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Abstract. User validation is one of the challenges facing the ontology alignment
community, as there are limits to the quality of automated alignment algorithms.
In this paper we present a broad study on user validation of ontology alignments
that encompasses three distinct but interrelated aspects: the profile of the user,
the services of the alignment system, and its user interface. We discuss key issues
pertaining to the alignment validation process under each of these aspects, and
provide an overview of how current systems address them. Finally, we use exper-
iments from the Interactive Matching track of the Ontology Alignment Evaluation
Initiative (OAEI) 2015 to assess the impact of errors in alignment validation, and
how systems cope with them as function of their services.

1 Introduction

The growth of the ontology alignment area in the past years has led to the develop-
ment of many ontology alignment systems. In most cases, these systems apply fully
automated approaches where an alignment is generated for a given pair of input on-
tologies without any human intervention. However, after many editions of the Ontology
Alignment Evaluation Initiative (OAEI), it is becoming clear to the community that
there are limits to the performance (in terms of precision and recall of the alignments)
of automated systems, as adopting more advanced alignment techniques has brought
diminishing returns [40,21]. This is likely due to the complexity and intricacy of the
ontology alignment process, with each task having its particularities, dictated by both
the domain and the design of the ontologies. Thus, automatic generation of mappings
should be viewed only as a first step towards a final alignment, with validation by one
or more users being essential to ensure alignment quality [12].

Having users validate an alignment enables the detection and removal of erroneous
mappings, and potentially the addition of alternative mappings, or altogether new ones,
not detected by the alignment system. Additionally, if user validation is done during
the alignment process, it enables the adjustment of system settings, the selection of the
most suitable alignment algorithms, and the incorporation of user knowledge in them
[40]. While users can make mistakes, experiments have shown that user validation is
still beneficial up to an error rate of 20% [26], although the exact error threshold will
depend on the alignment system and how it makes use of the user input.

The relevance of user involvement in ontology alignment is evidenced by the fact
that nearly half of the challenges facing the community identified in [46] are directly



related to it. These include explanation of matching results to users, fostering user in-
volvement in the matching process, and social and collaborative matching. Moreover,
the lack of evaluation of the quality and effectiveness of user interventions was identi-
fied as one of the general issues after six years of experience in the OAEI [12], lead-
ing to the introduction of the Interactive Matching track in the OAEI 2013 campaign
[40] where user validation was simulated using an oracle. This track was extended in
2015 [4] to also take into account erroneous user feedback to the systems as well as
additional use cases.

There have been earlier studies addressing user involvement in ontology align-
ment and identifying and evaluating the requirements and techniques involved therein
[14,17,21,28]. More recently, the requirements for fostering user support for large-scale
ontology alignment were identified and current systems were evaluated [24]. However,
these studies focused mostly on the user interface of alignment systems. While that is a
critical aspect for user involvement, there are other important aspects which have been
largely unaddressed, such as how systems cope with erroneous user input or how they
maximize the value of limited input.

In this paper we present a broader study of user validation in ontology alignment. In
Section 2, we identify the key issues regarding user validation of ontology alignments
by reviewing existing systems and literature related to ontology alignment, as well as
drawing from our experience in the field. These issues pertain to three categories: the
user profile, the alignment systems’ services and their user interfaces. In Section 3, we
first assess how current systems deal with the identified issues in a qualitative evalua-
tion (Subsection 3.1), then use the experiments from the Interactive Matching track of
the OAEI 2015 campaign to show how some of these issues impact alignment quality
(Subsection 3.2). While the experiments from the OAEI Interactive track considered the
erroneous input as a function solely of user knowledge, here we discuss them in light
of different aspects of user expertise.

2 Issues regarding user alignment validation

Alignment validation requires users to first become familiar with the ontologies and
their formal representations, and to grasp the view of the ontology modelers, before
being able to understand and decide on the mappings provided by an alignment system
or creating mappings by themselves [15]. Thus, it is a cognitively demanding task that
involves a high memory load and complex decision making, and is inherently error-
prone because of different levels of expertise, differences in interpretation or perception,
and human biases [17].

There are three categories of issues that affect alignment validation: the profile of
the user, i.e., his domain and technical expertise, and his expertise with the alignment
system (Subsection 2.1); the system services, concerning how systems formulate user
interactions and how they capitalize on user input (Subection 2.2); and the user inter-
faces, including the impact of visualization and interaction strategies on the alignment
validation process (Subsection 2.3).



2.1 User profile

The domain expertise of the user concerns his knowledge about the domain of the
aligned ontologies, and therefore his ability to assess the correctness of a mapping con-
ceptually (e.g., whether two ontology classes mapped as equivalent actually represent
the same concept in the domain). Thus, domain expertise is critical for alignment qual-
ity, and the lack thereof is likely to be the main source of erroneous input from a user,
particularly in specialized domains with complex terminology such as the life sciences.

The technical expertise of the user pertains to his knowledge about ontologies
themselves, and his experience in knowledge engineering and modeling, and therefore
his ability to assess the correctness of a mapping formally (i.e., whether a mapping is
logically sound given the constraints of the two ontologies). While domain knowledge is
critical for alignment validation, domain experts are often not familiar with knowledge
engineering concepts and formal representations [5], and may have difficulty grasping
the consequences of a mapping in the context of the ontologies, or even in perceiving
subtle differences in modeling that make that mapping incorrect.

While alignment system users will usually fall under the categories of domain ex-
pert or knowledge engineer, it should be noted that domain and technical expertise
are not disjoint. Indeed, the development of tools like Protégé has allowed domain ex-
perts to delve into knowledge engineering [20]. Nevertheless, the differences between
these two user types are important for the design of every knowledge-based system,
and should be addressed both when designing the system and when building support
for it. For instance, in order to assist users with limited technical expertise, alignment
systems should provide information about the structure of the ontologies and the en-
tailments of a mapping in a manner that is intuitive to understand. Likewise, in order
to assist users with limited domain expertise, systems should provide detailed contex-
tual and conceptual information about the mapping. Indeed, a recent study showed that,
given enough contextual help, the quality of the validation of non-domain experts can
approximate that of domain experts [36] – although this is likely to depend on the do-
main in question.

The final aspect of user expertise is expertise with the alignment system, which
concerns the user’s familiarity with the functionality of the system and its visual rep-
resentations. Novice users can face comprehension difficulties and make erroneous de-
cisions, not for lack of domain or technical expertise, but because they cannot fully
acquire the information made available about a mapping or its entailments. It is up to
the alignment system to be as intuitive as possible in both functionality and visual rep-
resentations so that novice users can focus on the alignment process and are not limited
by their lack of expertise with the system [35]. In this context, it is important to consider
that different visual representations are suited for conveying different types of informa-
tion, as we will detail in Subsection 2.3. Systems should also provide support to expert
users in the form of shortcuts or customizations, so that they can speed up their work.

Users can be expected to make mistakes in alignment validation [5,22], be that
due to lack of domain expertise, technical expertise, or expertise with the alignment
system. However, the possibility of user errors is often disregarded in existing alignment
systems. On the one hand, it is true that users are generally expected to make less errors
than automated systems, and experiments have shown that up to an error rate of 20%,



user input is still beneficial [26]. On the other hand, there are risks to taking user input
for granted, particularly when that input is given during the alignment process, and
inferences are drawn from it, leading to the potential propagation of errors. An example
of this is given in [26], where user validated relations during an alignment repair step
are fixed, meaning that they cannot be removed during subsequent steps, and other
potentially correct relations may have to be removed instead.

User errors can be prevented to some extent by warning the user when contradicting
validations are made [23] or by preemptively removing mappings that lead to logical
conflicts. In a multi-user setting (e.g. [7,43]), errors may be diluted through a voting
strategy, where the mapping confidence is proportional to the consensus on the map-
ping, by accepting the decision made by a majority of the users [43], or by adopting a
more skeptical approach where full agreement between the users is required[7]. How-
ever, given the limited availability of users for alignment validation, systems cannot rely
on having multiple users to prevent user errors.

One way of assessing the impact of the user profile on the alignment quality is
by simulating the user input by an oracle with different error rates [33], which is the
strategy we have adopted in our evaluation (Subsection 3.2).

2.2 System services

Alignment validation is an extensive task, particularly when large ontologies are in-
volved, as alignments can include several thousand mappings. Since users capable of
performing alignment validation are a scarce and valuable resource, alignment systems
cannot expect them to be able to validate a whole alignment. Rather, they must limit
their demand for user intervention and exploit that intervention to maximize its value,
wherein lies one of the main challenges of alignment validation [26,38].

With regard to demand for user intervention, several strategies have been imple-
mented by alignment systems for limiting the number of mapping suggestions to be
validated by the user (suggestions selection - {Sys.e}). The simplest and most com-
mon of these consists of employing threshold values for different alignment algorithms.
Other, more sophisticated filtering approaches include filtering with respect to princi-
ples (e.g., consistency, locality, and conservativity) [25] or quality checks [3], select-
ing only “problematic” mappings where different alignment algorithms disagree [8],
and using a similarity propagation graph to select the most informative questions to
ask the user [44].

One common strategy that both reduces demand for user intervention and exploits
that intervention is to automatically reject alternative mappings for a concept when the
user validates one of that concept’s mappings [26,31].

With regard to exploiting user interventions, systems can adopt different strategies
depending on the stage of involvement of the user in the alignment process: before
({Sys.a}), after ({Sys.b}), during ({Sys.c}), or iterative ({Sys.d}).

When the validation happens before the matching process, the user provides an ini-
tial partial alignment which is then used by the system to guide the matching process.
The partial alignment can be used in the preprocessing phase to reduce the search space
[30], as input for the alignment algorithms [11,30], or to select and configure the algo-
rithms to use [29,40,42,49].



When the validation is performed after the automatic alignment process, the input
of the user cannot be exploited for aligning the ontologies. However, many systems
still filter out mapping suggestions which are in conflict with user validations before
proceeding to a final reasoning and diagnosis phase [23,26,31,37].

When the validation is done during the alignment process, input from the user can
be extrapolated through the use of feedback propagation ({Sys.f}) techniques to fully
exploit it. When the validation is iterative, the user is asked for feedback on several iter-
ations of the alignment process, where in each iteration the alignment from the previous
iteration is improved [29].

Feedback propagation techniques usually consist of propagating mapping confi-
dence from validated mappings to those in their neighborhood, be that neighborhood
defined from the structure of the ontologies [31,37,44] or from the pattern of similar-
ity scores from the various alignment algorithms [8,30]. They usually require that the
validation is done during the alignment process or is iterative, but one form of feed-
back propagation that systems can implement regardless of when the validation takes
place in the alignment process, is conflict detection ({Sys.g}) [18,26]. This consists of
testing user validated relations against the ontologies, report on the violation of logi-
cal constraints (e.g., unsatisfiable classes), and possibly ask for revalidations of certain
relations to resolve the conflict.

Demand for user involvement in the matching process can be evaluated by mea-
suring the number of questions (mapping suggestions) the system asks the user, and
comparing it to the actual size of the alignment produced by the system. The effective-
ness with which systems exploit user involvement can be evaluated by measuring their
improvement in performance (in terms of precision and recall) over the fully automated
process, and relating it with the number of questions asked.

2.3 User interface

A graphical user interface (UI) is an indispensable part of every interactive system, as
the visual system is humans’ most powerful perception channel. Alignment validation
is a cognitively demanding task that involves a high memory load – ontologies are com-
plex knowledge-bases, and validating each mapping requires considering the structure
and constraints of two ontologies while also keeping in mind other mappings and their
logical consequences – and thus is all but impossible without visual support.

Given the complexity of ontologies and alignments, a critical aspect of visualizing
them is not overwhelming the user. Humans apprehend things by using their working
memory, which is limited in capacity (it can typically hold 3±1 items) and thus can
be easily overwhelmed when too much information is presented [48]. However, this
limitation can be expanded by grouping similar things, a process called “chunking”,
which can be exploited by visualization designers to facilitate cognition and reduce
memory load [39]. For instance, encoding properties of entities and mappings with
different graphical primitives facilitates their identification and enables their chunking.

Another critical aspect of ontology alignment visualization is providing the user
with sufficient information to be able to decide on the validity of each mapping, which
includes lexical and structural information in the ontologies, and potentially other re-
lated mappings. This naturally competes with the need not to overwhelm the user with



information, and a balance between the two must be struck. As we discussed in Subsec-
tion 2.1, different user types are likely to have different information requirements, and
alignment systems must cater to all.

The Visual Information Seeking Mantra, {UI.a}, [45] defines seven low-level
tasks to be supported by information visualization interfaces in order to enable enhanced
data exploration and retrieval: overview, zoom, filter, details-on-demand, relate, history,
and extract. The former six of these were further refined for the purpose of ontology
visualization [27], and all are relevant in the context of striking a balance between
providing information and avoiding memory overload.

Providing enhanced information while addressing the working memory limits is
also the goal of the field of visual analytics, {UI.b}, which combines data mining and
interactive visualization techniques to aid analytic reasoning and obtain insights into
(large) data sets. The application of visual analytics to ontology alignments facilitates
their exploration and can provide quick answers to questions of interest from the users
[2,6,8,32,34].

Another technique at the disposal of alignment systems is that of providing alter-
native views {UI.c} [6,17,29,34]. Different views may be more suitable for performing
different tasks – for instance, graphs are better for information perception, whereas in-
dented lists are better for searching [19] – and by providing alternate views, systems
need not condense all relevant information into a single view, and thus avoid over-
whelming the user. Also relevant in this context are maintaining the user focus in one
area of the ontology [37], and preserving the user’s mental map (e.g., by ensuring that
the layout of the ontology remains constant).

Two strategies that facilitate chunking are grouping mappings together by different
criteria to help identify patterns {UI.d}, and distinguishing between different types of
mappings and their provenance {UI.e} – particularly between validated and candidate
mappings [17]. Color-coding is a common and effective technique for implementing
both strategies.

With regard to facilitating the decision making process, showing context and def-
initions of terms {UI.f} is essential, and providing recommendations and/or ranking
({UI.g}) facilitates the process by allowing the user to focus on a specific set of map-
pings. Also important is the explanation of mapping suggestions by presenting the
provenance of, or justification for, a mapping ({UI.h}). Likewise, the user should be
provided with feedback about the consequences of his decision {UI.i} about a mapping
with regard to the alignment and ontologies, possibly through a trial execution [17].

Justifications have been identified as one of the future challenges of ontology align-
ment, given that many alignment systems merely present confidence values for map-
pings as a form of justification [38]. They require particular attention to the user type:
domain experts will require detailed contextual information and a clear explanation of
how a mapping suggestion was inferred, whereas for knowledge engineers summarized
provenance information might suffice.

Three distinct justification approaches have been identified [13]: proof presenta-
tion, strategic flow, and argumentation. In the proof presentation approach, the ex-
planation for why a mapping suggestion was created is given in the form of a proof,
which can be a formal proof, a natural language explanation (e.g., [17,47]), or a visu-



alization (e.g., [29]). In the strategic flow approach the explanation is in the form of
a decision flow which describes the provenance of the acquired mapping suggestion
(e.g., [10,15]). Finally, in the argumentation approach, the system gives arguments for
or against certain mapping suggestions, which can be used to achieving consensus in
multi-user environments.

In addition to providing visual information to support the decision process, align-
ment systems need to provide functionalities for the user to interact with the alignment
in order to validate it. The most basic level of interaction is to allow the user to either
accept or reject mapping suggestions {UI.j}. Additionally, the functionality of adding a
mapping manually or refining a mapping suggestion {UI.k} is also important, since the
system may not have captured a mapping that is required according to the user, or may
not have correctly identified the mapping relationship [1,6,15,16,29].

An important functionality is searching and filtering {UI.l}, which contributes to
minimize the user’s cognitive load [1,6,17,34]. It is relevant to enable searching/filtering
both of the ontologies (e.g., to analyze the structural context of a mapping suggestion,
or look for a concept to map manually) [17,34] and of the mapping suggestions them-
selves [6,17,29].

Given the extension of the validation process, allowing the user to add metadata
in the form of annotations {UI.m} [17,29], and accommodating interruptions or ses-
sions {UI.n} are important functionalities. However, while many systems enable inter-
ruptions through saving and loading the ontologies and alignment, this often does not
preserve the provenance information.

Finally, allowing the creation of temporary mappings {UI.o} in order to test deci-
sions is a relevant functionality for supporting the decision process [34], as is enabling
trial execution to help the user understand the consequences of his decisions {UI.i} [17].

3 Evaluation

In this section, we assess how state of the art ontology alignment systems take into
account the three aspects discussed above: user profile, system services, and user in-
terface. We start by surveying systems and evaluating them qualitatively with regard to
key features of their interfaces and services for processing user input in Subsection 3.1.
Then, we assess the impact of erroneous user input to the system through a series of
experiments from the Interactive Matching track of OAEI 2015 in Subsection 3.2. In
these experiments, we simulate user input with varying error rates, which can reflect
lack of user of expertise, but also limitations of the system’s user interface. How these
errors impact the alignment is dependent on the system services.

3.1 Qualitative evaluation

We performed a qualitative evaluation of state of the art systems that incorporate user
validation in the alignment process and have a mature user interface: AgreementMaker
[6,8,9], AlViz [34], AML [18,41], CogZ/Prompt [16,17,37], COMA [1], LogMap [26],
RepOSE [23], and SAMBO [29,31]. The results of this evaluation are summarized in
Table 1.
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Regarding system services, the majority of the systems ask for validations after run-
ning the matching algorithms (AgreementMaker, AlViz, AML, LogMap, and RepOSE),
CogZ/Prompt involves the user during the alignment process, while SAMBO and COMA
allow validations both before and after the alignment process. AgreementMaker, COMA,
SAMBO, and RepOSE also allow multiple iterations of the alignment process, and allow
for user involvement in multiple validation sessions.

The majority of the systems use some form of thresholds to select mapping sug-
gestions to present to the user for validation. AML and AgreementMaker use a more
refined strategy for identifying “problem” mappings to present to the user, which relies
on the variance of the similarity scores of their various alignment algorithms. LogMap
presents mapping suggestions that cause the violation of alignment principles such as
consistency, locality, and conservativity.

With respect to feedback propagation, most systems implement at least a conflict
detection mechanism, such as checking if the validated mapping contradicts previously
validated mappings or results in an incoherent or inconsistent integrated ontology (AML,
CogZ/Prompt, LogMap, SAMBO, RepOSE). AlViz does not implement such mechanisms
and accepts user’s feedback without any additional steps. AgreementMaker employs a
blocking propagation strategy where the user can control to how many similar instances
the validation is propagated. Revalidation is supported by AML and RepOSE as a part
of the conflict resolution phase. AgreementMaker, CogZ/Prompt, COMA, RepOSE and
SAMBO employ some form of recomputation, where the user’s input is used to guide
the matching process. For example, AgreementMaker propagates the user’s decision to
similar mappings thus increasing/decreasing the similarity value.

Regarding the representation of the ontologies and the alignment, systems typically
represent ontologies as trees or graphs. Graphs are usually used as an additional rep-
resentation (AlViz, CogZ) and rarely as a main representation (AML, RepOSE). Map-
pings are typically represented as links between corresponding nodes, or sometimes as
a list/table of pairs (AML, SAMBO, CogZ, COMA, LogMap). The list/table view is used
to support different interactions by systems. About half of the systems support more
than one view of the alignments and ontologies, often a tree and a graph view which are
more suitable for different alignment tasks [19]. Most of the systems employ strategies
to group the mappings together: SAMBO presents all mappings for a particular concept
together, CogZ, AML, LogMap, and RepOSE show the local neighborhoods of a map-
ping up to different number of levels. AgreementMaker and AlViz combine the different
views with clustering algorithms and interaction techniques to support the comparison
of the similarity values calculated by the different matchers (AgreementMaker) or clus-
tering nodes of the ontologies according to a selected relationship (AlViz).

Most systems also provide detailed information for mappings individually, such as
the context of the mapping and its state (e.g., whether it is accepted). However few
systems provide interface support for features regarding explaining the mappings, such
as why the system has suggested the mapping or how the current validation would affect
other candidate or validated mappings. Most systems provide only a similarity value or
employ color coding as a form of explanation for the mapping, which is insufficient for
users to make informed decisions (one exception is CogZ which shows a short natural
language explanation for the mapping). Thus our evaluation survey confirms findings



from [24] that explanations for mappings suggestions are not well supported by the
user interfaces of alignment systems, and continues to be a challenge for the alignment
community [46]. Ranking and recommendation functionalities are also rarely provided
by systems.

Interactions for accepting, rejecting and creating mappings manually are supported
by most of the systems but the different systems do not always present this informa-
tion to the user – rejected mappings for instance are rarely shown. AlViz and COMA do
not distinguish between validated and candidate mappings, thus the user cannot keep
track of already visited mappings. Creating temporary mappings is supported by AlViz,
AML, and CogZ. Interactions to support the 7 information visualization seeking tasks
are provided to a different extent by the different systems with overview usually sup-
ported and filter, history and relate rarely supported. Search is often supported but a
previous survey of some of these systems found serious limitations [24]. Two systems
(CogZ and SAMBO) allow the user to annotate mappings during the validation process.
Sessions are directly (COMA, LogMap, SAMBO) or indirectly (by saving and loading
files) supported by all systems.

3.2 Experiments in the OAEI campaign

The Interactive Matching track of OAEI was extended in 2015 to take into account
erroneous user validations and assess varying error rates and their impact of the per-
formance of alignment systems [4]. Systems were evaluated according to their perfor-
mance in terms of precision and recall versus the reference alignments, as well as in
terms of number of interactions required and time between interactions.

Although the original purpose of introducing error rates in the Interactive Matching
track was to simulate users with different expertise levels, the results can be interpreted
and discussed in a broader light with regard to how system services are affected by and
cope with errors, irrespective of their cause.

3.2.1 Setup and systems
The OAEI SEALS client5 allows interactive systems to pose questions regarding the
correctness of a mapping to an oracle, which will simulate a user by checking the ref-
erence alignment from the respective OAEI task, and answering with a predefined error
rate. In this experiment the error rates considered were 0% (perfect oracle), 10%, 20%
and 30%. Systems were evaluated on three datasets from the OAEI: Conference (16
small ontologies), Anatomy (2 medium-sized ontologies) and LargeBio (3 large on-
tologies). For the sake of brevity, we will present only results for the Anatomy track, as
the other results are similar (they can be found in [4]).

The systems that participated in the OAEI 2015 Interactive track were AML, Jarvi-
sOM, LogMap and ServOMBI. We note that not all of these systems have user interfaces,
but they implement an interface to communicate with the oracle, so we can automat-
ically evaluate the impact of the user input to the resulting alignment. We could not

5 The SEALS client is the infrastructure used in the OAEI to automate the evalua-
tion of ontology matching systemshttp://oaei.ontologymatching.org/2016/
seals-eval.html

http://oaei.ontologymatching.org/2016/seals-eval.html
http://oaei.ontologymatching.org/2016/seals-eval.html


evaluate other systems with this experimental setup, as it requires compliance with the
OAEI’s SEALS client.

Apart from JarvisOM, which involves the user during the computation of the align-
ment, the systems all make use of user interactions exclusively in post-alignment steps.
Both LogMap and AML request feedback on selected mapping suggestions and filter
mapping suggestions based on the user validations. The former interacts with the user
to decide on mapping suggestions which are not clear-cut cases, whereas the latter em-
ploys a query limit and other strategies to minimize user interactions. ServOMBI asks
the user to validate all of its mapping suggestions and uses the validations and a stable
marriage algorithm to decide on the final alignment. JarvisOM is based on an active
learning strategy known as query-by-committee: at every iteration JarvisOM asks the
user for pairs of entities that have the highest disagreement between committee mem-
bers and lower average euclidean distance, and at the last iteration, the classifiers com-
mittee is used to generate the alignment.

3.2.2. Results and discussion
The evaluation results for the Anatomy track are shown in Table 2. As expected, the
performance of all systems improves when they have access to an all-knowing oracle
(Or0 in the table) in comparison with their non-interactive performance (N/A in the
table). Also as expected, when we increase the oracle’s error rate, we observe that the
performance of all systems deteriorates. However, it takes an error rate of 30% for the
user interaction not to be beneficial to most systems, which corroborates the observa-
tions in [26]. The way in which the systems exploit user interactions, how they benefit
from them, and how they are affected by errors are very different.

AML is the only system that improves more in terms of recall than in terms of pre-
cision with user interactions, because it exploits them in part to test mappings with
lower similarity scores than it accepts in non-interactive mode. This is why it is the sys-
tem that asks the most negative questions from the oracle, proportionally. As a result,
when the error rate increases, AML’s precision drops below the non-interactive preci-
sion (at 20%), but its recall remains higher than the non-interactive recall. AML is also
the only system that is affected linearly by the errors, as evidenced by the fact that its
performance as measured against the oracle (i.e., assuming the oracle errors are instead
correct) remains constant at all error rates. This means that, unlike the other three sys-
tems, AML does not extrapolate from the user feedback about a mapping to decide on
the classification of multiple mapping candidates. While extrapolation (be it through
active learning, feedback propagation, or other techniques) is an effective strategy for
reducing user demand, it also implies that the system will be more heavily impacted by
user errors.

JarvisOM is the system that most depends on user interactions, as evidenced by
the very poor quality of its non-interactive alignment. Thus, it is the system that most
improves with user interactions, and the only one that improves substantially in both
precision and recall. It is also the one that makes the least requests from the oracle –
only 7-8 requests per alignment – as it uses these requests in an active learning approach
rather than to validate a final alignment. This means it is the system that extrapolates the
most from the user feedback, which as expected, makes it the one that is most affected
by user errors – its F-measure drops by 26% between 0 and 30% errors. However, it



Table 2: Interactive Anatomy alignment evaluation
Oracle System P/F/R P/F/R Or TReq DReq TP TN FP FN Size

N/A

AML .96/.94/.93 - - - - - - - 1477
JarvisOM .36/.17/.11 - - - - - - - 458
LogMap .92/.88/.85 - - - - - - - 1397

ServOMBI .96/.75/.62 - - - - - - - 971

Or0
AML .97/.96/.95 .97/.96/.95 312 312 73 239 0 0 1491

JarvisOM .86/.75/.67 .86/.75/.67 7 7 4 3 0 0 1173
LogMap .98/.91/.85 .98/.91/.85 590 590 287 303 0 0 1306

ServOMBI 1/.76/.62 1/.76/.62 2136 1128 955 173 0 0 935

Or10
AML .96/.95/.95 .97/.96/.95 317.3 317.3 66.3 218 23 10 1502

JarvisOM .76/.68/.67 .76/.68/.67 7 7 3.3 3 0.3 0.3 1475
LogMap .96/.89/.83 .96/.89/.83 609 609 261.3 288.3 33.7 25.7 1302

ServOMBI 1/.71/.55 1/.74/.59 2198.7 1128 857.3 156.3 16.7 97.7 843

Or20
AML .94/.94/.94 .97/.96/.95 321.7 321.7 66.3 186.7 52.3 16.3 1525

JarvisOM .53/.60/.71 .53/.60/.71 8 8 4.7 1 1.3 1 2055
LogMap .95/.88/.82 .95/.88/.81 630 630 233 274 69 54 1321

ServOMBI .99/.66/.49 1/.71/.55 2257 1128 767.3 131.3 41.7 187.7 758

Or30
AML .93/.93/.94 .97/.96/.95 306 306 54 168.7 61.3 22 1526

JarvisOM .51/.49/.53 .51/.49/.53 7.3 7.3 4 1.7 1 0.7 1509
LogMap .94/.87/.82 .92/.86/.80 663 663 200.7 270.7 105.3 86.3 1334

ServOMBI .99/.60/.43 1/.68/.52 2329.7 1128.3 663.3 129 44.3 291.7 659
Systems were evaluated with user interactions simulated by an oracle with different error rates
(Orx corresponds to an error rate of x%) and without user interactions (N/A). The “P/F/R” col-
umn shows the Precision, F-measure and Recall obtained in the task; the “P/F/R Or” column
shows the same parameters with respect to oracle, i.e., as if the errors made by the oracle were
instead correct; “TReq” and “DReq” correspond respectively to the total number of requests and
the number of distinct requests made by the system to the oracle; “TP”, “TN”, “FP” and “FN”
are respectively the number of True Positive, True Negative, False Positive and False Negative
answers given by the oracle; and “Size” indicates the number of mappings in the alignment pro-
duced by the system. All values in interactive settings with non-zero error rate are averages over
3 runs, to dilute the variance of the oracle errors.

depends so heavily on user interaction, that even at 30% errors, its results are still better
than the non-interactive ones. JarvisOM is also the system where the impact of the errors
most deviates from linearity, precisely because it extrapolates from so few mappings.
Another curious consequence of this is that its alignment size fluctuates considerably,
increasing to almost double between 0 and 20% errors, but then decreasing again at
30% errors. It should be noted that JarvisOM behaves very differently in the Conference
track [4], showing a linear impact of the errors, as in that case less inferences are drawn
from its 7-8 oracle requests because they represent∼50% of the Conference alignments
(whereas in Anatomy they represent 0.5%).

LogMap improves only with regard to precision with user interactions, which is
curious considering it is the most balanced system regarding positive versus negative
oracle answers. This means that, in this particular task, the positive questions LogMap



asks the oracle all correspond to mappings it would also accept in its non-interactive
setting, whereas the negative questions allow it to exclude some mappings that it would
also (erroneously) accept. Due to the balance between its questions, when presented
with user errors, LogMap is affected with regard to both precision and recall in approx-
imately equal measure. However, since its precision increased substantially with user
interactions, it remains higher than the non-interactive precision at all error rates, unlike
the recall. Another interesting observation about LogMap is that the number of requests
it makes increases slightly but steadily with the error rate, whereas other systems show
stable rates. This increase is tied to the fact that user errors can lead to more complex
decision trees when interaction is used in filtering steps and inferences are drawn from
the user feedback. For instance, during alignment repair, if the user indicates that a
mapping that would be removed by the system to solve a conflict is correct, the system
may have to ask the user about one or more alternative mappings to solve that conflict,
thus increasing the number of requests. In this context, the present query-based evalua-
tion does not accurately reflect an interface-based alignment validation, where the user
could be shown all the mappings that cause a conflict simultaneously.

ServOMBI is the system that improves the least with user interaction, showing an
increase of only 1% F-measure, and like LogMap improves only with regard to preci-
sion. It is also the system that makes the most oracle requests, as it asks the oracle about
every mapping candidate it finds, and the only system that makes redundant questions
(its total number of requests is almost double that of the distinct ones). Interestingly, it
is also the only system that produces alignments that do not contain all the mappings
identified as positive by the user, as some are apparently discarded by its stable marriage
algorithm. Because it makes so many oracle requests, ServOMBI is strongly affected by
user errors, so much so that at only 10% errors, user interaction is no longer beneficial
in terms of F-measure. In fact, since 85% of the questions ServOMBI asks the oracle
are positive, the system would have a better performance (72% F-measure) by simply
accepting all its mapping candidates than it does at 10% errors. Because of its strong
bias towards positive questions, ServOMBI feels the impact of the errors mostly in terms
of recall and alignment size, whereas precision is hardly affected. However, given the
number of false positive questions returned by the oracle at 30% errors, we would ex-
pect a drop in precision as well, but it remains almost constant as the errors increase.
This attests to the ability of this system’s stable marriage algorithm to filter out user
errors. Interestingly, the number of total oracle requests made by ServOMBI increased
with the error rate, even though the number of distinct requests remains constant – as
it should, considering the system already asks the user about all mapping candidates it
identifies. This means that ServOMBI is making more redundant questions.

4 Conclusions

Despite the advances in automated ontology alignment techniques, user validation re-
mains critical to ensure alignment quality, due to the complexity and diversity of on-
tologies and their domains. In this broad study of user validation in ontology alignment,
we encompassed three distinct but interrelated aspects: the profile of the user; the ontol-
ogy alignment systems services; and their user interfaces. We assessed the services and



user interfaces of state of the art systems in a qualitative evaluation, and investigated the
impact of errors in alignment validation through a series of experiments that revealed
how systems cope with it, depending on their services.

The profile of the user is a key factor to take into account in alignment validation, as
systems will not be able to rely exclusively on domain experts for validation, and even
domain experts require extensive support for deciding on the validity of mappings – par-
ticularly if they have little technical expertise regarding ontologies and knowledge en-
gineering. Thus, it is up to alignment systems’ user interfaces to provide rich contextual
information on each mapping. However, they have to balance that need with the need
not to overwhelm the users with too much information, as humans have limited working
memory. To that end, systems must ensure that their user interfaces convey information
in an intuitive manner, and that while all required information is ready on-click, it is not
all shown simultaneously. A strategy that many systems have implemented to achieve
this is to provide different views of the alignment and/or each mapping.

In order to support user decisions, alignment systems’ user interfaces should provide
detailed explanations about mappings, and allow users to interact with the alignment
in multiple ways, so as to make clear the consequences of accepting or rejecting a
mapping. Allowing users to manually annotate mappings, and enabling validation over
multiple sessions are also important features, due to the complexity and extensiveness
of the validation task. However, these are all aspects where most current alignment
systems have room for improvement.

Given the limited availability of users for alignment validation, systems should be
able to prioritize the mapping suggestions they present to the users, by focusing on
mappings about which they are unsure and/or those which cause conflicts. Systems
can further exploit user input by extrapolating on it through feedback propagation tech-
niques. However, as our experiments have shown, extrapolating will increase the impact
of user errors, so systems should consider the profile of the user when deciding whether
or not to employ feedback propagation. One possible strategy for that would be to ask
the user how confident he is about each mapping, and only extrapolating on his decision
when his confidence is high.

Our study should serve as a starting point towards establishing guidelines and best
practices for good user interface design in the context of ontology alignment, which our
evaluation of state of the art systems has shown to be necessary. Furthermore, we expect
our study to help guide the development of alignment systems with regard to exploiting
user interactions and coping with user errors.

For future work, we will aim to extend our evaluation by making usability assays
with real users having varying degrees of expertise. We will also refine our experimental
setup to better mirror the manual validation process, namely by considering the scenario
where the user chooses between different conflicting mappings, rather than evaluating
them independently, and by having the user provide a confidence value rather than a
binary classification.

Acknowledgments. This work has been supported by SeRC, CUGS, the EU projects
VALCRI (FP7-IP-608142) and Optique (FP7-ICT-318338), the EPSRC projects ED3
and DBOnto, and the Fundação para a Ciência e Tecnologia through the funding of the
LaSIGE research unit (UID/CEC/00408/2013) and project PTDC/EEI-ESS/4633/2014.



References

1. D Aumüller, H H Do, S Maßmann, and E Rahm. Schema and ontology matching with
COMA++. In SIGMOD, pages 906–908, 2005.

2. J Aurisano, A Nanavaty, and I Cruz. Visual analytics for ontology matching using multi-
linked views. In VOILA, pages 25–36, 2015.

3. E Beisswanger and U Hahn. Towards valid and reusable reference alignments-ten basic
quality checks for ontology alignments and their application to three different reference data
sets. J Biomedical Semantics, 3(S-1):S4, 2012.

4. M Cheatham et al. Results of the ontology alignment evaluation initiative 2015. In OM,
pages 60–115, 2015.

5. C Conroy, R Brennan, D O’Sullivan, and D Lewis. User Evaluation Study of a Tagging
Approach to Semantic Mapping. In ESWC, pages 623–637, 2009.

6. I Cruz, F Antonelli, and C Stroe. Agreementmaker: efficient matching for large real-world
schemas and ontologies. Proc VLDB Endowment, 2(2):1586–1589, 2009.

7. I Cruz, F Loprete, M Palmonari, C Stroe, and A Taheri. Quality-based model for effective
and robust multi-user pay-as-you-go ontology matching. Semantic Web J, 2015.

8. I Cruz, C Stroe, and M Palmonari. Interactive user feedback in ontology matching using
signature vectors. In ICDE, pages 1321–1324, 2012.

9. I Cruz, W Sunna, N Makar, and S Bathala. A visual tool for ontology alignment to enable
geospatial interoperability. J Visual Languages & Computing, 18(3):230–254, 2007.

10. R Dhamankar, Y Lee, A Doan, A Halevy, and P Domingos. iMAP: discovering complex
semantic matches between database schemas. In SIGMOD, pages 383–394, 2004.

11. S Duan, A Fokoue, and K Srinivas. One size does not fit all: Customizing ontology alignment
using user feedback. In ISWC, pages 177–192. 2010.

12. J Euzenat, C Meilicke, P Shvaiko, H Stuckenschmidt, and C Trojahn. Ontology alignment
evaluation initiative: six years of experience. J Data Semantics, XV:158–192, 2011.

13. J Euzenat and P Shvaiko. User Involvement. In Ontology Matching, pages 353–375. 2013.
14. S Falconer and N Noy. Interactive techniques to support ontology matching. In Z Bellahsene,

A Bonifati, and E Rahm, editors, Schema Matching and Mapping, pages 29–51. 2011.
15. S Falconer, N Noy, and M-A Storey. Towards Understanding the Needs of Cognitive Support

for Ontology Mapping. In OM, 2006.
16. S Falconer, N Noy, and M-A Storey. Ontology mapping - a user survey. In OM, pages 49–60,

2007.
17. S Falconer and M-A Storey. A Cognitive Support Framework for Ontology Mapping. In

ISWC/ASWC, pages 114–127. 2007.
18. D Faria, C Martins, A Nanavaty, D Oliveira, B Sowkarthiga, A Taheri, C Pesquita, F M

Couto, and I F Cruz. AML results for OAEI 2015. In OM, 2015.
19. B Fu, N Noy, and M-A Storey. Eye tracking the user experience-an evaluation of ontology

visualization techniques. Semantic Web J, 2014.
20. J H Gennari, M A Musen, R W Fergerson, W E Grosso, M Crubzy, H Eriksson, N F Noy,
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