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Quantum Group

Department of Computer Science
University of Oxford

{samson.abramsky, giovanni.caru}@cs.ox.ac.uk

All-vs-Nothing arguments represent a powerful method for the detection of strong contextuality in
quantum theory. The original formulation by Mermin [15] has been recently formalised and gen-
eralised using stabiliser quantum mechanics [2, 9]. In the present paper, we take advantage of this
framework to introduce a computational technique to identify a large amount of strongly contex-
tual empirical models admitting All-vs-Nothing arguments. We also present new insights into the
stabiliser formalism and its connections with logic.

1 Introduction

Since the formulation of classic no-go theorems by Bell [6] and Kochen-Specker [14], contextuality has
gained great relevance in the development of quantum information. This key characteristic feature of
quantum mechanics represents one of the most valuable and fundamental resources at our disposal to
break through the limits of classical computation [13, 20], with various concrete applications in quantum
computing (e.g. in device-independent quantum security [12] and quantum speed-up [13]).

Among the most prominent contributors to the the study of contextuality is N. D. Mermin [15],
whose ‘All-vs-Nothing” argument for the proof of strong contextuality in GHZ states [10, 11, 16] is one
of the most elegant and influential demonstrations of non-classicality in quantum theory. Recent work
on the mathematical structure of contextuality [3] allowed a powerful formalisation and generalisation
of Mermin’s original proof to a large class of examples in quantum mechanics using stabiliser theory
[2]. In the present paper, we take advantage of this formulation to introduce a computational method
capable of producing examples of strongly contextual quantum-realisable models admitting generalised
All-vs-Nothing arguments. We also illustrate new theoretical insights into the link between contextuality
and logic.

We summarise the main results:

• We show the existence of a Galois correspondence between subgroups of the Pauli n-group Pn

and their stabilisers in the Hilbert space of n-qubits (C2)⊗n, for any integer n ≥ 1. It turns out
that this correspondence is induced by a Galois connection between subgroups of Pn and vector
subspaces of (C2)⊗n, which allows us to establish a relation with the Galois connection between
syntax and semantics in logic [23].

Previous work has already established intriguing connections between logic and the study of contextu-
ality. For instance, a direct link between the structure of quantum contextuality and classic semantic
paradoxes is observed in [2], while [4] deals with logical proofs of contextuality. These findings suggest
the existence of a more definite theoretical connection between the two domains. The Galois correspon-
dence we illustrate is a first step towards a formal characterisation of said connection.
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• We formulate the “AvN triple conjecture” [1], which states that the presence of an AvN triple in a
stabiliser group is not only a sufficient condition for the existence of an All-vs-Nothing argument
(as shown in [2]), but it is also necessary.

This conjecture is based on the analysis of the All-vs-Nothing arguments which have appeared in the
literature, which can always be seen to come down to exhibiting an AvN triple.

Finally, the central result of the paper

• We present a computational method to identify all AvN triples contained in the Pauli n-group Pn.

Until now, we had a rather limited number of examples of quantum-realisable strongly contextual models
giving rise to All-vs-Nothing arguments. The technique we introduce here gives us a large amount of
instances of this specific type of models.

The paper is organised as follows. In Section 2, we recall the original All-vs-Nothing argument by
Mermin, and generalise it to a class of possibilistic empirical models. Section 3 introduces the stabiliser
formalism, the Galois connections and their relations with logic. Finally, in Section 4, we illustrate the
method to identify AvN triples.

2 Mermin’s original All-vs-Nothing argument

Quantum mechanics provides various examples of strong contextuality. Among the first to observe this
highly non-classical behavior was Mermin [15], who showed that the GHZ state [10, 11, 16] is strongly
contextual using what he defined as an “All-vs-Nothing argument”. We summarise here the main ideas
of his proof.

Recall the definition of Pauli operators, dichotomic observables corresponding to measuring spin in
the x, y, z axis respectively

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
They have eigenvalues ±1 and satisfy the following relations:

X2 = Y 2 = Z2 = I

XY = iZ, Y Z = iX , ZX = iY,

Y X =−iZ, ZY =−iX , XZ =−iY.

The GHZ state is a tripartite state of qubits, defined as

GHZ :=
| ↑↑↑〉+ | ↓↓↓〉√

2
.

We assume that each party i = 1,2,3 can perform a Pauli measurement in {Xi,Yi}, obtaining, as a result,
an eigenvalue in {±1}1. By adopting the viewpoint of [3], this experiment can be seen as an empirical
model whose support is partially described by Table 1.

1It is convenient to relabel +1,−1,× as 0,1,⊕ respectively. The eigenvalues of a joint measurement A1⊗A2⊗·· ·⊗An are
the products of eigenvalues at each site, so they are also±1. Thus, joint measurements are still dichotomic and only distinguish
joint outcomes up to parity.
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1 2 3 −−− −−+ −+− −++ +−− +−+ ++− +++

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X1 X2 X3 1 0 0 1 0 1 1 0
X1 Y2 Y3 0 1 1 0 1 0 0 1
Y1 X2 Y3 0 1 1 0 1 0 0 1
Y1 Y2 X3 0 1 1 0 1 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: A partial table for the GHZ possibilistic model.

By relabeling +1,−1,× as 0,1,⊕ respectively1, these partial entries of the table can be characterised
by the following equations in Z2

X̄1⊕ X̄2⊕ X̄3 = 1
X̄1⊕ Ȳ2 ⊕ Ȳ3 = 0

Ȳ1⊕ X̄2⊕ Ȳ3 = 0
Ȳ1⊕ Ȳ2 ⊕ X̄3 = 0,

where P̄i ∈ Z2 denotes the outcome of the measurement Pi, for all Pi ∈ {Xi,Yi}. It is straightforward
to see that this system is inconsistent. Indeed, if we sum all the equations, we obtain 0 = 1, as each
variable appears twice on the left hand side. This means that we cannot find a global assignment
{X1,Y1,X2,Y2,X3,Y3} → {0,1} consistent with the model, showing that the GHZ state is strongly con-
textual.

2.1 General setting

The description of empirical models as generalised probability tables provided by [3] allows us to
generalise Mermin’s argument to a larger class of examples.

Let X be a finite set of measurement labels. A measurement cover is an antichain M ⊆P(X)
that satisfies

⋃
C∈M C = X . This family contains the measurement contexts, i.e. the maximal sets

of measurements that can be jointly performed. In this case, we assume that all the measurement are
dichotomic and produce outcomes in Z2. This measurement scenario 〈X ,M ,Z2〉 can be represented
as an empty table featuring one row for each measurement context C ∈M and one column for each
possible joint outcome of measurements. An empirical model over the scenario 〈X ,M ,Z2〉 is a family
{eC}C∈M of probability distributions over each row of the table that satisfy the compatibility condition
eC |C∩C′= eC′ |C∩C′ for all C,C′ ∈M , which is equivalent to no-signalling [3]2.

To an empirical model e := {eC}C∈M we can associate an XOR theory T⊕(e) in the following way.
For each context C ∈M , T⊕(e) will have the assertion⊕

x∈C

x̄ = 0,

(where x̄ ∈ Z2 is the outcome of the measurement x for all x ∈ C) whenever the support of eC only
contains joint outcomes of even parity (i.e. with an even number of 1s) and⊕

x∈C

x̄ = 1

2Refer to [3] for the definition of the restriction of a probability distribution.
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whenever it only contains joint outcomes of odd parity (i.e. with an odd number of 1s). We say that the
model e is AvN if the theory T⊕(e) is inconsistent. Since an inconsistent theory implies the impossibility
of defining a global assignment X → Z2, we have the following result.

Proposition 2.1. If an empirical model e is AvN, then it is strongly contextual.

As an example, we consider the Popescu-Rohrlich (PR) Box model [18] given in Table 2.

A B (0,0) (1,0) (0,1) (1,1)
a1 b1 1 0 0 1
a1 b2 1 0 0 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

Table 2: the PR-box model

The XOR theory of the PR box model consists of the following 4 equations

ā1⊕ b̄1 = 0
ā1⊕ b̄2 = 0

ā2⊕ b̄1 = 0
ā2⊕ b̄2 = 1,

which lead to 0 = 1 when summed, showing the inconsistency of the theory and the strong contextuality
of the model.

3 The stabiliser world

Stabiliser quantum mechanics [17, 8] is the natural setting for general All-vs-Nothing arguments, and
allows us to see how AvN models can arise from quantum theory. In this section, we recall the main
definitions and introduce a Galois correspondence between subgroups of the Pauli n-group Pn and their
stabilisers.

Let n ≥ 1 be an integer. The Pauli n-group Pn is the group whose elements are n-tuples (Pi)
n
i=1 of

Pauli operators (i.e. Pi ∈ {Xi,Yi,Zi, Ii}), with global phase contained in {±1,±i}. The multiplication is
componentwise matrix multiplication and the unit is (Ii)

n
i=1. The group Pn acts on the Hilbert space of

n-qubits Hn := (C2)⊗n via the action

(Pi)
n
i=1·⊗n

i=1 |ψi〉 :=⊗n
i=1Pi · |ψi〉 (1)

Given a subgroup S≤Pn, the stabiliser of S is the vector subspace

VS := {|ψ〉 ∈ Hn | P·|ψ〉= |ψ〉 ∀P ∈ S} ⊆ Hn.

Note that the subgroups of Pn which stabilise non-trivial subspaces must be commutative, and only
contain elements with global phases ±1.

3.1 Galois connections and relations with logic

We present a Galois correspondence between subgroups of the Pauli n-group and their stabilisers, which
will enable us to establish a connection with logic.
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Given two partially ordered sets A and B, an (antitone) Galois connection between A and B is a pair
〈 f ,g〉 of order-reversing maps f : A→ B,g : B→ A such that a≤ g( f (a)) for all a ∈ A, and b≤ f (g(b))
for all b ∈ B. Such a connection is called an (antitone) Galois correspondence if f and g are inverses
of each other.

Lemma 3.1. A Galois connection 〈 f ,g〉 between A and B induces a Galois correspondence between
im(g) and im( f ) given by 〈 f |im(g),g |im( f )〉.

Proof. Given an a := g(b) for some b∈ B, we have a≤ (g( f (a))) and g( f (a)) = g( f (g(b)))≤ g(b) = a.
Thus a = g( f (a)) for all a ∈ im(g) and, similarly, b = f (g(b)) for all b ∈ im( f ).

Let (S G(Pn),⊆) denote the poset of subgroups of the Pauli n-group, ordered by inclusion. The
bijection

F : (S G(Pn),⊆)→ ({VS | S ∈S G(Pn)},⊆) :: S 7→VS (2)

together with its inverse VS 7→ S, forms an antitone Galois correspondence. Indeed, for all S,T ∈
S G(Pn),

S⊆ T ⇒VT ⊆VS.

Note that this correspondence is tight: a rank k subgroup determines a 2n−k dimensional subspace [8].
Moreover, we can show that it is induced by a Galois connection between (S G(Pn),⊆) and the poset
of all vector subspaces of Hn, which we will denote by (SS(Hn),⊆). The easiest way to see this is to
define a relation R⊆Pn× (C2)⊗n by

gRv⇔ g·v = v,

which induces a Galois connection between the powersets P(Pn) and P((C2)⊗n), ordered by inclu-
sion:

P(Pn) ←→ P((C2)⊗n)
S 7−→ S⊥ := {v | ∀g(g ∈ S⇒ gRv)}

V⊥ := {g | ∀v(v ∈V ⇒ gRv)} ←−[ V.
(3)

Note that closed sets S⊥⊥ and V⊥⊥ are subgroups of Pn and vector subspaces of (C2)⊗n respectively.
Therefore, by restricting (3) to closed sets, we obtain a Galois correspondence S G(Pn)↔ SS(Hn)
that induces the correspondence (2), since S⊥ = VS by definition. The following proposition is a more
explicit version of the same result, which allows us to understand better the map SS(Hn)→S G(Pn).

Proposition 3.2. Let

G : (SS(Hn),⊆)→ (S G(Pn),⊆) :: V 7→
⋂
|ψ〉∈V

(Pn)|ψ〉,

where (Pn)|ψ〉 := {A∈Pn | A·|ψ〉= |ψ〉} denotes the isotropy group of |ψ〉. Then 〈F,G〉 is an antitone
Galois connection.3 Moreover, this connection induces the Galois correspondence (2).

Proof. It is straightforward to show that G is order-reversing. Moreover, given S ∈S G(Pn), we have
G(F(S)) =

⋂
|ψ〉∈VS

(Pn)|ψ〉, and

P ∈ S⇒ P·|ψ〉= |ψ〉 ∀|ψ〉 ∈VS⇒ P ∈ (Pn)|ψ〉 ∀|ψ〉 ∈VS⇒ P ∈
⋂
|ψ〉∈VS

(Pn)|ψ〉,

3Here, the codomain of F is extended to SS(Hn).
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thus S⊆ G(F(S)). On the other hand, given a subspace W ⊆ Hn,

F(G(W )) = F

 ⋂
|ψ〉∈W

(Pn)|ψ〉

=V(⋂|ψ〉∈W (Pn)|ψ〉) =

|ψ〉 ∈ Hn

∣∣∣ P·|ψ〉= |ψ〉, ∀P ∈ ⋂
|ψ〉∈W

(Pn)|ψ〉


=
{
|ψ〉 ∈ Hn

∣∣∣ P·|ψ〉= |ψ〉, ∀P s.t.
(
P·|ψ〉= |ψ〉, ∀|ψ〉 ∈W

)}
,

and clearly W is a subset of this set. Thus F and G form indeed a Galois connection. By Lemma
3.1, there is a Galois correspondence im(F) ↔ im(G). We already established a Galois correspon-
dence S G(Pn)↔ im(F), thus, in particular, im(G) is in 1-to-1 correspondence with S G(Pn). Since
S G(Pn) is a finite set, and im(G)⊆S G(Pn) we conclude that im(g) = S G(Pn), i.e. ⋂

|ψ〉∈V

(Pn)|ψ〉

∣∣∣V ∈SS(Hn)

= S G(Pn)

This means that the Galois connection 〈F,G〉 induces the correspondence (2). It also shows that every
subgroup of Pn can be written as an intersection of isotropy groups for the action (1).

This result suggests an intriguing relation with the Galois connection between syntax and semantics
in logic [23]

L −Theories ←→ P(L −Structures)
Γ 7−→ {M | ∀ϕ(ϕ ∈ Γ→M |= ϕ)}

{ϕ | ∀M (M ∈M→M |= ϕ)} ←−[ M,
(4)

where L is a formal language. We investigate this aspect in the following section.

3.2 Stabiliser subgroups induce XOR theories

We formalise the connection with logic by showing that stabiliser subgroups give rise to XOR theories
[2]. Given an observable P and a state v we have

〈P〉v := 〈v|P|v〉= 1⇐⇒ P|v〉= |v〉,

i.e. P stabilises v if and only if the expected value is 1. This means that if P is a dichotomic observable
(e.g. P ∈P1) and v is a state stabilised by P, the empirical model obtained by measuring P on v must
contain only outcomes of even parity, while if −P stabilises v, it must contain only outcomes of odd
parity. Suppose P = (Pi)

n
i=1 ∈Pn and v ∈ Hn a state stabilised by P. If the global phase of P is +1, we

have the formula (see footnote 1)

ϕP :=

(
n⊕

i=1

P̄i = 0

)
,

On the other hand, if the global phase of P is −1, we have the formula

ϕP :=

(
n⊕

i=1

P̄i = 1

)
.

Therefore, to any subgroup S≤Pn we can associate an XOR theory

T⊕(S) := {ϕP | P ∈ S}.
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Definition 3.3. Let S be a subgroup of Pn. We say that S is AvN (AvN(S)) if T⊕(S) is inconsistent.

Given an AvN subgroup S≤Pn and any state |ψ〉 ∈VS, the n-partite empirical model realised by |ψ〉
under the Pauli measurements described by S is strongly contextual. Indeed, the inconsistency of T⊕(S)
implies the impossibility of finding a global assignment compatible with the support of the empirical
model:

Proposition 3.4. AvN subgroups of Pn give rise to strongly contextual empirical models admitting
All-vs-Nothing arguments.

Now, let ⊕-Th denote the set of all XOR theories. The map

T⊕ : (S G(Pn),⊆)→ (⊕-Th,⊆) :: S 7→ T⊕(S),

is order-preserving, and allows us to establish a link between the Galois connection S G(Pn)↔SS(Hn)
and the one described in (4). In particular, we have the following commutative diagram

S G(Pn) SS(Hn)

⊕ -Th P(⊕-Str)

F

T⊕ M⊕

G

where ⊕-Str is the set of XOR-structures, and the order preserving function M⊕ maps a subspace V of
Hn to the set

M⊕ :=

M
∣∣∣ ∀ϕ

ϕ ∈ T⊕

 ⋂
|ψ〉∈V

(Pn)|ψ〉

→M |= ϕ

 .

3.3 AvN triples

Since AvN subgroups give rise to strongly contextual empirical models, we are naturally interested in
characterising this property. In [2], this problem is addressed by introducing the notion of AvN triple.
An AvN triple in Pn is a triple 〈e, f ,g〉 (the order is important) with global phases +1, which pairwise
commute, and which satisfy the following conditions:

1. For each i = 1, . . . ,n, at least two of ei, fi,gi are equal.

2. The number of i such that ei = gi 6= fi, all distinct from I, is odd.

A key result from [2] is that AvN triples provide a sufficient condition for All-vs-Nothing proofs of strong
contextuality.

Theorem 3.5 (4.1 of [2]). Any subgroup S of Pn generated by an AvN triple is AvN.

Proof. Let S ⊆Pn be generated by an AvN triple 〈e, f ,g〉. Since e, f ,g have global phase +1, T⊕(S)
contains

φe :=

(
n⊕

i=1

ēi = 0

)
; φ f :=

(
n⊕

i=1

f̄i = 0

)
; φg :=

(
n⊕

i=1

ḡi = 0

)
.
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Condition 1 implies that, for all 1≤ i≤ n,

ei · fi ·gi =


ei if fi = gi,

gi if ei = fi,

− fi if ei = gi 6= fi.

(5)

Therefore, the global phase of e · f ·g∈ S is given by (−1)|{i:ei=gi 6= fi}|, which is equal to−1 by Condition
2. Hence T⊕(S) also contains

φe f g :=

(
n⊕

i=1

(e f g)i = 1

)
Because of (5), we have

(e f g)i = ei figi =


ēi if fi = gi,

ḡi if ei = fi,

f̄i if ei = gi 6= fi,

since any phase at the i-th component becomes part of the global phase of eg f . Therefore, if we add the
i-th column of the system of equations composed by φe, φ f , φg and φe f g we always obtain 0. Indeed,

ēi⊕ f̄i⊕ ḡi⊕ ēi = 2ēi⊕2 f̄i = 0 if fi = gi,

ēi⊕ f̄i⊕ ḡi⊕ ḡi = 2ēi⊕2ḡi = 0 if ei = fi,

ēi⊕ f̄i⊕ ḡi⊕ f̄i = 2ēi⊕2 f̄i = 0 if ei = gi 6= fi,

Hence, if we sum all the equations of the system {φe,φ f ,φg,φe f g} we obtain 0 on the left hand side and,
trivially, 1 on the right hand side. This shows the inconsistency of T⊕.

Remarkably, any All-vs-Nothing argument which has appeared in the literature can be seen to come
down to exhibiting AvN triples. For instance, Mermin’s argument summarised in Section 2, is essentially
based on the AvN triple

〈(X1,Y2,Y3),(Y1,X2,Y3),(Y1,Y2,X3)〉.

Another interesting example is the one of cluster states, a fundamental resource in measurement-based
quantum computation [21, 19, 22]. The 4-qubit 1-dimensional cluster state is defined as the state sta-
bilised by the subgroup S of P4 generated by

h := (X1,Z2, I3, I4), k := (Z1,X2,Z3, I4), l := (I1,Z2,X3,Z4), m := (I1, I2,Z3,X4).

The subgroup S contains the following AvN triple

〈h · l = (X1, I2,X3,Z4), k · l = (Z1,Y2,Y3,Z4), h · l ·m = (X1, I2,Y3,Y4)〉,

which can be used to prove the strong contextuality of the empirical model realised by applying measure-
ments in S to the cluster states. Since AvN triples seem to be a key element of All-vs-Nothing arguments
in quantum mechanics, we advance the following hypothesis:

Conjecture 3.6 (AvN Triple Conjecture [1]). The presence of an AvN triple in a stabiliser subgroup
S is a necessary as well as sufficient condition for the existence of an All-vs-Nothing proof of strong
contextuality.
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4 Finding AvN triples

We devote this last section to the presentation of a computational method to identify all the AvN triples
contained in Pn. This technique allows us to obtain a large amount of quantum-realisable empirical
models featuring All-vs-Nothing proofs of strong contextuality (until now, we only had a rather limited
number of examples from the literature).

4.1 Check vector representation of an AvN triple

Check vectors [17] represent a useful way to represent elements of Pn in a more computation-friendly
way. Given an element P := (Pi)

n
i=1 ∈Pn, its check vector r(P) is a 2n-vector

r(P) = (x1,x2, . . . ,xn,z1,z2, . . . ,zn) ∈ Z2n
2

whose entries are defined as follows

(xi,zi) =


(0,0) if Pi = I
(1,0) if Pi = X
(1,1) if Pi = Y
(0,1) if Pi = Z.

Every check vector r(P) completely determines P up to phase (i.e. r(P) = r(αP) for all α ∈ {±1,±i}).
This representation can be used to characterise the conditions of an AvN triple in a computable way. We
illustrate this procedure in the following paragraphs.

For a finitely generated subgroup S := 〈g1, . . . ,gl〉 of Pn, we say that its generators g1, . . . ,gl are
independent if removing any generator gi makes the group generated smaller. Therefore, it makes sense
to impose the condition that AvN triples should indeed be constituted of independent elements of Pn.
This is also important because of the tightness of the Galois correspondence S↔ VS of Section 3.1: if
the elements e, f ,g of an AvN triple have linearly independent check vectors, they generate a subgroup
S such that VS has dimension 2n−3 [8]. The following Lemma translates this notion in terms of check
vectors.

Lemma 4.1. Let S = 〈g1, . . . ,gl〉 be a finitely generated subgroup of Pn such that VS is not trivial. Then
the generators g1, . . . ,gl are independent if and only if the matrix C(S) ∈ Ml×2n(Z2), whose rows are
constituted by the check vectors of g1, . . .gl , has rank l.

Proof. Consider a general element e ∈Pn and its check vector r(e) = (x1, . . . ,xn,z1, . . .zn). Notice that
if we ignore phase, we can write ei = XxiZzi . Thus, since X2 = Z2 = I and X , Z commute up to a phase
factor, we can see that for each e, f ∈Pn we have r(e f ) = r(e)⊕ r( f ) (i.e. addition of check vectors
corresponds to multiplication in S, up to phase). Suppose the rows of C(S) are linearly dependent, then
there exist {λ1, . . .λl} with at least one λ j 6= 0, such that

⊕
i λir(gi) = 0. By the discussion above, this

is true if and only if ∏i gλi
i = I up to a phase still to determine. In [17], it is proven that VS 6= 0⇔−I /∈

S. Thus by hypothesis we know that −I /∈ S and hence the phase must be 1. Thus the last condition
corresponds to g j = g−1

j = ∏i 6= j gλi
i and therefore g1, . . . ,gl are not independent.

Another condition we need to check is whether elements of an AvN triple pairwise commute. We
can characterise this property in terms of check vectors as follows:
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Lemma 4.2. Let g,g′ ∈Pn with global phase 1. Then

gg′ = g′g⇔ r(g)Λr(g′)T = 0,

where Λ =

(
0 I
I 0

)
.

Proof. For each i, gi either commutes or anticommutes with g′i. Let m := |{i : gig′i = −g′igi}|, then
gg′ = (−1)mg′g, which implies that g and g′ commute if and only if m is even. One can see that
gi and g′i anticommute if and only if xiz′i ⊕ zix′i = 1, where r(g) = (x1, . . . ,xn,z1, . . . ,zn) and r(g′) =
(x′1, . . . ,x

′
n,z
′
1, . . . ,z

′
n). Therefore,

gg′ = g′g⇔ m is even ⇔
n⊕

i=1

xiz′i⊕ zix′i = 0⇔ r(g)Λr(g)T = 0.

Finally, we need to characterise conditions 1 and 2. The former can be re-expressed as follows: for
all j = 1, . . .n, the columns C(S) j and C(S)n+ j must be equal for at least two row indices. More explicitly,

∀1≤ j ≤ n, ∃i,k ∈ {1,2,3} s.t.

{
C(S)i, j =C(S)k, j

C(S)i,n+ j =C(S)k,n+ j
(6)

On the other hand, Condition 2 is equivalent to the following statement.

For all j = 1, . . . ,n, the cardinality of

{i ∈ {1,2,3} |(C1, j =C3, j)∧ (C1,n+ j =C3,n+ j)∧ ((C1, j 6=C2, j)∨ (C1,n+ j =C2,n+ j))

((C1, j 6= 0∨C1,n+ j 6= 0)∧ (C2, j 6= 0∨C2,n+ j 6= 0))}
(7)

is odd.

Now that we have characterised the conditions for an AvN triples in terms of check vectors, we can
see that, in order to find all AvN triples in Pn we must solve the following problem:

Find all M ∈M3×2n(Z2)

such that: rank(M) = 3

Mi ·Λ ·MT
i = 0 ∀i

M verifies (6)

M verifies (7),

(8)

which is easily programmable.
An implementation of this method using Mathematica [24] can be found in [7], where we present

the algorithm and the resulting list of AvN triples in Pn, for n = 3 and n = 4. We obtain a considerable
amount of new examples of strongly contextual models admitting All-vs-Nothing proofs of contextuality:
1296 for n= 3 and 114048 for n= 4 (although we should divide these number by two since the algorithm
identifies AvN triples 〈e, f ,g〉 and 〈g, f ,e〉 as two separate entitites). To give an idea of the magnitude of
these numbers, we can observe that the total number of triples composed of random elements of Pn is
23·2n. Thus, the precentage of AvN triples among random triples in P3 is ∼ 0.50%, while for n = 4 it is
∼ 0.68%.
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Conclusions

The recent formalisation and generalisation of All-vs-Nothing arguments in stabiliser quantum mechan-
ics [2] has allowed us to study their properties from a purely mathematical standpoint. The main result we
have obtained is a computational method capable of producing examples of quantum-realisable strongly
contextual empirical models admitting All-vs-Nothing arguments. This technique represents a major
contribution to the rather limited amount of concrete examples in the literature. The new models found
could potentially find relevant applications in quantum information and computation, as well as benefit
the ongoing theoretical study of strong contextuality as a key feature of quantum mechanics [3, 2, 5].
The algorithm we have presented is fundamentally based on the notion of AvN triple, which gives rise to
a sufficient condition for the existence of All-vs-Nothing arguments. In the course of our work, we have
provided evidence to support the hypothesis that AvN triples actually characterise All-vs-Nothing proofs
of contextuality. If this conjecture holds, the models we have obtained using the computational technique
described in the paper are actually all the possible models admitting All-vs-Nothing arguments.

The abstract formulation of generalised AvN arguments has also allowed us to introduce new insights
into the connections between logic and the study of contextuality. Recent work on logical Bell’s inequal-
ities [4] and the relation between contextuality and semantic paradoxes [2] suggests the existence of a
definite interaction between these two domains. In this work, we have taken a first step towards a formal
characterisation of this link by showing the existence of a Galois connection between subgroups of the
Pauli n-group and subspaces of the Hilbert space of n-qubits, which can be seen as the stabiliser-theoretic
counterpart of the Galois connection between syntax and semantics in logic.
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