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Recent work by Abramsky and Brandenburger used sheaf theory to give a mathematical formulation
of non-locality and contextuality. By adopting this viewpoint, it has been possible to define cohomo-
logical obstructions to the existence of global sections. In the present work, we illustrate new insights
into different aspects of this theory. We shed light on the power of detection of the cohomological
obstruction by showing that it is not a complete invariant for strong contextuality even under symme-
try and connectedness restrictions on the measurement cover, disproving a previous conjecture. We
generalise obstructions to higher cohomology groups and show that they give rise to a refinement of
the notion of cohomological contextuality: different “levels” of contextuality are organised in a hier-
archy of logical implications. Finally, we present an alternative description of the first cohomology
group in terms of F -torsors, resulting in a new interpretation of the cohomological obstructions.

1 Introduction

Contextuality is one of the most fundamental and peculiar features of quantum mechanics. Inspired by
classic no-go theorems by Bell [9] and Kochen-Specker [17], the development of quantum information
has been increasingly influenced by the study of this highly non-classical phenomenon. Recent work by
Howard et al. has even suggested that it actually represents the source of the power of quantum computing
[16]. The sheaf-theoretic description of non-locality and contextuality introduced in [3] has proved that
contextuality is in fact a general mathematical property that goes beyond quantum physics and pervades
various domains (e.g. relational databases [1] and constraint satisfaction [4]).

This rigorous mathematical formulation has allowed the application of powerful methods of sheaf
cohomology to the study of the topological structure of contextuality [2, 5]. Central to this approach
is the notion of cohomological obstruction to the existence of global sections, i.e. elements of the
first Čech cohomology group that provide a sufficient (but not necessary) condition for the contextuality
of empirical models. Although cohomology has been proved to correctly detect contextuality in various
well-studied empirical models such as PR boxes [25], GHZ states [12, 13, 20], the Peres-Mermin “magic”
square [22, 21, 24] and the whole class of models admitting “All-vs-Nothing” arguments [2] , there is
evidence of a restricted number of false positives (e.g. the Hardy model [15]).

In the present paper, we illustrate new insights into the properties of cohomological obstructions
with the ultimate goal of understanding how such false positives arise. In particular, we aim to give
an answer to some of the open questions left by [5]: “Is the cohomological obstruction a full invari-
ant for strong contextuality under suitable restrictions on the measurement scenario?”; “Can higher
cohomology groups be used for the study of contextuality?”; “Is there a concrete way of describing
cohomological obstructions?”.
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2 On the Cohomology of Contextuality

We briefly outline our results:

• We disprove Conjecture 8.1 of [5] by providing an explicit example of a strongly contextual but
cohomologically non-contextual empirical model defined on a simple (2,2,4) Bell-type scenario
which verifies any reasonably strong form of connectedness and symmetry condition.

• We generalise cohomological obstructions to higher cohomology groups. It turns out that this
procedure can be done in a natural way only in odd dimensions. We obtain a refinement of the
notion of cohomological contextuality: for each q ≥ 0, we say that a model is q-cohomologically
contextual if the q-th obstruction does not vanish.

• We show that higher obstructions are organised in a precise hierarchy of logical implications. We
also prove that, unfortunately, this result cannot be used in the study of no-signalling empirical
models.

• We give a new description of the first cohomology group (thus, in particular, of the cohomology
obstructions) using torsors relative to a presheaf.

The paper is organised as follows. We summarise the sheaf viewpoint from [3] in Section 2, and recall
the main definitions concerning sheaf cohomology in Section 3. Section 4 features the counterexample
to Conjecture 8.1 of [5]. We generalise cohomological obstructions to higher cohomology groups in
Section 5. Finally, in Section 6, we present torsors relative to a presheaf, and their relation to the first
sheaf cohomology group.

2 The sheaf-theoretic framework

In this section we recall the main definitions of the sheaf-theoretic approach to non-locality and contex-
tuality [3].

We start by considering a finite discrete space X , which can be seen as a set of measurement labels.
We define a measurement cover as an antichain M = {Ci}i∈I that satisfies

⋃
i∈I Ci = X . This family

contains the maximal sets of measurements that can be jointly performed, called measurement contexts.
The set X , together with the cover M and a fixed finite set of outcomes O, constitute the measurement
scenario 〈X ,M ,O〉, which represents the basic setting of the experiment we aim to study.

We consider X as a discrete topological space and define the sheaf of events E : Open(X)op =
P(X)op→ Set, where E (U) := OU for each subset U ⊆ X , and restriction maps coincide with function
restriction: for U ⊆U ′ ⊆ X , we have

ρ
U ′
U := E (U ⊆U ′) : OU ′ → OU :: s 7→ s |U .

Each s ∈ E (U) is called a section, in particular g ∈ E (X) is a global section.
A probabilistic empirical model e is a compatible family {eC}C∈M , where eC is a probability dis-

tribution over E (C).1 In this paper we will only consider possibilistic empirical models, i.e. the ones
generated by the support of a probabilistic model. Such models can be defined as subpresheaves S of E
that verify the following properties:

1. S (C) 6= /0 for all C ∈M

2. S is flasque beneath the cover, i.e. the map S (U ⊆U ′) is surjective whenever U ⊆U ′ ⊆C for
some C ∈M .

1Here, compatibility involves the notion of restriction on distributions which is not defined in this paper since it is not needed
(cf. [3, §2.5]).
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3. Every family {sC ∈ S (C)}C∈M which is compatible (i.e. such that sC |C∩C′= sC′ |C∩C′ for all
C,C′ ∈M ) induces a global section in S (X). Note that this global section is unique since S is a
subpresheaf of the sheaf E .

These conditions state that S is completely determined by its values S (C) at each context C ∈M :
values S (U) below the cover are fixed by flaccidity, and values for subsets U above the cover are
determined by condition 3. Flaccidity beneath the cover can also be interpreted as a possibilistic version
of no-signalling.

Contextuality of an empirical model S on a measurement scenario 〈X ,M ,O〉 can be characterised
as follows

• Given a context C ∈M and a section s ∈S (C), S is logically contextual at s, or LC(S ,s), if s
is not a member of any compatible family. We say that S is logically contextual, or LC(S ), if
LC(S ,s) for some possible section s.

• S is strongly contextual, or SC(S ), if LC(S ,s) for all s. In other words there is no global
section (S (X) = /0).

2.1 Bundle diagrams

The structure of the measurement cover can equivalently be described as an abstract simplicial complex
having measurements as vertices [7, 8]. A set of vertices forms a face whenever the corresponding mea-
surements can be jointly performed, hence contexts correspond to facets of the complex. This viewpoint
allows us to graphically represent simple possibilistic empirical models as bundle diagrams. In figure 1
we have depicted the bundle diagram of a simple (2,2,2) Bell-type scenario involving two agents Alice
and Bob who can choose between two binary measurements each (a1,a2 for Alice and b1,b2 for Bob).
The measurement simplicial complex lies at the base of the bundle, and above each vertex is a fibre of the
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Figure 1: A (2,2,2) Bell-type scenario. The section (a1,b1) 7→ (1,1) is represented in the centre. On the
right, the global section (a1,b1,a2,b2) 7→ (1,1,0,0)

values that can be assigned to each measurement (0 or 1 in this case). A possible section is represented by
an edge connecting the outcomes involved above the corresponding context as in the central diagram of
the figure. No-signalling corresponds to the property that each edge above a context can be extended to
at least one edge above each adjacent context. A global section is represented by a closed path traversing
all the fibers exactly once as shown on the right-hand side of Figure 1.



4 On the Cohomology of Contextuality

Using this handy representation, we can have an immediate feedback on the contextuality of em-
pirical models. As an example, consider the Hardy model [15, 14] and the Popescu-Rohrlich (PR) box
model [25] represented in Figure 2.

A B (0,0) (1,0) (0,1) (1,1)
a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

(a) Hardy model

A B (0,0) (1,0) (0,1) (1,1)
a1 b1 1 0 0 1
a1 b2 1 0 0 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

(b) PR-Box model

We can clearly see that the section (a1,b1) 7→ (0,0) in the Hardy bundle, marked in red, is not part
of any compatible family, hence the model is logically contextual. However, it is not strongly contextual
since there is a global section (a,b1,a2,b2) 7→ (1,1,0,0) (marked in blue). On the other hand, all the
sections in the PR-Box bundle are not part of any compatible family, which means that the model is
strongly contextual.
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Figure 2: The Hardy model and the PR-Box model as bundle diagrams.

3 Sheaf cohomology

We recall the main results of [2, 5] concerning cohomological obstructions to the existence of global
sections.

Consider a measurement scenario 〈X ,M ,O〉 and an empirical model S defined on it. We define
a presheaf of abelian groups F : P(X)op→ AbGrp that represents S . Explicitly, this means that F
verifies conditions 1, 2 and 3, and that there is an injection i : S ↪→F such that iC(sC) 6= 0 ∈F (C)
for all C ∈M and for each sC ∈S (C). Typically, F := FZS is used, where FZ : Set→ AbGrp is the
functor that assigns to a set X the free abelian group FZ(X) generated by it.2

A q-simplex of the nerve of M is a tuple σ = (C0, . . . ,Cq) of elements of M such that |σ | :=
∩q

i=0Ci 6= /0. The set of q-simplices is denoted by N (M )q. The nerve N (M ) is the abstract simplicial

2More generally, the functor FR can be used for any ring R.
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complex generated by all the N (M )qs. For all q ≥ 0 and each 0 ≤ j ≤ q, we can define the maps
∂ j : N (M )q+1→N (M )q by the expression

∂ j(C0, . . . ,Cq+1) := (C0, . . . ,C j−1,Ĉ j,C j+1, . . . ,Cq+1).

This allows us to define the augmented Čech cochain complex

0 0−→C0(M ,F )
δ 0

−→C1(M ,F )
δ 1

−→ . . .

where, for all q≥ 0,
Cq(M ,F ) :=

⊕
σ∈N (M )q

F (|σ |)

is the abelian group of q-cochains, and δ q : Cq(M ,F )→Cq+1(M ,F ) defined by

δ
q(ω)(σ) :=

q+1

∑
j=0

(−1) j
ρ
|∂ jσ |
|σ | (ω(∂ jσ)) ∀ω ∈Cq(M ,F ), ∀σ ∈N (M )q

is the q-th coboundary map, where ρ
|∂ jσ |
|σ | denotes the restriction homomorphism F (|σ | ⊆ |∂ jσ |). Čech

cohomology Ȟ∗(M ,F ) is defined as the cohomology of this augmented cochain complex.
We assume that M is a connected cover, i.e. given C,C′ ∈M there exists a sequence of contexts

C = C0,C1, . . . ,Cn = C′ such that Ci ∩Ci+1 6= /0.3 Thanks to this assumption, cocycles in Z0(M ,F ) ∼=
Ȟ0(M ,F ) correspond to compatible families {rC ∈F (C)}C∈M (i.e. such that rC |C∩C′= rC′ |C∩C′ for
all C,C′ ∈M ).4

In order to study the extendability of a local section at a fixed context C0 ∈M , we shall define the
relative cohomology of F . We introduce two auxiliary preshaves. Firstly

F |C0 : Open(X)op→ AbGrp :: U 7→F (U ∩C0).

The restriction to C0 yields an obvious morphism of sheaves pC0 : F ⇒F |C0 defined by

pC0
U : F (U)→F |C0 (U) :: r 7→ r |C0∩U .

Notice that each pC0
U is surjective since F is flasque beneath the cover and U∩C0⊆C0 ∈M . The second

auxiliary functor is defined by FC̃0
(U) := ker(pC0

U ). Thus, we have an exact sequence of presheaves

0 =⇒FC̃0
=⇒F

pC0
==⇒F |C0 , (1)

which can be lifted to cochains to

0−→C0(M ,FC̃0
) ↪−−−→C0(M ,F )

⊕
C p

C0
C−−−−→C0(F ,F |C0),−→ 0,

where exactness on the right is given by surjectivity of all the pC0
C . The map δ 0 can be correstricted to

a map δ̃ 0 := δ 0 |Z1(M ,F ) whose kernel is Z0(M ,F ) ∼= Ȟ0(M ,F ) and whose cokernel is isomorphic
to Ȟ1(M ,F ) (the same procedure can be applied to F |C0 and FC̃0

). Therefore, by applying the snake
lemma to

3From now on, all the covers will be assumed to be connected.
4Where rC |C∩C′ is an equivalent notation for ρC

C∩C′(rC) = F (C∩C′ ⊆C)(rC).
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0 C0(M ,FC̃0
) C0(M ,F ) C0(M ,F |C0) 0

0 Z1(M ,FC̃0
) Z1(M ,F ) Z1(M ,F |C0)

δ̃ 0 δ̃ 0 δ̃ 0

we obtain an exact sequence

Ȟ0(M ,FC̃0
) Ȟ0(M ,F ) Ȟ0(M ,F |C0)

Ȟ1(M ,FC̃0
) Ȟ1(M ,F ) Ȟ1(M ,F |C0)

γC0

where the “snake” homomorphism γC0 is called the connecting homomorphism relative to the context
C0. We have F (C0)∼= Ȟ0(M ,F |C0) via the isomorphism

ψ
0 : F (C0)→ Z0(M ,F |C0) :: rC0 7→ (rC0 |C0∩C)C∈M . (2)

Thus, given an element r0 ∈F (C0), it makes sense to define the cohomological obstruction of r0 as the
element γC0(r0) ∈ Ȟ1(M ,FC̃0

).
We have the following key result from [5]:

Proposition 3.1. Let M be a connected cover, C0 ∈M and r0 ∈F (C0). Then, γC0(r0) = 0 if and only
if there exists a compatible family {rC ∈F (C)}C∈M such that rC0 = r0.

Given an empirical model S and a local section s0 ∈S (C0), we define the following notions

• S is cohomologically logically contextual at s0, or CLC(S ,s0), if γC0(s0) 6= 0. We say that S
is cohomologically logically contextual, or CLC(S ), if CLC(S ,s) for some section s.

• S is cohomologically strongly contextual, or CSC(S ), if CLC(S ,s) for all sections s.

The main result of [5] provides a sufficient condition for an empirical model to be contextual:

Theorem 3.2. Let S be an empirical model. We have CLC(S )⇒ LC(S ) and CSC(S )⇒ SC(S ).

However, it is sufficient to consider the Hardy model to show that this condition is not necessary
[5]. Bundle diagrams can be used again to understand how such false positives arise. As an example,
consider the diagram of the Hardy model in Figure 3. On the left-hand side we graphically show that the
red section s :=(a1,b1) 7→ (0,0) cannot be extended to a compatible family, proving local contextuality at
s. However, when considering the presehaf of abelian groups F :=FZS needed to define cohomological
obstructions, we are allowed to take formal linear combinations of sections over the same context. Thus,
it is possible to obtain closed paths like the one in blue on the right-hand side of Figure 3, which is
explicitly defined by

{s,(a2,b1) 7→ (1,0),(a2,b2) 7→ (1,0), [(a1,b2) 7→ (1,0)]− [(a1,b2) 7→ (1,1)]+ [(a1,b2) 7→ (0,1)]},

and represents a compatible family for F . The existence of such a closed path shows why cohomology
cannot detect contextuality in this case.
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Figure 3: The Hardy model is LC but not CLC

4 A false positive for strong contextuality

In [5], it is brought to attention that, although cohomology can fail to detect logical contextuality as in
the case of the Hardy model, it is rather difficult to construct a strongly contextual false positive. Indeed,
cohomology is able to detect the strong contextuality of a variety of well-known models, including GHZ
states [12, 13, 20], PR Boxes [25], the Peres-Mermin “magic” square [22, 21, 24], all ¬GCD models [5],
and the whole class of models admitting All-vs-Nothing arguments [2]. The only known example of a
strongly contextual false positive is the Kochen-Specker model [17, 19] for the cover

{A,B,C},{B,D,E},{C,D,E},{A,D,F},{A,E,G},

which “does not satisfy any reasonable criterion for symmetry, nor does it satisfy any strong form of
connectedness” and where “the existence of measurements belonging to a single context, namely F and
G, seems to be crucial” [5]. Due to these limitations, the following conjecture was made:

Conjecture 4.1 (Conjecture 8.1 of [5]). Under suitable assumptions of symmetry and connectedness of
the cover, the cohomology obstruction is a complete invariant for strong contextuality.

In Figure 4, we introduce a counterexample to this conjecture.
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Figure 4: A SC∧¬CLC model over a (2,2,4) scenario
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The bundle diagram on the left-hand side represents an empirical model S (the explicit definition
can be found in Appendix A) on a (2,2,4) Bell-type scenario. Note that this measurement scenario is
extremely simple and verifies any reasonably strong form of symmetry and connectedness. By carefully
analysing the picture, one verifies that none of the sections can be extended to a compatible family of S
(i.e. a closed path containing one and only one section per context), but each one of them is contained
in a compatible family of F := FZS , namely a closed path similar to the one generating the false
positive for the Hardy model (Figure 3). As an example, we show this feature by considering the section
s0 := (a1,b1) 7→ (0,0): from the central diagram of Figure 4 it appears clear that this section is non-
extendable to a compatible family of S , while the diagram on the right-hand side shows that s0 is part
of a compatible family for F , explicitly defined as

{s0,(a2,b1) 7→ (0,0),(a2,b2) 7→ (0,1), [(a1,b1) 7→ (1,1)]− [(a1,b1) 7→ (1,0)]+ [(a1,b1) 7→ (0,0)]}.

We conclude that this model is strongly contextual but not cohomologically contextual (not even coho-
mologically logically contextual), essentially disproving Conjecture 8.1 of [5]. 5

5 Higher cohomology groups

The theory developed so far involves only the first Čech cohomology group, which contains the obstruc-
tions. The existence of badly behaved false positives like the one presented in the previous section moti-
vates a deeper inspection of the higher cohomology groups in search of information on how such extreme
cases arise. We will introduce here a generalisation of cohomology obstructions to higher-dimensional
cohomology groups.

Let F be an abelian presheaf representing an empirical model S on a scenario 〈X ,M ,O〉 (e.g.
F := FZS ). Let q≥ 0 be an integer and fix a context C0 ∈M . To each section s0 ∈F (C0) we associate
a q-relative cochain cq

s0 ∈Cq(M ,F |C0) defined by

cq
s0
(ω) := s0 |C0∩|ω|, ∀ω ∈N (M )q.

This assignment determines a homomorphism ψq : F (C0)→Cq(M ,F |C0) which generalises the iso-
morphism (2). Although ψq is not an isomorphism in general, it is always injective, which means that
different sections in F (C0) are mapped to distinct elements of Cq(M ,F |C0).

Lemma 5.1. For each q≥ 0, the homomorphism ψq is injective.

Proof. Let s0 ∈ ker(ψq). Then cq
s0 = 0, thus in particular 0 = cq

s0(C0, . . . ,C0︸ ︷︷ ︸
q+1 times

) = s0. Therefore ker(ψq) = 0

and the homomorphism is injective.

It turns out that parity in dimension plays an important role:

Lemma 5.2. Let q≥ 0. The image of ψq is contained in Zq(M ,F |C0) if and only if q is even.

5The open-endedness of the statement of the conjecture leaves room for a small minority of special cases where cohomology
is indeed a full invariant of strong contextuality. An example is given in [18], where it is shown that the conjecture is true for
the extremely limited class of symmetric Kochen-Specker models satisfying a condition due to Daykin and Häggkvist [11].
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Proof. Let s0 ∈F (C0). For any ω ∈N (M )q+1 we have

δ
q (cq

s0

)
(ω) =

q+1

∑
k=0

(−1)k
ρ
|∂kω|
|ω|

(
cq

s0
(∂kω)

)
=

q+1

∑
k=0

(−1)k
ρ
|∂kω|
|ω|

(
s0 |C0∩|∂kω|

)
=

q+1

∑
k=0

(−1)ks0 |C0∩|ω| .

The last sum is an alternating sum. Therefore, δ q
(
cq

s0

)
(ω) = 0 if and only if q is even.

Given a q≥ 0, we can generalise the construction of the connecting homomorphism to the order 2q.
For each σ ∈N (M )2q, the exact sequence (1) yelds an exact sequence on objects

0 0−−→FC̃0
(|σ |) := ker(pC0

|σ |)−−→F (|σ |)
p

C0
|σ |−−−−→F |C0 (|σ |)−→ 0,

where exactness on the right is given by flaccidity beneath the cover (pC0
|σ | is surjective for all σ since

|σ | ∩C0 ⊆C0). We can sum these morphisms for every σ ∈N (M )2q and “lift” exactness to the chain
level:

0 0−−→C2q(M ,FC̃0
)−−→C2q(M ,F )

⊕
σ p

C0
|σ |−−−−−−→C2q(M ,F |C0)−→ 0. (3)

Then, we take the correstriction δ̃ 2q of the 2q-th coboundary maps to Z2q+1 and obtain

0 C2q(M ,FC̃0
) C2q(M ,F ) C2q(M ,F |C0) 0

0 Z2q+1(M ,FC̃0
) Z2q+1(M ,F ) Z2q+1(M ,F |C0)

δ̃ 2q δ̃ 2q δ̃ 2q

Finally, we apply the snake lemma to this diagram and obtain the q-th connecting homomorphism γ̃
q
C0

.

F (C0)

Z2q(M ,FC̃0
) Z2q(M ,F ) Z2q(M ,F |C0)

0 C2q(M ,FC̃0
) C2q(M ,F ) C2q(M ,F |C0) 0

0 Z2q+1(M ,FC̃0
) Z2q+1(M ,F ) Z2q+1(M ,F |C0)

Ȟ2q+1(M ,FC̃0
) Ȟ2q+1(M ,F ) Ȟ2q+1(M ,F |C0)

ψ2q

γ̃q

(4)
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Definition 5.3. Let s0 ∈F (C0). We define the q-th cohomological obstruction of s0 as the element

γ
q
C0
(s0) := γ̃

q
C0
(ψ2q(s0)) ∈ Ȟ2q+1(M ,F ).6

The empirical model S underlying F is defined to be

• cohomologically logically q-contextual at a section s0, or CLCq(S ,s0), if γ
q
C0
(s0) 6= 0. We say

that S is cohomologically logically q-contextual if CLCq(S ,s) for some section s.

• cohomologically strongly q-contextual, or CSCq(S ), if CLCq(S ,s) for all s.7

Notice that, due to parity arguments needed to achieve this definition, the cohomological obstruction
is generalisable only to odd-dimensional cohomology groups.

In the case q = 0, Proposition 3.1 tells us that the vanishing of the cohomological obstruction is
equivalent to the existence of a compatible family in F containing s0. The analogous result for higher
obstructions is the following:

Lemma 5.4. Given a q ≥ 0, a context C0 ∈M and a local section s0 ∈F (C0), γ
q
C0
(s0) = 0 if and only

if there exists a family s ∈ Z2q(M ,F ) such that

pC0
|σ |(s(σ)) = c2q

s0
(σ) = s0 |C0∩|σ | ∀σ ∈N (M )2q. (5)

Proof. γq(s0) = 0⇔ γ̃q(c2q
s0 ) = 0⇔ c2q

s0 ∈ ker(γ̃q). Since γ̃q is defined using the snake lemma, it is part
of an exact sequence. Therefore, c2q

s0 ∈ ker(γ̃q) if and only if there exists a family s ∈ Z2q(M ,F ) such
that (5) is verified.

5.1 A hierarchy of cohomological obstructions

Remarkably, higher cohomology obstructions are organised in a precise hierarchy of implications. In
the following proposition we show that, if an obstruction vanishes at order q ≥ 0, it must vanish at any
higher order q′ ≥ q (the proof is given in Appendix B).

Proposition 5.5. Let F be an abelian presheaf representing an empirical model S on a scenario
〈X ,M ,O〉. Let s0 ∈F (C0). Then CLCq+1(S ,s0)⇒ CLCq(S ,s0) for all q≥ 0.

This result suggests the existence of an infinite number of “levels” of contextuality organised in the
following hierarchy of logical implications:

CSC(S ) CSC1(S ) . . . CSCq(S ) CSCq+1(S ) . . .

CLC(S ) CLC1(S ) . . . CLCq(S ) CLCq+1(S ) . . .

5.5 5.5

5.5 5.5

However, it turns out that this refinement of the notion of cohomological contextuality cannot be
applied to the study of no-signalling empirical models (see Appendix B for the proof):

Proposition 5.6. No-signalling empirical models are cohomologically q-non-contextual for any q 0.

Therefore, it remains an open question to identify the possible applications of Proposition 5.5 to the
study of contextuality outside the framework of no-signalling models.

6Notice that if q = 0 this definition coincides with the one of cohomological obstruction given before (γ0
C0

= γC0 ).
7Clearly, these definitions depend on the abelian presheaf F representing F . Typically, F := FZS .
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6 An alternative description of the first cohomology group

Since higher cohomology groups cannot be used to infer information on how false positives arise, we
devote the last section of this paper to a detailed study of the first cohomology group Ȟ1(M ,FC̃0

). As
explained in [5], this group is of crucial importance for the cohomological study of contextuality, as it
contains all of the obstructions to the existence of global sections. Its relevance has been also previously
highlighted by Penrose in his On the cohomology of impossible figures [23], which presents “intriguing
resemblances” with our study [2]. Yet a full grasp of the nature of its elements is still to be achieved. We
propose here a description of Ȟ1 based on the notion of F -torsors, as well as some considerations on
the connecting homomorphism γ .

6.1 The connecting homomorphisms γ

The first step in understanding cohomological obstructions is studying the connecting homomorphisms.
We present here some insights on how the properties of γ can give us information on the type of contex-
tuality of an empirical model.

Proposition 6.1. Let F be an abelian presheaf representing an empirical model S on a scenario
〈X ,M ,O〉. The model is cohomologically strongly contextual if and only if γC is injective for all C ∈M .

Proof. Suppose S is cohomologically strongly contextual. By Proposition 3.1, we have γC(s) 6= 0 for all
sections s ∈F (C) and all contexts C ∈M . In other words, ker(γC) = 0 for all C ∈M . For the converse,
suppose that ker(γC) = 0 for all C ∈M . Then, every non-zero local section of F (C) has a non-zero
cohomological obstruction γC(s). Thus the model is cohomologically strongly contextual.

Thanks to this result, we can give a lower bound for the cardinality of Ȟ1(M ,FC̃0
) in the case of

cohomologically strongly contextual models:

CSC(S )⇒ |Ȟ1(M ,FC̃0
)| ≥ |F (C0)|.

On the other hand, given a CLC∧¬CSC model, Proposition 6.1 implies that two distinct sections may
give rise to the same non-zero cohomological obstruction.

The injectivity of a single connecting homomoprhism is a sufficient condition for the strong contex-
tuality of an empirical model.

Proposition 6.2. Let F be an abelian presheaf representing an empirical model S on a scenario
〈X ,M ,O〉. If there exists a C0 ∈M such that γC0 is injective, then S is strongly contextual.

Proof. Suppose there is an injective γC0 . If S is not strongly contextual, there must exist a context
C̄ ∈M and a section s ∈ S (C̄) that is extendable to a compatible family σ := {sC ∈ S (C)}C∈M .
Consider the section sC0 of this family. It is trivially an extendable local section since it is part of the
compatible family σ , thus ¬LC(S ,sC0). By Theorem 3.2, this implies ¬CLC(S ,sC0) or, equivalently,
γC0(sC0) = 0. F represents S , thus sC0 is non-zero in F (C0), hence we conclude that ker(γC0) 6= 0,
which means that γC0 is not injective.

Notice that these two propositions clarify how CSC is a stronger condition than SC: we need all the
connecting homomorphisms {γC}C∈M to be injective in order to conclude that a model is CSC, but it is
sufficient to have a single injective γC to conclude that it is SC.
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6.2 F -torsors and their relation to Ȟ1

We start by recalling the main definitions; the reader not familiar with the concept of torsor relative to a
presheaf might refer to [27] for deeper insights. Let F : Open(X)op→ AbGrp be a presheaf of abelian
groups over a topological space X . An F -presheaf is a presheaf of sets T over X equipped with a
morphism of presheaves φ : F ×T ⇒ T such that, for each open U ⊆ X , the map

φU : F (U)×T (U)→ T (U) :: (g, t) 7→ g·t
is a left action of F (U) on T (U). Given two F -presheaves T and T ′, a morphism of F -presheaves
from T to T ′ is a morphism of presheaves ψ : T ⇒ T ′ such that ψU is equivariant for all open U ⊆ X .
An F -presheaf T is called an F -torsor if

1. There exists an open cover V of X that trivialises T , i.e. such that T (V ) 6= /0 for all V ∈ V .

2. The action φU : F (U)×T (U)→ T (U) is simply transitive.

The simplest example of F -torsor is the trivial F -torsor U F ,8 where the action is simply given by
g.U (h) := U (g+h). We denote by TrsF the set of isomorphism classes of F -torsors. It can be proved
that an F -torsor T is isomorphic to the trivial F -torsor if and only if T (X) 6= /0.

Now, we adapt this discussion to the case of empirical models. Let F be an abelian presheaf repre-
senting an empirical model S on a scenario 〈X ,M ,O〉, with M := {Ci}i∈I . Let

Trs(M ,F ) := {T ∈ TrsF | T is trivialised by M } ,

seen as a pointed set with the isomorphism class of the trivial F -torsor as distinguished element. We
have the following remarkable result, which is a readaptation of a known correspondence between torsors
and cohomology (the proof can be found in Appendix C).

Proposition 6.3. There is a bijection of pointed sets Trs(M ,F ) ∼= Ȟ1(M ,F ).

This bijection equips Trs(M ,F ) with a group structure. The addition of two F -torsors is de-
fined componentwise at each subset U ⊆ X by g([z])(U)+g([w])(U) := g([z]+ [w])(U) for all [z], [w] ∈
Ȟ1(M ,F ) (refer to Appendix C for the definition of the bijection g : Ȟ1(M ,F ) → Trs(M ,F )).
Clearly, the above bijection becomes an isomorphism of abelian groups with respect to this addition.

This results implies that the elements of the first cohomology group Ȟ1(M ,FC̃0
) relative to a context

C0 ∈M (and, in particular, cohomological obstructions) can be seen as isomorphism classes of FC̃0
-

torsors trivialised by the measurement cover M .
Until now, elements of Ȟ1 could only be identified via the abstract equations imposed by the rigid

definition of cohomology. The reason why we believe the new description might be more satisfactory,
is that despite their seemingly sophisticated definition, torsors are rather simple objects, as explained by
Baez in [6]. In the simplest terms, an FC̃0

-torsor is the presheaf FC̃0
having lost its identity in each

group FC̃0
(U), for U ⊆ X . Rather than describing the local sections at each FC̃0

(U), it measures their
difference. We aim to further develop this viewpoint in future work.

Conclusions

Sheaf cohomology is a powerful method for the detection of contextuality. However, our work has high-
lighted some decisive limitations concerning Čech cohomology. Indeed, it cannot provide a full invariant

8Here, U : AbGrp→ Set denotes the forgetful functor. To avoid confusion, we will not explicitly show its presence: the
trivial F -torsor will be simply denoted by F .
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for contextuality (neither logical nor strong) even under reasonably strong assumptions on symmetry and
connectedness of the cover, and, although obstructions can be generalised to higher cohomology groups,
they cannot be applied to the study of no-signalling empirical models. In future work, we aim to re-
develop the sheaf-cohomological study of contextuality from a different viewpoint. The machinery of
obstruction theory, a branch of homotopy theory that deals with the extendability of maps, allows the def-
inition of obstructions to the extension of continuous functions in a cohomology theory with coefficients
in the homotopy groups. This promising approach will require an adaptation of the concept of empiri-
cal model to fit this framework. A possibility would be to formalise the bundle diagram representation
and define models as fiber bundles or, more generally, as fibrations. This would allow the definition of
Postnikov towers [26], which give rise to cohomological obstructions.

In the last section, we have provided an alternative description of the first cohomology group using
torsors relative to a presheaf. Although this approach is still at a developing stage, it allows us to un-
derstand cohomological obstructions as a concrete mathematical object. The implications of this new
viewpoint will be considered in future work.
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[26] M. M. Postnikov (1951): Determination of the homology groups of a space by means of the homotopy
invariants. In: Dokl. Akad. Nauk. SSSR (N.S.), 76, pp. 359–362.

[27] A. Skorobogatov (2001): Torsors and Rational Points. Cambridge University Press. Available at http:
//dx.doi.org/10.1017/CBO9780511549588. Cambridge Books Online.

A Explicit definition of the counterexample to conjecture 8.1 of [5]

We give the explicit definition of the model introduced in Section 4 as a possibility table:

A B 00 01 10 02 20 03 30 11 12 21 13 31 22 23 32 33
a1 b1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
a1 b2 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1
a2 b1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1
a2 b2 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0

Table 1: The possibilistic empirical model pictured in Figure 4. It is strongly contextual but cohomolog-
ically logically non-contextual.

B Proofs of the propositions in Section 5

Proof of Proposition 5.5. We will show the converse: ¬CLCq(S ,s0) ⇒ ¬CLCq+1(S ,s0). Suppose
¬CLCq(S ,s0), then γ

q
C0
(s0)= 0. By Lemma 5.4 there exists a family s∈Z2q(M ,F ) such that pC0

|σ |(s(σ))=

c2q
s0 (σ) for all σ ∈N (M )2q. For all τ ∈N (M )2q+2, we define

f (s)(τ) := ρ
|∂2q+1∂2q+2τ|
|τ| (s(∂2q+1∂2q+2τ)) = s(∂2q+1∂2q+2τ) ||τ| .

Notice that f (s)(τ) ∈ F (|τ|), thus f (s) ∈ C2q+2(M ,F ). We can actually show that f (s) is in
Z2q+2(M ,F ) as follows. Given an arbitrary ν ∈N (M )2q+3, we have

δ
2q+2( f (s))(ν) =

2q+3

∑
k=0

(−1)k
ρ
|∂kν |
|ν | ( f (s)(∂kν)) =

2q+3

∑
k=0

(−1)k
ρ
|∂kν |
|ν | ρ

|∂2q+1∂2q+2∂kν |
|∂kν | (s(∂2q+1∂2q+2∂kν))

=
2q+3

∑
k=0

(−1)k
ρ
|∂2q+1∂2q+2∂kν |
|ν | (s(∂2q+1∂2q+2∂kν))

=
2q+1

∑
k=0

(−1)k
ρ
|∂2q+1∂2q+2∂kν |
|ν | (s(∂2q+1∂2q+2∂kν))+ρ

|∂2q+1∂2q+2∂2q+2ν |
|ν | (s(∂2q+1∂2q+2∂2q+2ν))

−ρ
|∂2q+1∂2q+2∂2q+3ν |
|ν | (s(∂2q+1∂2q+2∂2q+3ν))

(6)

http://dx.doi.org/10.1017/CBO9780511549588
http://dx.doi.org/10.1017/CBO9780511549588
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Notice that the last two terms of te sum cancel out since ∂2q+1∂2q+2∂2q+2ν = ∂2q+1∂2q+2∂2q+3ν . Hence,

δ
2q+2( f (s))(ν)

(6)
=

2q+1

∑
k=0

(−1)k
ρ
|∂2q+1∂2q+2∂kν |
|ν | (s(∂2q+1∂2q+2∂kν))

=
2q+1

∑
k=0

(−1)k
ρ
|∂k∂2q+1∂2q+2ν |
|ν | (s(∂k∂2q+1∂2q+2ν)),

(7)

where the last equality is valid since now 0 ≤ k ≤ 2q+ 1 and therefore it is unimportant whether we
cancel the k-th term before or after having canceled the (2q+ 2)-th and the (2q+ 1)-th. We can now
relabel ∂2q+1∂2q+2ν := ν̃ ∈N (M )2q+1 and obtain

δ
2q+2( f (s))(ν)

(7)
=

2q+1

∑
k=0

(−1)k
ρ
|∂kν̃ |
|ν | (s(∂kν̃)) = δ

2q(s)(ν̃) = 0,

where the last equality is due to the fact that s ∈ Z2q(M ,F ).
Let σ ∈N (M )2q+2. We have

pC0
|σ |( f (s)(σ)) = f (s)(σ) ||σ |∩C0= s(∂2q+1∂2q+2σ) ||σ |∩C0= s(σ̃) ||σ |∩C0= s(σ̃) ||σ̃ |∩|σ |∩C0

=
(
s(σ̃) ||σ̃ |∩C0

)
||σ |=

(
pC0
|σ̃ |(s(σ̃))

)
||σ |=

(
c2q

s0
(σ̃)
)
||σ |=

(
s0 ||σ̃ |∩C0

)
||σ |

= s0 ||σ̃ |∩|σ |∩C0= s0 ||σ |∩C0= c2q+2
s0

(σ).

By Lemma 5.4 this implies γ
q+1
C0

(s0) = 0.

Proof of Proposition 5.6. Consider an abelian presheaf F representing an empirical model S on a sce-
nario 〈X ,M ,O〉, where M := {Ci}i∈I . Let C0 ∈M be an arbitrary context, and sC0 ∈F (C0) an arbitrary
section. By no-signalling, there exists a family {sCi ∈F (Ci)}i∈I such that sCi |Ci∩C0= sC0 |Ci∩C0 for all i.
We define z ∈C2(M ,F ) by the expression

z(ω) := s∂0∂2ω ||ω| ∈F (|ω|) ∀ω ∈N (M )2.

More explicitly, given an ω := (Ci,C j,Ck) ∈N (M )2, we define

z(Ci,C j,Ck) := sC j |Ci∩C j∩Ck ∈F (Ci∩C j ∩Ck).

Given a general σ := (Ci,C j,Ck,Cl) ∈N (M )3, we have

δ
2(z)(σ) = z(C j,Ck,Cl) ||σ | −z(Ci,Ck,Cl) ||σ | +z(Ci,C j,Cl) ||σ | −z(Ci,C j,Ck) ||σ |

= sCk ||σ | −sCk ||σ | +sC j ||σ | −sC j ||σ |= 0,

thus z ∈ Z2(M ,F ). Moreover, for any general ω = (Ci,C j,Ck) ∈N (M )2 we have

pC0
|ω|(z(ω)) = z(ω) ||ω|∩C0= sC j |Ci∩C j∩Ck∩C0=

(
sC j |C j∩C0

)
|Ci∩C j∩Ck∩C0=

(
sC0 |C j∩C0

)
||ω|∩C0

= sC0 ||ω|∩C0= c2
sC0

(ω).

By Lemma 5.4, this result implies γ1
C0
(sC0) = 0, and by Proposition 5.5, we conclude ¬CLCq(S ) for all

q > 0.
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C Proof of Proposition 6.3

Proof of Proposition 6.3. Let T ∈ Trs(M ,F ). We arbitrarily choose a collection {ti ∈ T (Ci)}i∈I
9. By

simple transitivity, for all i, j ∈ I there exists a unique gi j ∈F (Ci∩C j) such that gi j·t j |Ci∩C j= ti |Ci∩C j .
We also have

(gk j |Ci∩C j∩Ck +g ji |Ci∩C j∩Ck)·ti |Ci∩C j∩Ck = gk j |Ci∩C j∩Ck ·(g ji·ti |Ci∩C j

)
|Ci∩C j∩Ck

= gk j |Ci∩C j∩Ck ·(t j |Ci∩C j

)
|Ci∩C j∩Ck

=
(
gk j·t j |C j∩Ck

)
|Ci∩C j∩Ck= tk |Ci∩C j∩Ck= gki·ti |Ci∩C j∩Ck ,

which implies gk j |Ci∩C j∩Ck +g ji |Ci∩C j∩Ck= gki |Ci∩C j∩Ck for all i, j,k ∈ I by simple transitivity. This
equation tells us that Ť , defined by Ť (Ci,C j) := gi j for all i, j ∈ I, is a 1-cocycle. Let

f : Trs(M ,F )→ Ȟ1(M ,F ) :: T 7→ [Ť ].

In order to show that this map is well-defined, we need to prove that Ť is independent of the choice
of the family {ti}i∈I . Suppose we choose {t ′i ∈ T (Ci)}i∈I instead, then we obtain a family {g′i j ∈F (Ci∩
C j)}i, j∈I as before. By simple transitivity, for each i ∈ I there exists an element gi ∈F (Ci) such that
gi·t ′i = ti. Thus, we obtain a family g := {gi ∈F (Ci)}i∈I . We have(

gi |Ci∩C j +g′i j
)·t ′j |Ci∩C j = gi |Ci∩C j ·(g′i j·t ′j |Ci∩C j

)
= gi |Ci∩C j ·t ′i |Ci∩C j= ti |Ci∩C j , ∀i, j ∈ I.

On the other hand,(
gi j +g j |Ci∩C j

)·t ′j |Ci∩C j= gi j·(g j |Ci∩C j ·t ′j |Ci∩C j

)
= gi j·t j |Ci∩C j= ti |Ci∩C j , ∀i, j ∈ I.

Again, by simple transitivity, this implies gi |Ci∩C j +g′i j = gi j+g j |Ci∩C j for all i, j ∈ I, which is equivalent
to say δ 0(g)(Ci,C j) = g′i j − gi j for all i, j ∈ I. Consequently, it does not matter whether we define
Ť (Ci,C j) := gi j or Ť (Ci,C j) := g′i j since these two 1-cocycles are cohomologous.

Notice that f maps the trivial F -torsor to 0 ∈ Ȟ1(M ,F ), thus it is a morphism of pointed sets.
To prove that f is a bijection, we introduce an inverse g : Ȟ1(M ,F ) → Trs(M ,F ). Given [z] ∈
Ȟ1(M ,F ), we define the presheaf g([z]) : Open(X)op→ AbGrp by the expression

g([z])(U) :=

{
(ti)i∈I ∈

⊕
i∈I

F (Ci∩U)

∣∣∣∣∣ ti |Ci∩C j∩U −t j |Ci∩C j∩U= z(Ci,C j) |Ci∩C j∩U ,∀i, j ∈ I

}
,

for any U ⊆ X . The restriction maps are given by g([z])(U ⊆U ′) :: (t ′i)i∈I 7→ (t ′i |Ci∩U)i∈I . We define an
F -action on g([z]) by the expression g·(ti)i∈I := (ti−g |Ci∩U)i, for any g ∈F (U).

We need to show that g([z]) ∈ Trs(M ,F ). To do so, we show that for any context C j ∈M , there
exists an isomorphism of F |C j -presheaves F |C j⇒ g([z]) |C j (recall that F denotes the trivial F -torsor).
Consider a U ⊆C j. The map

h j
U : F |C j (U)→ g([z]) |C j (U) :: g 7→

(
z(Ci,C j) |Ci∩C j∩U −g |Ci∩C j∩U

)
i∈I

9This is possible since M trivialises T .



18 On the Cohomology of Contextuality

is an isomorphism with inverse

k j
U : g([z]) |C j (U)→F |C j (U) :: (ti)i∈I 7→ −t j.

In fact, h j
U is equivariant since

g·h j
U(h) = g·(z(Ci,C j) |Ci∩C j∩U −h |Ci∩C j∩U

)
i∈I =

(
z(Ci,C j) |Ci∩C j∩U −h |Ci∩C j∩U −g |Ci∩C j∩U

)
= h j

U(U (g+h)) = h j
U(g·h),

where the last action is the one of the trivial F -torsor. Moreover, k j
U is indeed the inverse of h j

U :

h j
U

(
k j

U ((ti)i∈I)
)
= hU(−t j) =

(
z(Ci,C j) |Ci∩C j∩U +t j

)
i∈I = (ti− t j + t j)i∈I = (ti)i∈I,

and

k j
U(h

j
U(g)) = kU

((
z(Ci,C j) |Ci∩C j∩U −g |Ci∩C j∩U

)
i∈I

)
=−z(C j,C j) |C j∩U +g = g,

where the last equality is due to the fact that z is a 1-cocycle. Since F |C j
∼= g([z]) |C j for all contexts C j,

we now that g([z]) is an F -torsor trivialised by the measurement cover M .
We also need to show that the definition of g is independent of the choice of the representative z of

the 1-cocycle [z]. Suppose we take a cohomologous 1-cocycle z′. Then there exists a family h := {hi ∈
F (Ci)}i∈I such that z′(Ci,C j)− z(Ci,C j) = δ 0(h). Then we can define an isomorphism of F -torsors
g([z])∼= g([z′]) induced by the maps

ψU : g([z])(U)→ g([z′])(U) :: (ti)i∈I 7→ (hi |Ci∩U +ti)i∈I.

In fact, this map is equivariant since

g·ψU ((ti)i∈I) = g·((hi |Ci∩U +ti)i∈I) = (hi |Ci∩U +ti−g |Ci∩U)i∈I

= ψU
(
(ti−g |Ci∩U)i∈I

)
= ψU

(
g·(ti)i∈I

)
,

and its inverse is clearly

g([z′])(U)→ g([z])(U) :: (t ′i)i∈I 7→ (t ′i −hi |Ci∩U)i∈I.

We can finally show that g is the inverse of f .

• Let T ∈ Trs(M ,F ). We want to show that T ∼= g([Ť ]). Let U ⊆ X , and suppose that Ť is defined
with respect to the family {ti ∈ T (Ci)}i∈I . Consider an element s ∈ T (U) and the induced family
{si ∈ T (U ∩Ci)}i∈I := {s |Ci∩U}i∈I .10 By simple transitivity, for each i ∈ I there is a unique gi ∈
F (Ci∩U) such that gi·si = ti |Ci∩U . This allows us to define the isomorphism

φU : T (U)→ g([Ť ])(U) :: s→ (gi)i∈I

We leave to the reader the rather simple verification of the fact it is actually an isomorphism, but
we explicitly show that it is equivariant. To see this, let h ∈F (U). We have φU(h·s) = (ki)i∈I ,

10Note the similarities with the construction of cohomological obstruction in [5], where we take a no-signalling family for
the initial section.
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where, for all i ∈ I, ki is the unique element in F (Ci∩U) such that ki·(h·s) |Ci∩U= ti |Ci∩U . More
explicitly, ki is the unique element such that

ki·(h |Ci∩U ·si) = ti |Ci∩U ,

which is equivalent to
(ki +h |Ci∩U)·si = ti |Ci∩U .

On the other hand, h·φU(s) = h·(gi)i∈I = (gi−h |Ci∩U)i∈I . Since

(gi−h |U∩Ci)·(h |Ci∩U ·si) = (gi−h |Ci∩U +h |Ci∩U)·si = gi·si = ti |Ci∩U ,

we conclude that by simple transitivity that ki = gi−h |U∩Ci for all i ∈ I, which leads to h·φU(s) =
φU(h·s).
• Let [z] ∈ Ȟ1(M ,F ). We want to show that f (g([z])) = [z]. We construct the family {tk ∈

g([z])(Ck)} given by tk := (z(Ci,Ck))i∈I and we use it to define f (g([z])) by setting, for all i, j ∈ I,
f (g([z]))(Ci,C j) to be the unique element gi j ∈F (Ci∩C j) such that gi j·t j |Ci∩C j= ti |Ci∩C j . Notice
that

z(Cl,Ck)·tk |Cl∩Ck = z(Cl,Ck)·(z(Ci,Ck) |Ci∩Cl∩Ck)i∈I = (z(Ci,Ck) |Ci∩Cl∩Ck −z(Cl,Ck) |Ci∩Cl∩Ck)i∈I

= (z(Ci,Cl))i∈I = tl |Cl∩Ck .

Therefore, by simple transitivity, gi j = z(Ci,C j) for all i, j ∈ I, proving f (g([z])) = [z].
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