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We introduce a novel biometric based on distinctive eye movement patterns. The biometric consists of 20
features that allow us to reliably distinguish users based on differences in these patterns. We leverage this
distinguishing power along with the ability to gauge the users’ task familiarity, that is, level of knowledge,
to address insider threats. In a controlled experiment, we test how both time and task familiarity influence
eye movements and feature stability, and how different subsets of features affect the classifier performance.
These feature subsets can be used to tailor the eye movement biometric to different authentication methods
and threat models. Our results show that eye movement biometrics support reliable and stable continuous
authentication of users. We investigate different approaches in which an attacker could attempt to use inside
knowledge to mimic the legitimate user. Our results show that while this advance knowledge is measurable,
it does not increase the likelihood of successful impersonation. In order to determine the time stability of
our features, we repeat the experiment twice within 2 weeks. The results indicate that we can reliably
authenticate users over the entire period. We show that lower sampling rates provided by low-cost hardware
pose a challenge, but that reliable authentication is possible even at the rate of 50Hz commonly available
with consumer-level devices. In a second set of experiments, we evaluate how our authentication system
performs across a variety of real-world tasks, including reading, writing, and web browsing. We discuss the
advantages and limitations of our approach in detail and give practical insights on the use of this biometric
in a real-world environment.

CCS Concepts: � Security and privacy → Security services; Authentication; Biometrics

Additional Key Words and Phrases: Biometrics, continuous authentication, metrics

ACM Reference Format:
Simon Eberz, Kasper B. Rasmussen, Vincent Lenders, and Ivan Martinovic. 2016. Looks like eve: Exp-
osing insider threats using eye movement biometrics. ACM Trans. Priv. Secur. 19, 1, Article 1 (June 2016),
31 pages.
DOI: http://dx.doi.org/10.1145/2904018

1. INTRODUCTION

In this article, we evaluate the effectiveness of using eye movement biometrics as a
novel defense against the “lunchtime attack” by an insider threat.1 An insider threat
in this context refers to a person with physical access to a workstation that he or
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she is not supposed to use (e.g., using a coworker’s workstation while he or she is at
lunch). As such, our system serves as a second line of defense after the workstation has
already been compromised (i.e., the attacker has physical access and the workstation
is either unlocked or he or she is in possession of all necessary passwords and access
tokens). Our approach considers both users that are simply careless and users that
are actively collaborating with the attacker by giving up information. The second case
makes this attack notoriously difficult to defend against. We propose a set of features
that can be extracted from human eye movements and analyze their distinctiveness
and robustness using a systematic experimental design.

The human eyes offer a rich feature space based on voluntary, involuntary, and
reflexive eye movements. Traditionally, the analysis of eye movements has been used
in the medical domain to facilitate diagnosis of different ocular and neuronal disorders.
Eye-tracking devices have become much cheaper within the last few years, and even
low-cost open-source hardware and software is available [San Agustin et al. 2010].
Recent advances in video-based eye-tracking technology make eye tracking applicable
to a conventional workplace as it does not require any physical contact with the users
(more detail on eye tracking is given in Section 3).

Our experimental design captures the unique characteristics of each user’s eye move-
ments as measured by the eye tracker. We also consider ways in which the attacker
could use his or her position to gain inside information about the user and the system
through observation or social engineering. We define metrics to measure this advance
knowledge through eye movement data and determine whether it affects the authenti-
cation decision. We consider three scenarios in particular: (1) no prior knowledge, that
is, no information advantage; (2) knowledge gained through a description—for exam-
ple, the adversary is provided with a textual description by a colluding legitimate user;
and (3) knowledge gain through observation, for example, by looking over the shoulder
of a legitimate user performing a task (shoulder surfing).

We perform these experiments with 30 subjects recruited from the general public
and repeat them after 2 weeks to test the time stability of the proposed features.
While our experimental results show that an adversary does benefit from an increased
level of knowledge when executing a task, the analysis of the proposed features also
shows that he or she cannot utilize that knowledge to circumvent the eye movement
biometric. In order to evaluate the performance of a continuous authentication system
in a real-world environment, we conduct a second set of experiments based on a number
of real-world tasks, including reading, writing, and browsing.

Our main contributions are a set of 20 features and measurements that confirm that
these features are suitable to perform transparent continuous user authentication. We
use different metrics to measure the quality of these features and quantify the effects
of increasing time distance on both feature groups and individual features. In order to
evaluate whether the eye movement biometric can be used in conjunction with cheap
consumer-level hardware, we also determine the impact that the reduced sampling
rate of these devices has on both feature quality and the performance of a continuous
authentication system. Lastly, we propose two new metrics that give insights into the
expected real-world performance of a system based on our biometric.

The rest of the article is organized as follows: Section 2 gives an overview over
related work. Section 3 gives background information about the human visual system
and eye-tracking techniques. Section 4 outlines our threat model. Our experimental
design is described in Section 5. Our features and their quality measures are given in
Section 6, while our classifiers and metrics are outlined in Section 7. Section 8 lists
our results and discusses the effects of task selection. We discuss possible limitations
of our approach in Section 9 and conclude the article in Section 10.
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2. RELATED WORK

The body of related work can be divided into papers proposing biometrics and biometric
systems, and attacks on either of these.

2.1. Biometric Systems

The idea of using physiological or behavioral biometrics in the context of system secu-
rity is not new and has been an active research area for many years. Jain et al. [2006]
provide a comprehensive overview of hard biometrics (e.g., fingerprints, iris patterns,
DNA) in a security context. The use of hard biometrics allows the distinction between
users with high accuracy and usually over the entire lifetime of a person. A person’s
biometric features cannot usually be changed, which makes it harder to mimic another
person’s features without having to circumvent liveness detection mechanisms. On the
other hand, the feature becomes useless once another person is able to copy it. Attacks
on fingerprint sensors, including the iPhone’s TouchID feature, using mock fingers
created of various materials have recently been shown to be feasible under practical
conditions [Barral and Tria 2009; Rieger 2013]. This is particularly dangerous as copies
of fingerprints can be easily collected in an office environment, for example, by lifting
them off a coffee mug. Another downside of hard biometrics lies in poor collectability
and high intrusiveness.

Facial recognition may seem like a convenient method to provide continuous authen-
tication but is not feasible in a high-security context due to imperfect liveness detection.
Attacks on facial recognition software are possible using simple photographs [Duc and
Minh 2009] or more complex 3D video models [Boehm et al. 2013].

Behavioral biometrics are typically less susceptible to these kinds of replication at-
tacks, but their performance with regard to false accept rates (FARs) and false reject
rates (FRRs) often makes them unsuitable for standalone authentication. This is a
result of the low time stability of human behavior as well as noise effects created by
external distractions. One of the oldest behavioral biometrics was proposed in 1980 and
exploits distinctive keystroke patterns [Gaines et al. 1980]. Since then, extensive re-
search based on this biometric has been conducted using different classifiers with static
and dynamic texts in multiple environments. The error rates are low for static texts
but increase rapidly for free-form texts as many unpredictable pauses are introduced
in the typing process. Additionally, templates are usually tied to keyboard layouts and
even physical devices. Two recent comprehensive surveys of keystroke dynamics can
be found in Shanmugapriya and Padmavathi [2009] and Banerjee and Woodard [2012].

Mouse movements have been extensively studied as a potential behavioral biometric
that can be combined particularly well with keystroke patterns, as both traits are
usually collected at different times. A survey on the extensive body of work can be
found in Revett et al. [2008]. The best accuracy has been reported with an FAR of
0.36% and an FRR of 0% [Nakkabi et al. 2010]. As the data was collected on the test
subjects’ own PCs, it is questionable whether the classifier did not distinguish input
devices instead of subjects [Jorgensen and Yu 2011].

Given the increasing share of smartphones and tablets, the keyboard and mouse
are no longer used ubiquitously. A recent study reported an equal error rate of 2%
to 3% when identifying subjects across sessions based on their stroke patterns on
a smartphone touchscreen [Frank et al. 2012]. A similar approach that also tests the
resistance to imitation attacks is described in Zheng et al. [2012]. However, the authors
only account for observation, not for a compromised user template.

There has been some work on the way the human body modifies electrical currents.
Rasmussen et al. [2014] measure the body’s response to an electric square pulse signal
and report 100% accuracy over a static dataset and 88% over a dataset that contains
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samples taken over several weeks. Similar work that uses bioimpedance as a biomet-
ric reports a recognition rate of 90% but requires augmentation with hand geometry
[Cornelius et al. 2012]. Furthermore, the scope of the study was limited to a family-size
study with up to five subjects.

Eye movements have previously been studied as an input channel that is resistant to
shoulder-surfing attacks. These systems still rely on a conventional PIN, a password,
or a passphrase. Kumar et al. [2007] developed a system using a Tobii 1750 gaze-
tracker and report a password entry time of 9 to 12 seconds with error rates between
3% and 15%. Similar work used eye gestures instead of passwords and reduced the
fraction of successful shoulder-surfing attacks to 55% with an average input time of 5.3
seconds [De Luca et al. 2009].

One of the earliest works using eye movements as a biometric was published in
2005 [Bednarik et al. 2005]. The authors use gaze velocity and the distance between
pupils as features and achieve identification rates of up to 92%. However, the error
rates rapidly increase without relying on the pupil distance, a feature more commonly
associated with facial recognition than with eye tracking. Our work is perhaps most
closely related to Kinnunen et al. [2010]. The authors use a Tobii X120 gazetracker
with a sampling rate of 120Hz to capture a subject’s eye movements while he or she
is watching a movie and use short-term eye gaze direction to construct feature vectors
that are modeled using Gaussian mixtures. Depending on the amount of training data,
an equal error rate (EER) of 28.7% to 47.1% is reported. The authors do not state
whether the type of video affects the templates (e.g., whether training and testing with
different videos is possible). A different approach by Cantoni et al. [2015] attempts to
distinguish individuals by the way they look at different images. Unlike our work, this
approach requires display of controlled stimuli; as such, it is more suited for one-time
authentication (e.g., to replace a password to log in) rather than continuous authenti-
cation. Using density and duration of fixations as their main features, they report an
EER of 27.06%. Similarly, Liang et al. [2012] measure the eye’s tracking behavior when
a moving stimulus is displayed. They use the acceleration of eye movements while the
subjects are pursuing a moving shape as input to both Support Vector Machines and
a Back-Propagation neural network. In an experiment with five subjects, they achieve
an identification accuracy of 82%.

2.2. Attacks

There are two broad groups of attacks on biometric systems: zero-effort attacks and
imitation attacks. The zero-effort threat model is typically used when measuring a
biometric’s error rates; it reflects the possibility of the biometric template of two users
being close enough that the system might mistake one for the other. It does not con-
sider any active or conscious effort on the attacker’s part (hence the name). Conversely,
imitation attacks involve the attacker somehow modifying how he or she is perceived
by the system in order to appear as the legitimate user. Imitation attacks on biomet-
ric systems can be further subdivided into three categories: replay attacks, manual
imitation attacks, and automatic imitation attacks.

Replay attacks involve the playback of previously recorded data, for example, through
the hijacked USB connection of a keyboard (or an eyetracker). As such, they are attacks
on systems rather than the biometric.

Manual imitation attacks involve a human modifying his or her own behavior and
consequently changing his or her biometric template to appear similar to the victim.
This type of attack has been shown to be highly successful against keystroke dynam-
ics [Tey et al. 2013], while touchscreen inputs appear to be harder to imitate [Zheng
et al. 2012]. While the attack itself is performed by a human, the attacker can be
assisted by a system during the preparation phase, for example, by providing feedback
regarding the closeness to the victim’s template.
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Automatic imitation attacks seek to circumvent liveness detection. As such, the input
to the system measuring the biometric is not generated by a human, but by a machine.
Serwadda and Phoha [2013] built a robot based on the LEGO mindstorm platform
to automatically generate swipes on a touchscreen that resemble a large number of
legitimate users. As the success of behavioral biometrics is partially driven by the
availability of sensors in consumer devices, this sort of attack is problematic as good
liveness detection is often difficult to achieve without relying on additional sensors.

Despite the growing popularity of behavioral biometrics (and attacks on them), there
has been, to the extent of our knowledge, no published work describing either automatic
or manual imitation attacks on eye movement biometrics.

3. VISUAL SYSTEM BACKGROUND

This section provides a brief introduction to the specifics of the human visual sys-
tem (HVS) required to understand the rationale behind this work, and discusses the
eye-tracking and gaze-tracking technologies to justify its applicability to the security
domain. For a systematic overview of the HVS and eye-tracking related research, see,
for example, Duchowski [2007].

The HVS has been part of neurophysiological research for many decades. The current
understanding of the human brain includes considerable knowledge about the connec-
tions between the retina and the brain regions that are responsible for generating eye
movements. The experimental design defined in this work is inspired by neuroscientific
insights related to fixational eye movements. These movements are a particular type
of eye behavior involved in processing static scenes that are typical for working with
a desktop machine and processing static stimuli shown on a display, such as navigat-
ing through the file system or reading documents. Another important requirement of
this work is the technology that allows one to capture the eye movements of a per-
son working on everyday tasks. The technology should not pose significant usability
disadvantages and should be applicable in a conventional working environment.

3.1. Characteristics of Eye Movements

The human eyes move within 6 degrees of freedom with six muscles responsible for
the movement of the eyeball. The main types of eye movements used in perceiving a
stationary object or scene or reading a document can be categorized into saccades and
fixations. The neural signals controlling these eye movements can be categorized as
voluntary, involuntary, and reflexive.

Saccades are rapid stepwise movements of both eyes in the same direction that
typically last 10 to 100ms, depending on the distance covered [Duchowski 2007]. They
are used to move the fovea2 to another location. Once the saccadic movement has been
signalized by the related neurons, the movement must be completed; that is, neither
the saccade’s position nor its velocity can be consciously altered, even if the target has
changed its position [Cassin et al. 1984].

In contrast to saccades, fixations are relatively focused, low-velocity eye movements
with a typical duration of 100 to 400ms. They are used to stabilize the retina over a
stationary object of interest. Yet, the eyes are never perfectly still; they make involun-
tary movements even during visual fixations. The main reason for such movements is
to counteract retinal fatigue and to prevent visual fading; that is, if a person attempts
to artificially fixate the eyes on an image by strongly focusing on a single fixation point,
the image would start to fade away and the scene would become blank. One type of
such movements are microsaccades, characterized by high velocity and acceleration
often away from the fixation center [Martinez-Conde et al. 2006]. Related to microsac-
cades are movements called Saccadic Intrusions (SIs), which consist of involuntary

2The fovea is a part of the retina that allows the central, high-resolution vision.
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Fig. 1. A simplified example of gaze tracking: the
raw gaze samples are collected by the eye-tracking
device and subsequently clustered into fixations, sac-
cades, and microsaccades.

Fig. 2. Real-world gaze data from a subject reading
a document.

movements away from the previous eye position, followed by a return to that position
after a short duration [Abadi and Gowen 2004]. SIs are characterized through a high
velocity and significantly higher amplitude compared to microsaccades. This terminol-
ogy is visualized in Figure 1 and an example of real-world gaze-tracking data from a
person reading a block of text is shown in Figure 2.

Conventionally, the studies of fixational eye movements have been concerned with
medical diagnoses, such as Alzheimer’s disease [Jones et al. 1983] and schizophre-
nia [Clementz et al. 1990]. Yet, with an advance in eye-tracking technologies, analyz-
ing eye movements has proven to be valuable in many other areas, such as marketing
(e.g., for analyzing visual attention as a measure of effective advertising) [Rayner et al.
2001; Wedel and Pieters 2000], human-computer interface design [Jacob 1995], pilot
training [Ottati et al. 1999], or detecting fatigue and drowsiness in drivers [Tock and
Craw 1996; Ito et al. 2002; Devi and Bajaj 2008].

Besides the eye movements, the pupil diameter is also an interesting feature that
can be included in the analysis of eye behavior. The range for this feature in a single
subject is largely determined by eye physiology, gender, and ethnicity and usually
remains constant during adulthood [MacLachlan and Howland 2002]. Nevertheless,
multiple causes that affect the pupil diameter have been found, including memory and
cognitive workload [Kahneman and Beatty 1966], lighting conditions [Taptagaporn
and Saito 1990], and drug consumption [Jasinski et al. 1978].

3.2. Eye- and Gaze-Tracking Techniques

Eye tracking is the process of capturing a person’s eye movements and measuring their
positions. If the eye positions are calibrated with respect to an external display, then
the process is called gaze tracking. There are many types of eye-tracking techniques,
with the main tradeoff between temporal/spacial accuracy versus intrusiveness and
usability. Traditional eye-tracking techniques require either a head-mounted device
or electrodes attached to the subject’s face. One such example is electrooculography
(EOG), which is a technique for recording eye movements by measuring the electric
potential at the electrodes placed around the eyes. While this technique can be used
to capture the eye movements even during sleep (e.g., to monitor REM sleep), its
main disadvantage is its high intrusiveness since the electrodes must be attached to a
person’s face.

Recently there has been significant progress in eye-tracking technology driven by its
importance in many commercial scenarios, such as advertising and usability studies.
The gaming and entertainment industries also show a trend toward consumer-level
eye-tracking devices not only as an additional control channel but also to enhance
computer-human interaction. The most widely used eye-tracking technology today is
video based. Video-based eye tracking uses a video camera that focuses on the pupils
and records their movements and size. To improve the tracking accuracy, these devices
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Fig. 3. Video-based gaze tracking: the track-
ing of eye movements is software based and
does not require any physical contact with a
subject. The gaze position is calculated us-
ing the distance between pupil position and
the corneal reflections (shown as two white
crosses).

usually use a source of controlled infrared or
near-infrared light to create distinctive re-
flection patterns (see Figure 3). Importantly,
the current video-based eye tracking is non-
invasive and remote, operating without any
contact with the subject. The required hard-
ware is only a standard webcam capable of
recording infrared light. For example, the
ITU Gaze Tracker [ITU Gaze Group 2015]
is an open-source project that offers eye-
tracking software that can be used by many
low-cost webcams. Some smartphone man-
ufacturers such as Samsung have also re-
cently started to include basic eye-tracking
capabilities in their phones.

Given the increasing availability and simplicity of eye tracking, it is likely that the
trend of using eye tracking outside of the medical and research domain will continue.
The current noninvasive eye-tracking technology already enables easy access to a rich
and distinctive feature space of fixational eye movements. Their distinctive capabilities
and involuntary nature make them a potentially valuable biometric.

4. THREAT MODEL

The adversary model considered in this article focuses on insider threats. A well-known
example of an insider threat is the so-called “lunchtime attack” where an adversary
temporarily gains access to a coworker’s workstation while the coworker is away for
lunch. Other examples include cleaning staff getting access to workstations after hours
and the trivial case where one employee simply allows another employee to use his or
her workstation or access credentials. In all these scenarios, an adversary might gain
access to a fully operational system, already logged in to a privileged account, and
with access to everything that the legitimate user of the workstation would normally
have access to. Any subsequent attack mounted from such a compromised workstation
can be very hard to trace back to the real attacker. A 2011 study showed that 33% of
electronic crimes in companies are committed by insiders [CERT 2011]. Sixty percent of
these attacks use a compromised account; in the remaining cases the attacker uses his
or her own account [Keeney et al. 2005]. Account compromise is particularly difficult
to detect as the account used to carry out the attack typically was not associated with
suspicious activity before. Furthermore, it is more difficult to trace back the attack
(and investigation may even put false blame on the victim). Most organizations allow
their employees remote access (e.g., via SSH or a VPN connection); nevertheless, 43%
of attacks are performed locally using physical access to the workstation [Keeney et al.
2005].

In our model, the adversary is aware of the gaze-tracking system and will do his or
her best to imitate the behavior of the legitimate user. This can be done by familiarizing
oneself with the system before sitting down at the terminal, thus trying to appear to the
gaze-tracking system as an experienced user. From the attacker’s perspective, there are
two incentives to obtain this kind of information: If he or she manages to observe how
the user accesses sensitive data or performs some sort of transaction, he or she will
most likely be able to carry out the attack much faster, helping to avoid detection.
Besides this, performing a task in a similar way may result in ocular characteristics
being closer to the legitimate user. The adversary will win if he or she can circumvent
the gaze-tracking system, that is, exhibit ocular characteristics that are similar enough
to the legitimate user.

ACM Transactions on Privacy and Security, Vol. 19, No. 1, Article 1, Publication date: June 2016.



1:8 S. Eberz et al.

We consider two models of knowledge transfer to help the adversary familiarize him-
or herself with a system: (1) the adversary has gained knowledge about the system by
reading (or being told) how the system works and (2) the adversary has seen (e.g., by
shoulder surfing) how a legitimate user operates the system.

We assume the adversary cannot disable the gaze-tracking system, nor can he or she
interfere with its operation in any way, as doing so would quickly lead to the detection of
his or her attack. We don’t consider insider threats that involve the attacker using his
or her own workstation. These attacks can always be traced back to the actual attacker
and are better dealt with through behavioral monitoring [Kandias et al. 2010]. The
aim here is to show that gaze tracking is a viable way of identifying users, as well as
gauging a user’s level of knowledge and familiarity with a particular task.

5. EXPERIMENTAL DESIGN AND DATA COLLECTION

In this section, we give an overview of our design goals and show how our experimental
design meets those goals. We describe our test subject population and discuss how
features change over time, as well as the best way to capture these changes. Finally,
we describe a downsampling procedure designed to model data captured with low-cost
eye-tracking devices.

5.1. Design Goals

The experiments described in this section are designed to test the feasibility of build-
ing an authentication system based on the distinctiveness of human eye movement
patterns. Such a system should continuously monitor the user’s eye movement behav-
ior in the background without requiring any modifications in the user’s behavior or
even his or her knowledge or consent. In addition, the experiments should allow us to
test whether eye movements reveal information about a user’s task familiarity, that
is, whether eye movement behavior changes significantly between familiar and unfa-
miliar users. This distinction could be used to detect outside attackers as they can be
assumed to be significantly less familiar with the system they attempt to access than
legitimate users (or inside attackers).

In order to design experiments that show whether or not gaze tracking is suitable
as an authentication mechanism, we have to determine which tasks the test subjects
should perform while they are being monitored. One option is to give them an entirely
free environment in which the subjects can choose what to do for the duration of the
experiment. This is probably the experiment that best captures actual user behavior,
but since it is likely that each subject will choose a different set of tasks, it is very
hard to guarantee that the distinguishing power of the resulting classifier is really
capturing differences in users, rather than differences in behavior or tasks. While we
choose features such that their computation does not depend on specifics of the task,
it is difficult to rule out that some differences in their distributions are due to the
user-chosen task. As even the variations within a single task (such as different types of
websites for a web browsing task) might already cause features to change, the number
of subtasks to test would be enormous. If each user chose a different task, which
possibly results in specific feature characteristics, this would lead to an overestimation
of classification accuracy, as the classifier performs task distinction instead of user
distinction. Conversely, a fixed task for all users means that any differences between
the datasets are due to differences between users.

Another approach is to fix a set of general tasks and let all the users perform those
the way they prefer. This will limit the influence of user-chosen tasks, but the visual
stimuli presented to the subjects will still be different. For example, if the subjects are
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Fig. 4. At time t0 a new dot appears followed by a
period of inactivity (reaction time) in which neither
the gaze nor the cursor moves significantly. After
about 150ms, at t1, a visual reaction in the form of
a large saccade occurs (the gray area) and the gaze
and cursor converge to the position of the stimulus.

Fig. 5. Experiment structure. Each session is di-
vided into three experiments, each of which is re-
peated a number of times. The entire session is re-
peated after 2 weeks, and again an hour after the
second repetition.

asked to browse the web but not restricted in what pages to visit or specifically what
to read, different subjects would have very different experiences. Even if the task is as
simple as watching a movie, different subjects will focus on different things and the
resulting classification might be biased by genre preference and other factors.

In order to overcome these sources of error, we define a specific set of tasks that all
users must complete. Our goal is to determine whether the users’ eye movements are
distinguishable, even if they are completing the same task the same way with the same
knowledge. If this is indeed the case, this means that there are inherent differences
between users that cannot be attributed to different ways of completing a single task.
Nevertheless, we choose our features such that their computation does not make any
assumptions about the task.

5.2. Experiment Structure

We first introduce terminology to make it easier to refer to different parts of our
interaction with test subjects; see Figure 5 for a visualization. We refer to one sitting of
a test subject as a session. Two weeks after the first session, the test subject comes back
for a second session. This is done to make sure our results are consistent over time. To
verify that our results are consistent not only over longer periods but also across two
subsequent sessions on the same day, our test subjects do a third session about an hour
after completing session 2. All three sessions are identical, and each consists of three
different experiments.

Each experiment has a similar structure. The test subject is initially presented an
empty screen with a gray background. Once the experiment begins, a red dot with a
white center appears at a random location on the background. The user is then asked
to click on the dot as fast as possible. Once the dot is clicked, the next one appears after
a short delay, during which the screen is reset to the gray background. All instructions
are displayed on-screen before the experiment begins, and the experiments differ in the
nature of the instructions given to the subject. Additionally, each experiment comes in
a short and a long version. This allows us to capture potential effects of training and
memory for both simple and more complex tasks.

Experiment 1 (no prior knowledge) provides no instructions to the test subjects
beyond asking them to click the dots as fast as possible. The short version has five
dots and the long version has seven dots. The idea behind Experiment 1 is to model a
scenario in which an adversary sits down at a workstation without prior knowledge of
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the task he or she is facing. We assume that the subject’s performance is affected by
increasing task familiarity and that there are memory-based learning effects when he
or she completes the same sequence of dots multiple times. These effects reflect those
observed in real environments when users become accustomed to their typical working
environment. During the experiment, the test subject learns the position of the dots
over time but in addition gains a general familiarity with the nature of the experiments.
This experiment can also be transferred to an attacker that performs tasks he or she
is accustomed to on a victim’s workstation to cover his or her own tracks.

At each repetition the test subject is informed that the sequence will remain the
same for the next iterations. We would expect the learning effects in short sequences
to be bigger compared to long sequences. In order to test this, each user performs five
repetitions of the short sequence and five repetitions of the long sequence. The random
seed used to generate the position list was kept identical for all subjects in order
to eliminate distortion effects caused by the dot positions. The five-dot and seven-
dot sequences are chosen independently; as such, the long sequence is not merely an
extension of the short sequence. This design ensures that the user does not benefit
from sequence-specific knowledge gained during the previous sequence.

Experiment 2 (knowledge through description) provides the test subject with
textual information about the dot positions before the dot sequence is shown. The screen
is divided into six areas, numbered 1 through 6, and the positions of the dots in the
sequence is given in terms of a sequence of numbers that correspond to an area. This
experiment models a scenario where a trusting (or even actively collaborating) user
provides the adversary with knowledge about his or her workstation, as outlined in our
threat model. Such information transfer is rarely perfect, so we model the transferred
knowledge by giving the test subject the rough location of the dots, that is, one of the six
areas, before they appear on the screen. The test subject has no time limit when looking
at and trying to remember the dot positions. We repeat the experiment 3 times with
different five-dot sequences and 3 times with different seven-dot sequences, to capture
both simple and more complex tasks. Unlike the previous experiment, we consider
knowledge transfer rather than natural learning; consequently, each sequence is only
used once. We make this choice as repetitions of identical sequences would combine
the effects of knowledge transfer (i.e., giving external information to the user) and
natural learning (i.e., the user learning from completing a sequence more than once).
This combination would then make it hard to isolate the individual contributions of
each source of information.

Experiment 3 (knowledge through observation) provides the test subject with
a visual representation of the exact dot positions before the dot sequence is shown. This
models the case where the adversary is able to observe the legitimate user while he or
she performs tasks, also known as “shoulder surfing.” While a legitimate user’s gaze
position is not visible through observation in an office environment, things like the
cursor position are still likely to reveal some information. This experiment represents
the maximum amount of information an adversary is able to obtain before attempting
the task him- or herself.

5.3. Feature Stability Over Time

For eye tracking to be a useful defense against insider threats, the features measured
from our test subjects must be relatively stable over time; otherwise, false rejects
would occur frequently as the template becomes outdated. While this can be countered
by sporadically retraining the classifier, this constitutes a serious challenge, as the
user identity has to be established reliably during this time. We present a full list of
features in Section 6 (Table I). In this section, we present the main reasons that time
stability is a challenging problem:
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Fig. 6. Participant age distribution in decades. Out
of 30 participants, two are wearing glasses and nine
are wearing contact lenses.

Fig. 7. Our experimental setup consists of an SMI
RED500 gazetracker that determines the user’s gaze
position on a 24-inch screen with a 1920x1200 reso-
lution.

Changes in the environment. Features like the pupil diameter may change depending
on lighting conditions. While the screen brightness is kept constant across all subjects
and all sessions, the level of daylight may change. It is important that the classifier
accounts for these changes.

Changes in the user’s physical and mental state. Neuroscientific research shows that
a person’s eye movement behavior can change depending on states like drowsiness,
exhaustion, stress, or euphoria (see Section 3 for details).

Technical artifacts. A recent study shows that the duration and number of fixations
and saccades can depend on the gazetracker precision and the fraction of missing sam-
ples [Holmqvist et al. 2012]. As these values rely on the calibration of the gazetracker,
they may change slightly across different sessions.

The changes described previously can manifest themselves both within the same
session and across multiple days or weeks. Technical artifacts may be particularly
prevalent when using data collected in different sessions due to the fact that a separate
calibration has to be performed before each session. Despite these difficulties, we show
in Section 7 that we are able to collect a classifier training dataset that is rich enough
to reduce the influence of these error sources. By including training data from several
sessions, we are able to capture, and adjust for, both long-term and short-term feature
decay.

5.4. Participant Recruitment

Our data is collected from 30 participants, 20 male and 10 female. Participants were
recruited through public advertisements, mailing lists, and social media. Aside from
a minimum age of 18, there were no further exclusion criteria. The age distribution,
as well as whether the subjects are wearing glasses or contact lenses, is given in
Figure 6. The experiments are conducted with the approval of the ethics committee of
the University of Oxford, reference SSD/CUREC1/13-064.

5.5. Task Selection

The set of tasks described in Section 5.2 is suitable to both detect the effect of learning
on eye movement behavior and to measure the amount of identifying information that
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can be obtained through eye movements. However, it does not reflect tasks that would
typically be performed in an office environment. As such, it is hard to draw reliable
conclusions with regard to the performance of a continuous authentication system in a
real-world environment. In order to amend this, we define a second set of experiments
that more closely resembles such an environment. In line with our initial reasoning,
we keep the tasks identical for all participants in order to avoid classification of tasks
rather than individuals. Our task set consists of reading, writing, two videos, and web
browsing.

Reading: As part of this task, the participants are presented an excerpt from Daniel
Defoe’s Robinson Crusoe. The black text is displayed on a white background in a single
column centered horizontally on the screen, as is common with many types of e-book
software.

Writing: During this task, the users are asked to copy part of the text they read
before. To this end, they are presented with the original text on the top half of the
screen and an empty text box below the text. One might argue that restricting users
in what they are typing might potentially influence features; however, it is difficult to
truly capture daily typing behavior in a lab experiment. Even when displaying a writing
prompt (such as asking participants to recapitulate their day), many participants would
likely be at a loss as to what to write, thus greatly limiting the fraction of time spent
typing. While it would be possible to ask participants to perform tasks they were
intending to perform regardless of the experiment, the unfamiliar environment would
likely affect behavior and constitute a confounding factor. Besides the test of task
dependence, we hope to gain another insight from this task: due to the nature of
optical eye tracking, samples might be lost when the user is looking at the keyboard
(which is likely to be frequent for inexperienced typists). Based on this assumption,
we will also quantify the fixation rate, as it directly impacts the speed with which
authentication decisions can be made (see Section 7 for details).

Browsing: An obvious choice for this task would be to give users a fixed time limit
and not to restrict the websites they visit. Naturally, this might lead to users choosing
wildly different sites, such as streaming sites (e.g., YouTube), news sites, or online
games. Compared to the number of possible groups of websites, the number of users
is relatively small, likely leading to profiling of website types rather than users. To
address the tradeoff between a real-world environment and the need to fix the task, we
used a Wikipedia browsing game for this task. As part of this game the user is initially
shown a random Wikipedia article and asked to exclusively use links within that page
to reach the article “University of Oxford.” Once this goal is accomplished, the user is
asked to use Wikipedia’s “Random Article” function to start over until the task’s time
limit is reached.

Videos: With the increasing popularity of online streaming sites such as YouTube
and Netflix, we considered it important to include watching a video as one of the
tasks. Because it is infeasible to include all varieties and genres of videos in a single
lab study, we selected two different videos as representatives. The first video shown
to participants is “Big Buck Bunny,” a popular short computer-animated comedy film
produced by the Blender Foundation.3 The rationale behind this choice is that the film
is released under an open-source licence (and can be shown as part of the experiment
without further legal restrictions) and is likely to keep participants engaged in the
experiment. The film itself features both slow fading and rapid cuts, together with
frequently changing color schemes. Our second choice is an educational video titled
“The Problems with First Past the Post Voting Explained,” which is also freely available

3https://peach.blender.org/., last visited 01/25/2016
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on YouTube.4 Unlike Big Buck Bunny, there is very limited movement, quick scene
changes are mostly absent, and the color scheme is bright and lacks frequent changes.

The data for this experiment is collected from 10 participants, six male and four
female. The recruitment process was identical to that used for the previous experi-
ment (see Section 5.4). The experiments are conducted with the approval of the ethics
committee of the University of Oxford, reference SSH_C1A_15_139.

5.6. Experimental Setup

Figure 7 shows our experimental setup. We use an SMI RED500 eye-tracking device
with a sampling rate of 500Hz to collect the raw gaze data. The stimuli are displayed
on a 24-inch Dell U2412M monitor with a resolution of 1920x1200 pixels. The view-
ing distance between the subjects and the screen is approximately 50cm. In order to
reduce distractions and to minimize the influence of the experimenter on the subjects,
all instructions were displayed on-screen during the session. Although the gazetracker
compensates for minor head movements during the data collection, we asked the par-
ticipants to move as little as possible.

Before the session, the gazetracker has to be calibrated for each test subject. This
stage consists of a calibration phase and a verification phase in which the error between
actual and estimated viewing angle in degrees is determined. In order to ensure as high
a data quality as possible, we reject calibrations with a viewing angle error of more
than 1◦, either horizontally or vertically. If the error is too high, the calibration has
to be repeated. At the end of the session, we repeat the verification phase in order
to test whether the initial calibration is still valid. A large verification error at this
stage indicates low-quality data, most likely due to excessive movements during the
experiments. During testing, we observed an average error of 0.49◦ in the X-direction
and 0.52◦ in the Y-direction immediately after calibration. These errors increased to
0.74◦ and 0.72◦, respectively, over the course of the experiment. Given that the error
rates are lower than our threshold even at the end of the experiment, we are confident
in the quality of our data.

5.7. Modifying Sampling Rate

As outlined previously, all the data in our study was collected at a sampling rate of
500Hz. Capturing data at the highest available sampling rate provides the benefit of
exploring exactly which distinctive features are contained in human eye movements,
even though this sampling rate might not be available in equipment used in many
productive environments. While it would be possible to repeat the experiments with
different hardware, this would make comparisons more difficult due to external fac-
tors (e.g., lighting, different individuals) that are virtually impossible to control for.
Even when keeping all factors identical by simultaneously collecting data with mul-
tiple devices, the number of datasets that is collected is inherently limited by space
constraints when placing the devices. In order to provide insights into both the maxi-
mum distinctiveness of the biometric and the performance that can be expected with
consumer-level hardware, we perform downsampling on our dataset to simulate the
sampling rate of these devices. We employ downsampling factors of 1, 2, 5, and 10. A
downsampling factor of n means that every nth sample is kept. Consequently, based on
the initial sampling rate of 500Hz, we generate individual datasets with 500, 250, 100,
and 50Hz.

4https://www.youtube.com/watch?v=s7tWHJfhiyo., last visited 01/25/2016.
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6. FEATURE SELECTION

In this section, we describe different types of features, explain the reasoning behind
each choice, and link them to the foundations in neuroscientific work described in
Section 3. We will describe three measures of feature quality and analyze both the
feature distinctiveness and their time stability using these measures. Additionally, we
analyze the effects of reduced sampling rate and explain these effects using insights
gained from neuroscientific work (see Section 3).

6.1. Feature Selection Criteria

An important consideration when choosing features is what data is required to compute
them and whether there are any constraints regarding the environment in which
they are collected. In order to make the authentication system usable in a standard
working environment, the calculation of the features must only use raw eye-tracking
data without relying on controlling, or even being aware of, running applications or
screen content. This assumption distinguishes our approach from related work, which
measures the user’s reactions to controlled stimuli, and is therefore unsuitable for
transparent continuous authentication [Cantoni et al. 2015; Liang et al. 2012].

It is important to know to what degree features are influenced by the task the user
performs while the features are collected. As eye movements are always a reaction
to a stimulus, perfect task independence can never be guaranteed, but some features
are more susceptible to such influences than others. Largely task-independent features
allow conducting the training phase with a task different from the one performed during
the system’s actual operation. This is particularly desirable in an office environment,
as a wide variety of tasks are performed on a daily basis. A higher degree of task
independence will significantly reduce the error rates exhibited by the system.

We choose our features such that their computation does not depend on any specific
experimental design. As such, we don’t use features that depend on the dot-clicking
game (e.g., the position or even the presence of the red dots) or any of the real-world
tasks. The main advantage of this approach is that the experimental design (i.e.,
the tasks performed by the subjects) is interchangeable and the authentication can
be transparent and occur without the user’s cooperation or even knowledge. While
the features can be computed regardless of the task, their distributions might still be
affected. We evaluate the effect of task selection and changing feature distributions in
Section 8.3

6.2. Grouping of Samples

The gazetracker reports raw samples containing x/y coordinates and the current pupil
diameter. As a single raw sample does not contain any distinguishing information, it
is necessary to combine multiple raw samples and use the relationships between these
samples (i.e., movements instead of static positions) as features. Given the nature of the
data, we consider fixations to be the most natural level of abstraction. The gazetracker
groups samples collected over at least 50ms that lie within a 30-pixel radius into a
fixation (see Figure 1). In the context of this section, the term “sample” will refer to
one fixation (i.e., a set of raw samples). In our data, we observe one fixation on average
every 250ms, yielding a sampling rate of 4Hz. It is important to note that this rate may
change depending on the experimental design (e.g., reading will lead to longer fixations
and a lower sampling rate) and across different users.

6.3. Feature Types

A complete list of our features is given in Table I. We consider three different types of
features: pupil features, temporal features, and spatial features.
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Table I. List of Pupil, Temporal, and Spatial Features That Are Computed for Each Fixation

Bhattacharyya
Feature RMI K-S Statistic Distance

Pupil features
Pupil Diameter - Max 19.84% 0.61±0.28 0.78±0.88
Pupil Diameter - Mean 20.27% 0.62±0.28 0.84±0.97
Pupil Diameter - Min 20.26% 0.61±0.29 0.82±0.97
Pupil Diameter - Range 1.19% 0.12±0.07 0.02±0.02
Pupil Diameter - Stdev 0.98% 0.11±0.06 0.02±0.01

Temporal features
Acceleration - Max 2.49% 0.18±0.12 0.05±0.06
Acceleration - Mean 0.35% 0.07±0.03 0.01±0.00
Duration of Saccade 1.09% 0.12±0.05 0.02±0.02
Duration of Fixation 0.9% 0.10±0.06 0.01±0.02
Pairwise Speed - Max 4.95% 0.25±0.16 0.10±0.12
Pairwise Speed - Mean 5.36% 0.26±0.17 0.11±0.14
Pairwise Speed - Stdev 1.77% 0.14±0.09 0.03±0.04

Spatial features
Distance from Center - Max 1.2% 0.12±0.06 0.02±0.02
Distance from Center - Mean 2.52% 0.20±0.12 0.04±0.05
Distance from Center - Min 0.72% 0.11±0.06 0.01±0.01
Distance from Center - Stdev 1.21% 0.13±0.07 0.02±0.02
Distance from Previous Fixation 0.66% 0.10±0.05 0.01±0.01
Max Pairwise Distance 1.23% 0.13±0.07 0.02±0.02
Max Pairwise Distance X Only 1.06% 0.13±0.07 0.02±0.02
Max Pairwise Distance Y Only 0.84% 0.11±0.05 0.02±0.01

For each feature, we report the relative mutual information (RMI) shared with the user ID.
Additionally, we compute the average and standard deviation (as indicated by the ± sign) of
the Kolmogorov-Smirnov statistic of the two-sample KS test, and the Bhattacharyya distance
for all pairs of users. For all metrics, higher values indicate higher feature quality.

Pupil features can be split into static and dynamic features. As outlined in Sec-
tion 3, the range of the pupil diameter is largely constant for each person. We capture
this static range using the maximal, minimal, and mean pupil diameter that is observed
during one fixation. The dynamic component is reflected by the short-term changes of
the pupil diameter. These changes can be caused by cognitive load or different stimula-
tion through lighting. While these external stimuli are equal for all participants, their
reactions to them may not be. We model these changes through the standard deviation
and the difference between the minimal and maximal pupil diameter observed during
a fixation.

Temporal features include the duration of saccades and fixations as well as speed
and acceleration. Both the peak and the average velocity of movements within a fixa-
tion have been shown to differ greatly between people in related neuroscientific work
(see Section 3). These differences are mainly caused through different prevalences of
saccadic intrusions and microsaccades, both of which are characterized by high velocity
and acceleration. Different studies report similar ranges for these values, even though
their experimental designs differ significantly. This suggests that these features show
a high degree of task independence, which makes them particularly desirable for clas-
sification. We compute the velocity between each pair of consecutive samples and only
use the magnitude of acceleration (i.e., we do not use the direction). The reasoning
behind this is that the direction of acceleration depends on the location of the target
stimulus and is therefore task dependent [Hafed and Clark 2002].

Spatial features are a method to measure the steadiness of a person’s gaze. A
fixation is a group of samples within a fixed-size circle, which consists of the samples
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and a center point (see Figure 1 for an illustration). While the total area that can be
covered by a fixation is limited by this definition, the spatial distribution of samples
within this area can still be different. If a person’s gaze is steady, the samples will be
clustered closely around the fixation center, with few samples outside of this group.
If a person has trouble focusing his or her gaze, the samples will be spread more
evenly. We compute both the distance between each raw sample and the center point
and the distance between each pair of raw samples. As some movements may be more
pronounced in the vertical or horizontal direction, we also make this distinction. The
distance between two fixations (as measured by the Euclidean distance between their
center points) allows us to measure how many points between two areas of interest
(i.e., target stimuli) are actively focused and processed by the subject.

6.4. Determining Feature Quality

Having a measure of feature quality is important for two reasons: (1) to be able to
select the best features when the entire set is too high-dimensional and (2) to gain
better insights into why the biometric works. Additionally, it allows one to measure
how external factors (such as different hardware or collection time spans) affect each
feature. Even initially highly distinctive features might be unusable if one or more of
these factors severely degrade its performance. In order to ensure the robustness of
the ranking of the features in our set, we employ three different measures: the relative
mutual information (RMI), the Kolmogorov-Smirnov statistic of a two-sample KS-test,
and the Bhattacharyya distance. Initially, an amount of uncertainty is associated with
the user ID (its entropy). This amount depends on the number of classes (i.e., users)
and the distribution of the samples between users. Each feature reveals a certain
amount of information about the user ID, and this amount can be measured through
the mutual information (MI). In order to measure the mutual information relative to
the entire amount of uncertainty, we use the relative mutual information (RMI), which
measures the percentage of entropy that is removed from the user ID when a feature
is known [Frank et al. 2012]. The RMI is defined as

RMI(uid, F) = H(uid) − H(uid|F)
H(uid)

,

where H(A) is the entropy of A and H(A|B) denotes the entropy of A conditioned on B.
The range of this feature is between 0 (indicating that the feature contains no informa-
tion about the user) and 1 (meaning that all users can be uniquely identified through
this feature). In order to calculate the entropy of a feature, it has to be discrete. As most
features are continuous, we perform discretization using an Equal Width Discretiza-
tion (EWD) algorithm with 20 bins [Dougherty et al. 1995]. This algorithm typically
produces good results without requiring supervision. In order to limit the drastic effect
that outliers can have when using this approach, we use the 1st and 99th percentile
instead of the minimal and maximum values to compute the bin boundaries. A high
RMI indicates that the feature is distinctive on its own, but it is important to consider
the correlation between features as well when choosing a feature set. Additionally,
several features that are not particularly distinctive on their own may be more useful
when combined.

The relative mutual information relies on discretization of feature values; the num-
ber of bins and the algorithm used to filter outliers might change not only the absolute
values of the measure but also the relative ranking of features. In order to gain ad-
ditional insights, we calculate the Kolmogorov-Smirnov statistic of a two-sample KS
test. We consider the two 1-dimensional probability distributions for two users with
regard to a single feature. The KS-test then tests whether the two samples are drawn
from the same distribution (null hypothesis). A feature would only be distinctive if the
null hypothesis can be rejected for a high number of user pairs. As the information
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Fig. 8. Feature correlation measured by the Pearson correlation coefficient. A value of 0 indicates no corre-
lation; values of 1 and −1 signify positive and negative correlation, respectively.

whether the null hypothesis is rejected at a certain confidence does not provide any
information about the magnitude of the differences between the samples, we use the
Kolmogorov-Smirnov statistic as a metric, computed as

Dn,n′ = sup
x

|F1,n(x) − F2,n′ (x)|,

where F1,n and F2,n′ are the empirical distribution functions of two different subjects.
The measure is computed for all pairs of subjects. Table I provides the averages and
standard deviations. Defined as the difference between two empirical distribution func-
tions (that lie between 0 and 1 at each point), the KS-statistic also takes a value in
that interval. A value of 1 indicates that the average difference between two users
regarding this feature is maximal, thus suggesting a distinctive feature. None of the
features used in the biometric follow a normal distribution (p < 0.001); as such, the
fact that the test does not assume any specific distribution of the data is critical.

Additionally, for each pair of users (p,q) we compute the Bhattacharyya distance of
a feature as

DB(p, q) = −ln

(∑
x∈X

√
p(x)q(x)

)
.

The Bhattacharyya distance measures the similarity of two continuous probability
distributions, in this case the probability distributions of the same feature for two
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Fig. 9. Influence of data collection time span. Fig. 10. Influence of sampling rate.

users. Higher values indicate bigger differences between the distributions, resulting in
higher distinctiveness of this feature. This metric has been shown to correlate well with
classification accuracy for a number of classifiers and datasets [Choi and Lee 2003].

6.5. Discussion

Table I shows how each feature performs with regard to the three metrics discussed
in the previous section. Each metric has different value ranges; as such, the values
are not directly comparable. However, the relative rankings of features in the set are
comparable between the three metrics, which suggests that the feature discretization
performed before computing the RMI does not distort the overall ranking and all three
metrics are indicative of the features’ quality.

The static pupil diameter features (i.e., min, mean, and max) share the most in-
formation with the user ID. The dynamic pupil diameter features (i.e., the standard
deviation and the min-max difference) are less distinctive, which suggests that the
pupil diameter is more a result of different genders, ethnicities, and eye shapes than a
behavioral feature.

While the behavioral features, both temporal and spatial ones, show a lower distinc-
tiveness than the pupil diameter, they still contribute significant amounts of informa-
tion. The fact that both peak speed and acceleration exhibit comparatively high scores
with regard to all metrics shows that we accurately model the distinctive capabilities
of saccadic intrusions and microsaccades.

When selecting which feature candidates should form the final feature set, there are
several aspects that have to be considered: each of the features should be hard to imitate
in a given threat model. As we focus on insider threats, this rules out features that
can be easily observed and copied. Given the insights from Section 3, we suspect that
it may be possible for a sophisticated attacker to modify his or her own pupil diameter
to a certain degree. Specifically, it has been demonstrated that the pupil reacts almost
instantaneously to external light stimulation, while the reversion to the baseline occurs
slowly [Herbst et al. 2011]. Consequently, an attacker could decrease his or her own
pupil diameter by constantly shining a bright light in his or her own eyes, even though
the reverse might be harder to achieve. While it might be possible to recognize such a
stimulation (e.g., by monitoring ambient light intensity), we still consider this a valid
threat. In order to address this issue, we also investigate the performance of a feature
set that does not make use of the pupil diameter features. When putting the system
into operation, it can then be decided which feature set should be used, depending on
the threat model and the capabilities of potential attackers. We will discuss the impact
of not using the pupil diameter as a feature (and thereby raising the bar for an attacker
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Fig. 11. Changes to the RMI of individual features when reducing the sampling rate to 50Hz. The temporal
features reflecting the properties of microsaccades (speed and acceleration) are most strongly affected.

trying to perform an imitation attack) in Section 8. Figure 8 shows that the correlation
between features belonging to the same group (i.e., pupil diameter, temporal or spatial)
is relatively high, while the intergroup correlation is considerably lower. This suggests
that all three groups contribute to the distinctiveness of the biometric and no group can
be replaced entirely by another. This also makes sophisticated imitation attacks more
difficult, as a number of very distinct features have to be emulated simultaneously.

6.6. Feature Degradation

As outlined in the previous sections, we consider two main factors that could negatively
impact feature quality: (1) increased data collection time span and (2) reduced sampling
rate.

Figure 9 shows the effects of increased data collection time spans on the cumulative
RMI of the three feature groups. Not surprisingly, the intrasession dataset (which
only includes the first session) results in the highest total information. After that,
the features’ information content declines with increasing time distance between the
sessions, with the effect being more pronounced for the features involving the pupil
diameter. As outlined in Section 3, the pupil diameter is susceptible to external factors
such as lighting, so this degradation is to be expected.

In line with our expectations, reducing the sampling rate also reduces the informa-
tion content of features (see Figure 10). Pupil diameter features suffer slightly from
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halving the sampling rate, and any further reduction has no measurable effect. Con-
versely, temporal features decrease almost linearly with every further increase of the
downsampling factor. This effect can be explained through the short-lived nature of
the main physiological processes causing the distinctiveness of this feature group. As
described in Section 3, microsaccades and saccadic intrusions are distinctive but only
last a few milliseconds. As such, it is not surprising that reducing the sampling rate
below a certain threshold prevents their distinctive capabilities from being harvested.
Figure 11 breaks down the degradation of features when reducing the sampling rate to
50Hz. Maximal and average speed and peak acceleration, the features most strongly
associated with microsaccades, suffer from the biggest degradation of all features in the
set. The degradation is statistically significant for all features in this group (p < 0.05).
Conversely, the spatial features, with the exception of the mean distance to center,
show no statistically significant changes (p > 0.05) even for the lowest sampling rate
setting.

7. CHOICE OF CLASSIFIERS AND METRICS

In this section, we will describe both open-set and closed-set classifier candidates and
discuss their individual advantages when used with the eye movement biometric, as
well as the impact that feature selection, sampling rate, and time distance have on
the classifier performance. In addition to the error rates, we will present metrics that
make it possible to gauge the real-world performance of the system. Finally, we will give
insights on how different parameters of our system can be chosen to reflect different
security requirements.

7.1. Closed-Set Classifiers

Training of closed-set classifiers requires samples for each potential user of the system.
The output of the classifier for a new sample is then the predicted class, chosen out
of the set of classes it was initially trained with. This type of classifier is useful in an
insider threat scenario, as an employer using a biometric system likely has collected
templates for all employees. The advantage of such a system is that it not only detects
an unauthorized user (by virtue of the claimed identity, as established through a user
name, not matching the user recognized by the classifier), but also can reveal the
attacker’s identity. The major disadvantage is that once an external attacker (i.e.,
somebody not enrolled in the system) attempts to access a workstation, the classifier
will recognize him or her as the user with the closest template, which might lead to
incorrectly granting access or framing an innocent user for the failed attack.

We consider two closed-set classifiers, the k-nearest-neighbors (knn) algorithm and
Support Vector Machines (SVMs). In order to determine the optimal parameters for
these classifiers, we perform a grid search through a defined subset of the parameter
space. For the knn classifier, we tested values of k between 1 and 20 and weighting
samples uniformly or by Euclidean distance. For the SVM, we tested a linear, a polyno-
mial, and a radial kernel (rbf) function. For all three kernels, we varied the soft margin
constant C in powers of 10 between 1 and 10,000. The polynomial kernel was used
with degrees between 2 and 5, and for the radial kernel function, we tested values of γ
between 0.00001 and 10. The best results were achieved with k = 5 and weights based
on Euclidean distance for knn and an rbf-kernel with C = 10,000 and γ = 0.001 for the
SVM.

After completing the training phase, the classifier continuously assigns labels (i.e.,
user IDs) to fresh samples. If the system is used for authentication (which is the focus
of this work) rather than identification, this decision can be transformed to either an
accept (i.e., the predicted user matches the claimed user) or a reject (i.e., the predicted
user is different from the claimed user). The decision’s robustness can be increased
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by combining multiple samples before making a final decision. Combining multiple
samples will increase the accuracy of the decision but also introduces a delay before
an imposter can be detected. As eye tracking provides a stream of new samples at a
constant and high rate, we choose to combine several samples for each authentication
decision. Our authentication system is parameterized through the size n of a sliding
window and the threshold t, which defines how many of the samples in this window
must support the current user. As such, a fresh sample is accepted only if at least t
out of the last n labels output by the classifier match the claimed user ID. Therefore,
a higher value of n increases the system’s robustness but delays the detection of an
attacker, while the value of t controls the tradeoff between the false accept rate and
false reject rate.

7.2. Open-Set Classifiers

When used for authentication, one-class classifiers are only trained with data belonging
to a single legitimate user. For each new sample, the classifier determines whether it
is sufficiently close to the data observed during training. As such, the output of the
classifier is only a yes/no decision, rather than a user ID (the output of a closed-
set classifier); therefore, it is unable to reveal the identity of an attacker. However,
identification of attackers is impossible even for a closed-set classifier unless reference
data is available for all potential attackers. While this may well be the case for an
insider threat scenario, it is unrealistic for a more general setting. Additionally, there
are usually other means of identifying an attacker who is physically present, such
as video surveillance. The major advantage of one-class classifiers is that training
does not require any knowledge about either the set of possible attackers or their
individual biometric templates. As such, it is well suited to detect both inside and
outside attackers.

In this section, we analyze the performance of the one-class Support Vector Machine.
This classifier is parameterized by the kernel coefficient γ and the regularization
parameter ν. The value of ν is an upper bound on the fraction of training errors. Higher
values of ν will increase false rejects while reducing false accepts. While it would be
possible to tailor the value of ν to achieve a certain split between the two error rates, this
is generally undesirable as changing the parameter requires retraining the classifier.
Therefore, we choose both values to minimize the total number of errors within the
development dataset. Using a grid search on a development set different from the data
used for training and testing, we identify γ = 0.001 and ν = 0.18 as optimal parameters.
The actual authentication decision is made using the same sliding-window technique
we use for the closed-set classifier. A sample is accepted only if at least t out of the last
n classifier decisions are accepts.

7.3. Metrics

Most papers proposing new biometric systems provide both the FAR and FRR of their
chosen biometric. Most of the time some sensitivity parameters can be adjusted to
trade a lower FAR for a higher FRR, and vice versa. In an attempt to make different
systems more comparable, the EER is often given as well. The EER is the error rate
of the system when its parameters are adjusted such that both the FAR and FRR are
equal.

In order to ensure comparability of our biometric with previous work, we also provide
the EER (see Section 8). However, this metric suffers from a number of practical
problems that make it difficult to draw valid conclusions from it: in a continuous
authentication scenario (which is the environment in which behavioral biometrics often
compare most favorably with hard biometrics), it is crucial to know how the errors are
distributed between both legitimate users and user-attacker pairs. An FRR of 5% could
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Fig. 12. Average equal error rates obtained through fivefold stratified cross-validation on three different
datasets using the closed-set SVM classifier. The error bars indicate 95% confidence intervals.

Fig. 13. Average equal error rates obtained with the one-class SVM classifier for different sampling rates.
The error bars indicate 95% confidence intervals. Reducing the sampling rate to 250Hz has a large effect on
the error rates; any subsequent reduction does not produce a statistically significant increase in the EER.

signify that all users are rejected exactly once every 20 samples, or that 5% of the users
are rejected consistently (or, most likely, something in between). Obviously, these cases
pose very distinct challenges. The latter case could be addressed by authenticating
the users that are consistently rejected using a different mechanism (such as another
biometric), while the first case renders the entire biometric largely useless. The same
can be said for the FAR, questioning the usefulness of the EER as a measure of security.
Additionally, it is impossible to derive a biometric’s typical attack detection speed
without knowing its sampling rate.

To address these issues, we provide two more metrics: the systematic false-negative
rate (sys-fn) and the median time until an attacker is detected (med-ttd). The sys-
tematic false-negative rate is the fraction of attackers that are never detected (within
the scope of our data). This is usually due to their biometric template being close to
that of a legitimate user. As with the conventional measures (FAR and FRR), these
values depend on the system’s sensitivity settings. In order to provide results that are
easy to compare, we report them at a setting that never rejects legitimate users. As
such, any additional security provided by the system comes at no cost in terms of user
inconvenience or needing a mechanism to handle false alarms.

8. RESULTS

In this section, we will discuss the usefulness of eye movement patterns to both derive
task familiarity and perform continuous authentication. The latter will be evaluated
using data from both the task familiarity experiments (Section 5.2) and the task de-
pendence experiments (Section 5.5).
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Fig. 14. Changes of three different performance metrics caused by natural learning, text descriptions, and
shoulder surfing: (1) shows the effects of increased familiarity with game mechanics, and (2) shows the
memory effects of learning a sequence. The error bars indicate the 95% confidence intervals.

8.1. Task Familiarity

As stated in Section 5, the goal of the experiment is to distinguish familiar and unfa-
miliar users by analyzing eye movements. In order to make this distinction, we first
have to confirm that users are actually improving (gaining familiarity) over the course
of the experiment, as all users are initially unfamiliar with the dot-clicking game. In
order to provide ground truth for this assessment, we define two metrics to measure
task performance. This allows us to test whether any improvements in the gaze-based
metrics correlate with improvements in actual user performance. (1) Response Time is
the time it takes a test subject to complete one dot of the sequence in the experiment.
It is important to note that this metric refers to a single dot, rather than a sequence
of dots. This definition allows us to compare both short and long sequences using the
same metric. As the users are asked to complete the sequences as quickly as possi-
ble, this measure is the most natural measure of performance. (2) Cursor Distance is
the distance between the cursor location and the position of the stimulus, right be-
fore it is displayed. Reaction time and mouse movement time are the most significant
components of the response time (Figure 4 illustrates this for a single user). As such,
using information about the (predicted) dot location to position the cursor closer to
the dot will significantly improve the task completion time. A (significant) decrease in
the cursor distance can only be due to a better prediction of the dot location by the
user, showing that the user has gained and used information either through natural
learning or knowledge transfer.

In addition to these ground-truth measures, we introduce the gaze distance, defined
as the distance between a user’s gaze position and the position of the stimulus (the
dot) just before it is displayed. If this measure follows the same trend set by the two
ground-truth metrics, it shows that it is possible to learn about users’ task familiarity
by observing their eye movement behavior.

Figure 14 shows the results of our experiment. As we do not perform repetitions with
identical sequences for Experiments 2 and 3 (text descriptions and shoulder surfing),
the figure shows the average over all sequences.

There are two ways in which the users improve over the course of the experiments:
(1) by learning the game mechanics and (2) by predicting the location of the dot before
it appears. The second component then allows the participant to use the blank period
between dots to reposition the cursor. With an increasing number of repetitions, the
users improve with regard to all three metrics. This improvement shows in the response
time decreasing from 1.33 seconds to 0.9 seconds for the short sequence, with similar
effects on gaze and cursor distance. Generally, this effect could be due to either (1) or
(2), as users become more familiar with both the game and the sequence. However, once
they proceed from the short sequence to the (different) long sequence, they only benefit
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Table II. Performance of the One-Class SVM Classifier

Without
Sampling Full Pupil Diameter

Dataset Subjects Rate EER Sys-fn Med-ttd EER Sys-fn Med-ttd
Intrasession 30 500Hz 1.00% 15.44% 30.50s 1.29% 51.80% ∞
Intrasession 30 250Hz 4.83% 24.88% 37.50s 6.26% 60.04% ∞
Intrasession 30 100Hz 5.05% 25.35% 37.50s 5.71% 63.63% ∞
Intrasession 30 50Hz 4.52% 13.63% 22.25s 7.36% 50.28% ∞
Intersession 20 500Hz 2.06% 8.24% 27.50s 2.44% 42.88% 370.00s
Intersession 20 250Hz 7.53% 16.14% 35.50s 7.65% 42.81% 378.25s
Intersession 20 100Hz 7.14% 17.08% 37.50s 7.53% 44.50% 384.25s
Intersession 20 50Hz 8.19% 10.74% 27.00s 7.77% 35.37% 263.50s
2 weeks 20 500Hz 3.92% 2.69% 27.50s 3.67% 31.70% 323.75s
2 weeks 20 250Hz 10.00% 25.14% 84.25s 8.96% 68.38% ∞
2 weeks 20 100Hz 8.99% 25.52% 105.50s 8.81% 66.38% ∞
2 weeks 20 50Hz 7.82% 9.90% 31.50s 6.64% 54.57% ∞
Sys-fn is the fraction of attackers that are not detected within the scope of the data; med-ttd is the median
time until an attacker is detected. Note that all metrics are computed at a parameter setting that never
rejects a legitimate user (i.e., not at the parameter setting that achieves the equal error rate). For a
visualisation of these metrics see Figure 15.

from an improved grasp of the game mechanics (as the short and long sequences are
independent from each other). This improvement, shown as (1) in Figure 14, is present
for both of the ground-truth metrics (response time and cursor distance), as well as the
gaze-based metric. On average, users improve from 1.33 seconds for the first iteration
of the short sequence to 1.11 seconds for the first iteration of the long sequence. In both
cases, the sequence was unknown, suggesting that this improvement is only due to an
improved grasp of the game mechanics. The improvement resulting from learning the
sequence (i.e., becoming better at predicting the position of the next dot) is marked
as (2) in Figure 14, showing the difference in performance between a familiar and an
unfamiliar sequence. While users take an average of 0.90 second for the last repetition
of the short sequence, this increases to 1.11 seconds as the effect of having learned the
sequence disappears.

The gaze-based metric follows similar patterns, showing an improvement of 132px for
(1) and 30px improvement for (2), although only the former is statistically significant
(p < 0.01). For all metrics, there were no statistically significant differences (p >
0.05) in user performance, regardless of whether information was obtained through
natural learning, shoulder surfing, or text descriptions. This suggests that gauging task
familiarity through gaze patterns is particularly effective against outside attackers
without access to these sources of information.

8.2. Continuous Authentication

The performance of the open-set classifier for all combinations of dataset, feature set,
and sampling rate for the task familiarity experiment (see Section 5.2) is given in
Table II. Most notably, the equal error rate decreases greatly when compared to the
closed-set classifier (Figure 12). The relative relationships between the error rates
for different datasets (i.e., intrasession, intersession, over 2 weeks) is preserved, and
increasing time distance also increases the equal error rate. This effect is present for all
sampling rates, although it is most pronounced for the 500Hz setting as the intrasession
error rates are much lower. Interestingly, the same cannot be said when switching from
the full feature set to a set without the pupil diameter. While the error rates increase
for two out of the three datasets, they even decrease slightly when using data gathered
over 2 weeks. This suggests that the pupil diameter is not only a potential security
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Fig. 15. Attack detection speed of the open-set classifier with parameter settings that never reject legitimate
users. The dotted line represents the average, and the shaded area the 95% confidence interval over the five
folds of the cross-validation. These results were obtained using the full feature set and sampling rate; see
Table II for the remaining results.

concern but also an actual source of error when the biometric is used over longer time
spans. This is most likely due to the fact that the effects of external stimuli (such as
lighting) overshadow the initial distinctiveness provided by physical characteristics.
Consequently, this feature group should not be used for long-term operation without
regular classifier retraining (e.g., at the start of a session).

As would be expected, reducing the sampling rate reduces classification accuracy
and consequently increases the equal error rate. The sharpest increase can be ob-
served when reducing the initial sampling rate of 500Hz to 250Hz. Any subsequent
changes don’t result in a statistically significant increase in error rate. Surprisingly,
the reduction from 100Hz to 50Hz lowers the equal error rate for some datasets.

Regarding the newly introduced metrics “median time to detection” and “systematic
false negative rate” (see Section 7.3 for details), it is interesting to note that they
don’t correlate well with the equal error rate. While sys-fn increases when reducing
the sampling rate, the effect is not nearly as strong as would be expected given the
enormous increase in EER. The effect is even more pronounced when not using the
pupil diameter for classification. While the error rates increase only marginally (or
even decrease in the 2-weeks dataset), the fraction of undetected attackers increases
immensely. In some datasets, this fraction increases to over 50%, resulting in a median
time to detection of ∞. Note that these metrics are computed for a parameter setting
that never results in legitimate users being rejected within the scope of our data.
As such, the detection of attackers comes at no additional costs with regard to user
inconvenience or handling of false alarms.

8.3. Task Dependence Experiment

8.3.1. Pupil Diameter Correction. Medical research has shown that a person’s pupil di-
ameter is greatly affected by light stimulation (see Section 3 for details). Naturally,
the tasks described in Section 5.5 will result in different screen brightness (with the
videos being generally darker than text on white background). Consequently, it is likely
that classification accuracy would suffer when the image or screen brightness differs
between enrollment and operation. However, a software-based continuous authentica-
tion system can monitor the brightness of the currently displayed image and correct
the raw pupil diameter reported by the eyetracker accordingly. In order to perform this
correction, two pieces of information are needed: (1) the brightness of an image and
(2) the way a person’s pupil diameter depends on this brightness.

During each of the main tasks, we continuously record the image brightness along
with the eye-tracking data. This is necessary, as the screen brightness during a task
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might depend on user actions (e.g., the set of webpages visited during the browsing
task). To compute the brightness of the image, we compute the average brightness of
all RGB pixels. As different components of an RGB color contribute differently to the
overall brightness (green being perceived as brighter than blue, for instance), we use
the following formula, as proposed by the W3C5:

Br = (R × 0.299) + (G × 0.587) + (B× 0.114).

Given a maximum value of 255 for each of the color components, the brightness is
a value between 0 and 255, with 0 being black and 255 being white. When examining
the correlation between screen brightness and pupil diameter for the combination
of all tasks, an average Pearson correlation coefficient of −0.68 was observed. This
correlation is statistically significant (p < 0.001) and suggests that a correction for this
relationship would be beneficial.

In order to perform the actual correction, it is crucial not to use information derived
from the tasks used for classification. Before starting the main tasks described in
Section 5.5, we display a black screen, followed by a white screen for 20 seconds. We
choose this order as the pupil’s adaptation to bright light is almost instantaneous,
whereas adaptation to darkness is gradual [Herbst et al. 2011]. Based on these tasks,
we observe that, on average, the pupil diameter decreases by 0.005 when brightness is
increased by one. The difference in this slope between users is minimal; as such, we use
a single value for all users. While classification accuracy might improve marginally by
using a user-tailored approach, a single value greatly simplifies the enrollment phase.
The corrected pupil diameter is obtained according to the following formula:

dnew = draw + (Br × 0.005).

When using the pupil diameter correction, this formula is applied to all samples, both
in the training and testing sets. After applying the correction, we observe no statis-
tically significant correlation between corrected pupil diameter and screen brightness
(p > 0.05).

8.3.2. Evaluation. Figure 16 shows the results of our analysis. It is apparent that the
EER is low when using data from the same task for training and testing, with values
between 0.04% for browsing and 4.9% for the first video. These error rates are compa-
rable to those exhibited with the task familiarity experiment described in Section 5.2.
Within a single task, the pupil diameter correction only provides a meaningful change
for the first video, decreasing the EER from 4.9% to 3.3%. This result is intuitive, as
the other tasks exhibit significantly smaller variations in brightness.

Classifier performance changes significantly when using one task for enrollment and
another for operation. The most apparent increase in EER results in the combination
of the first video and the reading task, regardless of which of these two tasks is used for
training. In this scenario, the EER approaches 50%, thus not providing a benefit over
random guessing. This is likely the result of the pupil diameter being greatly affected
by the bright background of the reading task compared to the relatively dark video.
Consequently, the classification accuracy is actually worse than not using the pupil
diameter at all, as the pupil diameter of Alice reading a text might match that of Bob
watching a video. This EER is drastically lowered when applying the pupil diameter
correction, reducing the error rate from 49% to 18.7%. A similar reduction can be
observed for the other task pairs, with the one exception being the writing task. When
using writing for either training or testing, performance is poor, regardless of whether
or not the pupil diameter correction is used. The most likely cause of this lies in the

5https://www.w3.org/TR/2000/WD-AERT-20000426#color-contrast, last visited 01/25/2016.
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Fig. 16. Equal error rates for different combinations of training and testing tasks. The right figure uses the
pupil diameter correction described in Section 8.3.1.

imperfect nature of eye tracking when the user is not looking directly at the screen.
During the experiment, we noticed that many users were either inexperienced typists
or not familiar with the keyboard layout, resulting in them frequently looking away
from the screen. This apparent behavior is backed by a drop in the sampling rate (when
only counting valid samples) from an average of 470Hz to 360Hz for the writing task.
However, once the device loses track of a person’s eye, there is a brief recovery period
that results in low-quality tracking. These two factors lead to a fixation rate of 0.9Hz, as
opposed to the average of 4Hz over the other tasks. Both the sampling rate and the EER
suggest that the eye movement biometric is not suitable for use during tasks centered
largely on writing or other tasks that frequently draw the user’s gaze away from the
screen. While the gaps in the data created by these distractions will ultimately remain
a problem, we believe that improvements in gaze-tracking technology (especially given
the rise of eye tracking in the entertainment sector) will likely reduce the length of
these gaps and reduce the loss of tracking accuracy around them, thereby mitigating
this additional source of error.

The results show that the error rates are comparable to, or even lower than, those
observed for the task familiarity experiment. While the error rates increase signifi-
cantly when performing enrollment on a different task, this issue can be mitigated
through pupil diameter correction. Additionally, the results suggest that grouping sim-
ilar tasks (e.g., text-based tasks) for the purpose of enrollment might yield sufficiently
low error rates, thereby balancing acceptable error rates with simplified enrollment.
The generation of templates for different task groups could be coupled with auto-
mated task detection to further improve accuracy without giving up the transparent
authentication.

9. LIMITATIONS AND DISCUSSION

There are a number of possible limitations to consider when evaluating this work.
All data has been collected in a lab study; while the features can be computed in any
environment and error rates are low for all tested real-world tasks, the participants
were still restricted in their actions. While this may seem like an obvious limitation,
we argue that it is a necessary first step to draw meaningful conclusions about the
biometric. Regardless of the number of subjects, there is always the danger of each
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subject choosing an individual (variation of a) task, which could lead to classification
accuracy being overestimated as the classifier distinguishes tasks instead of users. The
same reasoning applies for the need to conduct the study in a controlled environment
(i.e., in a lab study). Under the insider threat model, the attacker would always use the
workstation in the same environment as the victim, as the biometric is meant to secure
local access. Consequently, the environment (and resulting factors such as lighting)
have to remain the same for all users and this level of control can only be reliably
established in a lab study. While a field study would certainly give interesting ad-
ditional insights, for example, by instructing users to attempt to impersonate their
coworkers, we consider a lab study a necessary first step into investigating the suit-
ability of eye movements as a biometric.

We performed the experiment with 30 users for the task familiarity experiment and
10 users for the analysis of task dependence. Naturally, a higher number of partici-
pants would give greater confidence in the robustness of our results. Nevertheless, our
participants cover a wide variety of age groups, both genders, and a number of partici-
pants with glasses or contact lenses (see Figure 6). Together with the narrow confidence
intervals shown in Figure 12, this suggests that similar results could be expected in
a larger study. Our recruitment process is based on social media and mailing lists,
which, along with the natural selection of people willing to participate in experiments
in general, might introduce a bias that influences our results. Additionally, our sample
might be subject to additional unknown sampling bias (as some subsets of the entire
population may be particularly hard or particularly easy to distinguish), although this
cannot necessarily be avoided even with higher sample sizes if the source of the bias
is unknown. So far there has been, to the best of our knowledge, no research exploring
how the distribution of our features changes across different subsets of the population,
with the exception of the pupil diameter. Without establishing these effects first, it is
hard to draw a sample from the entire population that is representative with regard
to the biometric.

The threat model in this work assumes a zero-effort attack, with participants not
actively trying to modify their own eye movements with regard to our feature set. If an
attacker is able to record a victim’s eyes, he or she might attempt to match his or her
victim’s eye movement patterns when attempting to access the victim’s workstation.
While it is, by the nature of the problem, impossible to show that such an attack is
infeasible, we consider it unlikely to succeed in practice. Medical research shows that
subjects have not been able to permanently suppress microsaccades (the type of eye
movement likely responsible for the distinctiveness of temporal features) and that
temporary suppression leads to a higher rate of microsaccades shortly after [Engbert
and Kliegl 2004]. Modifying the exact duration and magnitude of acceleration would
arguably be even more difficult. To the best of our knowledge, the only feature that has
been shown to be susceptible to influence through stimulation is the pupil diameter.
Besides manual imitation, another attack vector would be the creation of an artificial
eye that moves according to the attacker’s specification. However, due to the millisecond
scale of fixations, the control would have to be extremely precise and the attack could
be countered by implementing liveness detection (i.e., distinguishing between human
and artificial eyes).

There might be factors influencing a person’s eye movements we have not accounted
for (such as fatigue or the effects of medication or alcohol). While we have likely
captured many different confounding factors by recording data across three sessions,
more research is needed to measure potential long-term changes in eye movement
patterns.

The transparent nature of the proposed authentication system allows the estab-
lishment or confirmation of a user’s identity without his or her active cooperation or
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even knowledge. This property, which is shared by other behavioral biometrics (such
as mouse movement behavior), poses a privacy concern. However, the work presented
here performs authentication, and as such it is necessary for the user to make an
initial identity claim (e.g., by entering a user name). This necessity mitigates the pri-
vacy concern, as the system does not allow identifying an anonymous user. The use
of eye movement technology in general still raises concerns due to their diagnostic
capabilities (see Section 3), although these are not the focus of this article.

10. CONCLUSION

In this work, we have contributed a set of 20 discriminative features based on a per-
son’s eye movement patterns. The features are based on fundamentals set by related
neuroscientific and medical work. We have shown that the features provide identify-
ing information on individuals both for artificial and real-world tasks. We designed a
controlled experiment that accounts for different ways an inside attacker can obtain
information from a naı̈ve or colluding user, to aid in impersonation attacks. Using gaze-
tracking data from our experiments, we quantify the advantage an adversary has in
impersonating a user and test if the adversary has obtained knowledge about the task
the user normally performs. The data collected during our experiments comes from 30
members of the general public. In order to test the time stability of our features, we
performed two repetitions of the experiments, 2 weeks apart. By downsampling our
data to sampling rates typically provided by low-cost hardware, we show that using
the eye movement biometric is feasible even with cheap consumer-level devices. By
employing different metrics, we evaluate our feature set and measure the effects that
increased time distance and reduced sampling rate have on the quality of both feature
groups and individual features. Using an open-set classifier with data from a single
session, we achieve an equal error rate of 1.00%. When used with a parameter setting
that never rejects legitimate users, the system takes a median of 33.5 seconds to detect
an attacker. Under the same zero-reject settings, the biometric detects 84.56% of all
attackers within the scope of our data. To demonstrate the suitability of the biometric
for continuous authentication during everyday tasks, we collected a second dataset con-
sisting of reading, writing, browsing, and video tasks. The results show that reliable
authentication is possible for any of these task groups, with error rates comparable
to the artificial task set. The combination of these results with the increasing avail-
ability of cheap eye trackers suggests that eye movements are an excellent candidate
biometric to provide additional security at little extra cost.
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