
The relationship between CSP, FDR and Büchi

automata

A.W. Roscoe and Thomas Gibson-Robinson
Department of Computer Science, University of Oxford, Parks Road, Oxford OX1 3QD, UK

August 11, 2016

Abstract

Two long standing approaches to specifying and verifying properties of
finite-state systems are Büchi automata, which are specialised for reason-
ing about infinite traces, and the combination of CSP and its refinement
checker FDR, which offer some scope for reasoning about infinite traces
in addition to capturing a wide variety of finitely observable behaviour.
In this paper we demonstrate that the infinite trace properties that the
long-standing functionality of FDR can decide are exactly the same as
deterministic Büchi automata. We also show how a simple extension of
FDR allows it to efficiently verify general Büchi automata and conse-
quently LTL formulae and properties under fairness.

1 Introduction

In this paper we explore the relationship between two ways of specifying and
verifying behavioural properties of finite-state systems. The first of these is the
use of refinement between a specification process and a distributive context over
the CSP denotational models as supported by the well-known refinement checker
FDR [10, 3]. The second is the use of Büchi automata, which are the key to
verifying LTL properties in a number of model checkers [16]. All these terms will
be defined in this paper. We will sometimes abbreviate “Büchi automata/on”
as Büchi.

A behavioural property is a property of a process P which holds if and only
if all P ’s observable individual behaviours (i.e. linear observations) satisfy some
fixed property. Büchi and the most common mode of using FDR (proving of a
process P that it refines some finite-state specification process S ) both repre-
sent sorts of behavioural specifications. However the CSP/FDR approach deals
mainly with finitary properties (properties of finitely observable behaviours)
while Büchi are representations only of infinitary properties, in the sense that
they refer only to infinite traces.

In this paper we concentrate on behavioural properties. We show that ev-
ery behavioural infinite trace property that FDR can naturally1 express can be
reduced to the form C [P ] is divergence-free where C is a stylised CSP context,

1[6] shows that one can go beyond this by putting the process that one wants to check in
a context on the LHS of a refinement check rather than the usual, and much more efficient,
RHS. We will discuss the consequences of this later.

1



and we show that these properties are exactly those characterised by determin-
istic Büchi. A corollary to this is that FDR cannot at present efficiently decide
properties represented by the more general nondeterministic Büchi automata,
but we show how it can be extended to do so (based, as in other tools, on the
negation of the intended Büchi.

In order to show the above results, we show how to factor a general CSP
refinement check over a denotational model that includes divergence into two
checks: one of the form Spec vX P where X is a finite observation model of
CSP; and one that its infinite traces satisfy a deterministic Büchi.

The rest of the paper is structured as follows. In the next section we present
background: a summary of CSP, its abstract semantic models and its opera-
tional semantics, and basic facts about Büchi automata. It also analyses the op-
erational semantics of so-called distributive contexts in preparation for later sec-
tions. Section 3 analyses the capability of CSP and FDR to express behavioural
properties, and shows how these can be factored into a finite-behaviour check
of the form Spec vX P and a divergence check. Section 4 shows how these di-
vergence checks correspond to deterministic Büchi, whilst Section 5 shows how
a simple extension to FDR can decide whether the infinite traces of a finite-
state process satisfy a general Büchi, and report on the performance of our
implementation.

2 Background

2.1 CSP and its semantics

CSP is based on instantaneous actions handshaken between a process and its
environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis
of patterns of interaction. The books [4, 11, 13, 15] all provide thorough intro-
ductions to CSP. The main constructs that we will be using in this paper are
set out below.

• The processes STOP and div respectively do nothing, and diverge by
repeating the internal action τ . RunA and ChaosA can each perform any
sequence of events from A, but while RunA always offers the environment
every member of A, ChaosA can nondeterministically choose to offer just
those members of A it selects, including none at all. In the absence of the
subscripts, the whole alphabet is assumed.

• a → P prefixes P with the communication a belonging to the set Σ of
normal visible communications. Similarly ?x : A→ P(x ) offers the choice
of events in A and then behaves accordingly.

• CSP has several choice operators. P � Q offers the environment the
first visible events of P and Q , and P u Q nondeterministically makes a
decision via τ actions whether to behave like P or Q .

• P \ X (hiding) behaves like P except that actions in X become τs.

• P [[R]] (renaming) behaves like P except that when P performs an action
a, the new process performs some b that is related to a under the relation
R.

2



• P ‖
A

Q is a parallel operator under which P and Q act independently

except that they have to agree (i.e. synchronise or handshake) on all
communications in A. A number of other parallel operators can be defined
in terms of this.

Other CSP operators such as P ; Q (sequential composition), P 4 Q (interrupt)
P ΘA Q (throw) and P B Q (asymmetric choice) do not play a direct role in
this paper. However including them does not alter our results. However, we
specifically exclude the priority operator introduced at the end of [13] because
it radically changes CSP’s operational and denotational semantics.

CSP has several styles of semantics that can be shown to be appropriately
consistent with one another [11, 13]. The two styles that will concern us are
operational semantics, in which rules are given that interpret any closed process
term as a labelled transition system (LTS), and behavioural models, in which
processes are identified with sets of observations that might be made from the
outside.

An LTS models a process as a set of states that it moves between via actions
in Σ ∪ {τ}, where τ cannot be seen or controlled by the environment. There
may be many actions with the same label a single state, in which case the
environment has has no control over which is followed.

The best known behavioural models of CSP are based on the following.
Traces are sequences of visible communications a process can perform. Failures
are combinations (s,X ) of a finite trace s and a set of actions that the process
can refuse in a stable state reachable on s. A state is stable if it cannot per-
form τ . Divergences are traces after which the process can perform an infinite
uninterrupted sequence of τ actions, in other words diverge. The models are
then

• T in which a process is identified with its set of finite traces;

• F in which it is modelled by its (stable) failures and finite traces;

• N in which it is modelled by its sets of failures and divergences, both
extended by all extensions of divergences: it is divergence strict.

Traces, failures and divergences are all observations that can be made of a
process in linear time. As described in [13], there is a range of other models
based on other, usually richer, forms of linear observations.

Highly relevant to the present paper is the fact that traces can be extended
to allow both finite and infinite cases. Whereas the the divergence-strict models
without infinite traces (or similar) are only compositional for finitely nonde-
terministic CSP2, models such as T ω⇓, the divergence-strict model with traces
and infinite traces, are compositional for infinitely nondeterministic constructs
as well. In this notation ω signifies the use of infinite traces, and ⇓ the fact that
it is divergence strict. Thus N = F⇓.

Any node of an LTS can be interpreted as a member of any of these models,
by simply recording the observations possible for the node of the chosen type(s),
if necessary adding extra ones to allow for divergence strictness. The congru-
ence between operational and denotational semantics is the result that, for the
language interpreted as an LTS through the operational semantics, each closed

2All finite-state processes are finitely nondeterministic

3



term gives the same set of behaviours whether calculated by observing this LTS
or by calculating the value directly over the denotational semantics appropriate
to that the model being used. Such results are long established for the standard
models of CSP and we take them as given.

In the present paper, because Büchi automata characterise properties of
traces rather than more complex structures, we concentrate on CSP models
and congruences that use only finite and infinite traces, and divergences, or at
most involve one additional observation (a refusal set in the case of failures) at
the end of finite traces.

Operational semantics and distributive contexts

The operational semantics of CSP have their origin in [2, 1]. As discussed
in [13], they can be presented either in traditional SOS style or combinator
style closely related to CSP’s implementation in FDR. Some SOS operational
semantic clauses are given below.

e → P
a−→ subs(a, e,P)

(a ∈ comms(e))

The rule above for prefix says what we might expect: that the initial events
of e → P are comms(e) and that the process then moves into the state where
the effects of any inputs in the communication have been accounted for. The
following rules describe how a parallel composition progresses: each side pro-
gresses independently except when they have to synchronise on a member of the
interface set.

P
τ−→ P ′

P ‖
X

Q
τ−→ P ′ ‖

X
Q

Q
τ−→ Q ′

P ‖
X

Q
τ−→ P ‖

X
Q ′

There are three rules for ordinary visible events: two symmetric ones for a 6∈ X

P
a−→ P ′

P ‖
X

Q
a−→ P ′ ‖

X
Q

(a ∈ Σ \X )
Q

a−→ Q ′

P ‖
X

Q
a−→ P ‖

X
Q ′

(a ∈ Σ \X )

and one to show a ∈ X requiring both participants to synchronise

P
a−→ P ′ Q

a−→ Q ′

P ‖
X

Q
a−→ P ′ ‖

X
Q ′

(a ∈ X )

Clauses for all the other operators can be found in [13, 11], for example.
It is well-known that other than recursion, every CSP operator is distributive

in each argument, meaning that if F is a CSP operator, and S is any nonempty
set of processes, F (uS ) = u{F (P) | P ∈ S}: i.e. F distributes over nonde-
terministic choice. This is itself a corollary of the fact that over each model
we consider, nondeterministic choice is represented as component-wise union of
sets of behaviours, and every non-recursive operator is [13, Chapter 10] obtained
by lifting a series of relations between individual linear behaviours of tuples of
the arguments and behaviours of the combination. It follows that every CSP
context C [P ] that is constructible without recursion and where P never appears

4



in two or more arguments of any operator3 is also a distributive function of each
CSP model.

In this paper we will understand the idea of distributive context syntactically:
it will mean something of the above form. It is easy to show that such contexts
satisfy the distributive condition, and therefore that for such a context C [·], and

process Spec, the process P satisfies Spec vX C [P ] if and only if P wX u{Q |
Spec vX C [Q ]}, meaning that Spec vX C [P ] is a behavioural property4.

It can be seen from the operational semantics of CSP that, if C [·] is a
distributive context, then every state reachable from C [P ] is either: a process
derived solely from C [·] (i.e. independent of P); or C ′[P ′] for a distributive
context C ′[·] applied to some state P ′ of P ; or simply a state P ′ of P . Since
in general C ′ can either be a constant context (one that ignores its argument)
or the identity context, all three of these options reduce to the middle one: we
can consider every state of C [P ] to be of the form C ′[P ′].

As there are no negative premises in CSP’s operational semantics, if we
compute the operational semantics of C [Run] and C [P ] for any divergence-free
process P , then whenever a state C ′[P ′] is reachable in the latter, then C ′[Run]
is possible in the former and furthermore

• If C ′[P ′]
x−→ C ′′[P ′′] then either x = τ and C ′ = C ′′, or C ′[Run]

x−→
C ′′[Run]. The first of these cases corresponds to P ′ performing a τ which
is promoted silently in the operational semantics of C ′ to take C ′[P ′] to

C ′[P ′′] where P ′
τ−→ P ′′. Indeed there is a relation R between traces of

C ’s potential argument P and states C ′[·] such that if P performs any
trace s within C [P ] to move into the state P ′, then C [P ] can reach any
of the states C ′[P ′] where s and C ′ are related by R.

• By our assumption about P being divergence free, there is only ever a
finite chain of the first type of τ actions. In other words if C ′[P ′] can
diverge immediately, so can C ′[Run].

Thus C [Run] simulates the behaviour of C [P ]. The context C can be said to
be finitary if the operational semantics of C [Run] is finite state. It follows from
the above enumeration that the operational semantics of C [P ] is finite state if
C is finitary and P is finite state.

This is illustrated in Figure 1. Here G [X ] = a → (X {b,c}‖{a,b} Q), with

Q = a → b → Q , is shown on the process P = b → P ′, with P ′ = c → P ′.
The correspondence between the nodes of G [P ] and those of G [Run] is shown

directly. The tie-in between nodes of G [P ] and those of P is shown by the
shading of the nodes (i.e. here, solid circle means P , empty means P ′).

If viewed in colour this figure illustrates the following pair of conventions:

• A node of G [Run] is shown green if the argument process is active inside
it, which it must be if at this point G can use one of its actions. A
green node will allow a τ action of its argument in the simulation without

3This can be extended by letting P appear in multiple arguments of nondeterministic choice
and guarded instances of � (including multiple Q(x) in the form ?x : A → Q(x)), because
under these conditions P can never be alive twice in the same run.

4This argument applies to all finite behaviour models, and divergence-strict ones which
have infinite behaviours. In other models infinite nondeterministic choice may not have the
required properties.

5



a

a

b

b

c

a

a

b

b
a

c

b

c

G(RUN) G(P) P

Figure 1: Simulating G [P ] from the graphs of G [Run] and P .

a

a

b

a

a

a
τ

G2(RUN) G2(P) P2

c

b

τ

b

b

/cτ

b

τ

τ

Figure 2: Example illustrating τ promotion and actions with different internal
and external labels.

changing itself. In the picture the top node of G [Run] is black, and the
other two are green. Black nodes appear when either the argument is yet
to be activated, or when it has been disposed of. If we were to replace P
in the diagram by P2 = (a → P) \ {a}, so it had the same LTS except
there is an additional initial node with a τ to the old initial node, then
the τ would be enabled (in the resulting G [P2]) in the two green states of
G but not in the black one.

• Where a node of G can perform an action without the cooperation of
its argument (i.e. when G [STOP ] has the action) the action is shown as
blue. All actions from black states are blue, but they are also possible
from green ones. In our example exactly the a events are blue: the first
one because it is done by the prefix a → · when the argument of G has
not even been started, subsequent ones because they are performed by Q
as part of the context.

Figure 2 illustrates the promotion of τ from green states as discussed above,
and also the following additional convention:

• Each black (i.e. non-blue) action of C [Run] both uses a named action of
Run and generates a named action of C [Run] (where the latter, but not

6



the former, name may be τ). If these names are not the same we just label
the graph of C [Run] by the two of them a/b, external name first.

In this second figure, P2 is as above and G2(X ) = a → (X {b,c}‖{a,b} Q) \ {c},
so each time the argument X is allowed to perform c, this is hidden and becomes
τ .

With all the annotation we have described, it is possible in general to cal-
culate the operational semantics of C [P ] for distributive contexts C from the
graph of C [Run] and the LTS of P .5

Our later analysis of the semantics of C [P ] relies heavily on this simulation
and the correspondence it creates between the states of C [P ] and pairs (C ′,P ′)
where C ′[Run] is a state of C [Run] and P ′ is a state of P . That analysis,
in considering the specification Spec vX C [P ], in effect unpicks the product
illustrated in the two figures above in such a way as to factor Spec by C [·].

2.2 Büchi automata

Büchi automata have been used in automated verification for decades [18]. They
are classically used as the “liveness” half of splitting specifications into “safety”
and “liveness” components, where a safety property is one whose failure can be
detected in finite time, and a liveness one is a property only of infinite traces.

A Büchi automaton is a finite state automaton with labelled (by visible
actions) transitions, an initial state s0, with a subset of its states marked in some
way, say starred. It accepts an infinite trace u just when it has an execution,
starting from s0, which performs u and passes infinitely often through one or
more of these “accepting” starred states. While a finite automaton representing
all its traces can only accept a closed set of infinite traces (if, for u, all finite
prefixes s of u have an extension in S , then so is u), Büchi automata are more
expressive and can represent more properties6. For example the automaton
represented as the CSP process

P = a → P � b → P � a → S
S = a → S

with only S starred represents all the infinite traces of {a, b} with only finitely
many bs – which is not closed. One can couple this with the set of failures over
{a, b} where there is no refusal of the form (s, {a, b}) to characterise the most
nondeterministic process that never deadlocks and where no infinite trace has
infinitely many bs.

A Büchi automaton may or may not have a deterministic transition relation
(i.e. have a unique state for every trace). Deterministic ones are strictly less
expressive in the languages of infinite traces they accept: for example the au-
tomaton above is a standard nondeterministic7 example where the language it
represents cannot be expressed using a deterministic Büchi. Nevertheless the

5This view of their operational semantics is closely related to that given by the combinator
style of semantics described in [13]: viewed from the combinator perspective, the syntactically
enforced distributive restriction means that there is only at most one copy of the argument
process present in each reachable combinator state.

6In fact they represent the ω-limits of regular languages, in common with several other
formulations of automata.

7The transition a from P is nondeterministic: it can lead to P or S .

7



languages accepted by the deterministic case still need not be closed. For ex-
ample consider the automaton with, in addition to s0, one state P(a) for each
action a ∈ Σ. Every state accepts every a ∈ Σ, leading to the state P(a). This
is deterministic, and by starring just those P(a) for a in some subset A of Σ, we
characterise just those infinite traces that contain infinitely many actions from
A.

Any Büchi (deterministic or nondeterministic) can be augmented to permit
every finite trace without accepting any more infinite traces. This can be done
by adding a single extra, unstarred state Ω which can take any action to itself
and, from each state P of the original automaton, adding each action a not
possible for that state to Ω. It is frequently convenient to assume they take
this form. The other extreme, which usually adopt in automated analysis, is to
remove all transitions and states after which no accepting state is reachable.

The languages represented by Büchi are closed under operations such as
union, intersection and complementation. Indeed the standard way of verifying
that a process P represented by an LTS satisfies the infinite trace property
represented by a Büchi B is to discover if P has any trace in common with
a Büchi representing the complement, or negation of B. This fact is linked
inseparably to the one that negating Büchi is a hugely complex and strongly
exponential problem: see [17].

3 The expressibility of finite-state CSP refine-
ment checking

In this paper we are interested in the practical question of what behavioural
properties of CSP processes can be expressed via CSP for FDR. Since the pro-
cesses allowed by FDR are finite-state, the most general form of check we can
run on a process P is

F [P ] v G [P ]

where F [P ] and G [P ] are both finitary CSP contexts, namely contexts which
return a finite state process when given one. v means refinement over one of
the CSP models.

In the absence of the finite-state restriction this problem was studied (in
addition to non-behavioural properties) in [12], where it was proved for some
models that behavioural properties were the same as distributive and refinement
closed properties of the process P , and could all be expressed in the form Spec′ v
P Furthermore, it was shown that if G is any distributive context then Spec v
G [P ] is a behavioural property of P . Both of these proofs are trivial, but that
of the first is entirely impractical because, as we demonstrated earlier, it builds
Spec′ as the nondeterministic composition of all the processes satisfying the
property.

In this paper we are concerned with what can be achieved using finite state
Spec and finitary contexts, so we will look more carefully at this case and obtain
a similar result for these. In fact we will prove that for suitable finite behaviour
models, finite state Spec and finitary G , it is possible to create an equivalent
refinement check Spec′ v P where Spec′ is finite state. We will also derive a
result for suitable divergence-strict models.

8



Non-distributive contexts do not naturally give rise to behavioural properties
via Spec v C [P ]. This is explained in more depth in [12]. While it is possible to
construct a context which is not syntactically distributive which is distributive
over some or even all models, we doubt if doing so would broaden the range of
behavioural properties that can be expressed. Because of this, and because of
what we already demonstrated about the state space of C [P ] when C [·] is syn-
tactically distributive, we restrict ourselves to syntactically distributive C when
capturing the expressive power of CSP in creating behavioural specifications for
FDR below.

We thus attempt to capture what properties are captured by checks of the
form Spec vX C [P ] for such finitary contexts and finite-state Spec.

Theorem 1 Let Spec be a finite-state process, and G [·] be a finitary distribu-
tive CSP context, then for each finite-behaviour CSP refinement vX , for X
representing any of traces, failures, revivals or acceptance sets, the refinement
Spec vX G [P ], if satisfiable, is equivalent (as a property of P) to a check
Spec′ vX P, where Spec′ is finite state.

Proofquad The analysis is a lot more difficult than the infinitary case men-
tioned above, but is based on examining how G [·] and P evolve together as
illustrated in Figures 1 and 2. One can build the finite state Spec′ required in
the next theorem by looking at the pairs (S ′,G ′) that can arise in the model
checking of Spec vX G [P ], where S ′ is a normal form state of Spec and G ′[·] is
one of the “states” of G [·]. The states of Spec′ are based on these, linked not
by the actions that G [P ] performs between them, but rather the actions that
P performs on the inside to enable the top-level ones.

The full proof of this result can be found in the extended version of this
paper. The authors conjecture that this result also holds for more complex
forms of finite observation model such as refusal testing and acceptance traces
(see [13]), but the proof, if it is to be on the same principles our one of the above
result, would require a formidable amount of bookkeeping.

The form of this result is remarkably simple. We cannot achieve quite the
same for models which place restrictions on divergence, because G [P ] might
hide some actions of P with the same labels as other actions of P it does not
hide. However the only way of getting a CSP model to recognise a bad infinite
behaviour of P relative to a finite-state Spec′ is to have G [P ] diverge when
the said infinite trace happens. We cannot create the necessary hiding of P
by the form Spec′ vX P \ A for some A because of the ambiguity of hiding
discussed above. In essence we need to ability to choose which events of P to
hide irrespective of their names.

The way to do this is to use one-to-many renaming in a way similar to its
use in demonstrating the expressiveness of CSP in [14]. As is usually the case
for this construct we extend the alphabet Σ to Σ1 ∪ Σ2 where Σ1 = Σ and Σ2

is a second copy of each event in Σ. The copies of the event a ∈ Σ are written
a1 and a2 when the larger alphabet is in play. The renaming D maps each a to
a1 and a2. We can then develop a selective hiding context (SHC) which leaves
visible just those actions of P which, when P performs them in C [P ], guarantee
something visible happens in G [P ]. As Figure 1 shows, the occurrence of an
action of P (there c) may guarantee that G [P ] does something visible (a) event
though it is itself hidden.

9



Here a SHC takes the form

C [P ] = (P [[D ]] ‖
Σ1∪Σ2

Reg) \ Σ2

where Reg is a deterministic process with alphabet Σ1∪Σ2 which in every state
accepts at least one of a1 and a2 for each a ∈ Σ. Thus C [P ] allows all the
events of P and chooses which are hidden. In terms of the statement “C [P ] is
divergence-free” the requirement that Reg is deterministic is unimportant, since
replacing any finite-state process with the deterministic one with the same traces
makes no difference to this check.

Theorem 2 Let Spec be a finite-state process, G [·] be a finitary distributive
CSP context, and X be one of the traces, failures, revivals or acceptance-set
models. For each divergence-strict CSP refinement vXD , Spec vXD G [P ] is
equivalent (as a property of the divergence-free process P) to a pair of checks:
Spec′ vX P (i.e. refinement over X with no divergence component) and C [P ]
is divergence-free, for a SHC C [·].

We have thus characterised the properties of infinite traces accessible through
CSP in a concise form that we will use to relate to Büchi automata in the next
section.

4 Divergence and deterministic Büchi automata

We will now demonstrate that the sets of infinite traces characterised by deter-
ministic Büchi automata are identical to the sets such that the corresponding
behavioural property of divergence-free P is decidable by the check C [P ] is
divergence-free for some SHC C .

Showing that every deterministic Büchi D can be represented in our special
CSP form is easy. Without loss of generality we can assume that D can perform
every finite and infinite trace in Σ∗, without necessarily accepting all the infinite
ones. The states of Reg are in 1 − 1 correspondence with those of D, with the
addition of RunΣ1

as above, and the actions of Reg are the same as those of D
except:

• We now have two choices for which copy of each action in Σ to pick.
Whenever an action is to an accepting state we choose the Σ1 copy, which
is not ultimately hidden, while each action leading to a non-accepting state
of D becomes the Σ2 copy in Reg .

• Where a state K of D has no event with a given label a, in Reg it has the
action a1 to RunΣ1 .

Note that not only is Reg deterministic, but for each state K and each action
a ∈ Σ, exactly one of a1 and a2 is an action of K , meaning it is a SHC regulator.
Further, observe that C [P ] will diverge iff P performs an infinite trace on which
D visits only finitely many accepting states. Hence, C [P ] is divergence free iff
every infinite trace of P is accepted by D, as required.

In the above we transformed a deterministic Büchi into a SHC by refraining
from hiding those events that led to an accepting state. We can invert this
process to turn a general SHC into a Büchi. However even though we can assume

10



that the regulator in the SHC is deterministic, we cannot assume that the Büchi
is.8 Whereas testing if the SHC corresponding to a deterministic Büchi D is
divergence-free establishes if every infinite trace of the tested process is one of
D, because of the determinism it also tests if any of its infinite traces satisfy
what we will refer to as co-D, which accepts precisely those infinite traces with
an execution passing through only finitely many of D’s accepting states.

While the infinite traces accepted by D and co-D are disjoint, those accepted
by B and co-B are not necessarily disjoint for a general Büchi B, because a
given infinite trace may have two executions in B, one of which passes through
infinitely many accepting states and the other does not. For a general SHC
C [·], corresponding to Büchi B, C [P ] being divergence-free for divergence-free
P means that P has no infinite trace satisfying co-B, or in other words that all
P ’s infinite traces lie in the complement of those of co-B, which is a possibly
proper subset of the infinite traces satisfying B, on the assumption that B can
perform any infinite trace at all.

In the literature, a co-Büchi automaton is, like co-B, a finite state automaton
with a set of marked states, whose accepting condition on infinite traces is that
there is an execution of it that only passes through finitely many marked states.
In [9] Miyano and Hayashi show that moving from deterministic to general co-
Büchi automata does not change the languages of infinite traces that can be
characterised. This is exactly what we need, since it shows that the traces of
P that do not cause a general SHC to diverge are those of some deterministic
Büchi, namely one whose complement is exactly the same as co-B, where B is
the general Büchi corresponding to the SHC.

We can thus conclude the following result.

Theorem 3 The specifications of divergence-free processes P that are captured
by Spec vXD G [P ] for G a distributive CSP context are precisely the same as
the combinations

Spec′ vX P and P satisfiesD

for Spec′ a finite state process and D a deterministic Büchi.

Furthermore, we note that the construction above which showed how satis-
faction of a deterministic Büchi can easily be transformed into the divergence-
freedom of a SHC applied to P , also works for a general Büchi P in the sense
that divergence freedom implies that all P ’s infinite traces are in the comple-
ment of those accepted by co-B. Thus it is perhaps best to think of CSP’s
divergence checks as demonstrating the infinite traces lie in the complement of
a co-Büchi.

5 Combining FDR and Büchi automata

While the above characterisation is satisfying, it shows that the properties rep-
resentable by nondeterministic Büchi cannot all be verified using existing FDR
functionality, at least using the form of check we have been examining. In this
section we show how FDR can be extended to do this. Whereas the analysis

8It is deterministic when the regulator has exactly one of a1 and a2 in each state, rather
than both being allowed.

11



above carefully examined and used the expressive power of CSP, the solution
here is largely independent of the CSP notation and closely follows what other
tools have done to solve this problem.

In general, we want to be able to check if all of the infinite traces of a
process are contained within the infinite traces of a Büchi automaton. We have
extended FDR to check this by verifying, like other tools, that no infinite trace
of the process is accepted by the negation of the Büchi automata. Since, as
discussed earlier, negating a Büchi automata is impractical, we instead require
the user to give the negated property.

As input, FDR takes a file that describes the processes to verify, along
with a list of assertions to verify about the processes. These assertions can
check simple properties such as deadlock or divergence freedom and can, more
generally, check for refinement in the three standard CSP denotational models.
We have extended the range of assertions to include an impossible for assertion
that checks for Büchi acceptance. For example, the following fragment uses
FDR’s new functionality to check if a process P can perform only finitely many
bs:

P = ...

B = buchi(FiniteBs, accept)

FiniteBs = a -> FiniteBs [] b -> FiniteBs [] a -> FiniteBs’

FiniteBs’ = accept -> FiniteBs’ [] a -> FiniteBs

assert B :[impossible for]: P

The function buchi takes a process P and an event accept , and constructs a
Büchi automaton that has the infinite traces of P , but where any state that can
perform accept is marked as accepting. For example, the Büchi automaton for
B will consist of two states, one for FiniteBs and one for FiniteBs’ where the
latter is marked as accepting, as it can perform the accept event (this arc is also
removed from the Büchi automaton). This function can be applied to arbitrary
CSP processes, which makes it possible to define Büchi automata using parallel
compositions, or other complex CSP constructs.

The assertion assert B :[impossible for]: P passes precisely when no
infinite trace of P is also accepted by the Büchi automata B (i.e. all infinite
traces of B are impossible for P). FDR checks the impossible for assertions using
the standard technique of a nested depth-first search [?] on the product of the
property (which is given by the user in the negated form) and the system.
When this fails, the algorithm produces a counter-example, consisting of a path
through the product automata from the starting state to a cycle containing an
accepting state. FDR displays this counter-example to a user in a natural way.
Further, FDR’s existing compositional debug facilities can be used to divide the
counterexample to work out how each component of the system contributes to
the erroneous acceptance.

As this implementation is only a prototype, we have not performed any per-
formance analysis. However, there is no reason to suppose that a FDR-based
version of this algorithm would perform differently from any of the other imple-
mentations of nested depth-first search in other tools, such as SPIN and LTSmin.
If this extension proves valuable, we intend to develop a high-performance ver-
sion.

12



It would have been possible to check the impossible for assertions using
existing functionality of FDR, as per [6]. However, this requires putting the
product automata on the left-hand side of a refinement check. This is undesir-
able for two reasons. Firstly, this would mean that FDR could not compute a
counter-example when the assertion failed, making this feature difficult to use.
Secondly, the left-hand side of a refinement check has to be normalised which
is PSPACE-hard (although it is often less in practice). Together, this makes
such an approach wholly impractical. In contrast, the nested depth-first search
approach takes linear time, and returns counterexamples when the assertion
fails. It is also worth noting that efficient multi-core algorithms are known for
checking for the existence of an accepting cycle [?, 8, ?], whilst normalisation is
likely to be challenging to parallelise.

6 Conclusions and future work

We have considerably clarified what sort of behavioural specifications are pos-
sible using the conventional operation of FDR, and shown how it extends to
a natural characterisation of a behavioural specification as the combination of
a process representing the finitely observable behaviour and a Büchi for the
infinite trace specification.

It is interesting to reflect on what this characterisation says about CSP.
CSP’s one-to-many renaming operator is crucial in defining SHC’s and in gen-
erating contexts where divergence freedom naturally reduces to nondeterministic
co-Büchis rather than deterministic ones. On the other hand the use of double
renaming that we made in showing that the complement of any co-Büchi can
be specified by a CSP divergence freedom check is not essential. Whereas we
used this type of renaming to distinguish between actions to accepting seats
(visible) and ones to other states (invisible), the same effect as a specification
would have been achieved by getting each visit to an accepting state to inject
an extra visible action, with all ordinary actions now being hidden. This latter
construction shows that CSP’s separation between hiding and parallel is not
essential to express these divergence-based conditions: in fact it would equally
work with a combination of CCS parallel and restriction.

While the conventional interpretation of CSP with environments controlling
all visible events does not fit easily with fairness, there are circumstances where
fairness is naturally desirable, such as in conjunction with the shared variable
front end SVA [5, 13] which is capable of analysing programs written in a simple
imperative language with shared variables. The new support for Büchi analysis
allows us to perform verifications under fairness assumptions. We intend to
report separately on the use of our extended FDR functionality to support this.

It would, in principle, be easy to implement general LTL specifications effi-
ciently for FDR, extending the respectively inefficient and partial embeddings
described in [6, 7].

We intend to explore the potential for extending CSP’s refinement-based
compositional verification to support specifications that are the conjunction of
a specification of the form Spec vX P and a Büchi.

The current implementation of nested DFS within FDR is merely a prototype
that allows us to experiment with Büchi automata. If the implementation proves
useful, we will implement a high-performance multi-core variant of either nested

13



depth-first search [?], or of Tarjan’s algorithm [8, ?].
The extensions to FDR outlined in this paper (namely the B :[impossible for]: P

assertion) are not yet available in the main release of FDR. Interested parties
should contact one of the authors for access to a version that includes this
extension.

Acknowledgements We are grateful to Michael Goldsmith for suggesting the
impossible for terminology. Research into FDR3 has been partially sponsored
by DARPA under agreement number FA8750-12-2-0247.

References

[1] Stephen D Brookes. A model for communicating sequential processes. 1983.

[2] Stephen D Brookes, A.W. Roscoe, and David J Walker. An operational
semantics for CSP. Oxford University Technical Report, 1986.

[3] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A.W. Roscoe.
FDR3: a modern refinement checker for CSP. In Proceedings of TACAS,
LNCS 8413, 2014.

[4] C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.

[5] David Hopkins and AW Roscoe. SVA, a tool for analysing shared-variable
programs. 2007.

[6] Michael Leuschel, Andrew Currie, and Thierry Massart. How to make
fdr spin LTL model checking of CSP by refinement. In FME 2001: Formal
Methods for Increasing Software Productivity, pages 99–118. Springer, 2001.

[7] Gavin Lowe. Specification of communicating processes: temporal logic
versus refusals-based refinement. Formal Aspects of Computing, 20(3):277–
294, 2008.

[8] Gavin Lowe. Concurrent depth-first search algorithms based on tarjans al-
gorithm. International Journal on Software Tools for Technology Transfer,
pages 1–19, 2015.

[9] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-
words. Theoretical Computer Science, 32(3):321–330, 1984.

[10] A.W. Roscoe. Model-checking CSP. In A classical mind: Essays in honour
of C.A.R. Hoare. 1994.

[11] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1997.

[12] A.W. Roscoe. On the expressive power of CSP refinement. Formal Aspects
of Computing, 17(2), 2005.

[13] A.W. Roscoe. Understanding concurrent systems. Springer, 2010.

[14] A.W. Roscoe. On the expressiveness of CSP. 2011.

[15] S.A. Schneider. Concurrent and real-time systems. Wiley New York, 2000.

14



[16] Fabio Somenzi and Roderick Bloem. Efficient büchi automata from ltl
formulae. In Computer Aided Verification, pages 248–263. Springer, 2000.

[17] Moshe Y Vardi. Büchi complementation: A forty-year saga. In 5th sympo-
sium on Atomic Level Characterizations (ALC05), 2005.

[18] Moshe Y Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331. IEEE Computer Society, 1986.

15



A Proofs of Theorems 1 and 2

Proof of Theorem 1 We deal first with the case of the finite traces model
and then indicate how to extend this proof to the other models. Consider model
checking Spec vT G [Run] in FDR’s usual way except that we look for the full
set of reachable state pairs (namely normal form states S ′ of Spec and states
G ′[Run] of the RHS such that the truth of the assertion requires S ′ v G ′[Run]
to be true), carrying on enumerating even after one or more errors have been
found (i.e. cases (S ′,G ′) where G ′[Run] can perform an event not permitted by
S ′). This creates a new LTS which we will call R.

Note that R may contain both visible (Σ) and τ actions, but that if there is
a τ from (S ′,G ′) to (S ′′,G ′′) then S ′ = S ′′.

We add an extra node E (for error) to R and add a “red” action labelled a
to E from each node (S ′,G ′) where G ′[Run] has an action a not permitted by
S ′.

We now colour the nodes of R. For such a node N = (S ′,G ′) (representing
the state-pair (S ′,G ′[Run])) it may be the case that G ′[STOP ] has an action
illegal for S ′. In that case we will label N red.

Wherever an edge in R corresponds to a blue action (as defined earlier) of
the graph of G [Run], we colour it blue in R. We can extend the red colouring
to any node from which an existing red node is reachable along blue edges. Let
the black nodes be all nodes not now coloured red.

Now for each black node (S ′,G ′) we form the set Blue(S ′,G ′) of R-nodes
consisting of (S ′,G ′) itself and all other nodes reachable along blue edges from
it. The intuition behind Blue(S ′,G ′) is that if, in exploring the refinement of
Spec v G [P ], we reach the state pair (S ′,G ′[P ′]), then each of the state pairs
(S ′′,G ′′[P ′]) for (S ′′,G ′′) ∈ Blue(S ′,G ′) is also reachable. It follows that if any
of these P ′′ make G ′′[P ′′] perform an action forbidden for S ′′, then the overall
refinement fails.

We form a new graph W with the black nodes of R plus E , whose actions
are now based not on those of G [Run] but instead on those performed by the
underlying Run when the given transition occurs. Because Run performs no
action on blue transitions in R, there is no action in W paralleling a blue action
directly, but if from (S ′,G ′) one can reach (S ′′,G ′′) by passing through any
number (zero or more) blue actions in R to (S∗,G∗) and then through a single
black action to (S ′′,G ′′) that resulted from Run in G ′ ∗ [Run] performing a,
then (S ′,G ′) has the action a in W to (S ′′,G ′′). We can call these W ’s black
actions. Where in R, the state (S ′,G ′) has an action x to either E or a red
state in which G ′[Run] performs a, or alternatively a series of blue actions to
a state (S∗,G∗) where similar x caused by a, then (S ′,G ′) has the action a in
W to E .

The intuition here is that if, in the checking of (S ,G [P ]), we ever arrive at
a state (S ′,G ′[P ′]), with P ’s own actions taking us through the graph W to
(S ′,G ′), then if P ′ can perform any action a of a red edge, then the refinement
check is doomed to failure because it either has (or can via blue edges) reached
a point from which an action is possible which denies the check.

We can now form Spec′ as follows: first we normalise the process represented
by the root node of W after adding a new action error from E to itself to ensure
that E can clearly be distinguished by its behaviour from the behaviour of every
other node. This normal form NW has a unique result state for each trace s

16



of Run that the exploration of Spec vT G [Run] enables up to and including
the first event outside the traces of Spec. We can tell by the fact that this
state – always a set of nodes of W – contains E that Run or any other process
performing this trace can lead G [P ] outside the traces of Spec.

Some of these sets X may contain E . Prune away all the actions of such
states aside from the error action to themselves. We do this because we want
to ignore any differences in the behaviour of nodes that only become apparent
after the failure of the refinement check is inevitable.

We then re-normalise to get NNW , where now the only state with the error
event is the one (which can again call E ) with only this action to itself.

We form Spec′ with one node for each node of NNW other than E . (If the
root node of NW contains E then the specification Spec v G [P ] is unsatisfiable;
even P = STOP fails it.) A given node X of NNW will, for each action a ∈ Σ,
have one of the following

• The action a to a node of NNW other than E

• The action a to E .

• No action a at all.

This last possibility occurs when no state that G [Run] can reach in the refine-
ment check as Run performs a trace s that leads through NNW to X ever
permits its argument to perform a. This will typically happen because of par-
allel composition in G [·].

The state of Spec′ corresponding to X has each action of the first type leading
to the node corresponding to node in NNW that a leads to. It has no actions
with the second class of labels. It has each action of the third type leading to
the process Run.

The interpretations of these three actions (which in the refinement check
Spec vT G [P ] would be performed by P) are as follows:

• The first is an action that some reachable G ′[·] does let the current state
of P perform, but which does not lead inevitably to the check failing. If P
does then perform such an action, we need to track the refinement check
forward.

• The second is the same, only the refinement check does now inevitably
fail. So we want the refinement Spec′ vT P to fail when P performs this
action. Denying Spec′ this action (in the corresponding state) has exactly
this effect.

• The final one is an action that no G ′ will allow to happen, so it does not
matter if the present state of P can do it, and this leads to no condition
on whatever state P itself, reaches after the action.

We can thus conclude that Spec′ vT P if and only if Spec vT G [P ], which
is what we were seeking to prove.

In the above proof, while we considered the possibility that G [P ] performs
actions x that are τs either independently of P or because (as when G [P ]
involves hiding) of visible actions of P , we have not considered the τ actions of
G [P ] which arise whenever its argument is active and itself performs a τ . There
is in fact no need to consider them for finite trace checks since such τs never

17



change the value of either S ′ or G ′ and of course do not themselves make the
refinement fail since they are not counted in the trace.

We now turn to the question of other finite behaviour models of CSP. For
many purposes9 the finite behaviour models fall into two categories: namely
the ones where any structure other than finite traces is only found at the end
of traces (traces, failures, revivals, acceptance sets) and those where there are
observations along traces as well (refusal testing and acceptance traces). The
normal forms of the first group retain the property of having a single state per
traces, whereas the second group have more complex structures.

This fact means that the proof of the rest our theorem, which involves only
the first sort of model, is a relatively straightforward elaboration on the trace
on. Again we establish the obligations on each state of P by tracking which
combined states (S ′,G ′) of a normal form state of Spec and a context state G ′

can arise for them. The states S ′ now carry obligations on what can be (for
example) refused on them, as well as what events can happen next. Where
G ′[Run]’s initial events include τs, a state G ′[P ] may or may not be stable
depending on what events P offers, with G ′[P ] only exhibiting any refusal if P
refuses all the events that G ′[P ] turns into an initial τ . Just as, in the traces
case, G ′ might make a pair (S ′,G ′) unsatisfiable because of the events it can
do by itself, similarly G ′ might single-handedly make S ′ impossible to satisfy in
one of the more elaborate models. Because div (the divergent process) is the
most refined element of each of these models (and equivalent to STOP over T ),
this happens whenever S ′ 6vX G ′[div]; in this case (S ′,G ′) becomes a red state.

This completes our proof. The authors conjecture that this result also holds
for more complex forms of model such as refusal testing, but the proof, if it is
to be on the same principles as above, would require a formidable amount of
bookkeeping.

We could have eliminated the states of Spec from the above proof by rolling
them up into G : it is known [?] that any finitary check Spec vT P is equivalent
to one of the form STOP v (WSpec ‖

Σ\{bark}
P) \ (Σ \ {bark}) for a finite-state

watchdog process based on Spec which communicates the new event bark at any
point where P ’s trace as become illegal for Spec.

It follows that Spec vT G [P ] is equivalent to STOP v (WSpec ‖
Σ\{bark}

G [P ]) \ (Σ \ {bark}), so taking

G+(P) = (WSpec ‖
Σ\{bark}

G [P ]) \ (Σ \ {bark})

would have meant we could have developed the construction of Spec′ above
without needing to keep track of S ′. However the actual Spec′ that is constructed
would be essentially identical to the one of our earlier construction.
Proof of Theorem 2 Without loss of generality we can assume the following
of G [·]: if Qs is the process which simply performs the finite trace s and does not
diverge, then G [Qs ] is divergence-free for all s ∈ Σ∗. If our original G [Qs ] can
diverge, it means the G [P ] can diverge with P only performing a finite trace.
In other words G [·] has some state G ′ such that G ′[STOP ] diverges.

We can get exactly the same specification of P by replacing G by one which
replaces the state G ′ by STOP , and having Spec additionally forbid those traces

9For example the applicability of the FDR diamond compression.

18



(necessarily those of a finite state process) where G [Qs ] diverges but Spec does
not. In other words we have identified an additional set of finite traces of P
which Spec vXD G [P ] forbids due to the divergence aspect of this check, and
moved them over to “where they belong” in the finitary part. Henceforth we
will assume that no state of G [·] has such a divergence through blue τs, using
the description from the previous proof.

The benefit of this assumption is that now G [P ] can diverge only when G [·]
takes P through an infinite trace of actions, all but finitely many of which are
directly or indirectly hidden, becoming τs of G [P ]. Thus G [P ] being divergence
free says exactly that P has none of the infinite traces that allow this, and is
thus precisely a specification on the infinite traces of P .

For Spec vXD G [P ] we require the following

• On traces s where Spec does not diverge we require that G [P ] does not
diverge.

• On traces s where Spec does not diverge we require that all of G [P ]’s
finitely observable behaviour (next actions, and where appropriate refusals
etc) is permissible for Spec over X .

• On traces s where Spec can diverge, no constraint whatsoever is placed
on G [P ].

It follows that Spec vXD G [P ] holds if and only if the following pair of
assertions hold:

• G [P ] ‖
Σ

R is divergence-free, where R a the finite state process with pre-

cisely the non-divergent traces of Spec. (For example R can be obtained
by removing all divergent states from the normal form of Spec.)

• Spec vX G∗(P), where G∗ is G [P ] ‖
Σ

R′, where R′ is the pseudo-deterministic

process with the same traces and divergences as Spec. In other words, its
traces are the those of Spec that do not have a proper divergent prefix,
after a divergent trace all it can do is perform an infinity of τs, and af-
ter a non-divergent trace t it can accept (and never refuse) each of the
next events of Spec/t . The parallel composition with R′ has the effect of
removing any information about what G∗(P) after the point where Spec
diverges.

Therefore the theorem is proved if we can establish that a general finitary dis-
tributive context G [P ] can be reduced to the specific form of context allowed in
the statement of the theorem with respect to the test “is divergence free”.

The idea behind the structure:

(P [[D ]] ‖
Σ1∪Σ2

Reg) \ Σ2

is that Reg only allows P to go down paths that it can within G [P ], and that
each occurrence of a P event that is hidden within G [P ] is turned into a member
of Σ2, while any occurrence of a P event that becomes a visible event of G [P ]
is turned into a member of Σ1, remaining visible in our fixed style of context.

Note that if we can find a finite-state Reg satisfying what is required, we can
also find a deterministic one: the deterministic process with the same traces,

19



noting that a finite-state process always has the same infinite traces as the
deterministic one thus constructed.

We will therefore not bother to make Reg deterministic in what follows. In
fact we will give it one state for each state of G [·]. The state corresponding to
a given G ′[·] will allow P to perform exactly the actions that G ′[·] and all G ′′[·]
reachable from it along blue actions do. By “allow P to perform” we mean
that Reg can perform the said action a in P ’s alphabet, except when the G ′′[P ]
converts an action of P into a τ and every blue action leading to that point10

is also τ , then Reg picks the Σ2 rather than Σ1 copy of a. Thus a given state
may have either, both or neither of the copies of a given a. The result(s) of each
action in the resulting Reg are those corresponding to the state(s) reachable after
zero or more blue actions and the one generated by the P action in G [Run]. It
should be clear that this achieves exactly what is required.

10Figure 2 illustrates the fact than an infinite behaviour of G2(P2) need not be a divergence
even though every action in which P2 participates is hidden. Here each hidden c is preceded
by an unhidden blue a.

20


