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Abstract

Hedonic games are a well-studied model of coalition
formation, in which selfish agents are partitioned into
disjoint sets and agents care about the make-up of the
coalition they end up in. The computational problems
of finding stable, optimal, or fair outcomes tend to be
computationally intractable in even severely restricted
instances of hedonic games. We introduce the notion of
a graphical hedonic game and show that, in contrast, on
classes of graphical hedonic games whose underlying
graphs are of bounded treewidth and degree, such prob-
lems become easy. In particular, problems that can be
specified through quantification over agents, coalitions,
and (connected) partitions can be decided in linear time.
The proof is by reduction to monadic second order logic.
We also provide faster algorithms in special cases, and
show that the extra condition of the degree bound cannot
be dropped. Finally, we note that the problem of allo-
cating indivisible goods can be modelled as a hedonic
game, so that our results imply tractability of finding
fair and efficient allocations on appropriately restricted
instances.

1 Introduction
Hedonic games, first studied by Banerjee, Konishi, and
Sönmez (2001) and Bogomolnaia and Jackson (2002), pro-
vide a general framework for the study of coalition formation.
Hedonic games subsume the well-studied matching prob-
lems (stable marriage, stable roommates, hospital-residents),
but are able to express more general preference structures.
They have been applied to problems in public good provi-
sion, voting, and clustering, and, as we show below, they also
encapsulate a variety of allocation problems.

A hedonic game consists of a set N of agents, each of
whom has a preference ordering over all coalitions S ⊆ N
containing her. The outcome of such a game is a partition of
the agent set into disjoint coalitions, with agents preferring
those partitions in which they are in a preferred coalition.

Unfortunately, it has turned out that many key questions
about hedonic games are computationally hard to answer.
For example, it is typically NP-complete to decide whether a
hedonic game admits a Nash stable outcome; it is typically
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NP-hard to maximise social welfare; and it is often even Σp2-
complete to identify hedonic games with non-empty core.
See Ballester (2004), Sung and Dimitrov (2010), Woeginger
(2013), and Peters and Elkind (2015) for a selection of such
results.

A standard criticism of hardness results such as these is that
they apply only in the worst case. Instances arising in practice
can be expected to show much more structure than the highly
contrived instances produced in 3SAT-reductions. In non-
cooperative game theory, graphical games (Kearns, Littman,
and Singh 2001) are an influential way to allow formalisation
of the notion of a ‘structured’ game. In a graphical game,
agents form the vertices of an undirected graph, and each
agent’s utility function only depends on the actions taken by
her neighbours. The underlying graph can guide algorithms
in finding a stable outcome, and imposing restrictions on the
graph topology can yield tractability (Gottlob, Greco, and
Scarcello 2005).

A particularly successful restriction on graph topology is
bounded treewidth. The treewidth of a graph (Robertson and
Seymour 1986) measures how ‘tree-like’ a given graph is.
Many NP-hard problems become fixed-parameter tractable
with respect to the treewidth of some graph naturally associ-
ated with the problem instances. Indeed, dynamic program-
ming over a given tree decomposition often yields algorithms
that are exponential in the treewidth, but linear in the prob-
lem size. See Bodlaender’s (1994) ‘tourist guide through
treewidth’ for an introduction to this area.

The treewidth approach was first applied to the domain
of hedonic games by Elkind and Wooldridge (2009), who
propose a representation formalism for hedonic games called
hedonic coalition nets that expresses agents’ preferences by
weighted boolean formulas. They also introduce a notion of
treewidth for hedonic games—very close to ours—and show
that (when numbers in the input are polynomially bounded)
it is fixed-parameter tractable with respect to treewidth to
decide whether a given partition is core-stable.

In this paper, we study graphical hedonic games, which we
define in analogy to graphical games. Here, agents are again
arranged in an underlying graph, and need to be partitioned
into coalitions. Every agent only cares about which of her
neighbours are in the same coalition as her. Every hedonic
game can be made graphical by introducing edges whenever
one agent’s utility depends on the other’s presence. We will



then consider graphical hedonic games whose agent graphs
have bounded treewidth and bounded degrees.

In the context of hedonic games, restricting treewidth and
also degrees in the underlying social network seems particu-
larly natural. Consider for example Dunbar’s number (Dun-
bar 1992), a suggested limit on the number of individuals that
a single human being can maintain stable social relationships
with. This number has been suggested to lie between 100
and 250, which gives us a natural bound on the degree of any
social network. Intuitively, it also seems sensible to suppose
that social networks have relatively small treewidth, though
see Adcock, Sullivan, and Mahoney (2013) who find mixed
empirical support for this proposition.

We show that when restricted to a class of graphical hedo-
nic games whose agent graphs have bounded treewidth and
bounded degrees, many standard problems related to these
hedonic games become linear-time solvable. More precisely,
by a somewhat involved translation to monadic second-order
logic and by appealing to Courcelle’s theorem, it follows that
we can decide in linear time whether a given such hedonic
game satisfies any logical sentence of what we call HG-logic,
which allows quantification over partitions, coalitions, and
agents. Using this approach and on this restricted domain, we
can efficiently find stable or fair outcomes of a hedonic game
for all notions of stability that are commonly discussed in the
literature.

We also show that HG-logic is expressive enough to cap-
ture problems that would at first appear to lie outside the
domain of hedonic games, such as the problem of fair and
efficient allocation of indivisible goods. This implies that
questions regarding those problems can also be answered
efficiently when we restrict treewidth and degree.

Our appeal to Courcelle’s meta-algorithmic result, while
powerful, comes at the cost of the hidden ‘constant factor’
growing dramatically as the treewidth and degree of the hedo-
nic game increase (indeed, this growth cannot be bounded by
an elementary function unless P = NP). To show that despite
this the restriction to bounded treewidth is useful in practice,
we present a variety of more specific problems that can be
solved in the more manageable runtime Õ(2kd
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n), where
k is the bound on treewidth, d is the bound on the degrees,
and n is the number of agents. Such results suggest that find-
ing good outcomes of hedonic games should be tractable on
instances arising in practice.

Many standard NP-complete problems defined on graphs
become easy when bounding treewidth, without requiring
a further restriction on the degrees of the graph. In the last
section we show that this is not the case for graphical hedo-
nic games: we give reductions showing that finding a core-
stable partition and similar problems remain NP-hard even on
games of treewidth 1 or 2 (but when degrees are unbounded).

2 Preliminaries
A hedonic game 〈N, (<i)i∈N 〉 is given by a finite set N of
agents, and for each agent i ∈ N a complete and transitive
preference relation over Ni = {S ⊆ N : i ∈ S}. We let �i
and ∼i denote the strict and indifference parts of <i. The
outcome of a hedonic game is a partition π of the agent set

into disjoint coalitions. We write π(i) for the coalition S ∈ π
that contains i ∈ N . We are interested in finding partitions
that are stable, optimal, and/or fair. There are multiple ways
of formalising these goals. For example, a partition π is Nash
stable if no agent wants to join another (possibly empty)
coalition of π, that is π(i) <i S ∪ {i} for all S ∈ π ∪ {∅}
and all i ∈ N . It is individually stable if there is no agent i
and coalition S ∈ π ∪ {∅} such that S ∪ {i} �i π(i) and
S∪{i} <j S for all j ∈ S. We say π is core-stable if there is
no non-empty blocking coalition S ⊆ N such that S �i π(i)
for each i ∈ S. We say π is strict-core-stable if there is no
non-empty coalition S ⊆ N such that S <i π(i) for each
i ∈ S, with at least one preference strict. For fairness, we
say that π is envy-free if no agent prefers taking another
agent’s place: π(i) <i π(j) \ {j} ∪ {i} for all i, j ∈ N
with π(i) 6= π(j). We will only consider the concept of
envy-freeness for hedonic games where every coalition is
acceptably to every player, i.e., if S <i {i} for all S ∈ Ni,
so that a player never envies a player being alone.

Note that the preference relations <i have an exponentially
sized domain of 2n−1 coalitions. For computational purposes,
we need to use a language that represents such preferences
succinctly, so that the representation preferably uses only
poly(n) symbols, where n is the number of agents. An attrac-
tive such representation is given by additively separable hedo-
nic games, in which each agent specifies a valuation function
vi : N → R assigning each agent a numeric value. We then
say that S <i T if and only if

∑
j∈S vi(j) >

∑
j∈T vi(j).

An additively separable game is thus given by n2 numbers.
A more expressive representation is proposed by Elkind

and Wooldridge (2009). They define hedonic coalition nets
(or HC-nets) in which each agent specifies a set of weighted
propositional formulas, called rules, with propositional atoms
given by the agents. For example, the rule i2∧i3∧¬i4 7→i1 5
means that agent i1 derives utility 5 when i1 is together
with i2 and i3 but not together with i4. If an agent specifies
multiple rules, the agent obtains the sum of the weights of
those formulas that are satisfied in the given coalition. By
taking rules of form j 7→i vi(j), we see that HC-nets can
encode additively separable games. Elkind and Wooldridge
(2009) show that many other standard representations can
also be encoded in HC-nets.

In hedonic games with cardinal (numeric) utilities (such as
those given by HC-nets), we can define the social welfare of
a given partition π. Its utilitarian welfare is

∑
i∈N ui(π(i)),

its egalitarian welfare is mini∈N ui(π(i)), and its Nash prod-
uct is

∏
i∈N ui(π(i)). A partition that maximises a chosen

welfare notion is seen as optimal. Another optimality notion
is that of a perfect (sometimes called wonderfully stable)
partition in which every agent belongs to a most preferred
coalition. Finally, a partition π is Pareto optimal if for no
partition π′ we have π′(i) <i π(i) for all i ∈ N , with at least
one preference strict.

Let us now define the treewidth of a graph. Given a graph
G, we write V (G) for its set of vertices, and E(G) for its
set of edges. A tree decomposition of an undirected graph
G is given by a tree T and a map β : V (T ) → 2V (G)

which assigns to each vertex w ∈ V (T ) of the tree T a



bag β(w) ⊆ V (G) of vertices of G, satisfying the following
two conditions:

1. For each v ∈ V (G), the set β−1(v) of bags containing v
is non-empty and connected (in T ).

2. For each edge {u, v} ∈ E(G) in G, there is a bag
containing both u and v, i.e., there is w ∈ V (T ) with
{u, v} ⊆ β(w).

The width of a tree decomposition is maxw∈V (T ) |β(w)| − 1,
that is, one less than the maximum size of the bags. Then, the
treewidth of G is the minimum width of a tree decomposition
of G. Bodlaender (1994) gives more intuition and examples.

3 Graphical Hedonic Games
We now introduce the main notion of this paper:
Definition. A graphical hedonic game is a pair of a hedonic
game 〈N, (<i)i∈N 〉 and an undirected graph G = (N,E)
that jointly satisfy the following condition: for each agent
i ∈ N and all coalitions S, T ∈ Ni, we have

S <i T if and only if S ∩ Γ(i) <i T ∩ Γ(i),

where Γ(i) ⊆ N is the set of neighbours of i in G.
We will call any graph G′ = (N,E) satisfying this con-

dition an (agent) dependency graph for the hedonic game
〈N, (<i)i∈N 〉.

Thus, in a graphical hedonic game, how much an agent i
likes a coalition depends only on the presence of the neigh-
bours of i in the dependency graph.
Examples. Pairing any hedonic game with the complete
graph over the agent set yields a graphical hedonic game.
The complete graph over the agent set is the unique agent
dependency graph for anonymous hedonic games, where
agents only care about the cardinality of their coalition. The
same is true for fractional hedonic games (Aziz, Brandt, and
Harrenstein 2014).

In additively separable hedonic games, the graph with

{i, j} ∈ E ⇐⇒ vi(j) 6= 0 or vj(i) 6= 0

is the edge-minimal dependency graph.
For a hedonic game given by an HC-net, we could take

{i, j} ∈ E ⇐⇒ i appears in a rule of j or vice versa,

though this might not be edge-minimal.
We are usually interested in dependency graphs with as

few edges as possible, so that the vertex-neighbourhoods and
the treewidth of the graph are small.
Lemma 1. For each hedonic game, there exists a unique
edge-minimal agent dependency graph.

Proof. We show that if edge sets E1, E2 ⊆ N (2) induce a
dependency graph for a hedonic game 〈N, (<i)i∈N 〉, then
so does the edge set E1 ∩ E2. Let i ∈ N be an agent, and
let S, T 3 i be coalitions. Then using the definition of a
dependency graph once for E1 and once for E2, we see that

S <i T ⇐⇒ S ∩ Γ1(i) <i T ∩ Γ1(i)

⇐⇒ S ∩ Γ1(i) ∩ Γ2(i) <i T ∩ Γ1(i) ∩ Γ2(i).

The neighbourhoods Γ1(i) ∩ Γ2(i) are induced by E1 ∩E2.
Hence E1 ∩ E2 is the edge set of a dependency graph.

It is often easy to find the minimal dependency graph, as in
the case of additively separable hedonic games. On the other
hand, finding the minimal graph of an HC-net is coNP-hard,
since it is hard to decide whether some variable is redundant
in a boolean formula.

Definition. Let (〈N, (<i)i∈N 〉, G) be a graphical hedonic
game. Its treewidth is the treewidth of G, and its degree is
the maximum degree of G.

We will show that many computational problems concerning
hedonic games become easy when restricting attention to
graphical hedonic games of small treewidth and small degree.

Example. The class of hedonic games in which agents can
be placed in a cycle and only care about the presence of their
immediate neighbours is of bounded treewidth and degree.

A crucial observation about graphical hedonic games is
that, as far as the agents’ preferences are concerned, we can
often restrict our attention to connected coalitions.

Definition. In a graphical hedonic game with dependency
graph G, a coalition S ⊆ N is connected if G[S] is con-
nected, that is if S induces a connected subgraph in G. A
partition π of N is connected if each S ∈ π is connected.

Notice that given a non-connected partition π′, we can
split each coalition S ∈ π′ into its connected components,
obtaining a connected partition π. Then, from the definition
of dependency graphs, every agent is indifferent between π
and π′: so π(i) ∼i π′(i) for all i ∈ N .

Representation. In our computational study of graphical he-
donic games, we will require games to be represented in
some reasonably concise fashion. As we mostly deal with
classes of graphical hedonic games that have bounded de-
gree d, where we regard d to be small, it can be sensible to
explicitly list every agent’s preferences over all subsets of her
neighbourhood, taking O(22d · n) space. If the preference
relations <i can be evaluated in time only depending on d,
but not on n, this will be just as well for our FPT results. In
other cases, we assume that we have oracle access to the <i.

4 A Logic for Hedonic Games
In this section, we define a logic that captures standard prop-
erties of hedonic games, for example the existence of stable
partitions. The logic uses variables i, j, k, . . . ranging over
agents, variables S, T, . . . ranging over coalitions, and vari-
ables π, π′, . . . ranging over partitions of the agents.

Definition. The formulas of hedonic game logic (HG-logic)
are defined recursively as

1. atomic formulas: i = j, i ∈ S, S = π(i) , S <i T .
2. boolean combinations of formulas: ¬φ, (φ ∨ ψ), (φ ∧ ψ).
3. quantification over agents: ∀i φ, ∃i φ.
4. quantification over coalitions: ∀S φ, ∃S φ.
5. quantification over partitions: ∀π φ, ∃π φ.

We will use standard abbreviations in writing formulas of
HG-logic. For example,

• S <i π(i) means ∃T (T = π(i) ∧ S <i T ),



• S ⊆ T means ∀i (i ∈ S → i ∈ T ),

• ∃i ∈ S φ means ∃i (i ∈ S ∧ φ),

• S �i T means (S <i T ∧ ¬T <i S).

A sentence of HG-logic is a formula in which no vari-
able occurs free. In general, every hedonic game can form a
model of a sentence in HG-logic in the natural way. In our
approach, however, the models of HG-logic are graphical
hedonic games. A given sentence φ of HG-logic is true in
a given graphical hedonic game (〈N, (<i)i∈N 〉, G) if it is
true when the formula is evaluated according to the obvious
semantics using the universe N and relations <i as specified
by the hedonic game model, but where quantifications over
partitions range only over connected partitions (according to
the dependency graph G). Thus, according to our graphical
semantics, the sentence ∀i ∀j ∃π π(i) = π(j) is not valid,
since i and j might not be together in any connected partition.

Let us give some examples of properties of hedonic games
and partitions expressible in HG-logic.

• a core-stable partition exists: ∃π ∀S ∃i ∈ S π(i) <i S

• π is Pareto-optimal: ¬∃π′ (∀i π′(i) <i π(i)∧∃j π′(j) �j
π(j))

• π is Nash stable: ∀i (π(i) <i {i} ∧ ∀S (∃j S = π(j)→
π(i) <i S ∪ {i})).

• π is perfect: ∀i ∀S 3 i S 6�i π(i).

• π is envy-free: ∀i ∀j π(i) <i π(j) \ {j} ∪ {i}.
• π′ is reachable from π by actions of S: ∀i ∀j (i 6∈ S ∧ j 6∈
S → (π(i) = π(j)↔ π′(i) = π′(j))).

5 Main Result
An important computational problem we wish to solve is the
model-checking problem of HG-logic.
φ-HEDONIC GAMES
Instance: a graphical hedonic game (〈N, (<i)i∈N 〉, G) and
a formula φ of HG-logic
Question: does (〈N, (<i)i∈N 〉, G) |= φ, i.e. is the graphical
hedonic game a model of the formula φ?
The perhaps most important special case of this problem is
deciding the existence of stable partitions in a hedonic game.

Theorem 2. The problem φ-HEDONIC GAMES is fixed-
parameter tractable with respect to the length |φ| of the
formula φ, and the treewidth k and degree d of the graph G.
That is, the problem can be solved in time O(f(|φ|, k, d) · n)
where f is a computable function, and n is the number of
agents. Here we assume that the relation “S <i T” can be
decided in time only depending on d, but not on n.

This means that for any formula φ and any class C of
graphical hedonic games of bounded treewidth and bounded
degree, we can decide in linear time whether φ is true in
a given game (〈N, (<i)i∈N 〉, G) ∈ C. In case computing
“S <i T ” takes time depending on n, we will need 22d·n calls
to an oracle deciding this relation during a pre-processing
step, after which the linear-time bound applies again.

Let us make explicit some special cases of Theorem 2.

Corollary 3. For every class of graphical hedonic games of
bounded treewidth and degree, there exist linear-time algo-
rithms that can decide whether a given such game admits
a partition that is (i) core-stable, (ii) strict-core-stable, (iii)
Pareto-optimal, (iv) perfect (v) Nash-stable, (vi) individually
stable, (vii) envy-free, or that satisfies any combination of
these properties.

Proof. This would follow immediately from Theorem 2 and
the formulas in Section 4, except that we need to check that
the fact that our semantics only quantify over connected
partitions makes no difference. For (i)-(iv), this is immediate,
since a partition π satisfies the relevant criterion if and only
if the connected partition π′ obtained from π by splitting its
coalitions into their connected components satisfies the same
property.

For (v)-(vii), we can achieve a similar behaviour by adding
extra edges to the dependency graph G of the input game to
obtain a new dependency graphG′. Precisely, whenever there
are edges {u, v} ∈ E(G) and {v, w} ∈ E(G), then we add
the edge {u,w} toG′ (note that this is different from taking a
transitive closure since we do not apply this step repeatedly).
It can then be seen that splitting a Nash- or individually sta-
ble partition into its G′-components preserves stability, and
similarly for envy-freeness under the additional assumption
that all coalitions are individually rational. Further, note that
G′ has treewidth at most kd and degree at most d2, so that
both parameters are still bounded.

By calling such an algorithm repeatedly, we can adaptively
build up a connected partition satisfying any of these proper-
ties (if it exists).

Theorem 2 is proved by reducing φ-HEDONIC GAMES to
the model checking problem of monadic second-order logic,
which by Courcelle’s theorem is fixed-parameter tractable
with parameter the treewidth of the underlying logical struc-
ture and the length of the input formula. We will explain this
reduction in the following two sections.

6 MSO and Courcelle’s Theorem
Here we give a statement of Courcelle’s theorem (1990) and
introduce monadic second-order logic (MSO).

First, we need some definitions. A signature σ is a finite
collection of relation symbols (R1, . . . , Rk), with each sym-
bol Ri ∈ σ being endowed with an arity ar(Ri) > 1. A
σ-structure A := 〈A, (RA1 , . . . , RAk )〉 is given by a finite set
A, the universe of A, as well as a realisation RAi ⊆ Aar(Ri)

for each relation symbol Ri. The size of A is given by
‖A‖ = |σ|+ |A|+

∑
Ri∈σ |R

A
i | · ar(Ri).

Given a signature σ, the language MSO[σ] of monadic
second order logic is given by the grammar

φ ::= x=y | Rix1 . . . xar(Ri) | Xx | (φ ∨ φ) | (φ ∧ φ) | ¬φ
| ∃xφ | ∀xφ | ∃X φ | ∀X φ,

where x, y, x1, x2, . . . are first-order variables, and X de-
notes set variables. Notice that MSO allows quantification
only over unary relations, i.e. over subsets of the universe A.
For a formula φ of MSO[σ] and a σ-structure A, we define
the semantic notion of A |= φ in the obvious way.



Next, let us define the notion of treewidth for a σ-structure.
A tree decomposition of a σ-structure A is given by a
tree T , each vertex v of T being associated with a sub-
set β(v) ⊆ A of the universe, called a bag, satisfying the
following two conditions: (1) each a ∈ A is contained in
some bag, and the set β−1(a) of bags containing a forms
a connected subtree of T , and (2) for each Ri ∈ σ and all
a1, . . . , aar(Ri) ∈ A such that (a1, . . . , aar(Ri)) ∈ RAi , we
have that {a1, . . . , aar(Ri)} ⊆ β(v) for some vertex v of T .
The width of such a tree decomposition is the maximum car-
dinality of the bags minus 1, and the treewidth tw(A) of A
is the minimum width among tree decompositions of A. The
(usual) treewidth of a graph is a special case of this definition:
just take σ to consist of a single binary relation, namely the
adjacency relation of the graph.

We are now ready to state Courcelle’s (1990) theorem.
Theorem 4 (Courcelle). Given a formula φ of MSO[σ] and
a σ-structureA, we can in time g(|φ|, tw(A)) · |A|+O(‖A‖)
decide whether A |= φ, where g is a computable function.

Courcelle’s theorem is often stated for fixed formulas φ,
but the more general statement as we are stating it here is
true: the model checking problem for MSO is fixed-parameter
tractable with respect to the joint parameter consisting of the
formula length |φ| and the treewidth of A. We will use this
stronger result in what follows.

7 Encoding of HG-logic into MSO
In this section we prove Theorem 2. Suppose we are
given a formula φ of HG-logic and a graphical hedonic
game (〈N, (<i)i∈N 〉, G), where G has treewidth k and max-
degree d. In the following, we will generate a relatively large
(in d, not n) σ-structure containing all information about the
game, and then rewrite the formula φ into a formula of MSO.

Step 1: σ-structure. Our signature σ will have four re-
lation symbols: unary symbols VERT and EDGE, a binary
symbol INCI, and a (2d+ 1)-ary symbol PREF.

We build a σ-structure G with universe N ∪ E ∪ {∗},
and relations VERT = N , EDGE = E, the vertex-edge
incidence relation INCI = {(i, e) : i ∈ N, e ∈ E, i ∈ e},
and for each i ∈ N , let (i, i1, . . . , id, id+1, . . . , i2d) ∈ PREF
if and only if is ∈ N ∪ {∗} for all 1 6 s 6 2d, and each
is ∈ N is a neighbour of i in G, and

{i1, . . . , id} \ {∗} <i {id+1, . . . , i2d} \ {∗}.

That is, we use the defining property of dependency graphs
to encode every agent’s essential preferences in the relation
PREF. The structure G can be computed inO(22d ·n) calls to
an oracle deciding <i. For convenience, let us define within
MSO[σ] the adjacency relation between vertices as

adj(u, v) ≡ u 6= v ∧ ∃e (INCI ue ∧ INCI ve).

Step 2: bounding treewidth. By assumption, the agent
dependency graph G has treewidth at most k. We show that
the σ-structure G constructed above has treewidth at most
k · (d+ 1) + 1, which is still bounded for bounded d and k.
First find in time linear-in-n a tree-decomposition of G of
width at most k using Bodlaender’s (1993) algorithm. For

each of the O(n) edges e = {u, v} of G, find a bag β(w)
that contains both u and v, and introduce a new bag {e, u, v}
that gets attached as a leaf to w in the tree underlying the
tree decomposition, not increasing its width. For each vertex
v and every bag β(w) of the original tree decomposition
containing v, add to β(w) the set ΓG(v) of the at most d
neighbours of v in G. This operation increases the width by
at most k ·d. Finally, add ∗ to every bag, increasing the width
by 1, for a total width of at most k + kd + 1. As is easy to
see, this is a tree decomposition of G.

Step 3: encoding partitions. In our encoding, a partition
π of the agent set will be a ‘transitive’ subset E′ ⊆ E of the
edge set of the dependency graph. (The set E′ represents the
equivalence relation associated with the partition π, in the
sense that the two endpoints of an edge e ∈ E′ are in the
same coalition of π.) Formally, a set variable X represents
a partition if X ⊆ E and whenever e1 = {x, y}, e2 =
{y, z}, e3 = {x, z} are edges inE with e1, e2 ∈ X , then also
e3 ∈ X . This condition can clearly be expressed in MSO[σ].
We can also express the relation “two agents have an edge
between them, and this edge is part of X” by a formula. It is
well-known that MSO can express the transitive closure of
every binary relation it can express (Courcelle and Engelfriet
2012, p. 42). Hence we can express the transitive closure of
the preceding relation, which is “two agents are connected
by a path of edges that are in X”, which is equivalent in our
understanding to “two agents are in the same coalition in
partition X”. This we can use to express “S = π(i)”.

Step 4: encoding preference. We now encode the relation
S <i T . This depends crucially on the definition of the agent
dependency graph, so that we actually encode the equivalent
relation S ∩ Γ(i) <i T ∩ Γ(i). To do this, we use d variables
for S and d variables for T which will represent the agents
from Γ(i) that are present in S and T respectively. If there
are fewer than d such agents, we assign ∗ as a placeholder.
Note that the relation x ∈ N ∪ {∗} is expressible in MSO[σ]
as ¬EDGE x. With this, we can express S <i T as

∃x1, . . . , xd, y1, . . . , yd ∈ N ∪ {∗}
∀x ∈ S (adj(i, x)→ x = x1 ∨ · · · ∨ x = xd)

∧ ∀y ∈ T (adj(i, y)→ y = y1 ∨ · · · ∨ y = yd)

∧ PREF i x1 . . . xd y1 . . . yd.

Step 5: encoding HG-syntax. Using steps 3 and 4, we
can translate φ (a formula of HG-logic) into a formula
φ′ of MSO[σ]. Here, we replace quantifications over par-
titions by quantifications over edge sets, as indicated in step 3.

This finishes our translation of HG-logic into MSO[σ]. Using
Courcelle’s algorithm, we can now check whether G |= φ′.
We achieve the claimed time bound by noting that any blow-
ups in formula size and treewidth are still bounded whenever
k and d are bounded.

8 Faster Algorithms in Special Cases
In the algorithms arising through our use of Courcelle’s the-
orem, the dependence on k and d in their runtime is quite
bad; indeed, we cannot bound the function f(|φ|, k, d) by an



elementary function unless P = NP (Frick and Grohe 2004).
This phenomenon is especially bad in our case as we are
using multiple quantifier alternations in our MSO-encoding.
Clearly, we cannot just ignore this as a merely ‘constant fac-
tor’. In this sense, Theorem 2 should be seen as an existence
result, but not as providing an actually usable algorithm.

In this section, we use an alternative approach due to Bod-
laender (1988) that produces algorithms with more manage-
able dependence on k and d for some important stability
and optimality problems. Bodlaender (1988) defines the very
general class of local condition composition problems (short
LCC or 1-LCC) and shows that they are linear-time solvable
on classes of graphs of bounded treewidth and degree. In
the following, we will give a definition of an LCC-problem,
suitably specialised for our purposes.

Let G = (V,E) be a graph with max-degree d for which a
tree decomposition of width k is given. Let E2(v) be the set
of edges from E whose endpoints are both within distance
2 of v. For maps f : E → {0, 1}, let P (v, f |E2(v)) be a
0/1-property, and let W (v, f |E2(v)) be an integer-valued
function, both computable in time polynomial in their input
length. Finally, let ⊕ denote the binary operation of a totally
ordered commutative monoid over the integers. Examples
include taking ⊕ to be the sum, product, or minimum of the
values. Now consider the following computational problem:
Instance: Graph G = (V,E), additional data about G,
target value K.
Question: Does there exist a map f : E → {0, 1} such
that for each v ∈ V the property P (v, f |E2(v)) is true, and⊕

v∈V W (v, f |E2(v)) > K?

Bodlaender (1988) shows that any problem of this form can
be solved in Õ(2kd

2

n) time. Here, the soft-Õ hides factors
polynomial in k and d which will depend on the runtime of
evaluating P and W .

Using this apparatus, we can encode hedonic games prob-
lems in a similar fashion as before. Again, a connected par-
tition π of N will be represented by a set E′ ⊆ E of edges,
where E′ = f−1(1) = {e ∈ E : f(e) = 1}. Using the
property P , we can enforce transitivity of E′. We can also
calculate in P the utility of a given agent in the partition
described by E′ (since f |E2(v) tells us which relevant play-
ers are in the same coalition as v), and we know who is in
the coalition of every agent w adjacent to v. For example,
we can thus let P (v, f |E2(v)) express that (i) E′ is transi-
tive at v and (ii) v does not want to Nash deviate under the
partition specified by E′. Hence deciding the existence of a
connected Nash-stable partition is an LCC problem. Since we
can calculate players’ utilities in E′, maximising utilitarian
or egalitarian or Nash social welfare is also an LCC problem.
Using this general technique, we find the following.

Theorem 5. There is an Õ(2kd
2

n) algorithm that, given a
graphical hedonic game and a tree decomposition, decides
whether there exists a connected partition π of the agent
set that satisfies (a combination of) (i) individual rationality,
(ii) Nash stability, (iii) individual stability, (iv) envy-freeness.
Subject to any combination (or none) of the preceding condi-
tions, we can also maximise utilitarian, egalitarian, or Nash

social welfare under π.

A perfect partition can be found in slightly worse time. We
can always modify the dynamic programming implementa-
tion to actually return a partition π (if it exists) in the same
time bound. By using the technique of Corollary 3, we can
drop the condition that π is connected in exchange for a
worse time bound of Õ(2kd

5

n).
We can also use the LCC approach to get the following

result about verifying whether a given partition satisfies a
stability or optimality criterion.

Theorem 6. There is an Õ(2kd
2

n) algorithm that given a
hedonic game, an associated dependency graph, a tree de-
composition, and a partition π of N , decides whether π is
(i) Pareto optimal, (ii) core-stable, (iii) strict-core-stable.

While the method of reduction to LCC problems is ev-
idently quite powerful, it does not seem to capture Σp2-
questions like whether a core-stable outcome exists.

9 Allocation of Indivisible Goods
In the problem of allocating indivisible goods, we are given
a set O = {o1, . . . , om} of objects that need to be allocated
to agents N who have preferences over bundles B ⊆ O of
objects (see Bouveret, Chevaleyre, and Maudet (2016) for
a survey). Throughout, we will assume that no bundle is
unacceptable to any agent (a weak free-disposal assumption).
This setting can quite naturally be captured as a hedonic
game with agent set N ∪ O, where no coalition containing
2 different agents from N is allowed, and i ∈ N likes a
coalition S ∈ Ni just as much as i likes the bundle S \ {i}.
The objects, on the other hand, are indifferent between all
outcomes. With this implementation, the hedonic-game- and
allocation-notions of envy-freeness, Pareto-optimality, and
of maximising social welfare coincide perfectly.

This hedonic game is also a graphical hedonic game whose
dependency graph is bipartite with N on one side and O
on the other, with an edge from i to o whenever i cares
about whether o is part of i’s bundle. Note that this graphical
hedonic game does not capture the requirement that coalitions
may only contain a single agent from N , but we will enforce
this condition later.

Let us now take a class of allocation problems whose asso-
ciated bipartite graphs have bounded treewidth and bounded
degree. The latter condition implies that every agent desires
a bounded number of objects, and every object is desired by
a bounded number of agents. The results developed over the
preceding sections will imply that on such a restricted class,
we can efficiently find allocations that are fair and/or efficient,
in contrast to many hardness results in the unrestricted case.

Using HG-logic, we can identify agents that belong to O
as those agents that are indifferent between all coalitions con-
taining them. Hence HG-logic is expressive enough to require
that a given coalition contains at most 1 non-object agent.
Hence, using HG-logic, we have an algorithm that decides
the existence of a Pareto-optimal and envy-free allocation,
which is Σp2-complete for general preferences represented in
a logic representation (Bouveret and Lang 2008) and even for
additive utilities (de Keijzer et al. 2009). Similarly, there is an



algorithm that decides the existence of an envy-free and com-
plete allocation (where every object must be allocated); this
problem is NP-hard for general additive utilities (Lipton et al.
2004). We can also use an LCC-based algorithm to find an al-
location that maximises social welfare among envy-free ones,
or an algorithm that finds a complete allocation of minimum
envy. Looking at the allocation problem from a hedonic game
perspective, we can also readily define intriguing notions of
stable allocations in which agents don’t want to swap items
(possibly even in larger swap cycles). Many such properties
can be described in HG-logic.

In the context of combinatorial auctions, Conitzer, Der-
ryberry, and Sandholm (2004) provide a different way of
exploiting a tree decomposition to efficiently allocate objects.
Here, the objects are arranged in an item graph of bounded
treewidth, and agents are assumed to only demand bundles
inducing a connected subgraph of the item graph. With this
restriction, winner determination becomes feasible in poly-
nomial time. Note, however, that constructing a suitable item
graph of small treewidth is computationally hard (Gottlob
and Greco 2007).

10 Necessity of the Degree Bound
In this section, we show that a variety of problems of type
φ-HEDONIC GAMES are NP-hard for games of bounded
treewidth but unbounded degree. This establishes that un-
less P = NP it is necessary for our fixed-parameter tractability
result that we bound the degree of the hedonic games. The
bound on the treewidth is also necessary; this follows from
slight modifications of standard hardness reductions (e.g.,
those of Sung and Dimitrov (2010)).

Theorem 7. CORE-EXISTENCE is NP-hard even for graphi-
cal hedonic games of treewidth 2 that are given by an HC-net.

Proof. By reduction from 3SAT. Given a formula φ which we
may assume not to be satisfied by setting all variables false,
introduce one agent x1, . . . , xn for each variable occurring
in φ, and add 3 other agents a, b, c. The variable agents are
indifferent between all outcomes (no associated rules). The
preferences of agents a, b, c are cyclic and given by the net

φ 7→a 3, b 7→a 2, c 7→a 1, b ∧ c 7→a −10;

c 7→b 2, a 7→b 1, c ∧ a 7→b −10;

a 7→c 2, b 7→c 1, a ∧ b 7→c −10.

An agent dependency graph of this game is given by a triangle
on {a, b, c} plus n leaves attached to a; this is easily seen to
have treewidth 2 (and actually even pathwidth 2).

We show the game admits a core-stable outcome if and
only if φ is satisfiable. Suppose φ is satisfied by some as-
signment. Then take the partition π where a is together with
all true variable agents, with {b, c} ∈ π, and with all false
variable agents together. Then π is core-stable, because the
variable agents (being indifferent) are not part of any block-
ing coalition, so that a does not obtain utility larger than 3 in
any blocking coalition.

Conversely, suppose that the game admits a core-stable
partition π. We show that a obtains utility 3 in π, which
implies that a is together with variables that satisfy φ so

that φ is satisfiable, as required. Suppose not. By individual
rationality, a, b, c are not all together, so one of them is not
together with either of them, say b. But then {a, b} blocks.
Such a blocking coalition exists for any choice of lonely agent
as a obtains utility 6 2, so π is not stable, contradiction.

This result cannot be improved to apply to HC-nets of
treewidth 1, which follows from results of Igarashi and Elkind
(2016). By adapting the reduction of Peters (2015), this prob-
lem should be Σp2-complete, at least for treewidth 4.

Theorem 8. NASH-STABLE-EXISTENCE is NP-hard even
for graphical hedonic games of treewidth 1 that are given by
an HC-net.

Proof. By reduction from X3C. Given an instance with ele-
ments x1, . . . , xn and sets s1, . . . , sm, we construct an HC-
net where the agents are given by the elements xi and an
extra stalker agent. Every element hates the stalker, but the
stalker loves every coalition of elements—except coalitions
of form sj . Note that the dependency graph of this game
is a star with the stalker in the center. If the X3C-instance
has a solution, then partitioning the xi as in the solution and
putting the stalker in a singleton is Nash stable. Conversely,
in every Nash stable partition, the stalker needs to be alone by
individual rationality for the elements. By Nash stability, the
stalker does not want to join any coalition, and so every coali-
tion must be of form sj ; thus the partition of the elements
gives an X3C-solution.

A similar construction works for individual stability for
treewidth 2, see also Peters and Elkind (2015, Thm. 2). A re-
duction from 3SAT gives hardness for PERFECT-EXISTENCE
on trees (agents for literals, complementary ones hate each
other, a formula agent is satisfied iff the formula is satisfied).

11 Conclusions and Future Work
We have shown that restricting treewidth and degree of hedo-
nic games is a potent avenue to obtaining tractability results
for a broad array of important computational problems con-
cerning hedonic games. Our application to the problem of
allocating indivisible goods shows how useful tractability
results for hedonic games can be: because hedonic games
are a very general model encompassing far more than just
‘how to find friends’, a possibility result for hedonic games
translates to easiness for any problem that involves partitions
with some elements having preferences over who gets what.
It will be interesting to see whether this idea can be further
applied elsewhere.

The notion of a graphical hedonic game suggests a wide
variety of interesting questions for future work: Are there
alternative conditions on graph topology that yield tractabil-
ity? Examples could be bipartiteness, planarity, or H-minor
freeness. Can we say anything about the structure of stable
outcomes in dependence on the structure of the graphical
hedonic game?

An open problem more closely related to this paper is
the problem of finding faster algorithms than those provided
through HG-logic for Σp2-type questions like the existence of
a core-stable partition or of finding a Pareto-optimal partition.



We should also note that the hardness results in the preceding
section are not easily generalised to, say, additively separa-
ble hedonic games. It would be interesting to know if we
can dispense with the degree bound on this more restricted
class. Some results for welfare-maximisation can be found in
Bachrach et al. (2013).
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