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Abstract

Hedonic games provide a model of coalition formation
in which a set of agents is partitioned into coalitions
and the agents have preferences over which set they be-
long to. Recently, Aziz et. al. (2014) have initiated the
study of hedonic games with dichotomous preferences,
where each agent either approves or disapproves of a
given coalition. In this work, we study the computa-
tional complexity of questions related to finding opti-
mal and stable partitions in dichotomous hedonic games
under various ways of restricting and representing the
collection of approved coalitions. Encouragingly, many
of these problems turn out to be polynomial-time solv-
able. In particular, we show that an individually stable
outcome always exists and can be found in polynomial
time. We also provide efficient algorithms for cases in
which agents approve only few coalitions, in which they
only approve intervals, and in which they only approve
sets of size 2 (the roommates case). These algorithms
are complemented by NP-hardness results, especially
for representations that are very expressive, such as in
the case when agents’ goals are given by propositional
formulas.

Introduction
A coalition is an alliance between a group of individuals,
formed in order to achieve a common goal. How do such
coalitions form if agents are selfish? An extensive literature
in economics and computer science has studied this question
using the natural model of a hedonic game (see the survey
byAziz and Savani (2016)). A hedonic game consists of a set
of agents, each of which submits a preference ordering over
all possible coalitions this agent could join. An outcome of
the game is a partition of the agent set into disjoint coalitions.
If agents are selfish, we want to find a stable outcome, while
in other situations a welfare-optimal or fair outcome might
be desired.

There have turned out to be multiple obstacles to achieving
these tasks. First, not all hedonic games admit any stable
outcome, and thus the search for one may be futile. Second,
the computational problem of finding a partition that is stable,
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Boolean NP-c. NP-c. NP-h. NP-c. P FNP-h. Σp
2-c.∗

1-lists NP-c. P P P P P NP-c.
2-lists NP-c. P P P P P NP-c.
3-lists NP-c. NP-c. NP-h. ? P P NP-c.
4-lists NP-c. NP-c. NP-h. NP-c. P P NP-c.
Anonymous NP-c. NP-c.∗ NP-h. NP-c. P P NP-c.
Intervals P P P ? P P ?
Roommates P P P∗ NP-c. P P P∗

Majority ? P ? P P P P

Table 1: Overview of complexity results for various dichoto-
mous preference representations; results marked (∗) were
obtained elsewhere. The columns describe the problems of
maximising welfare, and of finding (respectively) perfect,
pareto-optimal, Nash-stable, individually stable, core-stable,
and strict-core-stable partitions.

optimal, or fair has turned out to be intractable even for a
large variety of severely restricted preference structures.

Recently, Peters and Elkind (2015) have shown that decid-
ing whether a given hedonic game admits any stable outcome
at all is NP-hard for preference restrictions and representa-
tions that allow agents to express more than 4 or 5 preference
‘intensities’ (with some mild additional qualifiers). A result
of Deineko and Woeginger (2013) shows this to also be the
case for a specific restriction allowing 3 intensities. These
results suggest that if we want to stand a chance of finding
polynomial time algorithms for a restricted class of hedonic
games, we will need to go all the way down to dichotomous
preferences, which allow only 2 preference intensities.

In the context of hedonic games, studying the restriction to
dichotomous preferences has recently been proposed by Aziz
et al. (2014). They represent agents’ preferences by formulas
of propositional logic. In particular, we can use the names
of agents as propositional variables. An agent then approves
a coalition if the members of that coalition satisfy her goal
formula. Accordingly, they term games with this preference
representation “boolean hedonic games”.

This logic representation is attractive in that it is univer-
sally expressive for dichotomous preferences and often suc-



cinct. A further advantage is that we may use it to translate
computational questions such as “find a stable partition” into
propositional logic, and then use an off-the-shelf SAT solver
to answer it. Such a translation is presented in detail by Aziz
et al. (2014). Note that for some solution concepts, they
have not found polynomial-size expressions. Still, given the
impressive performance of modern SAT solvers on instances
arising in practice, we might hope that this approach allows
hedonic games to be applicable in practice.

Aziz et al. (2014) argue that their specific SAT encoding
cannot be improved by an efficient algorithm if and only if the
corresponding computational problems are NP-hard. They
write that “identifying the complexity of finding partitions
satisfying solution concepts for Boolean hedonic games is
therefore the most immediate direction of further research.”

In this work, we study a variety of different restrictions
of agents’ dichotomous preferences, and use the term “di-
chotomous hedonic game” for any hedonic game in which
all agents have dichotomous preferences.

Theoretically speaking, the dichotomous case is nice be-
cause every dichotomous hedonic game admits an outcome
that is simultaneously core-stable (resistant to group devia-
tions) and individually stable (resistant to deviations by any
single player). This is a refinement of an observation by Aziz
et al. (2014). While the argument establishing the existence
of such a partition does not yield a polynomial-time algo-
rithm, we identify many appealing special cases in which
there is one. In the general case, we always can in polyno-
mial time find a partition that is individually stable (but not
necessarily core-stable) when given an oracle that decides
whether a given coalition is approved by a given agent.

We further study the computational complexity of finding
a partition that maximises the number of players who ap-
prove it, of finding a Pareto optimal partition, and of deciding
whether a strict-core-stable or a Nash-stable partition exists
(these concepts are strengthenings of core- and individual
stability). We find that these problems are all NP-hard under
the logic representation (which is not too surprising given its
expressive power) and welfare-maximisation in particular is
inapproximable and fixed-parameter intractable. In contrast,
we find that these problems become easy when requiring
the collection of approved sets to have additional combina-
torial structure. In particular, many of these problems are
easy when agents are placed on a line and only approve in-
tervals; when agents only approve sets of size at most 2 (the
roommates case); when agents form a graph and approve
sets in which they are connected to the majority of other
vertices; and if agents only approve at most 2 different coali-
tions. That said, we also find isolated hardness results for
these restrictions, and it turns out that requiring preferences
to be anonymous (so that agents merely approve certain car-
dinalities of coalitions) does not make any of our problems
easier.

These results, which are summarised in Table 1, establish
dichotomous hedonic games as one of the very few subclasses
of hedonic games that admit polynomial time solutions.

Preliminaries
A hedonic game 〈N, (<i)i∈N 〉 is given by a finite set N of
agents, and for each agent i ∈ N a complete and transitive
preference relation over Ni = {S ⊆ N : i ∈ S}. We
write �i and ∼i for the strict and indifference parts of <i.
A hedonic game has dichotomous preferences, and is called
a dichotomous hedonic game, if for each agent i ∈ N , the
coalitions Ni = {S ⊆ N : i ∈ S} can be partitioned
into approved coalitions N+

i and non-approved coalitions
N−i such that i strictly prefers approved coalitions to non-
approved coalitions, but is indifferent within the two groups:
so S �i T iff S ∈ N+

i and T ∈ N−i .
The outcome of a hedonic game is a partition π of the

agent set into disjoint coalitions. We write π(i) for the coali-
tion S ∈ π that contains i ∈ N . We are interested in finding
partitions that are stable, optimal, and/or fair. In a dichoto-
mous hedonic game, a partition π maximises social welfare
if it has the maximum number of agents who are in approved
coalitions among all partitions of N . If every agent is in
an approved coalition in π, then π is called perfect (some-
times known as wonderfully stable). A partition π is Pareto-
optimal if there is no partition π′ such that π′(i) <i π(i) for
all i ∈ N and π′(i) �i π(i) for some i ∈ N . Fairness can be
formalised using the notion of envy-freeness: a partition π is
envy-free if there is no agent i who would prefer to be in the
position of agent j, i.e. π(j) \ {j} ∪ {i} �i π(i).

There are many notions of stability for a partition π in a
hedonic game. We will mainly use four such concepts. A
partition π is core-stable if there is no non-empty coalition
S ⊆ N with S �i π(i) for all i ∈ S. Thus, every member
of S would strictly prefer being in S to being where they
have been put under π. A partition π is strict-core-stable if
there is no non-empty coalition S ⊆ N with S <i π(i) for
all i ∈ S and S �i π(i) for some i ∈ S. In both of these
notions, a group of agent deviates. If we restrict our attention
to the possibility of just a single agent deviating, we obtain
the notion of Nash-stability. Here, no agent i prefers to join
another coalition in π, that is π(i) <i π(j) ∪ {i} for all j,
and also π(i) <i {i}. In an individually stable (IS) partition,
no agent prefers to deviate in this way and is welcomed by
his new coalition. Formally, an agent i IS-deviates into a
coalition S ∈ π ∪ {∅} if S �i π(i) and for each j ∈ S, we
have π(j) ∪ {i} <j π(j). A partition is individually stable
if no agent IS-deviates. If π(i) <i {i} for all i, we also say
that π is individually rational.

We will occasionally use the Preference Refinement Algo-
rithm (PRA) for finding Pareto-optimal partitions in hedonic
games, due to Aziz, Brandt, and Harrenstein (2013). Roughly,
this algorithm is applicable to classes of hedonic games that
are closed under refining agents’ preferences <i and further
admit a polynomial-time algorithm that decides the existence
of a perfect partition. Of course, dichotomous games are not
closed under refining preferences (which introduces strict
preferences), so PRA is only applicable if we can extend
results to more general classes of hedonic games. A general
observation from that paper is that for a class of games in
which deciding the existence of a perfect partition is NP-hard,
there is also no polynomial time algorithm that finds a Pareto-



optimal partition (unless P = NP). This is the reason for the
hardness results in the PO column of Table 1.

Existence Guarantees
Every dichotomous hedonic game admits a core-stable out-
come (Aziz et al. 2014, Prop. 8). As we now show, we may
additionally demand the outcome to be individually stable.
Proposition 1. Every dichotomous hedonic game admits a
partition that is both core-stable and individually stable.

Proof. Repeatedly find a maximal unanimous coalition S
(meaning it is approved by all its members), add S to π,
and remove the agents in S from consideration. (S may
be a singleton.) Once this is not possible anymore, put all
remaining agents into a single coalition in π.
π is core-stable, since every possible blocking coalition S

must consist entirely of dissatisfied players that all approve S.
But then the procedure above wouldn’t have put the agents
in S into the losing coalition (because it is unanimous).
π is individually stable, since no dissatisfied agent is al-

lowed to join any other coalition by maximality of the S
selected, and no dissatisfied agent wants to defect into a sin-
gleton, since then the singleton coalition would have been
assigned by the procedure.

The partition produced in this proof is actually strongly
individually stable as defined by Aziz and Brandl (2012), a
concept which is stronger than both individual stability and
core-stability.

Notice that the proof does not provide an algorithm for
efficiently finding such a stable partition, since in general
it is hard to decide whether there is still a set S left that
is approved by each of its members. On the other hand, if
the number of coalitions an agent approves is polynomially
bounded, or if the cardinalities of approved coalitions are
bounded by a constant, then the above procedure can be run
in polynomial time.

The procedure given does provide an upper bound on the
complexity of finding a core-stable outcome whenever we
can decide in polynomial time whether a given agent ap-
proves a given coalition: then the problem is contained in
the class FPNP, the class of function problems solvable by a
polynomial-time algorithm when given an NP-oracle. The
NP-oracle in this case is used to return a unanimous coalition
or report that there is none.

If we drop the requirement of core-stability, we obtain
a more encouraging result. As before, we assume that we
can decide in polynomial time whether a given agent ap-
proves a given coalition. All reasonable representations of
dichotomous hedonic games—and all representations we
consider—will have this property.
Proposition 2. For every dichotomous hedonic game, we
can find an individually stable partition in O(n3) calls to
an oracle that decides whether a given coalition S ⊆ N is
approved by a given agent i ∈ N .

Proof. Run Algorithm 1 which simulates successive devia-
tions by single agents. Note that the while loop executes at
most n times, since each agent is assigned only once.

Algorithm 1 Find an individually stable partition
π ← ∅
set every agent to unassigned
for each agent i that approves {i} do

assign i to coalition {i}
while there is i unassigned

who can IS-deviate into π(j) do
assign i to coalition π(j)

assign all unassigned agents into a single coalition
return π.

Boolean Hedonic Games
Aziz et al. (2014) study a representation of dichotomous he-
donic games using propositional formulas that is both univer-
sally expressive and often succinct when the collections N+

i
of approved sets have a combinatorial structure. The logic
representation allows each agent i to submit a logical formula
φi—agent i’s goal—such that the agent approves a coalition
S if and only if φi evaluates to true on S. More specifically,
we use propositional logic where the set of propositional
atoms1 (i.e., variables) is given by the agent set N . A for-
mula φ of this logic is satisfied by S ⊆ N , written S |= φ, if
and only if the formula is true under the assignment that sets
variables i with i ∈ S to true and variables j with j 6∈ S to
false. If agent i has the goal φi, then i’s approved coalitions
are those that satisfy i’s goal:

S ∈ N+
i ⇐⇒ S |= φi.

For example, if φ1 = 2∨ (¬2∧ 3)∨ 4, then agent 1 approves
coalitions as soon as they contain either agent 2 or 4, but is
also happy when agent 3 is present but 2 is not.

With this definition, a dichotomous hedonic game can be
specified by a list of formulas, one formula per agent, and is
then called a boolean hedonic game. Note that by using for-
mulas in disjunctive normal form (DNF), this representation
is universally expressive.

Given the use of logic, it is perhaps unsurprising that many
computational problems about boolean hedonic games in
logic representation are computationally hard. We now give
a selection of results to this effect.

Recall that Proposition 1 shows that every dichotomous
hedonic game admits a core-stable partition. It turns out that,
despite this fact, for boolean hedonic games we cannot find a
core-stable partition in polynomial time unless P = NP.

Theorem 3. It is FNP-hard to find a core-stable partition in
a boolean hedonic game.

Proof. We reduce from FSAT, the function problem of finding
a satisfying assignment for a given propositional formula.
So let φ be a formula with n variables. For each variable x
occurring in φ, introduce an agent x. Every agent in this game
has as her goal the formula φ. Because every agent has the
same goal, every coalition S ⊆ N is unanimously approved

1Aziz et al. (2014) use variables of form {i, j} which is more
convenient for logical characterisations.



or disapproved. We need to show how to transform a core-
stable outcome of this game into a satisfying assignment of
φ or into a correct report that there is none.

Let π be a core-stable partition. Go through the at most n
coalitions in π, and try to find a coalition S ∈ π that is ap-
proved by all its members. If this exists, then the assignment
that sets variables in S to true and variables outside S to false
satisfies φ. If no such coalition exists, then φ is unsatisfiable,
because if there was a satisfying assignment α, then the vari-
ables true in α would form a unanimously approved coalition
which would block π.

Corollary 4. It is coNP-complete to decide whether a given
partition π is core-stable in a boolean hedonic game.

Proof. In the reduction above, the all-singletons partition is
blocked only by satisfying assignments of φ (we may assume
that no singleton assignment satisfies φ).

We have shown that finding a core-stable partition is FNP-
hard, and is contained in FPNP. Because of Corollary 4, the
problem is unlikely to be contained in FNP. We leave open
the problem of pinpointing the complexity of this problem.

Peters (2015) shows that deciding the existence of a strict-
core-stable partition is Σp

2-complete for boolean hedonic
games. If we are only interested in NP-hardness, reductions
like the one above can be adapted for the strict-core. For
other solution concepts, hardness for the logic representation
follows by generalisation of problems proven hard for more
restricted preference classes below.

Lists
In a context in which it is sensible to presume that agents
will only approve at most polynomially many coalitions, we
can represent their preferences by merely listing all approved
coalitions. The complexity of stability problems for lists
in the non-dichotomous case is studied by Ballester (2004).
We consider here an even more restricted variant: in the k-
list representation, every agent submits a list of at most k
approved coalitions. If k 6 `, notice that a hardness result for
k-lists also applies to `-lists, and that poly-time algorithms
for `-lists also work for k-lists. As observed above, finding a
core-stable partition is easy for k-lists (or even poly(n)-lists).

Perhaps surprisingly, we already have some hardness re-
sults in the case where agents approve only a single coalition.

Theorem 5. Maximising social welfare is NP-complete even
for 1-lists.

Proof. Reduce from INDEPENDENT SET. Given a graph
G = (V,E) and target size k, we produce a game with 1-lists
that admits an outcome with > k satisfied agents if and only
if G contains an independent set of size > k. We introduce
one agent for each vertex and one agent for each edge. We list
the edges as e1, . . . , em. The edge agents ei submit empty
lists: they do not approve any coalition. The vertex agent v
approves Av := {v} ∪ {ei ∈ E : v ∈ ei}, that is, v approves
being together with the edges incident to it.

Suppose G contains the independent set U ⊆ V with
|U | > k. Then take the partition π consisting of coalitions

Av for each v ∈ U , and singleton coalitions for everyone
not in

⋃
v∈U Av. The sets listed are disjoint because U is

independent. Clearly, π delivers welfare k.
Suppose the game admits a partition π with welfare at

least k. Thus at least k vertex agents are in an approved
coalition in π. Since the approved sets of adjacent vertices
intersect (in the edge agent connecting them), this means that
the vertices in approved sets form an independent set of size
at least k.

From known inapproximability results for MAX-
INDEPENDENT-SET, we may deduce that maximising social
welfare is not approximable within n1/2−ε for any ε > 0
unless NP = ZPP (Håstad 1999). In the other direction,
we can approximate the problem using approximation
algorithms for WEIGHTED SET-PACKING, where coalitions
are weighted by the number of agents approving it. This
gives a

√
n-approximation (Halldórsson 2000), which works

whenever lists have polynomial length.
Since INDEPENDENT SET is W [1]-hard (Downey and Fel-

lows 1995), the reduction also shows that maximising welfare
is W [1]-hard with parameter the number of approving agents.
Theorem 6. Deciding existence of a strict-core-stable parti-
tion is NP-complete even for 1-lists.

Proof. The proof is similar to the previous one, replacing
INDEPENDENT SET by the decision problem KERNEL, with
arc agents (u, v) approving Au. We omit the details due to
space restrictions.

Finding partitions satisfying other concepts only becomes
hard for 3-lists, while 2-lists admit efficient algorithms.
Theorem 7. Finding a perfect partition or a Nash-stable
partition is easy for 2-lists.

Proof. We reduce to 2SAT. For perfect partitions, let A be
the collection of all coalitions that appear on the lists. For
all pairs S, T ∈ A of intersecting partitions, add a clause
(¬S ∨ ¬T ). For each agent i approving A and B, add a
clause (A ∨ B). Then any satisfying assignment can be
translated to a perfect partition.

For Nash-stability, let B be the collection of all approved
sets, and also of sets S−i := S\{i} for coalitions S approved
by i. As before, add clauses (¬S ∨ ¬T ) for intersecting
coalitions in B. But now, for each agent i approving sets
A and B, add clauses (A−i→ B) and (B−i→ A). This
expresses Nash-stability.

We can use a similar technique to express envy-freeness in
2SAT. Thus, in the 2-list case, we can also look for perfect or
Nash-stable partitions that are additionally envy-free.

For perfect partitions, the reduction to 2SAT works even
for preferences starting in S �i T �i {i}, i.e., even after
refining a 2-list. This means that we can use the preference
refinement algorithm (PRA) to find a Pareto-optimal partition
for games given by 2-lists.

As might be expected due to our use of 2SAT, these easi-
ness results do not extend to k = 3.
Theorem 8. Deciding existence of a perfect partition or a
strict-core-stable partition is NP-complete for 3-lists.



Proof. A given partition can be checked to be perfect by
verifying that every agent is in a coalition appearing in his
3-list; it can be checked to be strict-core-stable by making
sure that no coalition that appears in a list weakly blocks.
NP-hardness follows by a reduction from X3C restricted to
each element appearing in at most 3 sets. Given elements
X = {x1, . . . , x3n} and sets S = {s1, . . . , sm}, take the
game with agent set X , with each agent xi ∈ X approving
of the at most 3 sets from S it appears in. Notice that any
strict-core-stable partition in this game must also be perfect,
for if any element xi is not satisfied then it can weakly block
with a set containing it. Thus, a partition of the agent set
is strict-core-stable iff it is perfect iff it is a solution of the
X3C-instance.

Deciding the existence of a Nash-stable partition is NP-
complete for 4-lists. This follows from the result for the
roommate case in Theorem 11. We were unable to decide the
complexity of Nash-stability in the 3-list case.

Anonymous Preferences
In an anonymous hedonic game, agents’ preferences <i are
determined by an underlying ordering Di over the possible
coalition sizes {1, . . . , |N |}, with S <i T iff |S| Di |T |.
Ballester (2004) has shown that the problems of deciding
existence of core-, Nash-, and individually stable partitions
are all NP-complete for anonymous preferences. We show
hardness of the existence of perfect, strict-core- and Nash
stable partitions even in the case when <i (and thus Di) are
dichotomous. By contrast, it is easy to find an individually
stable partition (as always), and in the anonymous case it is
also easy to decide whether a unanimous coalition exists (by
counting the number of agents that approve each coalition
size), so that we can find a core-stable partition in poly time.

Theorem 9. The problems of deciding existence of a per-
fect, a strict-core-stable, or a Nash-stable partition are NP-
complete for anonymous preferences, even if at most 4 sizes
are approved.

Proof. For perfect partitions, this result is stated without
proof as Theorem 4.4 by Darmann et al. (2012). A proof
appears in the survey by Woeginger (2013). For the strict
core, the same reduction can be used.

For Nash-stability, we reduce from X3C. Given elements
X = {x1, . . . , x3n} and sets S = {s1, . . . , sm}, assign the
code number 12k to the set sk. Introduce 3n agents, one
for each element; for each set sk introduce 12k − 3 dummy
agents; finally introduce 1 stalker player. The element player
of xi approves coalition sizes 1 and the code numbers of the
sets that include xi. The dummy agents of sk approve sizes
1, 3, and 12k. The stalker agent approves size 2.

Suppose the X3C-instance admits a solution. For each set
sk that is used in the solution, make a coalition consisting
of the 3 element players appearing in sk and the 12k − 3
dummies of sk, making a coalition of 12k happy players.
For each set sk that is not used in the solution, arbitrarily
match its 12k − 3 dummies into triples. The stalker forms a
singleton coalition. Then everyone but the stalker is happy,

and since no other coalition is of size 1, the stalker does not
Nash deviate. Hence the resulting partition is Nash-stable.

Conversely suppose there is a Nash-stable partition π.
Since both elements and dummies approve coalition size 1,
they must be in a coalition of an approved size in π. If any
of them were in a singleton, then the stalker player would
join them; hence they are not. It follows that the elements
and dummy players are all in coalitions of size a multiple
of 3, and thus, since the number of element and dummy play-
ers together is also a multiple of 3, the stalker must be in a
singleton coalition in π. But now we can extract a solution
for the X3C-instance from π by taking for each element its
coalition size, which codes for the set it is in.

Intervals
Suppose that the agent set can be put in some linear order, say
N = {1, 2, . . . , n} with the natural ordering. Suppose fur-
ther that each agent i only approves intervals [a, b] of agents
(with a 6 i 6 b). In a restriction like this, termed “candi-
date interval (CI)” by Elkind and Lackner (2015) and also
studied by Faliszewski et al. (2009), dynamic programming
promises to be of help, and indeed this is the case. But note
first that since there are only O(n2) possible approved coali-
tions (choose

(
n
2

)
interval endpoints), we can quickly find a

core-stable outcome in this restriction.
Theorem 10. If every agent only approves intervals, we can
in polynomial time find a welfare-maximising partition.

Proof. We give a dynamic programming algorithm. For each
m = 0, . . . , n, let W [m] denote the maximum welfare ob-
tainable in the subgame obtained by restricting to the agent
set {1, . . . ,m}, with each agent approving all originally ap-
proved coalitions S such that S ⊆ {0, . . . ,m}. In particular
we have W [0] = 0 (the empty sum), and W [n] is the sought
value. Write #[s,m] for the number of agents that approve
the interval [s,m] in this subgame. We then have the follow-
ing recurrence:

W [m] = max
s=1,...,m

{
W [s− 1] + #[s,m]

}
.

To see this, note that there always is a welfare-maximising
partition in which all coalitions are intervals (since we can
weakly increase the welfare by splitting any coalition into its
‘connected components’). In this partition, m must be part of
some interval [s,m], and the subgame {1, . . . , s− 1} must
be in welfare maximum.

Since we can quickly maximise welfare, we can also
quickly decide the existence of a perfect partition. Notice
that the algorithm presented can easily be adapted to work
even in the non-dichotomous case (by replacing #[s,m] by
the total utility accrued in this coalition), and a further slight
modification allows us to decide existence of a perfect parti-
tion even in this general case. Using this, it follows that by
using the PRA algorithm, we can in polynomial time find a
Pareto-optimal partition when agents only approve intervals
(this result also carries over to the non-dichotomous case).
We leave open the complexity of deciding the existence of
Nash-stable and strict-core-stable partitions in this case, both



of which seem resistant to naı̈ve dynamic programming and
greedy algorithms. For a related setting in which no discon-
nected coalitions are allowed, Igarashi and Elkind (2016)
have a positive result.

Roommates
Let us now consider the restriction of dichotomous hedonic
games where agents only approve coalitions of size at most
2. This case could also be referred to as a (stable) roommate
problem with dichotomous preferences (a special case of
SRTI). By the analysis of Scott (2005), a strict-core-stable
partition may be found (if it exists) in O(m2) time where
m is the total number of approved pairs. If we additionally
require preferences to be mutual, so that no pair {i, j} is ever
approved by only 1 partner, we can improve this runtime
to O(m

√
n) (Abraham et al. 2007). By finding maximum

weighted matchings, we can in O(m
√
n) time find a max-

imum welfare partition (and thus decide the existence of a
perfect partition). Using the algorithms in Aziz, Brandt, and
Harrenstein (2013), we can also find a Pareto-optimal parti-
tion. All these algorithms work even in the non-dichotomous
case. Restricted to the dichotomous case, we can of course
find individually stable and core-stable partitions, since at
most n2 coalitions are approved. Despite all this good news,
there is also the following.

Theorem 11. Deciding the existence of a Nash stable parti-
tion for dichotomous roommates is NP-complete, even in the
bipartite (marriage) case, and even if each agent approves at
most 4 coalitions.

Proof. The proof is a dichotomization of the reduction in
Theorem 2 of Peters and Elkind (2015); we omit the details
here. For the non-dichotomous case, a similar result is given
by Aziz (2013).

Majority Games
In this section, we consider agents that approve those coali-
tions in which the agent is friends with the majority of
members. More precisely, suppose we are given a graph
G = (N,E), where each agent corresponds to a vertex. Two
agents are (mutually) friends if there is an edge between them.
An agent i approves the coalition S 3 i if di(S) > |S|/2,
that is if i is connected to at least |S|/2 of the vertices in S.
We refer to such a game as a majority game. This setting ap-
pears rather natural: in a group where the majority of agents
are similar to me, I can hope that the group will agree and
vote with me on issues that need to be decided. This class
can also be seen as a dichotomisation of ‘fractional hedonic
games’ (Aziz, Brandt, and Harrenstein 2014).

Theorem 12. In a majority game, a partition that is both
Nash-stable and core-stable is guaranteed to exist and can
be found in polynomial time.

Proof. Take π be a maximum-cardinality packing in G of
vertex-disjoint edges and triangles. Such a maximum packing
can be found by an alternating-path-algorithm due to Hell
and Kirkpatrick (1984). The set of agents not put into an
edge or triangle forms an independent set of G, so that there

cannot be a core-deviation from within this set. Also, there
cannot be Nash deviations by maximality of the packing.

The partition produced in the proof above is actually even
strongly Nash stable in the sense of Karakaya (2011).

It turns out that the same algorithm can be used to decide
the existence of a perfect and of a strict-core-stable partition.
To see this, we appeal to two famous results from extremal
graph theory. Let δ(G) and ∆(G) be the minimum and
maximum degree of G, with n the number of vertices of G.

Theorem (Dirac). If δ(G) > n
2 then G is Hamiltonian.

Theorem (Hajnal-Szemerédi). If ∆(G) 6 k − 1 then G has
an equitable k-colouring.

An equitable k-colouring is a proper vertex colouring ofG
using k colours and such that the size of any two colour
classes differs by at most 1. The Hajnal-Szemerédi theorem
was conjectured by Paul Erdős and proved in (Hajnal and
Szemerédi 1970). These two theorems imply the following.

Lemma 13. If G is a graph with δ(G) > n
2 then the vertices

of G can be partitioned into edges and triangles.

Proof. If n is even, then take every other edge on a Hamilton
cycle of G which is a perfect matching. If n is odd, say
n = 2k+ 1, then consider the complement graph G and note

∆(G) = |G| − δ(G)− 1 6 n− n
2 − 1 = k − 1

2 .

Since ∆(G) is integer, it follows that ∆(G) 6 k − 1. By the
Hajnal-Szemerédi theorem, G has an equitable k-colouring
which is a partition of G into k independent sets Ksi of sizes
s1, . . . , sk. Taking complements, G can be partitioned into k
cliques Ksi . Since this partition is equitable, |si − sj | 6 1

for all 1 6 i, j 6 k. Since
∑k

i=1 si = n = 2k+ 1, it follows
that all si ∈ {2, 3}, as required.

This lemma implies that without loss of generality a perfect
partition consists of edges and triangles.

Theorem 14. In majority games, perfect and strict-core-
stable partitions coincide. If a perfect partition exists, then
a perfect partition consisting of edges and triangles exists.
Hence there is a polynomial time algorithm which will pro-
duce a perfect and strict-core-stable partition if it exists.

Proof. By considering connected components of G sepa-
rately, we may assume that G is connected. We may also
assume that G does not contain isolated vertices. Then if
π were strict-core-stable but not perfect, an edge with one
unsatisfied endpoint would weakly block, a contradiction.
If π is perfect, then the induced subgraphs G[S] for each
S ∈ π satisfy the condition of Lemma 13, and thus S can be
partitioned into edges and triangles preserving perfection.

Thus, a perfect and strict-core-stable partition exists if and
only if a perfect packing of edges and triangles exists which
can be checked using Hell and Kirkpatrick’s algorithm.



Conclusions
We have investigated a variety of preference representations
and restrictions for hedonic games with dichotomous prefer-
ences, and have uncovered quite an interesting complexity
landscape. Embedded in the wider hedonic games literature,
this landscape is unusually encouraging, with many polyno-
mial time solutions in interesting subclasses available. Still,
we have to leave a number of interesting questions open; in
particular we were unable to settle the ‘frontier of tractabil-
ity’ for Nash-stability in k-lists, and we do not know how to
decide the existence of Nash and strict-core-stable partitions
in the interval case. A further avenue for future work is defin-
ing additional appealing preference restrictions and studying
their complexity properties.

Taking a broader view, it would be interesting to see an
empirical evaluation of the power of boolean hedonic games
when solved by modern SAT solvers. Besides implementa-
tion, a major challenge here seems to be obtaining sensible,
preferably even real-world, preference data for this domain.
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Erdős. Combinatorial theory and its applications 2:601–623.
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