= ‖U (k0+lm+l,k0+lm)

S∞
‖∞, and have by

the above discussion that supm cm ≤ 1 − plmin < 1, to which we now derive a

contradiction. Let xm
def
= ‖uk0+lm

S∞
‖∞, for which we have, by Lemma 18, that

xm+1 ≤ cm · xm + bl. We now use Lemma 19 to obtain supm cm = 1, a contra-
diction.

We now define Player � strategies and the expected energies they induce in
terms of matrices. We consider ultimately periodic sequences of matrices that
after a finite prefix n keep repeating the same p elements in a loop. Formally,
an ultimately periodic sequence (P [m])m∈N with prefix n and period p is such
that the mth element is equal to the element of index m mod (n, p) (that is,
P [m] = P [m mod (n,p)]), where

m mod (n, p)
def
=

{
m if m ≤ n + p− 1

n + (m− n mod p) otherwise.

A stochastic matrix P conforms toM if, for every s ∈ S© and all s′ ∈ ∆(s), it
holds that Ps,s′ = ∆(s, s′). We define a finite strategy by an ultimately periodic

58

sequence of matrices (P [k])k∈N that conform to M: the memory is a counter
m ≤ n+p that is updated at every step from m to m+1 mod (n, p); and in state

s and memory m the choice function selects s′ with probability P
[m]
s,s′ . To express

several steps of the strategy, we introduce the interval matrices P [m,m+l] =
P [m] · · ·P [m+l−1] with P [m,m] = IS , and the corresponding cumulative matrices
P̂ [m,m+l] =

∑l−1
q=0 P

[m,m+q] with P̂ [m,m] = 0.

For every step k ≥ 0 and memory m, we define a vector ek(m)(r), where the

entry for s is defined as eks,m in the PA with reward structure r, that is, the
expected energy for r after k steps at state (s,m) of the induced DTMC.

Lemma 21. Given a strategy based on an ultimately periodic matrix with prefix
n and period p, it holds that el(m mod (n,p))(r) = P̂ [m,m+l] · r, for all l ≥ 0 and
m ≥ 0.

Proof. We show this statement by induction on l. The base case for l = 0 is
satisfied. Now assume the statement holds for l, and we show for l + 1. As the
strategy with memory m mod (n, p) plays according to the matrix P [m], and
increments its memory to m+ 1 mod (n, p), it holds that

el+1
(m mod (n,p))(r) = r + P [m] · el(m+1 mod (n,p))(r)

= P [m] · P̂ [m+1,m+l+1] · r
= P̂ [m,m+l+1] · r.

We now show that the strategy based on ultimately periodic matrices is able
to decrease the expected energy in the periodic phase by a nonzero amount
every p number of steps.

Lemma 22. Given a strategy based on an ultimately periodic matrix with prefix

n and period p, and a set E such that A = P
[n,n+p]
E is stochastic, then, for all

j ≥ 0, it holds that [ejp(n)(r − ε)]E =
∑j−1
k=0A

k · [P̂ [n,n+p] · r]E − jpε.

Proof. Note first that P [n,n+jp] = (P [n,n+p])j , that P̂ [n,n+jp] · 1 = jp, and that

P̂ [n,n+jp] =
∑j−1
k=0(P [n,n+p])k ·P̂ [n,n+p]. Since the restriction of P [n,n+p] to the set

E is stochastic, it holds, for every vector x, that [P [n,n+p] · x]E = P
[n,n+p]
E · xE .

We apply Lemma 21 with l = jp and m = n, and thus get, for all j ≥ 0, that

[ejp(n)(r − ε)]E = [P̂ [n,n+jp] · (r− ε)]E

=

[
j−1∑
k=0

(P [n,n+p])k · P̂ [n,n+p] · r− jpε

]
E

=

j−1∑
k=0

(P
[n,n+p]
E)k · [P̂ [n,n+p] · r]E − jpε.

We now describe a situation where the cut-off of positive values in the defi-
nition of uk does not occur.

59

Lemma 23. For k ≥ k0, and E ⊆ S∞ such that U
(k+p,k)
E is stochastic,

uk+p
E = [Û (k+p,k) · r]E + U

(k+p,k)
E · ukE . (B.6)

Proof. We show, by induction on l, the following more general statement: for
all l ≥ 0, k ≥ k0, and E,E′ ⊆ S∞ such that E′ = Reach(E,U (k+l,k)), it holds
that

uk+l
E = [Û (k+l,k) · r]E + U

(k+l,k)
E,E′ · ukE′ .

The base case for l = 0 is straightforward. Now suppose that the result holds
for l, and we show it for l + 1. Let k ≥ k0 and E,E′ ⊆ S∞ such that
E′ = Reach(E,U (k+l+1,k)), and let E′′ = Reach(E,U (k+l+1,k+1)). Note that
Reach(E′′, U (k)) = E′ ⊆ S∞, and hence that E′′ ⊆ S∞, since every predeces-
sor of a state in S∞ is in S∞. As k + 1 ≥ k0 and E′′ ⊆ S∞, it holds that

uk+1
E′′ = rE′′ + U

(k+1)
E′′,E′u

k
E′ , and hence we can conclude the proof by

uk+l+1
E = [Û (k+l+1,k+1) · r]E + U

(k+l+1,k+1)
E,E′′ · uk+1

E′′

= [Û (k+l+1,k+1) · r]E + U
(k+l+1,k+1)
E,E′′ · rE′′ + U

(k+l+1,k+1)
E,E′′ · U (k+1)

E′′,E′ · u
k
E′

= [Û (k+l+1,k) · r]E + U
(k+l+1,k)
E,E′ · ukE′ ,

where the first equality is due to the induction hypothesis.

We can now complete the proof of Proposition 5. We assume that S∞ 6= ∅.
By Lemma 20, there exists a set E ⊆ S∞, and indices k0 ≤ k < k+p, such that
Reach(E,U (k+p,k)) = E. By Lemma 23, it holds that uk+p

E = y + A · ukE with

y = [Û (k+p,k) · r]E and A = U
(k+p,k)
E .

We define Player � strategy σ based on ultimately periodic matrices U (k+p),
. . ., U (k+1) (involved in the definition of A). The prefix of this strategy ensures
that the set E is reachable from the initial states, and hence that the states of E
are in the induced DTMCMσ. We let P [0], . . . P [n−1] be matrices that conform
to M, such that E ∩ Reach(supp(ς), P [0,n−1]) 6= ∅; for instance, we can take
P [i] to be the matrix corresponding to choosing successors in Player � states
with uniform probability. Then we define the periodic phase with p matrices by
letting P [n+i] = U (k+p−i) for 0 ≤ i ≤ p− 1.

Note that P [n,n+p] = U (k+p,k) and y
def
= [Û (k+p,k) · r]E = [P̂ [n,n+p] · r]E .

Further, for states s ∈ E ∩ Reach(supp(ς), P [0,n−1]), we have that the state
(s, n) is in the induced DTMCMσ. We now show that ejp(s,n) → −∞ as j →∞,

and hence that the strategy σ spoils EE(r − ε). From Lemma 22 we have

[ejp(n)(r − ε)]E =
∑j−1
k=0A

k · y − jpε. It remains to show that the sequence∑j−1
k=0A

k · y is upper-bounded, in order to have convergence of ejp(s,n) toward

−∞. We have y = uk+p
E −A · ukE ≤ (I −A) · ukE , and thus(

j−1∑
i=0

Ai

)
·y ≤

(
j−1∑
i=0

Ai

)
· (I−A) ·ukE = (I−Aj) ·ukE ≤ −Aj ·ukE ≤ ‖ukE‖∞ ·1,

where we use for the last inequality that ‖Aj‖∞ = 1, since Aj is stochastic.

60

Appendix B.4. Proof of Lemma 4

Proof. Fix a Player � strategy σ for M. We first show by induction on k that
uks ≤ eks,m for every s and m. The base case for k = 0 is satisfied as eks,m = uks = 0.

Now assume that uks ≤ eks,m holds for some k and for every s, m, and we show
it holds for k + 1. In each Player � state s, we have

uk+1
s ≤ r(s) + min

t∈∆(s)
ukt (definition)

≤ r(s) +
∑

(t,m′)∈∆σ(s,m)

∆σ((s,m), (t,m′))ukt

≤ r(s) +
∑

(t,m′)∈∆σ(s,m)

∆σ((s,m), (t,m′))ekt,m′ (induction hypothesis)

= ek+1
s,m . (definition)

Since Player � can falsify EE(r), for every v0 there is (s,m) such that eks,m ≤ v0

and hence u∗s ≤ uks ≤ eks,m ≤ v0. As M is finite and v0 can be taken arbitrary
low, it means that there is one state for which u∗s = −∞, and thus S∞ 6= ∅.

Appendix B.5. Proof of Lemma 5

Proof. Instead of proving ∀σ .Gπ,σ |= ψ ⇒ ∀σ .Gπ,σ |= ϕ, we prove the stronger
statement ∀σ . (Gπ,σ |= ψ ⇒ Gπ,σ |= ϕ). Fix finite strategies π and σ. Let D =
Gπ,σ, which is a finite DTMC. By Lemma 15, the limit limN→∞

1
N+1 rewN (~r)

almost surely exists. For every N and path λ, we have | 1
N+1 rewN (~r)(λ)| ≤

maxs∈SD |~r(s)|, where the maximum is taken componentwise, and so we have

ED,s
[

lim
N→∞

1
N+1 rewN (~r)

]
= lim
N→∞

ED,s
[

1
N+1 rewN (~r)

]
(B.7)

by the Lebesgue dominated convergence theorem.

Proof of (i). By Theorem 3 it suffices to consider MD Player � strategies.
Assume that EE(~r) is satisfied. Fix a finite shortfall ~v0 such that, for all s ∈ SD,
it holds that

∀N ≥ 0 .ED,s[rewN (~r)] ≥ ~v0 (by assumption)

∀N ≥ 0 .ED,s[1
N+1 rewN (~r)] ≥ ~v0

N+1 (dividing by N + 1)

lim
N→∞

ED,s
[

1
N+1 rewN (~r)

]
≥ 0 (taking limits)

ED,s
[

lim
N→∞

1
N+1 rewN (~r)

]
≥ 0. (by (B.7))

From Lemma 15, whenever s is in a BSCC B of D (that is, PD,s(FB) = 1),
we have mp(~r)(B) = ED,s[limN→∞

1
N+1 rewN (~r)]. Therefore, for every BSCC B,

mp(~r)(B) ≥ ~0. Thus, again by Lemma 15, Pmp(~r) is satisfied.

Proof of (ii). Assume π is DU, and so, by Proposition 6, it suffices to consider
finite Player � strategies. Fix ε > 0. Assume that D |= Pmp(~r), and so, by

61

Lemma 15, rew(~r)(B) ≥ 0 for every BSCC B of D. Thus, for all states s ∈ SD,
we have

lim
N→∞

ED,s[1
N+1 rewN (~r)] ≥ ~0 (by (B.7))

∃Nε,s ≥ 0 .∀N ≥ Nε,s .ED,s[1
N+1 rewN (~r)] ≥ −~ε (definition of limit)

∀N ≥ 0 .ED,s[rewN (~r)] ≥ −(N + 1) · ~ε+ ~vs0

(fixing Nε,s and letting vs0,i
def
= min

N≤Nε,s
ED,s[rewN (ri)])

∀N ≥ 0 .ED,s[rewN (~r + ε)] ≥ ~vs0 ≥ ~v0. (letting v0,i
def
= min

s∈SD
vs0,i)

Since ~v0 is finite, D satisfies EE(~r + ~ε).

Appendix B.6. Proof of Lemma 6

Proof. Let fπ be an ε-consistent memory mapping for ~v0, and we write ~ms for

fπ(m, s). Let σ be a Player � strategy, let D def
= Gπ,σ, and let so be a state of

D, which has the form so = (po, ~mpo , n), where ~mpo is the mapped memory of
Player ♦. We show that ED,so [rewN (~r)] ≥ ~mpo −Nε. For this we show that the
memory of π is always above ~mpo−ED,so [rewN (~r)]−Nε, and, since this memory
is always non-positive, we get the desired result.

Let YN : ΩD → Rn be the random variable that assigns ~ms to a path
λ = s0s1 . . . for which sN = (s, ~ms, n). Since ED,so [YN] ≤ ~0 for all N ≥ 0, it is
sufficient to show, for all so, that

ED,so [YN] ≥ ~mpo − ED,so [rewN (~r)]−N · ε (B.8)

in order to conclude that ED,so [rewN (~r)] ≥ ~0, and thus that D satisfies EE(~r+~ε).
We show (B.8) by induction on the length N of paths ΩD. In the base

case, for N = 0, we have ED,so [Y0] = ~mpo , corresponding to the memory at
the initial state so. For the induction step, assume that ED,so [YN] ≥ ~mpo −
ED,so [rewN (~r)] − Nε. Let WN be the set of all finite paths of length N in D,
and we use the notation λ′ = λ(s, ~ms, n) for paths λ′ ∈WN . We have

ED,so [YN+1|λ′] =

∑
t πc(s,m)(t) ·

∑
m′ πu(m, t)(m′) · ~m′t if s ∈ S♦∑

t σc(s, n)(t) ·
∑

m′ πu(m, t)(m′) · ~m′t if s ∈ S�∑
t µ(t) ·

∑
m′ πu(m, t)(m′) · ~m′t if s = (a, µ) ∈ S©.

Therefore, by the ε-consistency of the memory mapping fπ, we have

ED,so [YN+1|λ′] ≥ ~ms − ~r(s)− ε. (B.9)

Further, evaluating expectations over paths in WN yields

ED,so [rewN+1(~r)]− ED,so [rewN (~r)] =
∑
λ′∈WN

~r(s) · PD,so(λ′) (B.10)

ED,so [YN] =
∑
λ′∈WN

PD,so(λ′) · ~ms. (B.11)

62

We can now conclude our induction step to establish (B.8) as follows:

ED,so [YN+1] =
∑
λ′∈WN

ED,so [YN+1|λ′] · PD,so(λ′) (law of total probability)

≥
∑
λ′∈WN

(~ms − ~r(s)− ε) · PD,so(λ′) (by equation (B.9))

= ED,so [YN]− (ED,so [rewN+1(~r)]− ED,so [rewN (~r)])− ε
(by equations (B.10) and (B.11))

≥ ~mpo − ED,so [rewN+1(~r)]− (N + 1) · ε. (induction hypothesis)

Appendix B.7. Proof of Proposition 8

We first recall concepts about fixpoints from [22]. Given a partially ordered
set C with a partial order �, and a set Y ⊆ C, an element x ∈ C is an upper
bound of Y if y � x for all y ∈ Y , and the supremum of Y is its least upper
bound, written supY . Given a map Φ : C → C, we say that x ∈ C is a fixpoint
of Φ if Φ(x) = x. We write fix(Φ) for the least fixpoint of Φ.

A nonempty subset D of an ordered set C is directed if, for every finite subset
F ⊆ D, an upper bound of F is in D. An ordered set C is a complete partially
ordered set (CPO) if supD exists for each directed subset D of C, and C has a
bottom element ⊥, which is the least element with respect to the order �. A
map Φ : C → C over a CPO C is Scott-continuous if, for every directed set D
in C, Φ(supD) = sup Φ(D). By Lemma 3.15 in [22], every continuous map is
order-preserving, meaning that Φ(x) � Φ(y) for all x, y ∈ C such that x � y.

Theorem 18 (Theorem 4.5 (ii) in [22], Kleene fixpoint theorem). Let C be a
CPO, and let Φ : C → C be a Scott-continuous map. The least fixpoint fix(Φ)
exists and is equal to supk≥0 Φk(⊥).

We now give more details on the set CM and show that it is a CPO. For

D ⊆ CM , the supremum supD is defined via [sup{X ∈ D}]s
def
=
⋂
X∈DXs for

all s ∈ S. The intersection of convex, closed, M -downward-closed sets is itself
convex, closed, and M -downward-closed, and so supD ∈ CM for any directed
set D. Hence, CM is a CPO.

Proof. The properties claimed in the proposition are consequences of Scott con-
tinuity of FM and the Kleene fixpoint theorem, (Theorem 18). To show Scott
continuity, it is sufficient to show that, for every countable directed set D, we
have that [FM (supD)]s = sup([FM (D)]s) for all s ∈ S. Take any countable
directed set D = {Xk ∈ CM | k ≥ 0} ⊆ CM , and any s ∈ S. We first show
intermediate results about this directed set D.

Lemma 24. For finite T ⊆ S, conv(
⋃
t∈T

⋂
k≥0X

k
t) =

⋂
k≥0 conv(

⋃
t∈T X

k
t).

Proof. We first define Y k
def
= conv(

⋃
t∈T X

k
t), and let Y∞

def
=
⋂
k≥0 Y

k. The sets

Xk
t are compact and convex, and so their convex hull Y k is also compact and

63

convex, by Theorem 17.2 in [49]. Moreover, Y k is M -downward closed, and so,
for every k, Y k ∈ Pc,M .

We now show the equality of the lemma. For the ⊆ direction, take ~y ∈
conv(

⋃
t∈T

⋂
k≥0X

k
t). Then ~y =

∑
t∈T µ(t) · ~xt for some distribution µ ∈ D(T)

and some ~xt ∈
⋂
k≥0X

k
t . Hence, for every k, ~y ∈ Y k, and so ~y ∈ Y∞.

For the ⊇ direction, take ~y∞ ∈ Y∞. We note that, for every k ≥ 0, ~y∞ =∑
t∈T µk(t) ·~xkt for some distribution µk ∈ D(T) and some vector ~xkt ∈ Xk

t . The

sets Xk are in Pc,M , and thus compact, and so one can extract a subsequence of
indices ik such that µik and ~xikt converge toward limits, which we respectively
denote µ and ~xt for every t ∈ T . Moreover, limk→∞ ~x

ik
t = ~xt ∈ Y lt for every

l ≥ 0 as Y l is compact. Hence, ~xt ∈
⋂
k≥0X

k
t for every t and we conclude

~y∞ =
∑
t∈T µ(t) · ~xt ∈ conv(

⋃
t∈T

⋂
k≥0X

k
t).

Lemma 25. For finite T ⊆ S,
⋂
t∈T

⋂
k≥0X

k
t =

⋂
k≥0

⋂
t∈T X

k
t .

Proof. Straightforward reordering of countable intersections.

Lemma 26. For finite T ⊆ S,
∑
t∈T µ(t)×

⋂
k≥0X

k
t =

⋂
k≥0

∑
t∈T µ(t)×Xk

t .

Proof. The ⊆ direction is straightforward. For the ⊇ direction, take ~x ∈⋂
k≥0

∑
t∈T µ(t) × Xk

t , and so, for all k ≥ 0, there exist vectors ~xkt ∈ Xk
t for

t ∈ T , such that ~x =
∑
t∈T µ(t) · ~xkt . We extract a subsequence of indices ik

such that ~xikt tends to a limit ~xt, which necessarily lies in
⋂
k≥0X

k
t , by the same

arguent as in Lemma 25. Hence ~x =
∑
t∈T µ(t)~xt ∈

∑
t∈T µ(t)×

⋂
k≥0X

k
t .

We now continue the proof of Proposition 8 by considering three cases. For
s ∈ S♦, we have

[FM (sup(D))]s
def
= BoxM ∩ dwc(~r(s) + conv(

⋃
t∈∆(s)

⋂
k≥0X

k
t))

= BoxM ∩ dwc(~r(s) +
⋂
k≥0 conv(

⋃
t∈∆(s)X

k
t)) (Lemma 24)

=
⋂
k≥0(BoxM ∩ dwc(~r(s) + conv(

⋃
t∈∆(s)X

k
t)))

def
= [supFM (D)]s.

For s ∈ S�, we have

[FM (sup(D))]s = BoxM ∩ dwc(~r(s) +
⋂
t∈∆(s)

⋂
k≥0X

k
t)

= BoxM ∩ dwc(~r(s) +
⋂
k≥0

⋂
t∈∆(s)X

k
t) (Lemma 25)

=
⋂
k≥0(BoxM ∩ dwc(~r(s) +

⋂
t∈∆(s)X

k
t))

def
= [supFM (D)]s.

64

Finally, for s ∈ S©, we have

[FM (sup(D))]s
def
= BoxM ∩ dwc(~r(s) +

∑
t∈∆(s) ∆(s, t)×

⋂
k≥0X

k
t)

= BoxM ∩ dwc(~r(s) +
⋂
k≥0

∑
t∈∆(s) ∆(s, t)×Xk

t) (Lemma 26)

=
⋂
k≥0(BoxM ∩ dwc(~r(s) +

∑
t∈∆(s) ∆(s, t)×Xk

t))

def
= [supFM (D)]s.

This concludes the proof of Scott continuity for FM . Then, by Theorem 18,
the least fixpoint exists, and is equal to fix(FM) =

⋂
k≥0 F

k
M (⊥M).

Appendix B.8. Proof of Proposition 9

Proof. We first show two intermediate lemmas. In Lemma 27, we show that we
can consider the fixpoints fix[FM,M]s for a PAM, and in Lemma 28 we reduce
the problem to the study of one-dimensional expected truncated energy, which
we used earlier in Proposition 5 and Lemma 4.

Lemma 27. Given a game G, a DU strategy π and a constant M , if [fix(FM,Gπ)]s 6=
∅ for all s ∈ SGπ , then [fix(FM,G)]s 6= ∅ for every s ∈ supp(ς).

Proof. We first describe how to compare elements of the CPOs CM,G and CM,Gπ

associated with FM,Gπ and FM,G , respectively. Given X ∈ CM,G and Y ∈ CM,Gπ

we say that Y � X if the following conditions are satisfied:{
Y(s,m) ⊆ Xs for (s,m) ∈ SGπ with s ∈ S� ∪ S©;∑
s′∈∆(s) πc(s,m)(s′)Y((s,s′),m) ⊆ Xs for s ∈ S♦ and m such that ((s, s′),m) ∈ SGπ for some s′ ∈ S©

We now show that fix(FM,Gπ) � fix(FM,G). Recall that fix(FM,Gπ) = ∩k∈NY k

and fix(FM,G) = ∩k∈NXk where Y k
def
= F kM,Gπ (⊥M) and Xk def

= F kM,Gπ (⊥M). It

hence suffices to show by induction that, for every k ∈ N, Y k � Xk.
For k = 0, the property holds as all sets involved are equal to BoxM . We

now assume that the property is proved at rank k− 1 and show that it holds at
rank k.

Let s ∈ S♦ and m such that ((s, s′),m) ∈ SGπ for some s′ ∈ S©. It holds
that

∑
s′∈∆(s)

πc(s,m)(s′)Y k((s,s′),m) =
∑

s′∈∆(s)

πc(s,m)(s′)BoxM ∩ dwc
(
~r(s) + Y k−1

(s′,πu(m,s′))

)
⊆

∑
s′∈∆(s)

πc(s,m)(s′)BoxM ∩ dwc
(
~r(s) +Xk−1

s′

)

⊆ conv

 ⋃
s′∈∆(s)

BoxM ∩ dwc
(
~r(s) +Xk−1

s′

)
= Xk

s .

65

Let (s,m) ∈ Gπ with s ∈ S�. It holds that

Y k(s,m) = BoxM ∩ dwc

~r(s) +
⋂

t∈∆(s)

Y k−1
(t,πu(m,t))

⊆ BoxM ∩ dwc

~r(s) +
⋂

t∈∆(s)

Xk−1
t

= Xk

s .

Let (s,m) ∈ Gπ with s ∈ S©. It holds that

Y k(s,m) = BoxM ∩ dwc (~r(s) + E1 + E2)

where
E1

def
=

∑
s′∈∆(s)∩S�

µ(s′)Y k−1
(s′,πu(m,s′))

and

E2
def
=

∑
s′∈∆(s)∩S♦

µ(s′)
∑

s′′∈∆(s′)

πc(s
′, πu(m, s′))(s′′)Y k−1

(s′s′′,πu(m,s′)).

Applying the induction hypothesis yields

Y ks,m ⊆ BoxM ∩ dwc

~r(s) +
∑

s′∈∆(s)

µ(s′)Xk−1
s′

 = Xk
s .

We have shown by induction that, for every k ∈ N, Y k � Xk. Thus fix(FM,Gπ) �
fix(FM,G). The conclusion of the lemma follows.

Lemma 28. Given a PA M with rewards ~r and a state s, if fix[FM,M]s = ∅
for every M <∞, then there exists i such that u∗s = −∞ for the reward ri.

Proof. Fix a PA M = 〈S, (S�, S©), ς,A, χ,∆〉. We prove the lemma by con-
traposition: given a state s0, we assume that u∗s0 > −∞ for rewards ri for
all i, and show that there is an M for which fix[FM,M]s0 6= ∅. We consider a
multi-dimensional version of the truncated energy sequence defined in (2), and
get that the fixpoint of the multi-dimensional truncated energy, as k →∞, is

~u∗s =

{
min(~0, ~r(s) + mint∈∆(s) ~u

∗
t) if s ∈ S�

min(~0, ~r(s) +
∑
t∈∆(s)∆(s, t)~u∗t if s ∈ S©,

where the minima are taken componentwise.
Observe that, for a state s, if ~u∗s has no infinite coordinate, then neither

do its successors. As all states of the PA are reachable from the initial state,
then for every state s, ~u∗s has no infinite coordinate. Therefore, there is a global

66

bound M , such that ~u∗s ∈ BoxM for every s. We now show that Y ∈ CM ,

defined by Ys
def
= BoxM ∩ dwc(~u∗s), is a fixpoint of FM,M, and hence that the

least-fixpoint of FM,M is non-empty. Taking the downward-closure gives

dwc(~u∗s) =

{
R≤0 ∩ (~r(s) +

⋂
t∈∆(s) dwc(~u∗t)) if s ∈ S�

R≤0 ∩ (~r(s) +
∑
t∈∆(s) ∆(s, t)× dwc(~u∗t)) if s ∈ S©,

and hence

Ys =

{
BoxM ∩ (~r(s) +

⋂
t∈∆(s) dwc(~u∗t)) if s ∈ S�

BoxM ∩ (~r(s) +
∑
t∈∆(s) ∆(s, t)× dwc(~u∗t)) if s ∈ S©.

Since ~u∗t ∈ BoxM , Yt is nonempty, and we have

~r(s) +
⋂
t∈∆(s) dwc(~u∗t) = dwc(~r(s) +

⋂
t∈∆(s) Yt) for s ∈ S�

~r(s) +
∑
t∈∆(s) ∆(s, t)× dwc(~u∗t) = dwc(~r(s) +

∑
t∈∆(s) ∆(s, t)× Yt) for s ∈ S©.

This implies that Y = FM,M(Y), and hence that fix[FM,M]s0 v Ys0 . We thus
conclude from Ys0 6= ∅ that fix[FM,M]s0 6= ∅.

We can now conclude the proof of Proposition 9. Fix a game G and ε > 0. We
show the contrapositive: if, for every M , [fix(FM,G)]s = ∅ for some s ∈ supp(ς),
then EE(~r − ε) is not achievable by a finite strategy (against finite strategies).
Assume that, for every M , [fix(FM,G)]s = ∅, for some s ∈ supp(ς), and let π
be an arbitrary finite DU strategy. By Lemma 27, [fix(FM,Gπ)]s = ∅ for some
s ∈ SGπ . Thus by Lemma 28 there is a dimension i such that u∗s = −∞ for some
s ∈ SGπ for the reward ri, and hence S∞ 6= ∅. We conclude, using Proposition 5,
that Player � can spoil EE(r − ε) in the PA Gπ. We have thus shown the
contrapositive, that is, there is no winning strategy for Player ♦ to achieve
EE(~r − ε), whenever, for every M , [fix(FM,G)]s = ∅ for some s ∈ supp(ς).

Appendix B.9. Proof of Proposition 10

The proof we use a Ramsey like theorem (Theorem 19). We first recall the
necessary definitions. A graph G = (V,E) consists of a finite set V of nodes
and a set E ⊆ V × V of edges. A graph is linearly-ordered complete, if for some
strict linear order � on V , (v, w) ∈ E if and only if v � w. An n-colouring of
a graph (V,E) is a function E → {1, . . . , n}, assigning one of n possible colours
to each edge. A monochromatic directed path of length N is a sequence of nodes
v1, . . . , vN such that (vi, vi+1) ∈ E for all 1 ≤ i < N , and such that each node
vi is assigned the same colour.

Theorem 19 (Theorem 4.5.2 of [51]). Let G = (V,E) be a linearly-ordered
complete graph over m nodes, with an n-colouring of its edges. Then G contains
a monochromatic directed path of length b

√
m/n− 2c − 1.

We first consider a single state in Lemma 29, and then use an inductive argu-
ment on the number of states to find the bound for all states in Proposition 10.

67

Y k

Y k+1+ε

Y k+1

~xk

r1

r2
−M

−M

(a) The hatched region is
Y k ∩ (BoxM\dwc(Y k+1 + ε)), where
~xk has to lie.

~x0

~x1

~x2

~x3

~x4...

ε

r1

r2
−M

−M

(b) The red (solid) and blue (dashed) ar-
rows represent distance greater than ε in
dimensions r1 and r2 resp.

Figure B.16: Illustrations for Lemma 29 for two dimensions r1 and r2.

Lemma 29. Let (Y k)k∈N be a sequence over Pc,M that is non-decreasing for

v. For every I ⊆ N such that |I| ≥ k∗ def
= n · ((dMε e+ 1)2 + 2), there exists k ∈ I

such that Y k+1 + ε v Y k.

Proof. Fix a sequence (Y k)k∈N non-decreasing for v, and fix I ⊆ N such that
|I| ≥ k∗. We assume towards a contradiction that for every k ∈ I, Y k+1 + ε 6v
Y k. Consider the linearly-ordered complete graph over nodes I, and with edges
(j, k) for j < k and j, k ∈ I. We define below an n-colouring c of this graph where
colours represent dimensions of the M -polyhedrals, see Figure B.16 (b). Note
first that, if two sets satisfy B 6v A, then there exists ~x ∈ A \ dwc(B). Hence,
the hypothesis Y k+1 +ε 6v Y k for every k ∈ I implies the existence of a sequence
(~xk)k∈I ∈ Y k \dwc(Y k+1 +ε) of points, illustrated in Figure B.16 (a). We show
that, for all j < k, there exists a coordinate c(j, k) for which xjc(j,k)−x

k
c(j,k) > ε

and define c(j, k) as the colour of the edge (j, k). Assume otherwise, that is,
~xj−~ε ≤ ~xk for j < k. Then ~xj−~ε ∈ dwc(Y k), and, since Y k v Y j+1, we deduce
~xj ∈ dwc(Y j+1 + ~ε), a contradiction to the definition of the sequence (~xk)k≤m.
By Theorem 19, there exists a monochromatic path j1 → j2 → · · · → jl of length
l = b

√
|I|/n− 2c − 1 ≥ dMε e, and thus by denoting c the colour of this path it

holds that xj1c > xj2c + ε > . . . > xjlc + lε ≥ −M + M
ε ε ≥ 0, a contradiction.

Lemma 30. Let U be a finite set, let P be a predicate over U × N, and let K
be a positive integer. The implication “P1 ⇒ P2” holds, where

P1 “For every s ∈ U and every I ⊆ N such that |I| ≥ K, there exists i ∈ I,
such that P (s, i) holds.”

68

P2 “For every I ⊆ N such that |I| ≥ K |U |, there exists i ∈ I such that, for
every s ∈ U , P (s, i) holds.“

Proof. We show the result by induction on the cardinality of U . If U is empty
the result is true. Now assume that the implication “P1⇒ P2” holds for sets U ′

of cardinality c, and let U = U ′∪{t} be of cardinality c+1. Let P be a predicate
over U ×N and let K be a positive integer, such that P1 is satisfied for U . Let
I ⊆ N such that |I| ≥ K |U |. We want to find an index i such that P (s, i) holds
for all s ∈ U . We partition I into K parts I1, . . . , IK , each containing at least
K |U |−1 elements. Since P1 is satisfied for U , it is also satisfied for U \ {t}, and
so, by the induction hypothesis, for every Ik there is an index ik ∈ Ik such that,
for every s ∈ U \ {t}, P (s, ik) holds. The set {i1, . . . , iK} contains K elements
and hence we can apply P1 (which holds for U by assumption), and extract one
i such that also P (t, i) is true. Hence, i is such that for every s ∈ U , P (s, i) is
true, concluding the induction step.

We can now conclude the proof of Proposition 10.
Fix M and ε > 0. Let G be a game with state space S. Let (Xk)k≥0 be

a sequence over CM that is non-decreasing for v. We apply Lemma 30 with
U = S, K = k∗, and with the predicate Xk+1

s + ε v Xk
s for P , noting that P1

is satisfied by Lemma 29, and that P2 is the statement we set out to prove.

Appendix B.10. Proof of Lemma 7

Proof. Let X ∈ CM such that FM (X) + ε v X and [FM (X)]s 6= ∅ for every
s ∈ supp(ς). We now show that the strategy constructed in Section 3.4.3 is well-
defined. First note that s ∈ TX for every s ∈ supp(ς), and, if s ∈ TX∩(S�∪S©),
then, for every t ∈ succ(s), [FM (X)]t + ε v Xt 6= ∅, and hence t ∈ TX .

For any s ∈ TX , depending on the type of s (i.e. Player ♦, Player �, or move),
we define an auxiliary set Ys without the cut-off by BoxM . We then show that
we can find the required distributions α and β, and the extreme points for every
point in Ys, and prove that for all extreme points ~p of Xs we have ~p − ε in Ys
for k ≥ 0, allowing us to show well-definedness of the strategy. Take s ∈ TX .

• Case s ∈ S♦. Let Ys
def
= ~r(s) + conv(

⋃
t∈∆(s)∩TX Xt). Take any ~p ′ ∈ Ys.

There are distributions α ∈ D(∆(s) ∩ TX), βt ∈ D([1, n]), and points
~q ti ∈ C(Xt) for t ∈ ∆(s)∩TX , such that

∑
t α(t) ·

∑
i β

t(i) · ~q ti ≥ ~p ′−~r(s).

• Case s ∈ S�. Let Ys
def
= dwc(~r(s) +

⋂
t∈∆(s)Xt). Take any ~p ′ ∈ Ys. For

any t ∈ ∆(s), there are distributions βt ∈ D([1, n]) and points ~q ti ∈ C(Xt)
such that

∑
i β

t
i · ~q ti ≥ ~p ′ − ~r(s).

• Case s = (a, µ) ∈ S©. Let Ys
def
= ~r(s) +

∑
t∈supp(µ) µ(t) × Xt. Take any

~p ∈ Ys. Due to the Minkowski sum, there are distributions βt ∈ D([1, n])
and points ~q ti ∈ C(Xt) such that

∑
t∈supp(µ) µ(t) ·

∑
i β

t
i · ~q ti ≥ ~p ′ − ~r(s).

69

Note that, if two sets satisfy A v B, they also satisfy A−ε v B−ε. We have
FM (X) + ε v X, and so dwc(Ys) ∩BoxM = [FM (X)]s v Xs − ~ε, for all s ∈ TX .
Then, for any point ~p ∈ C(Xs), it holds that ~p − ε ∈ dwc(Ys) ∩ BoxM . Hence,
we can find for ~p ′ = ~p − ~ε the corresponding distributions and extreme points
to construct the strategy π, together with the memory mapping fπ, which is
ε-consistent for ~q s0 ≥ −M .

Appendix C. Proofs of results of Section 4

Appendix C.1. Proof that expected ratio rewards are globally-bounded

Lemma 31. ratio(r/c) is integrable and globally bounded by B
def
= maxS r(s)/cmin.

Proof. Fix two strategies π, σ. The function |ratio(r/c)| is non-negative and
measurable, so the quantity Eπ,σG (|ratio(r/c)|) is well-defined in R≥0 ∪ {+∞}.
We show that this quantity is finite and bounded by B independently of π, σ.

We let ρ∗ = maxS r(s) and use that, for every N , rewN (r)
N+1 ≤ ρ∗. Hence,

Eπ,σG (|ratio(r/c)|) = Eπ,σG

(
limN→∞

|rewN (r)(λ)|
1 + rewN (c)(λ)

)
≤ ρ∗Eπ,σG

(
limN→∞

N + 1

1 + rewN (c)(λ)

)
.

Note that for a sequence (xN)N≥0 of positive numbers it holds that

limN→∞
1

xN
=

1

limN→∞xN
≤ 1

limN→∞xN
.

This implies that almost surely

limN→∞
N + 1

1 + rewN (c)(λ)
≤ 1

limN→∞

(
1+rewN (c)(λ)

N+1

) =
1

mp(c)(λ)
≤ 1

cmin
.

Hence, Eπ,σG (|ratio(r/c)|) ≤ maxS r(s)/cmin as expected.

Appendix C.2. Proof of Theorem 9

Proof. Consider ~u ∈ Pareto(ψ), then the vector ~u − ε/4 is achievable. Using
Theorem 8, there exists a vector ~y ∈ RN with every ~yi non-negative and non-
null such that

∧n
i=1 E

π,σ
G [~yi ·~%i] ≥ ~yi ·(~ui−ε/4) is achievable. Up to dividing each

~yi by ‖~yi‖∞ we assume that ‖~yi‖∞ = 1. Let ~x be such that ~x− ε/(4B) ≤ ~y ≤ ~x
and such that each coordinate of ~x is multiple of ε/(4B). It remains to show
that

∧n
i=1 E

π,σ
G [~xi · ~%i] ≥ ~xi · ~ui − ε and that ~x ∈ Grid. Fix i ≤ n, we first note

that |(~xi − ~yi) · ~%i| ≤ ‖~xi − ~yi‖∞B ≤ ε/4. Hence

|Eπ,σG [(~xi − ~yi) · ~%i]| ≤ Eπ,σG [|(~xi − ~yi) · ~%i|] ≤ Eπ,σG [ε/4] = ε/4.

70

and then

Eπ,σG [~xi · ~%i] ≥ Eπ,σG [~yi · ~%i]− ε/4
≥ ~yi · (~ui − ε/4)− ε/4
≥ (~xi − ε/(4B)) · (~ui − ε/4)− ε/4
≥ ~xi · ~ui − (ε/4)(‖~xi‖∞ + ‖~ui‖∞/B)− ε/4
≥ ~xi · ~ui − ε.

The last inequality is justified by ‖~ui‖∞ ≤ B and ‖~xi‖∞ ≤ ‖~yi‖∞ + ε/(4B) ≤
1 + ε/(4B) ≤ 2. It also holds that ‖~xi‖∞ ≥ ‖~yi‖∞ − ε/(4B) ≥ 1− ε/(4B), and
hence ~x ∈ Grid.

Appendix C.3. Proof of Theorem 10

Proof. Take ~u an approximable target for
∧n
i=1

∨m
j=1 E[%i,j] ≥ ui,j . Then we

apply Theorem 9 with ε/2. Thus one can find a weight vector ~x ∈ Grid such that
~x·n(~u−ε/2) ∈ Pε/2(~x). For every i, ~xi has a positive component which is at least

ε/(8B), and hence ~x·nε/2 ≥ ε′, where we define ε′
def
= ε2/(16B). By assumption,

one can synthesise an ε′-optimal strategy π for E(~x ·n ~%)(~x ·n (~u−ε/2)), meaning
that π is winning for ~x ·n (~u − ε/2) − ε′. By definition of ε′ it holds that
~x ·n (~u− ε/2)− ε′ ≥ ~x ·n (~u− ε/2)− ~x ·n ε/2 = ~x ·n (~u− ε). Thus, π is winning
for E(~x ·n ~%)(~x ·n (~u− ε)), and hence for

∧n
i=1

∨m
j=1 E[%i,j] ≥ ui,j − ε.

Appendix C.4. Proof of Theorem 11

Proof. By Proposition 2 and Remark 1, ϕ~x implies
∧n
i=1 E(ratio(~xi · ~ri/ci)) ≥

~xi · ~ui. We need to consider only pairs of finite strategies as the statements are
for finite Player ♦ strategies winning against finite Player � strategies (we recall
that ϕ~x is Player �-positional by Theorem 3). Fix two finite strategies π, σ, then
the induced DTMC Gπ,σ is finite. Hence, by Proposition 13, ratio(~xi · ~ri/ci) =
~xi ·ratio(~ri/ci) and then Eπ,σG (ratio(~xi ·~ri/ci) = Eπ,σG (~xi ·ratio(~ri/ci). Now we can
apply Theorem 8 and deduce that π is winning for ψ against finite strategies
whenever it is winning for ϕ~x, where cmin is a bound such that for every i it holds
that mp(ci) ≥ cmin almost surely under any pair of strategies. Let ε > 0 and

ε′
def
= ε·cmin ·min(~xi ·~xi/‖~xi‖∞). Let π, σ be two finite strategies. Now, note that

almost surely ε′ ≤ (~xi ·~xi) ·mp(ci) ·ε/‖~xi‖∞. Hence mp(~xi ·~ri− (~xi ·~ui)ci) ≥ −ε′
implies mp(~xi · ~ri − (~xi · (~ui − (ε/‖~xi‖∞)~xi))ci) ≥ 0. Thus, if π is ε′-optimal for
ϕ~x then it is winning for ψ with the targets ui,j − (xi,j/‖~xi‖∞) · ε, and hence
with the ε-optimal targets ui,j − ε.

Appendix C.5. Proof of Lemma 9

Proof. If Pmp(~r) then Emp(~r) by Remark 1. We show the other direction by
contraposition. If Pmp(~r) does not hold in a PA M with a single MEC, then
there exists a finite strategy σ such that PσM(mp(ri) < 0) > 0 for some i.
By Lemma 15, there exists a BSCC B in the induced DTMC Mσ such that
mp(r)(B) < 0. By Lemma 2, the set of states of the PA corresponding to

71

the BSCC, formally given by BM
def
= {s | ∃m . (s,m) ∈ B}, is reachable with

probability one by an MD strategy from all states in M. Hence, the strategy
σ′ that first reaches BM and then plays as σ to form the BSCC B is finite and
induces a DTMC with a single BSCC B′ in which the mean-payoff is mp(r)(B′) =
mp(r)(B) < 0. By Lemma 15, we have Pσ′M(mp(r) = mp(r)(B)) = Pσ′M(FB) = 1.

Thus Pσ′M(mp(r) < 0) = 1, and hence EσM[mp(ri)] < 0. We conclude that
Emp(~r) does not hold when Pmp(~r) does not.

Appendix C.6. Proof of Lemma 10

Proof. We first show that in the definition of ~z Ei
def
= mint∈SE infσ EσE,t[mp(ri)],

the minimum is reached for every state of the MEC.

Lemma 32. Given a MEC E, and an index i, the value infσ EσE,t[mp(ri)] does

not depend on t, and is hence equal to ~z Ei .

Proof. Consider two states t, t′ of a MEC E . Consider a strategy σ in the PA
Et. Consider the strategy σ′ in Et′ that first plays memoryless deterministic to
reach t with probability 1 (it is possible in a MEC) and then switches to σ as
soon as t is reached for the first time. Then Eσ′E,t′ [mp(ri)] = EσE,t[mp(ri)]. Hence,

for every t, t′, infσ′ Eσ
′

E,t′ [mp(ri)] ≤ infσ EσE,t[mp(ri)]. Reversing role of t, t′ leads
to an equality.

We can now proceed to the proof of Lemma 10.
Let σ be an arbitrary Player � strategy. Given a MEC E = (SE ,∆E), we

denote by E(k) the set of paths that stay forever in E after the first k steps,

and define E(∞) = ∪kE(k). We define the distributions γk(E)
def
= Pπ,σG (E(k)) and

γ(E)
def
= Pπ,σG (E(∞)). Note that (E(k)

≥0 is a non-decreasing sequence with respect

to ⊆, and hence γk(E) is a non-decreasing sequence that converges towards
γ(E). By Theorem 3.2 of [23], with probability 1, the (player and stochastic)
states seen infinitely often along a path form an end component, and hence
are included in a MEC. Since MECs are disjoint, a further consequence is that∑
E γ(E) = 1.
Now fix δ > 0. Consider, for every state s that is in some MEC E , and every

δ > 0, a δ-optimal strategy σs,δ, that is, such that Eσs,δM,s[mp(~r)] ≤ ~z E + δ (which
exists due to Lemma 32). Consider the strategy σk,δ that plays as σ for the k
first steps, and then switches to the δ-optimal strategy σs,δ if it is at a state s
in some MEC, or plays arbitrarily if not in a MEC. Hence, it holds that

~0 ≤ Eσk,δM [mp(~r)] ≤
∑
E

∑
s∈SE

PσM(F=k {s})·Eσs,δM,s[mp(~r)]+(1−
∑
E

PσM(F=k SE))ρ
∗],

where the second term is an upper bound on the reward contributed by the

paths that are not in a MEC after k steps. We define pk(E)
def
= PσM(F=k SE) =∑

s∈SE P
σ
M(F=k {s}), and have that

~0 ≤
∑
E
pk(E)(~z E + δ) + (1−

∑
E
pk(E))ρ∗. (C.1)

72

We now show that pk(E)→ γ(E) for every E . Indeed, it holds that

γk(E) ≤ pk(E) ≤ 1−
∑
E′ 6=E

pk(E ′) ≤ 1−
∑
E′ 6=E

γk(E ′),

and the outermost terms converge to the same limit γ(E) = 1 −
∑
E′ 6=E γ(E ′),

and hence so does the inner term pk(E). Finally, we let k → +∞ and δ → 0 in

(C.1) to obtain the desired result ~0 ≤
∑
E∈E γ(E)~z E .

Appendix C.7. Proof of Lemma 11

Proof. “Only if” direction. Assume G is CM. Fix a finite DU Player ♦ strategy
π, and let E = (SE ,∆E) be a MEC of Gπ. It suffices to show that there ex-
ists an IC H such that SH ⊆ SG,E , since by the CM property SH is reachable
almost surely. We first build a Player �-closed subgame H′ as follows. Define

H′ def
= 〈SG,E , (SG,E ∩S♦, SG,E ∩S�, SG,E ∩S©), s′init,A′, χ′,∆′〉, where s′init ∈ SG,E

is arbitrary, the move (a, µ) is in S′© whenever there is m such that (a, µπm) is in
E (which also defines χ′), and ∆′ is defined by ∆′(s, (a, µ)) = ∆E((s,m), a, µπm)
whenever s ∈ S� and m as before, ∆′(s, (a, µ)) = ∆E((s, (a, µ),m), a, µπm) when-

ever s ∈ S♦ and m as before. Hence, s
a−→ µ in G whenever s

a−→′µ in H′, and
so we have ∆′ ⊆ ∆. Further, since there is a finite path within E between each
s′, t′ ∈ SE , there is also a finite path within H′ between each s, t ∈ SG,E ; hence,
H′ is a game. Finally, since for a MEC in Gπ we require that supp(µπm) ⊆ SE
whenever ∆E(s

′, a, µπm) > 0, all successors of Player � states SG,E ∩ S� must
be in SG,E . Thus, H′ is Player �-closed. We now remove all but one choice
per Player ♦ state in H′, and obtain a subgame H′′ of G, which corresponds to
an MDP as Player ♦ has no longer any choice. Since we remove only Player ♦
choices, H′′ is still Player � closed. A corollary of Lemma 2.2 of [12] is that
every bottom strongly connected component (g-BSCC) in the graph of an MDP
is a MEC. We can thus take a g-BSCC in the graph of H′′, which corresponds
to a MEC, and thus an irreducible Player �-closed subgame H of G.

“If” direction. Assume that, for every finite DU Player ♦ strategy π, for
every MEC E of Gπ, SG,E is almost surely reachable from every state of G. Take

any IC H in G. Hence, for any π′, Hπ′ forms a single MEC E . Take the strategy
π that plays arbitrarily outside of H, and plays π′ upon reaching H. Then E is
also a MEC in Gπ. By assumption, SG,E is almost surely reachable from every
state of G. Since SG,E = SH, SH is almost surely reachable from every state of
G, and hence G is CM.

Appendix C.8. Proof of Lemma 12

Lemma 35 below ensures that we can safely interchange the quantification
over σ, t, and N used to define ~z E . That means that, for every ε, there exists

an N such that rewN−1(~r)
N stays above the threshold ~z E − ε, independently of the

Player � strategy and of the state considered as starting state.
We first show two following technical lemmas.

73

Lemma 33. Let D be a DTMC, let b ≥ 0, let (cK)K∈N be a sequence of positive
reals, and let (XK)K∈N, (YK)K∈N, (ZK)K∈N be sequences of real-valued random
variables on ΩD such that ZK ≥ 0, |XK | ≤ b · cK , and |YK | ≤ b · ZK . Then∣∣∣∣ED [XK + YK

cK + ZK

]
− ED

[
XK

cK

]∣∣∣∣ ≤ 2b

cK
ED[ZK].

Proof. From the assumptions of the lemma, we obtain∣∣∣∣ED [XK + YK
cK + Zk

]
− ED

[
XK

cK

]∣∣∣∣ =

∣∣∣∣ED [YK
cK + ZK

]
− ED

[
XK · ZK

cK(cK + ZK)

]∣∣∣∣
≤ ED

[
|YK |

cK + ZK

]
+ ED

[
|XK | · ZK

cK(cK + ZK)

]
≤ ED

[
b · ZK
cK

]
+ ED

[
b · cK · ZK

c2K

]
≤ 2b

cK
ED[ZK].

Lemma 34. Let G be a game with states S and with minimum non-zero prob-
ability pmin. For any s, t ∈ S such that t is reachable from s almost surely, the
expected number of steps to reach t from s with an MD strategy is bounded from

above by |S| · p−|S|min .

Proof. After |S| steps, t is reached from s with probability at least p∗
def
= p

|S|
min,

Thus, the expected number of steps to reach SH from s is upper bounded by

Ntrans
def
= |S|p∗ + 2|S|p∗(1− p∗) + 3|S|p∗(1− p∗)2 + · · · = |S|/p∗.

Lemma 35. For every MEC E of a finite PA with rewards ~r, it holds that

limN→∞ min
t∈SE

inf
σ

EσE,t
[

rewN−1(~r)

N

]
≥ ~z E .

Proof. Fix a MEC E = (SE ,∆E) of a finite PA M = 〈S, (S�, S©), ς,A, χ,∆〉.
Denote by pmin the minimum non-zero probability inM, and let ρ∗

def
= maxs∈S,i |ri(s)|.

Assume toward a contradiction that there exists δ > 0 and i such that

limN→∞ min
t∈SE

inf
σ

EσE,t
[

rewN−1(ri)

N

]
< z Ei − δ.

In particular, we can fix N ≥ b2ρ∗|SE |p−|SE |min δ−1c, t ∈ SE , and σ, such that

EσE,t
[

rewN−1(r)

N

]
< z Ei − δ.

We show that there exists a strategy σ′ such that Eσ′E,t[mp(~ri)] < z Ei , that is,

it contradicts the definition of z Ei . From Lemma 34, we have that |SE | · p−|SE |min

is an upper bound for the expected number of steps to reach t from s for MD

74

strategies. We construct the strategy σ′ as follows. Starting from t, σ′ plays
in the first phase the first N steps of σ, then plays in the second phase an MD
strategy to reach t, and then repeats ad infinitum the two previous phases. For
a path λ, we let N (K)(λ) be the index of the beginning of the Kth loop, and
+∞ if λ contains no loops. We have

Eσ
′

E,t[mp(ri)] = Eσ
′

E,t

[
limk→∞

1

k + 1
rewk(ri)

]
(definition)

≤ Eσ
′

E,t

[
limK→∞

1

N (K) + 1
rewN

(K)

(ri)

]
(sub-sequence)

≤ limK→∞Eσ
′

E,t

[
1

N (K) + 1
rewN

(K)

(ri)

]
(Fatou’s Lemma)

For a path λ, we denote by cK(λ)− 1
def
= NK (resp. ZK(λ)) the total cumu-

lated steps in the first phase (resp. second phase) during the first K loops. We
denote by XK(λ) (resp. YK(λ)) the respective cumulated reward of ri. We have

Eσ′E,t
[

1
N(K)+1

rewN
(K)

(ri)
]

def
= Eσ′E,t

[
XK+YK
cK+ZK

]
, and so from Lemma 33 we obtain

Eσ
′

E,t

[
1

N (K) + 1
rewN

(K)

(ri)

]
≤ Eσ

′

E,t

[
XK

cK

]
+

2ρ∗

cK
Eσ
′

E,t[ZK]. (C.2)

We now consider the two terms on the right-hand side of (C.2). By definition
of σ′ in the first phase, the first term equals K

1+KNEσE,t
[
rewN−1(ri)

]
. The second

term is upper-bounded by δ, since (2ρ∗/cK)Eσ′E,t[ZK] ≤ (2ρ∗/KN)K|SE |p−|SE |min =

2ρ∗|SE |p−|SE |min /N ≤ δ. We can now conclude

Eσ
′

E,t[mp(ri)] ≤ limK→∞
K

1 +KN
EσE,t[rewN−1] + δ =

1

N
EσE,t[rewN−1] + δ < uEi .

This contradicts the definition of uEi and the proof is complete.

We can now prove Lemma 12.

Proof. Let E be the set of L MECs El of Gπl , indexed by l. We show that the
strategy π constructed in Definition 7, with appropriately chosen step counts Nl,
satisfies the lemma, that is, it approximates γ. Throughout the proof, we refer
to the strategy π, keeping the step counts as parameters. From Lemma 11, every
MEC is almost surely reachable in G from any state s. Thus, we have an upper
bound NB = |S| · p∗ on the mean time spent between two MECs. For every
l, we define Al such that, for every Nl ≥ Al, mint∈SEl infσ EσEl,t

[
rewNl−1(~r)

]
≥

Nl(~z
El − ε/3), which exists by virtue of Lemma 35. We now define the step

counts for π by Nl
def
= bhγ(El)c, and let N

def
=
∑L
l=1Nl with h chosen such that

(h1) for every l, Nl ≥ Al;

(h2) 1/h ≤ ε/(3
∑L
l=1 ‖~z

El‖∞);

75

(h3) (Lγ(El) + 1)/(h− L) ≤ ε/(3
∑
l ‖~z
El‖∞); and

(h4) 1
N 2ρ∗LNB ≤ ε/3.

For an infinite path λ, we let N (K)(λ) be the index of the beginning of the
Kth loop, or +∞ if λ has fewer than K loops. For every finite DU strategy
σ, it holds for almost every path λ that N (K)(λ) is finite for all K, and thus

limk→∞
1
k+1 rewk(~r)(λ) = limK→∞

1
N(K)+1

rewN
(K)

(~r)(λ). Hence,

Eπ,σG [mp(~r)] = Eπ,σG

[
lim
k→∞

1

k + 1
rewk(~r)

]
(definition)

= Eπ,σG

[
lim
K→∞

1

N (K) + 1
rewN

(K)

(~r)

]
(almost sure equality)

= lim
K→∞

Eπ,σG

[
1

N (K) + 1
rewN

(K)

(~r)

]
. (Lebesgue’s theorem)

For a path λ ∈ ΩD, we denote by cK − 1
def
= NK (resp. Zk(λ)), the total

cumulated time spent on the MEC phase (resp. inter-MEC phase) during the
first K loops. We denote by XK(λ) (resp. YK(λ)) the respective cumulated
reward. We are interested in the limit when K →∞ of

Eπ,σG

[
1

N (K) + 1
rewN

(K)

]
= Eπ,σG

(
XK + YK
cK + ZK

)
,

and from Lemma 33 we therefore get that

Eπ,σG

[
1

N (K) + 1
rewN

(K)

]
≥ Eπ,σG

(
XK

cK

)
− 2ρ∗

cK
Eπ,σG (ZK). (C.3)

We let Xl,k(λ) be the reward accumulated in the lth MEC phase during the kth

loop, and thus have XK =
∑K−1
k=0

∑L
l=1Xl,k. By virtue of (h1), Nl ≥ Al, and

hence it holds that Eπ,σG [Xl,k] ≥ Nl(~z El − 1
3ε). Therefore,

Eπ,σG

(
XK

cK

)
=

1

1 +KN

K−1∑
k=0

L∑
l=1

Eπ,σG [Xl,k]

≥ 1

1 +KN

K−1∑
k=0

L∑
l=1

Nl(~z
El − 1

3
ε)

≥ K

1 +KN

L∑
l=1

Nl~z
El − 1

3
ε.

Taking the limit, we get

lim
K→∞

Eπ,σG

(
XK

cK

)
≥

L∑
l=1

Nl
N
~z El − 1

3
ε

≥
L∑
l=1

γ(El)~z El −
L∑
l=1

∣∣∣∣γ(El)−
Nl
N

∣∣∣∣ ‖~z El‖∞ − 1

3
ε

76

Note that
Nl
N
≥ hγ(El)− 1∑L

l′=1 hγ(El′)
≥ γ(El)−

1

h
,

and that

Nl
N
≤ hγ(El) + 1∑L

l′=1(hγ(El′)− 1)
=
hγ(El) + 1

h− L
= γ(Ei) +

1

h− L
(Lγ(El) + 1).

Using condition (h2) and (h3) on h, we get
∣∣γ(El)− Nl

N

∣∣ ≤ ε/(3
∑L
l′=1 ‖~uEl′‖),

and hence

lim
K→∞

Eπ,σG

(
XK

cK

)
≥

L∑
l=1

γ(El)~z El −
2

3
ε. (C.4)

We now upper-bound the absolute value of the second term of (C.3) using

2ρ∗

cK
Eπ,σG (ZK) ≤ 2ρ∗

KN
KLNB =

1

N
2ρ∗LNB ≤ ε/3, (C.5)

where the last inequality comes from condition (h4) on h, and hence on N .
Applying the bounds (C.4) and (C.5) to (C.3), we obtain

Eπ,σG [mp(~r)] ≥
L∑
l=1

γ(El)~z El − ε.

Appendix D. Proofs of results of Section 5

Appendix D.1. Proof of Lemma 13

Proof. Let M = 〈S, (S�, S©), ς,A, χ,∆〉, M′ = 〈S′, (S′�, S′©), ς ′,A′, χ′,∆′〉,
and σ = 〈N, σc, σu, σd〉. We construct an SU strategy σ′ that simulates σ ap-
plied to M by keeping the current state in M and the memory of σ in its own
memory. The functional simulation ensures that every path ofMσ corresponds
to a path in (M′)σ′ , and so after seeing memory (s,m) the strategy σ′ picks
the next move that σ would pick in state s with memory m. Our aim is to
show that the trace distributions of (M′)σ′ and Mσ are equivalent. We for-

mally let σ′
def
= 〈N′, σ′c, σ′u, σ′d〉, where we define N′

def
= N × S, and where, for

all (m, s), (n, (a, µ)), (o, t) ∈ N′ and all s′
a−→′µ′ in M′, such that s′ = F(s),

µ′ = F(µ), t′ = F(t) ∈ supp(µ′), we define

σ′d(s′)((m, s))
def
= σd(s)(m) · ς(s)

ς ′(s′)

σ′u((m, s), (a, µ′))((n, (a, µ)))
def
=

σu(m, (a, µ))(n)

σ′c(s
′, (m, s))(a, µ′)

(D.1)

σ′u((n, (a, µ)), t′)((o, t))
def
= σu(n, t)(o) · µ(t)

µ′(t′)
(D.2)

σ′c(s
′, (m, s))(a, µ′)

def
=
∑
F(µ)=µ′ σc(s,m)(a, µ).

77

Denote by PD(m, λ)
def
= PD(λ) · dλ(m) the probability of the path λ and the

memory m after seeing λ. A functional simulation F must be defined for the
reachable states of M, and so it extends inductively to a total function on

paths of M by defining F(λ(a, µ)s)
def
= F(λ)(a,F(µ))F(s). We now show by

induction on the length of paths that Pσ′M′((m, s), λ′) = PσM(m, λ) if F(λ) = λ′,

and Pσ′M′((m, s), λ′) = 0 otherwise.
For the base case, for any (m, s) ∈ N′ and s′ ∈ S′ such that s′ = F(s), we

have that Pσ′M′((m, s), s′) = ς ′(s′) ·σ′d(s′, (m, s)) = σd(s)(m) · ς(s) = PσM(m, s); if,

on the other hand, s′ 6= F(s) then σ′d(s′, (m, s)) = 0, and so Pσ′M′((m, s), s′) = 0.
For the induction step, assume the equality holds for λ ∈ Ωfin

M and λ′ ∈ Ωfin
M′ ,

and we consider paths λ(a, µ)t ∈ Ωfin
M and λ′(a, µ′)t′ ∈ Ωfin

M′ . We have that

Pσ
′

M′((o, t), λ
′(a, µ′)t′) =

∑
(m,last(λ)),(n,(a,µ))∈N′

Pσ
′

M′((m, s), λ
′) · p1 · p2,

where

p1 = σ′c(last(λ′), (m, last(λ)))(a, µ′) · σ′u((m, last(λ)), (a, µ′))((n, (a, µ)))

p2 = µ′(t′) · σ′u((n, (a, µ)), t′)((o, t′)).

We consider first the case where F(λ(a, µ)t) 6= λ′(a, µ′)t′: if F(λ) 6= λ′, then
from the induction hypothesis Pσ′M′((m, s), λ′) = 0; and if F((a, µ)t) 6= (a, µ′)t′,
then p2 = 0 from (D.2). Now suppose that F(λ(a, µ)t) = λ′(a, µ′)t′. From
(D.1) we have that p1 = σu(m, (a, µ))(n) and from (D.2) we have that p2 =
µ(t) ·σu(n, t)(o). Applying the induction hypothesis, we conclude the induction,
since

Pσ
′

M′((o, t), λ
′(a, µ′)t′) =

∑
m,n∈N

PσM(m, λ) · σu(m, (a, µ))(n) · µ(t) · σu(n, t)(o)

= PσM(o, λ(a, µ)t).

We thus have

P̃σ
′

M′(w) =
∑

λ′∈paths(w)
(m,s)∈N′

Pσ
′

M′((m, s), λ
′) =

∑
λ′∈paths(w)
F(λ)=λ′

m∈N

PσM(m, λ)
∗
=

∑
λ∈paths(w)

PσM(λ)
def
= P̃σM(w).

where the equation marked with ∗ is a consequence of trace(λ) = trace(F(λ)).
Thus, σ′ and σ induce the same trace distribution, and ϕ, which is defined on
traces, satisfies (M′)σ′ |= ϕ⇔Mσ |= ϕ.

Appendix D.2. Proof of Lemma 14

Proof. Following Remark 3, we assume w.l.o.g. that the strategies are DU
strategies. We construct a functional simulation by viewing states in the induced
PA M = (‖i∈I Gi)‖i∈Iπ

i

as derived from the paths of the composed game
G = (‖i∈I Gi). These paths are projected to components Gi and then assigned a

78

corresponding state in the induced PA (Gi)πi . Due to the structure imposed by
compatibility, moves chosen at Player ♦ states in Gi can be translated to moves
in the composition M′ =‖i∈I (Gi)πi .

Denote the induced PA by M = 〈S, (S�, S©), ς,A, χ,∆〉, and the composi-
tion of induced PAs by M′ = 〈S′, (S′�, S′©), ς ′,A, χ′,∆′〉. We define a partial
function F : S → S′, and then show that it is a functional simulation. We use
~γ to stand for both Player � states ~s and Player ♦ state-move tuples (~s, (a, ~µ))
of the game G, as occurring in the induced PA M (see Definition 6). We write

[~γ]i =

si if ~γ = ~s ∈ S�
(si, (a, µi)) if ~γ = (~s, (a, ~µ)) and Gi is involved in ~s

a−→ ~µ

si if ~γ = (~s, (a, ~µ)) and Gi is not involved in ~s
a−→ ~µ,

We define F by [F(~γ,~d)]i = (γi, di) for all reachable states (~γ,~d) ∈ S of M,
and all i ∈ I. We now show that F is a functional simulation.

Case (F1). We show that F(ς) = ς ′. Note that, due to the normal form,
the initial distribution ς of M only maps to states of the form S� ×M, and
the initial distribution ς ′ of M′ only maps to states of the form

∏
i∈I S

i
� ×

Mi. For such states (~s,~d) ∈ S� ×M, we have [F(~s,~d)]i = (si, di), and so
F(ς)((s1, d1), (s2, d2), . . .) = ς(~s,~d) = ς ′((s1, d1), (s2, d2), . . .).

Case (F2). Consider a transition (~γ,~d)
a−→ µ~γ,~d of the induced PA, M =

G‖i∈Iπi where µ~γ,~d(~γ′,~d′)
def
= ∆π((~γ,~d), (~γ′,~d′)). It is induced from a transition

~s
a−→ ~µ of the game composition G. For each involved component Gi, we apply

the strategy πi separately, and obtain that, for each transition si
a−→iµi in Gi,

the transition (γi, di)
a−→ µγi,di (where µγi,di(γ

′, d′) = ∆πi((γi, di), (γ, d′))) is

in the induced PA (Gi)πi . Then, composing the induced PAs (Gi)πi yields a

transition F(~γ,~d)
a−→′ν in M′, where ν is not null on element F(γ+, d+) only

if γi = γi+ and di = di+ for the component not involved and di+ = πiu(di, (a, µi))
for the involved component. On such elements it holds that

ν(F(~γ+, ~d+)) =
∏

i∈Γ(~d, ~γ+)

µπ
i

γi,di(γ
i
+, d

i
+) (Definition 9)

= F(µ~γ,~d)(F(~γ+, ~d+)). (definition of F)

We thus have that F(~γ,~d)
a−→′F(µ~γ,~d) is in M′, concluding the proof of (F2).

79

	Introduction
	Related Work

	Preliminaries
	Stochastic Models
	Stochastic games
	Probabilistic automata
	Discrete-time Markov chains

	Strategies
	Strategy application
	Determinising strategies

	Winning Conditions
	Rewards and long-run behaviours
	Specifications and objectives
	Multi-objective queries and their Pareto sets
	Problem statement
	Comparison of ratio rewards and mean payoffs

	A Two-Step Semantics for Stochastic Games
	First step: inducing the PA
	Second step: inducing the DTMC

	Conjunctions of Pmp Objectives
	Decision Procedures
	Finite Memory Strategies
	-optimality with finite DU Player strategies
	Succinctness of SU strategies

	Inter-Reduction between Pmp and EE
	Finite Player strategies sufficient for EE
	Transforming between EE and Pmp

	Strategy Synthesis
	Geometry of SU strategies
	Shortfall computation by iteration of a Bellman operator
	The synthesis algorithm

	Boolean Combinations for Expectation Objectives
	From Conjunctions to Arbitrary Boolean Combinations
	Emp Objectives in Controllable Multichain Games
	Controllable multichain games
	Strategy construction
	Emp MQs in CM Games

	Compositional Strategy Synthesis
	Game Composition
	Normal form of a game
	Composition

	Strategy Composition
	Composing SU strategies

	Properties of the Composition
	Functional simulations
	From PA composition to game composition

	Composition Rules
	Verification rules for PAs
	Under-approximating Pareto sets

	The Compositional Strategy Synthesis Method

	Conclusion
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	

