
Towards Analytics Aware Ontology Based Access
to Static and Streaming Data?

E. Kharlamov1 Y. Kotidis2 T. Mailis3 C. Neuenstadt4 C. Nikolaou1 Ö. Özçep4 C. Svingos3

D. Zheleznyakov1 S. Brandt5 I. Horrocks1 Y. Ioannidis3 S. Lamparter5 R. Möller4

1University of Oxford 2Athens University of Economics and Business 3University of Athens
4University of Lübeck 5Siemens Corporate Technology

Abstract. Real-time analytics that requires integration and aggregation of hetero-
geneous and distributed streaming and static data is a typical task in many industrial
scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great
potential to facilitate such tasks; however, it has a number of limitations in dealing
with analytics that restrict its use in important industrial applications. Based on our
experience with Siemens, we argue that in order to overcome those limitations
OBDA should be extended and become analytics, source, and cost aware. In this
work we propose such an extension. In particular, we propose an ontology, mapping,
and query language for OBDA, where aggregate and other analytical functions are
first class citizens. Moreover, we develop query optimisation techniques that allow
to efficiently process analytical tasks over static and streaming data. We implement
our approach in a system and evaluate our system with Siemens turbine data.

1 Introduction

Ontology Based Data Access (OBDA) [9] is an approach to access information stored in
multiple datasources via an abstraction layer that mediates between the datasources and
data consumers. This layer uses an ontology to provide a uniform conceptual schema that
describes the problem domain of the underlying data independently of how and where
the data is stored, and declarative mappings to specify how the ontology is related to the
data by relating elements of the ontology to queries over datasources. The ontology and
mappings are used to transform queries over ontologies, i.e., ontological queries, into data
queries over datasources. As well as abstracting away from details of data storage and
access, the ontology and mappings provide a declarative, modular and query-independent
specification of both the conceptual model and its relationship to the data sources; this
simplifies development and maintenance and allows for easy integration with existing
data management infrastructure.

A number of systems that at least partially implement OBDA have been recently de-
veloped; they include D2RQ [7], Mastro [10], morph-RDB [38], Ontop [39], OntoQF [33],
Ultrawrap [41], Virtuoso1, and others [8, 17]. Some of them were successfully used in
various applications including cultural heritage [13], governmental organisations [15],
and industry [20, 21]. Despite their success, OBDA systems, however, are not tailored

? This work was partially funded by the EU project Optique (FP7-ICT-318338) and the EPSRC
projects MaSI3, DBOnto, and ED3.

1 http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

towards analytical tasks that are naturally based on data aggregation and correlation.
Moreover, they offer a limited or no support for queries that combine streaming and static
data. A typical scenario that requires both analytics and access to static and streaming
data is diagnostics and monitoring of turbines in Siemens.

Siemens has several service centres dedicated to diagnostics of thousands of power-
generation appliances located across the globe [21]. One typical task of such a centre is
to detect in real-time potential faults of a turbine caused by, e.g., an undesirable pattern in
temperature’s behaviour within various components of the turbine. Consider a (simplified)
example of such a task:

In a given turbine report all temperature sensors that are reliable, i.e., with
the average score of validation tests at least 90%, and whose measurements
within the last 10 min were similar, i.e., Pearson correlated by at least 0.75, to
measurements reported last year by a reference sensor that had been functioning
in a critical mode.

This task requires to extract, aggregate, and correlate static data about the turbine’s
structure, streaming data produced by up to 2,000 sensors installed in different parts
of the turbine, and historical operational data of the reference sensor stored in multiple
datasources. Accomplishing such a task currently requires to pose a collection of hundreds
of queries, the majority of which are semantically the same (they ask about temperature),
but syntactically differ (they are over different schemata). Formulating and executing so
many queries and then assembling the computed answers take up to 80% of the overall
diagnostic time that Siemens engineers typically have to spend [21]. The use of ODBA,
however, would allow to save a lot of this time since ontologies can help to ‘hide’ the
technical details of how the data is produced, represented, and stored in data sources, and
to show only what this data is about. Thus, one would be able to formulate this diagnostic
task using only one ontological query instead of a collection of hundreds data queries
that today have to be written or configured by IT specialists. Clearly, this collection of
queries does not disappear: the OBDA query tranformation will automatically compute
them from the the high-level ontological query using the ontology and mappings.

Siemens analytical tasks as the one in the example scenario typically make heavy use
of aggregation and correlation functions as well as arithmetic operations. In our running
example, the aggregation function min and the comparison operator ≥ are used to specify
what makes a sensor reliable and to define a threshold for similarity. Performing such
operations only in ontological queries, or only in data queries specified in the mappings is
not satisfactory. In the case of ontological queries, all relevant values should be retrieved
prior to performing grouping and arithmetic operations. This can be highly inefficient,
as it fails to exploit source capabilities (e.g., access to pre-computed averages), and
value retrieval may be slow and/or costly, e.g., when relevant values are stored remotely.
Moreover, it adds to the complexity of application queries, and thus limits the benefits of
the abstraction layer. In the case of source queries, aggregation functions and comparison
operators may be used in mapping queries. This is brittle and inflexible, as values such
as 90% and 0.75, which are used to define ‘reliable sensor’ and ‘similarity’, cannot be
specified in the ontological query, but must be ‘hard-wired’ in the mappings, unless an
appropriate extension to the query language or the ontology are developed. In order to
address these issues, OBDA should become

2

analytics-aware by supporting declarative representations of basic analytics
operations and using these to efficiently answer higher level queries.

In practice this requires enhancing OBDA technology with ontologies, mappings, and
query languages capable of capturing operations used in analytics, but also extensive
modification of OBDA query preprocessing components, i.e., reasoning and query
transformation, to support these enhanced languages.

Moreover, analytical tasks as in the example scenario should typically be executed
continuously in data intensive and highly distributed environments of streaming and
static data. Efficiency of such execution requires non-trivial query optimisation. However,
optimisations in existing OBDA systems are usually limited to minimisation of the
textual size of the generated queries, e.g. [40], with little support for distributed query
processing, and no support for optimisation for continuous queries over sequences of
numerical data and, in particular, computation of data correlation and aggregation across
static and streaming data. In order to address these issues, OBDA should become

source and cost aware by supporting both static and streaming data sources and
offering a robust query planning component and indexing that can estimate the
cost of different plans, and use such estimates to produce low-cost plans.

Note that the existence of materialised and pre-computed subqueries relevant to analytics
within sources and archived historical data that should be correlated with current streaming
data implies that there is a range of query plans which can differ dramatically with respect
to data transfer and query execution time.

In this paper we make the first step to extend OBDA systems towards becoming
analytics, source, and cost aware and thus meeting Siemens requirements for turbine
diagnostics tasks. In particular, our contributions are the following:

– We proposed analytics-aware OBDA components, i.e., (i) ontology language
DL-LiteaggA that extends DL-LiteA with aggregate functions as first class citizens,
(ii) query language STARQL over ontologies that combine streaming and static
data, and (iii) a mapping language relating DL-LiteaggA vocabulary and STARQL
constructs with relational queries over static and streaming data.

– We developed efficient query transformation techniques that allow to turn STARQL
queries over DL-LiteaggA ontologies, into data queries using our mappings.

– We developed source and cost aware (i) optimisation techniques for processing
complex analytics on both static and streaming data, including adaptive indexing
schemes and pre-computation of frequent aggregates on user queries, and (ii) elastic
infrastructure that automatically distributes analytical computations and data over a
computational cloud for fastet query execution.

– We implemented (i) a highly optimised engine EXASTREAM capable of handling
complex streaming and static queries in real time, (ii) a dedicated STARQL2SQL�

translator that transforms STARQL queries into queries over static and streaming
data, (iii) an integrated OBDA system that relies on our and third party components.

– We conducted a performance evaluation of our OBDA system with large scale
Siemens simulated data using analytical tasks.
Due to space limitations we could not include all the relevant material in this paper

and refer the reader to its online extended version for further details [26].

3

2 Analytics Aware OBDA for Static and Streaming Data
In this section we first introduce our analytics-aware ontology language DL-LiteaggA
(Sec. 2.1) for capturing static aspects of the domain of interest. In DL-LiteaggA ontologies,
aggregate functions are treated as first class citizens. Then, in Sec 2.2 we will introduce
a query language STARQL that allows to combine static conjunctive queries over
DL-LiteaggA with continuous diagnostic queries that involve simple combinations of time
aware data attributes, time windows, and functions, e.g., correlations over streams of
attribute values. Using STARQL queries one can retrieve entities, e.g., sensors, that pass
two ‘filters’: static and continuous. In our running example a static ‘filter’ checks whether
a sensor is reliable, while a continuous ‘filter’ checks whether the measurements of the
sensor are Pearson correlated with the measurements of reference sensor. In Sec. 2.3 we
will explain how to translate STARQL queries into data queries by mapping DL-LiteaggA
concepts, properties, and attributes occurring in queries to database schemata and by
mapping functions and constructs of STARQL continuous ‘filters’ into corresponding
functions and constructs over databases. Finally, in Sec. 2.4 we discuss how to optimise
resulting data queries.

2.1 Ontology Language
Our ontology language, DL-LiteaggA , is an extension of DL-LiteA [9] with concepts that
are based on aggregation of attribute values. The semantics for such concepts adapts
the closed-world semantics [32]. The main reason why we rely on this semantics is to
avoid the problem of empty answers for aggregate queries under the certain answers
semantics [11, 30]. In DL-LiteaggA we distinguish between individuals and data values
from countable sets ∆ and D that intuitively correspond to the datatypes of RDF. We
also distinguish between atomic roles P that denote binary relations between pairs of
individuals, and attributes F that denote binary relations between individuals and data
values. For simplicity of presentation we assume that D is the set of rational numbers.
Let agg be an aggregate function, e.g., min, max, count, countd, sum, or avg, and let ◦
be a comparison predicate on rational numbers, e.g., ≥,≤, <,>,=, or 6=.

DL-LiteaggA Syntax. The grammar for concepts and roles in DL-LiteaggA is as follows:

B → A | ∃R, C → B | ∃F, E → ◦r(agg F), R→ P | P−,

where F , P , agg, and ◦ are as above, r is a rational number, A, B, C and E are atomic,
basic, extended and aggregate concepts, respectively, and R is a basic role.

A DL-LiteaggA ontology O is a finite set of axioms. We consider two types of axioms:
aggregate axioms of the form E v B and regular axioms that take one of the following
forms: (i) inclusions of the form C v B, R1 v R2, and F1 v F2, (ii) functionality
axioms (functR) and (funct F), (iii) or denials of the formB1uB2 v ⊥,R1uR2 v ⊥,
and F1 u F2 v ⊥. As in DL-LiteA, a DL-LiteaggA dataset D is a finite set of assertions of
the form: A(a), R(a, b), and F (a, v).

We require that if (funct R) (resp., (funct F)) is in O, then R′ v R (resp., F ′ v F)
is not in O for any R′ (resp., F ′). This syntactic condition, as wel as the fact that we do
not allow concepts of the form ∃F and aggregate concepts to appear on the right-hand
side of inclusions ensure good computational properties of DL-LiteaggA . The former is
inherited from DL-LiteA, while the latter can be shown using techniques of [32].

4

Consider the ontology capturing the reliability of sensors as in our running example:

precisionScore v testScore, ≥0.9 (min testScore) v Reliable, (1)

where Reliable is a concept, precisionScore and testScore are attributes, and finally
≥0.9 (min testScore) is an aggregate concept that captures individuals with one or more
testScore values whose minimum is at least 0.9.

DL-LiteaggA Semantics. We define the semantics of DL-LiteaggA in terms of first-order
interpretations over the union of the countable domains ∆ and D. We assume the unique
name assumption and that constants are interpreted as themselves, i.e., aI = a for each
constant a; moreover, interpretations of regular concepts, roles, and attributes are defined
as usual (see [9] for details) and for aggregate concepts as follows:

(◦r(agg F))I = {a ∈ ∆ | agg{|v ∈ D | (a, v) ∈ F I |} ◦ r}.

Here {| · |} denotes a multi-set. Similarly to [32], we say that an interpretation I is a
model of O ∪ D if two conditions hold: (i) I |= O ∪ D, i.e., I is a first-order model
of O ∪ D and (ii) F I = {(a, v) | F (a, v) is in the deductive closure of D with O} for
each attribute F . Here, by deductive closure of D with O we assume a dataset that can be
obtained from D using the chasing procedure with O, as described in [9]. One can show
that for DL-LiteaggA satisfiability of O ∪D can be checked in time polynomial in |O ∪D|.

As an example consider a dataset consisting of assertions: precisionScore(s1, 0.9),
testScore(s2, 0.95), and testScore(s3, 0.5). Then, for every model I of these assertions
and the axioms in Eq. (1), it holds that (≥0.9 (min precisionScore))I = {s1}, (≥0.9

(min testScore))I = {s1, s2}, and thus {s1, s2} ⊆ ReliableI .

Query Answering. Let Q be the class of conjunctive queries over concepts, roles, and
attributes, i.e., each query q ∈ Q is an expression of the form: q(~x) :- conj(~x), where
q is of arity k, conj is a conjunction of atoms A(u), E(v), R(w, z), or F (w, z), and u,
v, w, z are from ~x. Following the standard approach for ontologies, we adapt certain
answers semantics for query answering:

cert(q,O,D) = {~t ∈ (∆ ∪D)k | I |= conj(~t) for each model I of O ∪D}.

Continuing with our example, consider the query: q(x) :- Reliable(x) that asks for
reliable sensors. The set of certain answers cert(q,O,D) for this q over the example
ontology and dataset is {s1, s2}.

We note that by relying on Theorem 1 of [32] and the fact that each aggregate
concept behaves like a DL-Lite closed predicate of [32], one can show that conjunctive
query answering in DL-LiteaggA is tractable, assuming that computation of aggregate
functions can be done in time polynomial in the size of the data (see more details in [26]).
We also note that our aggregate concepts can be encoded as aggregate queries over
attributes as soon as the latter are interpreted under the closed-world semantics. We
argue, however, that in a number of applications, such as monitoring and diagnostics at
Siemens [21], explicit aggregate concepts of DL-LiteaggA give us significant modelling
and query formulation advantages (see more details in [26]).

5

1 PREFIX ex : <http ://www.siemens.com/onto/gasturbine/>
2

3 CREATE PULSE examplePulse WITH START = NOW , FREQUENCY = 1min
4

5 CREATE STREAM StreamOfSensorsInCriticalMode AS
6 CONSTRUCT GRAPH NOW { ?sensor a :InCriticalMode }
7

8 FROM STATIC ONTOLOGY ex:sensorOntology , DATA ex:sensorStaticData
9 WHERE { ?sensor a ex:Reliable }

10

11 FROM STREAM sensorMeasurements [NOW - 1min , NOW]-> 1sec
12 referenceSensorMeasurements 1year <-[NOW - 1min , NOW]-> 1sec ,
13 USING PULSE examplePulse
14 SEQUENCE BY StandardSequencing AS MergedSequenceOfMeasurementes
15 HAVING EXISTS i IN MergedSequenceOfMeasurementes
16 (GRAPH i { ?sensor ex:hasValue ?y. ex:refSensor ex:hasValue ?z })
17 HAVING PearsonCorrelation (?y, ?z) > 0.75

Fig. 1: Running example query expressed in STARQL

2.2 Query Language

STARQL is a query language over ontologies that allows to query both streaming
and static data and supports not only standard aggregates such as count, avg, etc but
also more advanced aggregation functions from our backend system such as Pearson
correlation. In this section we illustrate on our running example the main language
constructs and semantics of STARQL (see [26, 35] for more details on syntax and
semantics of STARQL).

Each STARQL query takes as input a static DL-LiteaggA ontology and dataset as well
as a set of live and historic streams. The output of the query is a stream of timestamped
data assertions about objects that occur in the static input data and satisfy two kinds
of filters: (i) a conjunctive query over the input static ontology and data and (ii) a
diagnostic query over the input streaming data—which can be live and archived (i.e.,
static)— that may involve typical mathematical, statistical, and event pattern features
needed in real-time diagnostic scenarios. The syntax of STARQL is inspired by the W3C
standardised SPARQL query language; it also allows for nesting of queries. Moreover,
STARQL has a formal semantics that combines open and closed-world reasoning and
extends snapshot semantics for window operators [3] with sequencing semantics that can
handle integrity constraints such as functionality assertions.

In Fig. 1 we present a STARQL query that captures the diagnostic task from our
running example and uses concepts, roles, and attributes from our Siemens ontology [19,
21–25, 28] and Eq. (1). The query has three parts: declaration of the output stream
(Lines 5 and 6), sub-query over the static data (Lines 8 and 9) that in the running example
corresponds to ‘return all temperature sensors that are reliable, i.e., with the average
score of validation tests at least 90%’ and sub-query over the streaming data (Lines 11–
17) that in the running example corresponds to ‘whose measurements within the last 10
min Pearson correlate by at least 0.75 to measurements reported by a reference sensor
last year’. Moreover, in Line 1 there is declarations of the namespace that is used in the
sub-queries, i.e., the URI of the Siemens ontology, and in Line 3 there is a declaration of
the pulse of the streaming sub-query.

Regarding the semantics of STARQL, it combines open and closed-world reasoning
and extends snapshot semantics for window operators [3] with sequencing semantics
that can handle integrity constraints such as functionality assertions. In particular, the

6

window operator in combination with the sequencing operator provides a sequence of
datasets on which temporal (state-based) reasoning can be applied. Every temporal
dataset frequently produced by the window operator is converted to a sequence of (pure)
datasets. The sequence strategy determines how the timestamped assertions are sequenced
into datasets. In the case of the presented example in Fig. 1, the chosen sequencing
method is standard sequencing assertions with the same timestamp are grouped into the
same dataset. So, at every time point, one has a sequence of datasets on which temporal
(state-based) reasoning can be applied. This is realised in STARQL by a sorted first-order
logic template in which state stamped graph patterns are embedded. For evaluation of the
time sequence, the graph patterns of the static WHERE clause are mixed into each state to
join static and streamed data. Note that STARQL uses semantics with a real temporal
dimension, where time is treated in a non-reified manner as an additional ontological
dimension and not as ordinary attribute as, e.g., in SPARQLStream [8].

2.3 Mapping Language and Query Transformation

In this section we present how ontological STARQL queries, Qstarql, are transformed
into semantically equivalent continuous queries, Qsql� , in the language SQL�. The latter
language is an expressive extension of SQL with the appropriate operators for registering
continuous queries against streams and updatable relations. The language’s operators for
handling temporal and streaming information are presented in Sec. 3.

As schematically illustrated in Eq. (2) below, during the transformation process the
static conjunctive QStatCQ and streaming QStream parts of Qstarql, are first independently
rewritten using the ‘rewrite’ procedure that relies on the input ontology O into the union
of static conjunctive queries Q′StatUCQ and a new streaming query Q′Stream, and then
unfolded using the ‘unfold’ procedure that relies on the input mappings M into an
aggregate SQL query Q′′AggSQL and a streaming SQL� query Q′′Stream that together give
an SQL� query Qsql� , i.e., Qsql� = unfold(rewrite(Qstarql)):

Qstarql ≈ QStatCQ ∧QStream
rewrite−−−−→
O

Q′StatUCQ ∧Q′Stream
unfold−−−→
M

Q′′AggSQL ∧Q′′Stream ≈ Qsql� . (2)

In this process we use the rewriting procedure of [9], while the unfolding relies on
mappings of three kinds: (i) classical: from concepts, roles, and attributes to SQL
queries over relational schemas of static, streaming, or historical data, (ii) aggregate:
from aggregate concepts to aggregate SQL queries over static data, and (iii) streaming:
from the constructs of the streaming queries of STARQL into SQL� queries over
streaming and historical data. Our mapping language extends the one presented in [9] for
the classical OBDA setting that allows only for the classical mappings.

We now illustrate our mappings as well as the whole query transformation procedure.

Transformation of Static Queries. We first show the transformation of the example
static query that asks for reliable sensors. The rewriting of this query with the example
ontology axioms from Equation (1) is the following query:

rewrite(Reliable(x)) = Reliable(x) ∨ (≥0.9 (min testScore))(x).

7

In order to unfold ‘rewrite(Reliable(x))’ we need both classical and aggregate
mappings. Consider four classical mappings: one for the concept ‘Reliable’ and three for
the attributes ‘testScore’ and ‘precisionScore’, where sqli are some SQL queries:

Reliable(x)← sql1(x), testScore(x, y)← sql3(x, y),

precisionScore(x, y)← sql2(x, y), testScore(x, y)← sql4(x, y).

We define an aggregate mapping for a concept E = ◦r(agg F) as E(x)← sqlE(x),
where sqlE(x) is an SQL query defined as

sqlE(x) = SELECT x FROM SQLF (x, y) GROUP BY x HAVING agg(y) ◦ r (3)

where SQLF (x, y) = unfold(rewrite(F (x, y))), i.e., the SQL query obtained as the
rewriting and unfolding of the attribute F . Thus, a mapping for our example aggregate
concept E = (≥0.9 (min testScore)) is

sqlE(x) = SELECT x FROM SQLtestScore(x, y) GROUP BY x HAVING min(y) ≥ 0.9

where SQLtestScore(x, y) = sql2(x, y) UNION sql3(x, y) UNION sql4(x, y).
Finally, we obtain

unfold(rewrite(Reliable(x))) = sql1(x) UNION sqlE(x).

Note that one can encode DL-LiteaggA aggregate concepts as standard DL-LiteA
concepts using mappings. We argue, however, that such an approach has practical
disadvantages compared to ours as it would require to create a mapping for each
aggregate concept that can be potentially used, thus overloading the system (see more
details in [26]).

Transformation of Streaming Queries. The streaming part of a STARQL query may
involve static concepts and roles such as Rotor and testRotor that are mapped into static
data, and dynamic ones such as hasValue that are mapped into streaming data. Mappings
for the static ontological vocabulary are classical and discussed above. Mappings for
the dynamic vocabulary are composed from the mappings for attributes and the mapping
schemata for STARQL query clauses and constructs. The mapping schemata rely on user
defined functions of SQL� and involve windows and sequencing parameters specified in a
given STARQL query which make them dependent on time-based relations and temporal
states. Note that the latter kind of mappings is not supported by traditional OBDA systems.

For instance, a mapping schema for the ‘GRAPH i’ STARQL construct (see Line 16,
Fig. 1) can be defined based on the following classical mapping that relates a dynamic
attribute ex :hasVal to the table Msmt about measurements that among others has
attributes sid and sval for storing sensor IDs and measurement values:

ex :hasVal(Msmt .sid ,Msmt .sval)← SELECTMsmt .sid ,Msmt .sval FROM Msmt .

The actual mapping schema for ‘GRAPH i’ extends this mapping as following:

GRAPH i {?sensor ex :hasVal ?y} ← SELECT sid as ?sensor , sval as ?y

FROM Slice(Msmt , i, r, sl , st),

8

Windows

 1 427ºC
 2 440.5ºC

Wid Window_Start Window_EndMWS_Avg
2016-02-08, 15:00:00 2016-02-08, 15:01:00
2016-02-08, 15:02:00 2016-02-08, 15:03:00

Measurements

 426ºC
 428ºC
 433ºC
 448ºC

Time Measurment
2016-02-08, 15:00:00
2016-02-08, 15:01:00
2016-02-08, 15:02:00
2016-02-08, 15:03:00

Fig. 2: Schema for storing archived streams and MWSs

where the left part of the schema contains an indexed graph triple pattern and the right
part extends the mapping for ex :hasVal by applying a function Slice that describes the
relevant finite slice of the stream Msmt from which the triples in the ith RDF graph in
the sequence are produced and uses the parameters such as the window range r, the slide
sl, the sequencing strategy st and the index i. (See [34] for further details.)

2.4 Query Optimisation

Since a STARQL query consists of analytical static and streaming parts, the result of its
transformation by the rewrite and unfold procedures is an analytical data query that also
consists of two parts and accesses information from both live streams and static data
sources. A special form of static data are archived-streams that, though static in nature,
accommodate temporal information that represents the evolution of a stream in time.
Therefore, our analytical operations can be classified as: (i) live-stream operations that
refer to analytical tasks involving exclusively live streams; (ii) static-data operations that
refer to analytical tasks involving exclusively static information; (iii) hybrid operations
that refer to analytical tasks involving live-streams and static data that usually originate
from archived stream measurements. For static-data operations we rely on standard
database optimisation techniques for aggregate functions. For live-stream and hybrid
operations we developed a number of optimisation techniques and execution strategies.

A straightforward evaluation strategy on complex continuous queries containing
static-data operations is for the query planner to compute the static analytical tasks ahead
of the live-stream operations. The result on the static-data analysis will subsequently be
used as a filter on the remaining streaming part of the query.

We will now discuss, using an example, the Materialised Window Signatures tech-
nique for hybrid operations. Consider the relational schema depicted in Fig. 2 which is
adopted for storing archived streams and performing hybrid operations on them. The
relational table Measurements represents the archived part of the stream and stores
the temporal identifier (Time) of each measurement and the actual values (attribute
Measurement). The relational table Windows identifies the windows that have appeared
up till now based on the existing window-mechanism. It contains a unique identifier
for each window (Wid) and the attributes that determine its starting and ending points
(Window_Start, Window_End). The necessary indices that will facilitate the complex
analytic computations are materialised. The depicted schema is flexible to query changes
since it separates the windowing mechanism —which is query dependent— from the
actual measurements.

In order to accelerate analytical tasks that include hybrid operations over archived
streams, we facilitate precompution of frequently requested aggregates on each archived
window. We name these precomputed summarisations as Materialised Window Signatures
(MWSs). These MWSs are calculated when past windows are stored in the backend
and are later utilised while performing complex calculations between these windows
and a live stream. The summarisation values are determined by the analytics under
consideration. E.g., for the computation of the Pearson correlation, we precompute the

9

average value and standard deviation on each archived window measurements; for the
cosine similarity, we precompute the Euclidean norm of each archived window; for
finding the absolute difference between the average values of the current and the archived
windows, we precompute the average value, etc.

The selected MWSs are stored in the Windows relation with the use of additional
columns. In Fig. 2 we see the MWS summary for the avg aggregate function being
included in the relation as an attribute termed MWS_Avg. The application can easily
modify the schema of this relation in order to add or drop MWSs, depending on the
analytical workload.

When performing hybrid operations between the current and archived windows,
some analytic operations can be directly computed based on their MWS values with no
need to access the actual archived measurements. This provides significant benefits as it
removes the need to perform a costly join operation between the live stream and the,
potentially very large, Measurements relation. On the opposite, for calculations such
as the Pearson correlation coefficient and the cosine similarity measures, we need to
perform calculations that require the archived measurements as well, e.g., for computing
cross-correlations or inner-products. Nevertheless, the MWS approach allows us to avoid
recomputing some of the information on each archived window such as its avg value
and deviation for the Pearson correlation coefficient, and the Euclidean norm of each
archived window for the cosine similarity measure. Moreover, in case when there is
a selective additional filter on the query (such as the avg value exceeds a threshold),
by creating an index on the MWS attributes, we can often exclude large portions of the
archived measurements from consideration, by taking advantage of the underlying index.

3 Implementation

In this section we discuss our system that implements the OBDA extensions proposed in
Sec. 2. In Fig. 3 (Left), we present a general architecture of our system. On the application
level one can formulate STARQL queries over analytics-aware ontologies and pass
them to the query compilation module that performs query rewriting, unfolding, and
optimisation. Query compilation components can access relevant information in the
ontology for query rewriting, mappings for query unfolding, and source specifications for
optimisation of data queries. Compiled data queries are sent to a query execution layer
that performs distributed query evaluation over streaming and static data, post-processes
query answers, and sends them back to applications. In the following we will discuss two
main components of the system, namely, our dedicated STARQL2SQL� translator that
turns STARQL queries to SQL� queries, and our native data-stream management system
EXASTREAM that is in charge of data query optimisation and distributed query evaluation.

STARQL to SQL� Translator. Our translator consists of several modules for trans-
formation of various query components and we now give some highlights on how it
works. The translator starts by turning the window operator of the input STARQL query
and this results in a slidingWindowView on the backend system that consists of columns
for defining windowID (as in Fig. 2) and dataGraphID based on the incoming data tuples.
Our underlying data-stream management system EXASTREAM already provides user
defined functions (UDFs) that automatically create the desired streaming views, e.g., the
timeSlidingWindow function as discussed below in the EXASTREAM part of the section.

10

Application

Transformer for
Answers Query Rewriting

Component

Query Unfolding
Component

Access and Cost
Optimiser

Backend Optimisation and Execution Layer

Analytics-aware
Ontology

Mappings (classical,
aggregate, streaming

Source Specs (cost,
access restrictions,

constraints

application-level answers application-level queries

data
answers

query
answers

optimised
queries

optimised
queries

query
answers

Q
ue

ry
 C

om
pi

la
tio

n

rewritten queries

unfolded queries

optimised middleware plan

Gateway

Execution
Engine

Resource
ManagerParser

Registry Scheduler

Master

Worker Worker Worker

Compute
Cloud

streaming datastatic data

Storage
Cloud

Fig. 3: (Left) General architecture. (Right) Distributed stream engine of EXASTREAM

The second important transformation step that we implemented is the transformation
of the STARQL HAVING clause. In particular, we normalise the HAVING clause into a rela-
tional algebra normal form (RANF) and apply the described slicing technique illustrated in
Sec. 2.3, where we unfold each state of the temporal sequence into slices of the slidingWin-
dowView. For the rewriting and unfolding of each slice, we make use of available tools us-
ing the OBDA paradigm in the static case, i.e., the Ontop framework [39]. After unfolding,
we join all states together based on their temporal relations given in the HAVING sequence.

EXASTREAM Data-Stream Management System. Data queries produced by the
STARQL2SQL� translation, are handled by EXASTREAM which is embedded in
EXAREME, a system for elastic large-scale dataflow processing in the cloud [29, 42].

EXASTREAM is built as a streaming extension of the SQLite database engine, taking
advantage of existing Database Management technologies and optimisations. It provides
the declarative language SQL� for querying data streams and relations. SQL� extends
SQL with UDFs that incorporate the algorithmic logic for transforming SQLite into a
Data Stream Management Systems (DSMS). E.g., the timeSlidingWindow operator groups
tuples from the same time window and associates them with a unique window id. In
contrast to other DSMSs, the user does not need to consider low-level details of query
execution. Instead, the system’s query planner is responsible for choosing an optimal
plan depending on the query, the available stream/static data sources, and the execution
environment.

EXASTREAM system exploits parallelism in order to accelerate the process of
analytical tasks over thousands of stream and static sources. It manages an elastic cloud
infrastructure and dynamically distributes queries and data (including both streams and
static tables) to multiple worker nodes that process them in parallel. The architecture of
EXASTREAM’s distributed stream engine is presented in Fig. 3 (Right). One can see that
queries are registered through the Asynchronous Gateway Server. Each registered query
passes through the EXASTREAM parser and then is fed to the Scheduler module. The
Scheduler places the stream and relational operators on worker nodes based on the node’s
load. These operators are executed by a Stream Engine instance running on each node.

11

4 Evaluation
The aim of our evaluation is to study how the MWS technique and query distribution to
multiple workers accelerate the overall execution time of analytic queries that correlate a
live stream with multiple archived stream records.

Evaluation Setting. We deployed our system to the Okeanos Cloud Infrastructure2. and
used up to 16 virtual machines (VMs) each having a 2.66 GHz processor with 4GB of
main memory. We used streaming and static data that contains measurements produced by
100, 000 thermocouple sensors installed in 950 Siemens power generating turbines. For
our experiments, we used three test queries calculating the similarity between the current
live stream window and 100,000 archived ones. In each of the test queries we fixed the
window size to 1 hour which corresponds to 60 tuples of measurements per window.
The first query is based on the one from our running example (see Fig. 1) which we
modified so that it can correlate a live stream with a varying number of archived streams.
Recall that this query evaluates window measurements similarity based on the Pearson
correlation. The other two queries are variations of the first one where, instead of the
Pearson correlation, they compute similarity based on either the average or the minimum
values within a window. We defined such similarities between vectors (of measurements)
~w and ~v as follows: |avg(~w)− avg(~v)| < 10◦C and |min(~w)−min(~v)| < 10◦C. The
archived streams windows are stored in the Measurements relation, against which the
current stream is compared.

MWS Optimisation. This set of experiments is devised to show how the MWS opti-
misation affects the query’s response time. We executed each of the three test queries
on a single VM-worker with and without the MWS optimisation. In Fig. 4 (Left) we
present the results of our experiments. The reported time is the average of 15 consecutive
live-stream execution cycles. The horizontal axis displays the three test queries with
and without the MWS optimisation, while the vertical axis measures the time it takes
to process 1 live-stream window against all the archived ones. This time is divided to the
time it takes to join the live stream and the Measurements relation and the time it takes
to perform the actual computations. Observe that the MWS optimisation reduces the time
for the Pearson query by 8.18%. This is attributed to the fact that some computations (such
as the avg and standard deviation values) are already available in the Winodws relation
and are, thus, omitted. Nevertheless, the join operation between the live stream and the
very large Measurements relation that takes 69.58% of the overall query execution time
can not be avoided. For the other two queries, we not only reduce the CPU overhead of
the query, but the optimiser further prunes this join from the query plan as it is no longer
necessary. Thus, for these queries, the benefits of the MWS technique are substantial.

Intra-query Parallelism. Since the MWS optimisation substantially accelerates query
execution for the two test queries that rely on average and minimum similarities, query dis-
tribution would not offer extra benefit, and thus these queries were not used in the second
experiment. For complex analytics such as the Pearson correlation that necessitates access
to the archived windows, the EXASTREAM backend permits us to accelerate queries
by distributing the load among multiple worker nodes. In the second experiment we use

2 https://okeanos.grnet.gr/home/

12

https://okeanos.grnet.gr/home/

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
)

Pearson
Corr.

Pearson
Corr. +
MSW

Avg. Avg. +
MSW

Min. Min. +
MSW

Type of similarity (+ MSW)

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

ec
)

Number of VM-workers

5 10 15 20

Aggregate

Join

Pearson
Correlation

Fig. 4: (Left) Effect of MWS optimisation (Right) Effect of intra-query parallelism

the same setting as before for the Pearson computation without the MWS technique,
but we vary this time the number of available workers from 1 to 16. In Fig. 4 (Right),
one can observe a significant decrease in the overall query execution time as the number
of VM-workers increases. EXASTREAM distributes the Measurements relation between
different worker nodes. Each node computes the Pearson coefficient between its subset
of archived measurements and the live stream. As the number of archived windows is
much greater than the number of available workers, intra-query parallelism results is
significant decrease to the time required to perform the join operation.

To conclude this section, we note that MWSs gave us significant improvements of
query execution time for all test queries and parallelism would be essential in the cases
where MWSs do not help in avoiding the high cost of query joins since it allows to
run the join computation in parallel. Due to space limitations, we do not include an
experiment examining the query execution times w.r.t. the number of archived windows.
Nevertheless, based on our observations, scaling up the number of archived windows by
a factor of n has about the same effect as scaling down the number of workers by 1/n.

5 Related Work
OBDA System. Our proposed approach extends existing OBDA systems since they either
assume that data is in (static) relational DBs, e.g [15, 39], or streaming, e.g., [8, 17],
but not of both kinds. Moreover, we are different from existing solutions for unified
processing of streaming and static semantic data e.g. [36], since they assume that data is
natively in RDF while we assume that the data is relational and mapped to RDF.

Ontology language. The semantic similarities of DL-LiteaggA to other works have been
covered in Sec. 2. Syntactically, the aggregate concepts of DL-LiteaggA have counterpart
concepts, named local range restrictions (denoted by ∀F.T) in DL-LiteA [4]. However, for
purposes of rewritability, these concepts are not allowed on the left-hand side of inclusion
axioms as we have done for DL-LiteaggA , but only in a very restrictive semantic/syntactic
way. The semantics of DL-LiteaggA for aggregate concepts is very similar to the epistemic
semantics proposed in [11] for evaluating conjunctive queries involving aggregate
functions. A different semantics based on minimality has been considered in [30].
Concepts based on aggregates functions were considered in [5] for languages ALC and
EL with concrete domains, but they did not study the problem of query answering.

Query language. While already several approaches for RDF stream reasoning engines
do exist, e.g., CSPARQL [6], RSP-QL [1] or CQELS [37], only one of them supports an

13

ontology based data access approach, namely SPARQLstream [8]. In comparison to this
approach, which also uses a native inclusion of aggregation functions, STARQL offers
more advanced user defined functions from the backend system like Pearson correlation.

Data Stream Management System. One of the leading edges in database management
systems is to extend the relational model to support for continuous queries based on
declarative languages analogous to SQL. Following this approach, systems such as
TelegraphCQ [14], STREAM [2], and Aurora [16] take advantage of existing Database
Management technologies, optimisations, and implementations developed over 30 years
of research. In the era of big data and cloud computing, a different class of DSMS has
emerged. Systems such as Storm and Flink offer an API that allows the user to submit
dataflows of user defined operators. EXASTREAM unifies these two different approaches
by allowing to describe in a declarative way complex dataflows of (possibly user-defined)
operators. Moreover, the Materialised Window Signature summarisation, implemented in
EXASTREAM, is inspired from data warehousing techniques for maintaining selected
aggregates on stored datasets [18, 31]. We adjusted these technique for complex analytics
that blend streaming with static data.

6 Conclusion, Lessons Learned, and Future Work

We see our work as a first step towards the development of a solid theory and new
full-fledged systems in the space of analytics-aware ontology-based access to data that is
stored in different formats such as static relational, streaming, etc. To this end we proposed
ontology, query, and mapping languages that are capable of supporting analytical tasks
common for Siemens turbine diagnostics. Moreover, we developed a number of backend
optimisation techniques that allow such tasks to be accomplished in reasonable time as
we have demonstrated on large scale Siemens data.

The lessons we have learned so far are the encouraging evaluation results over the
Siemens turbine data (presented in Section 4). Since our work is a part of an ongoing
project that involves Siemens, we plan to continue implementation and then deployment
of our solution in Siemens. This will give us an opportunity to do further performance
evaluation as well as to conduct user studies.

Finally, there is a number of important further research directions that we plan to
explore. On the side of analytics-aware ontologies, we plan to explore bag instead of
set semantics for ontologies since bag semantics is natural and important in analytical
tasks; we also plan to investivate how to support evolution of such ontologies [12, 27]
since OBDA systems are dynamic by its nature. On the side of analytics-aware queries,
an important further direction is to align them with the terminology of the W3C RDF
Data Cube Vocabulary and to provide additional optimisations after the alignment. As for
query optimisation techniques, exploring approximation algorithms for fast computation
of complex analytics between live and archived streams is particularly important. That
is because these algorithms usually provide quality guarantees about the results and
in the average case require much less computation. Thus, we intend to examine their
effectiveness in combination with the MWS approach.

14

7 References
[1] D. D. Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho. RSP-QL Semantics: A Unifying

Query Model to Explain Heterogeneity of RDF Stream Processing Systems. IJSWIS 10(4)
(2015).

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
STREAM: The Stanford Stream Data Manager. SIGMOD. 2003.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Semantic
Foundations and Query execution. VLDBJ 15.2 (2006).

[4] A. Artale, V. Ryzhikov, and R. Kontchakov. DL-Lite with Attributes and Datatypes. ECAI.
2012.

[5] F. Baader and U. Sattler. Description Logics with Aggregates and Concrete Domains. IS
28.8 (2003).

[6] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. C-SPARQL: A Continu-
ous Query Language for RDF Data Streams. Int. J. Sem. Computing 4.1 (2010).

[7] C. Bizer and A. Seaborne. D2RQ-Treating Non-RDF Databases as Virtual RDF Graphs.
ISWC. 2004.

[8] J. Calbimonte, Ó. Corcho, and A. J. G. Gray. Enabling Ontology-Based Access to Streaming
Data Sources. ISWC. 2010.

[9] D. Calvanese, G. Giacomo, and D. Lembo. Ontologies and Databases: The DL-Lite
Approach. Reas. Web. 2009.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The MASTRO System for Ontology-Based Data
Access. Semantic Web 2.1 (2011).

[11] D. Calvanese, E. Kharlamov, W. Nutt, and C. Thorne. Aggregate Queries Over Ontologies.
ONISW. Oct. 2008.

[12] D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov. Evolution of DL-Lite Knowl-
edge Bases. ISWC. 2010.

[13] D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk, and G. Rull. Ontology-based Data
Integration in EPNet: Production and Distribution of Food During the Roman Empire. Eng.
Appl. of AI 51 (2016).

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous
Dataflow Processing. SIGMOD. 2003.

[15] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore, R. Mancini,
A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, and D. F. Savo. MASTRO STUDIO: Managing
Ontology-Based Data Access Applications. PVLDB 6.12 (2013).

[16] D. Abadi, D. Carney, et al. Aurora: A Data Stream Management System. SIGMOD. 2003.
[17] L. Fischer, T. Scharrenbach, and A. Bernstein. Scalable Linked Data Stream Processing via

Network-Aware Workload Scheduling. SSWKBS@ISWC. 2013.
[18] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-by,
Cross-tab, and Sub-totals. Data mining and knowl. discovery 1.1 (1997).

[19] E. Kharlamov, S. Brandt, E. Jimenez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis, C. Neuenstadt,
Ö. Özçep, C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks, Y. Ioannidis, and R. Möller.
Ontology-Based Integration of Streaming and Static Relational Data with Optique. SIGMOD
(2016).

[20] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. L. C. Pinkel, M. Rezk, M. G. Skjæveland,
E. Thorstensen, G. Xiao, D. Zheleznyakov, E. Bjørge, and I. Horrocks. Enabling Ontology
Based Access at an Oil and Gas Company Statoil. ISWC. 2015.

[21] E. Kharlamov, N. Solomakhina, Ö. L. Özçep, D. Zheleznyakov, T. Hubauer, S. Lamparter,
M. Roshchin, A. Soylu, and S. Watson. How Semantic Technologies Can Enhance Data
Access at Siemens Energy. ISWC. 2014.

15

[22] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, Ö. L. Özçep, C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, I. Horrocks,
Y. E. Ioannidis, R. Möller, and A. Waaler. Enabling semantic access to static and streaming
distributed data with optique: demo. DEBS. 2016.

[23] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lamparter, C. Neuenstadt, Ö. L.
Özçep, C. Pinkel, A. Soylu, D. Zheleznyakov, M. Roshchin, S. Watson, and I. Horrocks.
Semantic Access to Siemens Streaming Data: the Optique Way. ISWC (P&D). 2015.

[24] E. Kharlamov, E. Jiménez-Ruiz, C. Pinkel, M. Rezk, M. G. Skjæveland, A. Soylu, G. Xiao,
D. Zheleznyakov, M. Giese, I. Horrocks, and A. Waaler. Optique: Ontology-Based Data
Access Platform. ISWC (P&D). 2015.

[25] E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese, P. Haase, I.
Horrocks, H. Kllapi, M. Koubarakis, Ö. L. Özçep, M. Rodriguez-Muro, R. Rosati, M.
Schmidt, R. Schlatte, A. Soylu, and A. Waaler. Optique: Towards OBDA Systems for
Industry. ESWC (Selected Papers). 2013.

[26] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nicolaou, Ö. Özçep, C. Svingos,
D. Zheleznyakov, S. Brandt, I. Horrocks, Y. Ioannidis, S. Lamparter, and R. Möller. Towards
Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version).
CoRR (2016).

[27] E. Kharlamov, D. Zheleznyakov, and D. Calvanese. Capturing model-based ontology
evolution at the instance level: The case of DL-Lite. J. Comput. Syst. Sci. 79.6 (2013).

[28] E. Kharlamov et al. Optique 1.0: Semantic Access to Big Data: The Case of Norwegian
Petroleum Directorate FactPages. ISWC (P&D). 2013.

[29] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, and Y. Ioannidis. Elastic Processing of
Analytical Query Workloads on IaaS Clouds. arXiv. 2015.

[30] E. V. Kostylev and J. L. Reutter. Complexity of Answering Counting Aggregate Queries
Over DL-Lite. J. of Web Sem. 33 (2015).

[31] Y. Kotidis and N. Roussopoulos. DynaMat: A Dynamic View Management System for Data
Warehouses. SIGMOD. 1999.

[32] C. Lutz, I. Seylan, and F. Wolter. Mixing Open and Closed World Assumption in Ontology-
Based Data Access: Non-Uniform Data Complexity. DL. 2012.

[33] K. Munir, M. Odeh, and R. McClatchey. Ontology-Driven Relational Query Formulation
Using the Semantic and Assertional Capabilities of OWL-DL. KBS 35 (2012).

[34] C. Neuenstadt, R. Möller, and Ö. L. Özçep. OBDA for Temporal Querying and Streams
with STARQL. HiDeSt. 2015.

[35] Ö. Özçep, R. Möller, and C. Neuenstadt. A Stream-Temporal Query Language for Ontology
Based Data Access. KI. 2014.

[36] D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. ISWC. 2011.

[37] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink. Linked Stream
Data Processing Engines: Facts and Figures. ISWC. 2012.

[38] F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and Experiences of R2RML-Based
SPARQL to SQL Query Translation Using Morph. WWW. 2014.

[39] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-Based Data Access:
Ontop of Databases. ISWC. 2013.

[40] M. Rodrıguez-Muro and D. Calvanese. High Performance Query Answering Over DL-Lite
Ontologies. KR. 2012.

[41] J. Sequeda and D. P. Miranker. Ultrawrap: SPARQL Execution on Relational Data. JWS 22
(2013).

[42] M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Polydoras, E. Sitaridi,
V. Stoumpos, and Y. E. Ioannidis. Dataflow Processing and Optimization on Grid and Cloud
Infrastructures. IEEE Data Eng. Bull. 32.1 (2009).

16

	 Towards Analytics Aware Ontology Based Access to Static and Streaming Data

