
Ontology-based Visual Query Formulation: An
Industry Experience

Ahmet Soylu1,2, Evgeny Kharlamov3, Dmitriy Zheleznyakov3,
Ernesto Jimenez-Ruiz3, Martin Giese1, and Ian Horrocks3

1 Department of Informatics, University of Oslo, Norway
{ahmets, martingi}@ifi.uio.no

2 Faculty of Informatics and Media Technology, Gjøvik University College, Norway
ahmet.soylu@hig.no

3 Department of Computer Science, University of Oxford, United Kingdom
{name.surname}@cs.ox.ac.uk

Abstract. Querying is an essential instrument for meeting ad hoc infor-
mation needs; however, current approaches for querying semantic data
sources mostly target technologically versed users. Hence, there is a need
for methods that make it possible for users with limited technological
skills to express relatively complex ad hoc information needs in an easy
and intuitive way. Visual methods for query formulation undertake the
challenge of making querying independent of users’ technical skills and
the knowledge of the underlying textual query language and the structure
of data. In this paper, we present an ontology-based visual query system,
OptiqueVQS, and report user experiments in two industrial settings.

Keywords: Visual Query Formulation, Ontology, Usability, SPARQL.

1 Introduction

In the semantic web community, various visualisations and user interfaces have
been developed to aid the understanding of different domains – often represented
by large and complex ontologies – and value creation out of vast data sources
(cf. [1,2]). Amongst these, query interfaces are important as they enable users to
express ad hoc information needs, which could not be addressed by predefined
visualisations or queries embedded into applications. However, current approaches
for querying semantic data sources mostly target technology-experienced users,
although semantic data consumers come from different backgrounds, and have
varying levels of expertise. Hence, there is a need for providing semantic data
consumers who are not technology-experienced users with the flexibility to pose
relatively complex ad hoc queries in an easy and intuitive way.

Formal textual languages, keyword search, natural language interfaces, visual
query languages (VQL), and visual query systems (VQS) are known approaches for
querying semantic data sources (cf. [3]). Formal textual languages are inaccessible
to end users, since they demand a sound technical background. Keyword search
and natural language interfaces remain insufficient for querying structured data,

2 Soylu et al.

due to low expressiveness and ambiguities respectively. VQLs are based on a
formal visual syntax and notation, and are comparable to formal textual languages
from an end-user perspective, as users need to understand the semantics of visual
syntax and notation. A VQS [4] differs from a VQL, since it is primarily a system
of interactions formed by an arbitrary set of user actions that effectively capture
a set of syntactic rules specifying a (query) language. A VQS might use a VQL
for query representation; however, VQSs built on non-formal visualisations are
expected to offer a good usability-expressiveness balance.

In this respect, VQSs primarily undertake the challenge of making querying
independent of users’ technical skills and the knowledge of the underlying textual
query language and the structure of data. To this end, we have been developing
an ontology-based visual query system, namely OptiqueVQS [3], within a large
industrial project, called Optique4 [5], for end users, i.e., domain experts. Op-
tiqueVQS distinguishes itself from other query interfaces as it a) does not use a
formal notation and syntax for query representation, but still conforms to the
underlying formalism; b) employs a formal approach projecting the underlying
ontology into a graph for navigation, which constitutes the backbone of the query
formulation process; c) possesses a set of important quality attributes such as
adaptivity, modularity, and multi-paradigm design; and d) has been evaluated
with different sets of end users in different contexts, and found to be promising.

In this paper, we introduce OptiqueVQS from an end-user perspective, present
its quality attributes, describe the underlying formal approach, and then present
the results of usability experiments with domain experts.

2 OptiqueVQS

OptiqueVQS is meant for end users who have no or very limited technical skills
and knowledge, such as on programming, databases, query languages, and have
low/no tolerance, intention, nor time to use and learn formal textual query
languages. As such, they often use computers in their daily life and work, such as
for web browsing, e-mail, and office and entertainment applications. OptiqueVQS
is a visual query system and it is not our concern to reflect the underlying
formality (i.e., query language and ontology) per se. However, user behaviour
is constrained so as to enforce the generation of valid queries, and ontologies
are formally projected into graphs in order to provide simpler representation
and interaction styles for end users. We are also not interested in providing full
expressivity, as simpler interfaces will suffice for majority of end user queries [6].
End users make a very little use of advanced functionalities and are likely to drop
their own requirements for the sake of having simpler ways for basic tasks [4].

2.1 User Interface

The interface of OptiqueVQS is designed as a widget-based user-interface mashup
(UI mashup). Apart from flexibility and extensibility, such a modular approach
4 http://www.optique-project.eu

http://www.optique-project.eu

Ontology-based Visual Query Formulation: An Industry Experience 3

provides us with the ability to combine multiple representations, interaction, and
query formulation paradigms, and distribute functionality appropriately.

In Figure 1, a query is shown as a tree in the upper widget (W1), representing
typed variables as nodes and object properties as arcs. New typed variables
can be added to the query by using the list in the bottom-left widget (W2). If
a query node is selected, the faceted widget (W3) at the bottom-right shows
controls for refining the corresponding typed variable, e.g. setting a value for a
data property or switching to a more specific concept. Once a restriction is set
on a data property or a data property is selected for output (i.e., using the eye
icon), it is reflected in the label of the corresponding node in the query graph.
The user has to follow the same steps to involve new concepts in the query and
can always jump to a specific part of the query by clicking on the corresponding
variable-node in W1. These three widgets are orchestrated by the system, through
harvesting event notifications generated by each widget as the user interacts. At
each step of the query formulation process W2 and W3 provide automatically
generated ranked suggestions to guide users in constructing the query (see [7]).

Fig. 1. An example query in visual mode is depicted.

The user can delete nodes, save/load queries, access query catalogue, and
undo/redo actions by using the buttons at the bottom part of W1. The user
can also switch to editable textual SPARQL mode by clicking on “SPARQL
Query” button at the bottom-right part of the W1 as depicted in Figure 2.
The availability of a textual mode synchronised with the visual representation

4 Soylu et al.

enables collaboration between end users and technology-experienced users. Note
that SPARQL mode is compliant, in terms of expressiveness, to what can be
represented in the visual mode.

Fig. 2. An example query in textual mode and result view are depicted.

Finally, we recently extended OptiqueVQS with two new widgets, which
provide evidence on how a widget-based architecture allows us to hide complex
functionality behind layers and combine different paradigms. The first widget
is tabular result widget (W4 – see Figure 2). It provides an example result
list and also means for aggregation and sequencing operations. Aggregation
and sequencing operations fit naturally to a tabular view, since it is a related
and familiar metaphor. The user can also view the full result list, inspect the
individuals, and export data. The second widget is a map widget (W5 – see
Figure 3), which is a domain-specific (i.e., geospatial) component allowing the
user to constrain attributes by selecting an input value from a map. For this
purpose, a button with a pin icon is placed next to every appropriate attribute.

There are limits to the supported expressiveness, e.g. no union, negation
etc., however it is possible to construct rather complex queries with a number of
classes, restrictions, and branches. As far as the design rationale is considered,
OptiqueVQS combines multiple familiar representation and interaction paradigms
into a single view. This way the user can have a constant and global overview
of the query, while working with the list and faceted widgets to manipulate
and extend it (i.e., view/overview). OptiqueVQS also provides simple three-

Ontology-based Visual Query Formulation: An Industry Experience 5

Fig. 3. An example query with the map widget is depicted.

shaped query representation, which is free of any SPARQL or ontology jargon.
A unidirectional tree-shaped query representation is employed to avoid a graph
representation for simplicity. For more details on the design and implementation
of OptiqueVQS, we refer interested readers to our earlier work [3].

2.2 Quality Attributes

Quality attributes are non-functional requirements that affect run-time behaviour,
design, and user experience. OptiqeVQS possesses the following interrelated
quality attributes, which effectively increase the benefits gained and decrease the
cost of adoption for end users. Usability is the primary quality attribute, and all
other quality attributes directly or indirectly affect the usability. The attributes
are derived from our conceptual review [8] and discussed in another work [9].

(A1) Usability: The design of OptiqueVQS emphasises harmonies between view
and overview, and exploration and construction. It combines multiple repre-
sentation, interaction, and query formulation paradigms to address different
set of users and tasks. The functionality is distributed among widgets with
respect to their suitability. Users formulate queries iteratively and could
collaborate with different types of users.

(A2) Modularity: OptiqueVQS employs a widget-based mashup approach, which
provides us with the flexibility to add/remove components easily. This could
include alternative/complementary components for query formulation, explo-
ration, visualisation, etc. with respect to context.

6 Soylu et al.

(A3) Scalability: OptiqueVQS provides gradual and on-demand access to the
relevant parts of the underlying ontology to cope with large ontologies,
while the employed ranking approach filters down the amount of ontological
knowledge to be presented at each step.

(A4) Adaptivity & adaptability: The modular architecture of OptiqueVQS,
availability of multiple representation, interaction, and query formulation
paradigms, and ranked suggestions enable OptiqueVQS to provide diverse user
experiences by altering presentation, content, and behaviour automatically
or manually with respect to context.

(A5) Extensibility: OptiqeVQS provides flexibility against changing requirements
both from architectural and design perspectives for sustainable evolution.
The modular architecture allows new components to be easily introduced and
combined, while new functionalities could be added easily without overloading
the interface due to the multi-paradigm design.

(A6) Interoperability: The ability of OptiqueVQS to export data in different
formats ensures that it fits into organisational contexts and broader user
experiences, as the extracted data could be utilised by other applications in
the workflow or the digital ecosystem.

(A7) Portability:OptiqueVQS relies on a domain-agnostic backend, which projects
the underlying ontology into a graph for exploration and query construction.
This provides ability to query other domains, rather than only a specific
domain, without high installation and configuration costs.

(A8) Reusability: OptiqueVQS allows users to store, load, and modify queries.
Queries are stored in a query catalogue with descriptive texts to facilitate
their search and retrieval. End users can reuse existing queries or modify
them to formulate more complex queries.

2.3 Navigation Graph

In OptiqueVQS, user queries have a graph-like structure and interaction with
the ontology happens through graph navigation. However, OWL 2 axioms are
not well-suited for a graph-based navigation. Indeed, note that OWL 2 axioms
do not have a natural correspondence to a graph. Therefore, we need a technique
to extract a suitable graph-like structure from a set of OWL 2 axioms.

Intuitively, OptiqueVQS allows users to construct tree-shaped conjunctive
queries where each path is of the form: Person(x), livesIn(x, y),City(y), ... Each
such path essentially ‘connects’ classes like Person and City via properties like
livesIn. At each query construction step OptiqueVQS suggests the user classes
and properties that are semantically relevant to the already constructed partial
query. We determine this relevance by exploiting the input OWL 2 ontology:
we project the input ontology onto a graph structure that is called navigation
graph [10] and use this graph at query construction time. More precisely, for
each class in the partial query OptiqueVQS suggests only those properties and
classes, which are reachable in the navigation graph in one step. Note that OWL
2 ontologies are essentially sets of first-order logic axioms and thus there is no

Ontology-based Visual Query Formulation: An Industry Experience 7

immediate relationship between them and a graph. This makes projection of
OWL 2 ontologies onto a navigation graph a non-trivial task.

In the remaining part of this section we will formally introduce navigation
graph, define when a query is meaningful with respect to it, and finally we define
the grammar of queries that users can construct with the help of OptiqueVQS.

The nodes of a navigation graph are unary predicates and constants, and
edges are labelled with possible relations between such elements, that is, binary
predicates or a special symbol type. The key property of a navigation graph is
that every X-labelled edge (v, w) is justified by a rule or fact entailed by O ∪D
which “semantically relates” v to w via X. We distinguish three kinds of semantic
relations: (i) existential, where X is a binary predicate and (each element of) v
must be X-related to (an element of) w in the models of O ∪D; (ii) universal,
where (each instance of) v is X-related only to (instances of) w in the models of
O ∪D; and (iii) typing, where X = type, and (the constant) v is entailed to be
an instance of (the unary predicate) w. Formally:

Definition 1. Let O be an OWL 2 ontology and D a knowledge graph. A navi-
gation graph for O and D is a directed labelled multigraph G having as nodes
unary predicates or constants from O and D and s.t. each edge is labelled with
a binary predicate from O or type. Each edge e is justified by a fact or rule αe

s.t. O ∪ C |= αe and αe is of the form given next, where c, d are constants, A,B
unary predicates, and R a binary predicate:
(i) if e is c R−→ d, then αe is of the form R(c, d) or ∀y.[R(c, y)→ y ≈ d];
(ii) if e is c R−→ A, then αe is a rule of the form >(c)→ ∃y.[R(c, y) ∧A(y)] or
∀y.[R(c, y)→ A(y)];

(iii) if e is A R−→ B, then αe is a rule of the form ∀x.[A(x)→ ∃y.[R(x, y)∧B(y)]]
or ∀x, y.[A(x) ∧R(x, y)→ B(y)];

(iv) if e is A R−→ c, then αe is a rule of the form ∀x.[A(x) → R(x, c)] or
>(c)→ ∃y.[R(y, c) ∧A(y)] or ∀x, y.[A(x) ∧R(x, y)→ y ≈ c];

(v) if e is c type−−→ A, then αe = A(c).

The first (resp., second) option for each αe in (i)-(iii) encodes the existential
(resp., universal) R-relation between nodes in e; the first and second (resp., third)
options for each αe in (iv) encode the existential (resp., universal) R-relation
between nodes in e; and (v) encodes typing. A graph may not contain all justifiable
edges, but rather those that are deemed relevant to the given application.

To realise the idea of ontology and data guided navigation, we require that
interfaces conform to the navigation graph. We assume that all the following
definitions are parametrised with a fixed ontology O and a knowledge graph D.

Definition 2. Let Q be a conjunctive query. The graph of Q is the smallest
multi-labelled directed graph GQ with a node for each term in Q and a directed
edge (x, y) for each atom R(x, y) occurring in Q, where R is different from ≈. We
say that Q is tree-shaped if GQ is a tree. Moreover, a variable node x is labelled
with a unary predicate A if the atom A(x) occurs in Q, and an edge (t1, t2) is
labelled with a binary predicate R if the atom R(t1, t2) occurs in O.

8 Soylu et al.

Finally, we are ready to define the notion of conformation.

Definition 3. Let Q be a conjunctive query and G a navigation graph. We say
that Q conforms to G if for each edge (t1, t2) in the graph GQ of Q the following
holds:
– If t1 and t2 are variables, then for each label B of t2 there is a label A of t1
and a label R of (t1, t2) such that A R−→ B is an edge in G.

– If t1 is a variable and t2 is a constant, then there is a label A of t1 and a
label R of (t1, t2) such that A R−→ t1 is an edge in G.

– If t1 is a constant and t2 is a variable, then for each label B of t2 there is a
label R of (t1, t2) such that t1

R−→ t2 is an edge in G.
– If t1 and t2 are constants, then a label R of (t1, t2) such that t1

R−→ t2 is an
edge in G.

OptiqueVQS allows constructing conjunctive tree-shaped queries. The gen-
eration is done via reasoning over the navigation graph, which contain edges of
types (iii)-(v) (see Definition 1).

Now we describe the class of queries that can be generated using OptiqueVQS
and show that they conform to the navigation graph underlying the system. First,
observe that the OptiqueVQS queries follow the following grammar:

query ::= A(x)(∧ constr(x))∗(∧ expr(x))∗

expr(x) ::= sug(x, y)(∧ constr(x))∗(∧ expr(y))∗

constr(x) ::= ∃yR(x, y) | R(x, y) | R(x, c)
sug(x, y) ::= Q(x, y) ∧A(y)

where A is an atomic class, R is an atomic data property, Q is an object property,
and c is a data value. The expression of the form A(∧ B)∗ designates that
B-expressions can appear in the formula 0, 1, and so on, times. An OptiqueVQS
query is constructed using suggestions sug and constraints constr, that are
combined in expressions expr. Such queries are conjunctive and tree-shaped. All
the variables that occur in classes and object properties are output variables and
some variables occurring in data properties can also be output variables.

3 Evaluation

Three user experiments are conducted with different types of users. The first
experiment is reported in our previous work [3] and involved a movie ontology and
15 casual users, who are bachelor students in different social science disciplines.
The second and third experiments are conducted with our industrial partners,
which are Statoil ASA and Siemens AG. In the Statoil experiment, an oil & gas
ontology, which in total includes 253 concepts, 208 relationships (including inverse
properties), and 233 attributes, is used. In the Siemens experiment, a diagnostic
ontology, which in total includes five concepts, five relationships (excluding inverse
properties), and nine attributes, is used. In both cases neither ontologies nor

Ontology-based Visual Query Formulation: An Industry Experience 9

data sets are public. The tasks used in Statoil and Siemens experiments are all
conjunctive, see Table 1. A total of seven domain experts are engaged in the
experiments, see Table 2 (Likert scale 1 for “not familiar at all” and 5 for “very
familiar”).

Table 1. Information needs used in the experiments (T1-9 Statoil and T10-14 Siemens).

T Information need

1 List all fields.

2 What is the water depth of the “Snorre A” platform (facility)?

3 List all fields operated by “Statoil Petroleum AS” company.

4 List all exploration wellbores with the field they belong to and the geochronological
era(s) with which they are recorded.

5 List the fields that are currently operated by the company that operates the
“Alta” field.

6 List the companies that are licensees in production licenses that own fields with
a recoverable oil equivalent over more than “300” in the field reserve.

7 List all production licenses that have a field with a wellbore completed between
“1970” and “1980” and recoverable oil equivalent greater than “100” in the company
reserve.

8 List the blocks that contain wellbores that are drilled by a company that is a
field operator.

9 List all producing fields operated by “Statoil Petroleum AS" company that has a
wellbore containing “gas” and a wellbore containing “oil”.

10 Find all assemblies that exist in system.

11 Show all messages that tribune “NA0101/01” generated from “01.12.2009” to
“02.12.2009”.

12 Show all turbines that sent a message containing the text “Trip” ’ between
“01.12.2009” and “02.12.2009”.

13 Show all event categories known to the system.

14 Show all turbines that sent a message category “Shutdown” between “01.12.2009”
and “02.12.2009”.

The experiments are designed as a think-aloud study and only a 5 min.
introduction is given to participants. Each participant performs the experiment
in a single session, while being watched by an observer. Formulating the query,
executing it, and inspecting the result set equals to one attempt. Participants
have a maximum of three attempts per task. A task is ended, when the participant
acknowledges completion or exhausts his/her three attempts.

In the Statoil experiment, participants overall have 84 percent correct com-
pletion rate and 69 percent first-attempt correct completion rate (i.e., percentage

10 Soylu et al.

Table 2. Participant profiles (P1-3 Statoil and P4-7 Siemens).

P Age Occupation Education Technical
skills

Similar
tools

1 39 Geologist Master 3 3
2 40 Biostrat Master 2 1
3 49 IT advisor Master 5 4
4 33 Software engineer Bachelor 5 2
5 27 Diagnostic Engineer Bachelor 5 5
6 60 Mechanical Engineer Master 3 1
7 45 Mechanical Engineer Bachelor 1 2

of correctly formulated queries in the first attempt), while in the Siemens experi-
ment, correct completion rate is 88 percent and first-attempt correct completion
rate is 72 percent (see Figure 4). In our earlier experiment with casual users,
there is a full correct completion rate and 80 percent first-attempt correct com-
pletion rate. The results are comparatively better, and this could be attributed to
genericness of the ontology. Statoil users have lower scores and often commented
that the ontology does not match to their understanding of the domain. This is
because the ontology used in the Statoil experiment is automatically generated
(i.e., bootstrapped), while the others are manually created. We acknowledge the
situation and believe that the usability of an ontology is as crucial as the usability
of a query formulation tool and is an overlooked issue in the research community.

Overall, the results indicate high effectiveness and efficiency suggesting that
OptiqueVQS is a viable tool for users without any technical background to con-
struct considerably complex queries. OptiqueVQS also offers a good learnability
as users can solve complex tasks without any training. The participants praised
the capability of OptiqueVQS for formulating complex information needs into
queries. A common statement was that such a solution will not only improve
their current practices, but also augment their value creation potential.

4 Related Work

We distinguish existing visual methods for querying semantic data sources into
two categories. The first category includes approaches that are primarily built on
a VQL, which has a formal visual syntax and notation. The second category of
approaches mainly employs a system of interactions, i.e., VQSs, which generates
queries in target linguistic form.

The notable examples of the fist category are LUPOSDATE [11], RDF-GL [12],
GQL [13], and QueryVOWL [14]. LUPOSDATE and RDF-GL follow RDF syntax
at a very low level through node-link diagrams representing the subject-predicate-
object notation, while GQL and QueryVOWL represent queries at comparatively
higher level, such as with UML-based diagrams. Each of these languages are
managed by a VQS providing means for construction and manipulation of queries
in a visual form. Albeit VQL-based approaches with higher level of abstraction

Ontology-based Visual Query Formulation: An Industry Experience 11

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	 T9	

A"
em

pt
	 (A

vg
.)	

Co
m
pl
e0

on
	 (%

)	

Task	 (Statoil)	

Comple4on	 (%)	 A:empt	 (Avg.)	

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

T10	 T11	 T12	 T13	 T14	
A"

em
pt
s	 (
Av

g.
)	

Co
m
pl
e0

on
	 (%

)	

Task	 (Siemens)	

Comple4on	 (%)	 A:empt	 (Avg.)	

0	

100	

200	

300	

400	

500	

600	

T1	 T2	 T3	 T4	 T5	 T6	 T7	 T8	 T9	

Ti
m
e	
(s
)	

Task	 (Statoil)	

Max.	 Min.	 Avg.	

0	

100	

200	

300	

400	

500	

600	

T10	 T11	 T12	 T13	 T14	

Ti
m
e	
(s
)	

Task	 (Siemens)	

Max.	 Min.	 Avg.	

Fig. 4. The results of Statoil and Siemens experiments.

are closer to end users, they still need to posses a higher level of knowledge and
skills to understand the semantics of visual notation and syntax and to use it.

The prominent examples of the second category are gFacet [15], SparqlFilter-
Flow [16], Konduit VQB [17], and Rhizomer [18]. gFacet and SparqlFilterFlow
employ a diagram-based approach; however, diagrams representing the queries
are rather informal. Konduit VQB and Rhizomer employ a form-based paradigm.
Diagram-based approaches are good in providing a global overview; however,
they remain insufficient for view (i.e., zooming into a specific concept for filtering
and projection). This is because the visual space as a whole is mostly occupied
for query overview. Form-based approaches provide a good view; however, they
provide a poor overview, since the visual space as a whole is mostly occupied with
the properties of the focus concept. Approaches combining multiple representa-
tion and interaction paradigms are known to be better as they could combine
view and overview. Finally, gFacet and Rhizomer are originally meant for data
browsing, that is they operate on data level rather than schema level and every
user interaction generates and sends SPARQL queries in the background. Yet
they are highly data-intensive, which is often impractical for large data sources.

5 Conclusion

OptiqueVQS enables end users to easily formulate comparatively complex queries
at a conceptual level. It employs a formal ontology to graph projection method
to support query formulation and ontology navigation, while the user interface
remains rather informal and possesses important quality attributes.

12 Soylu et al.

OptiqueVQS is intentionally limited in expressiveness to achieve a usability -
expressiveness balance, for instance unions, cardinality restrictions, intersection,
and individuals are not supported. However the future work includes implemen-
tation of more features without compromising the usability, such as optionals
and inequality relationships for data properties.

Acknowledgements. This research is funded by “Optique” (EC FP7 318338),
as well as the EPSRC projects Score!, DBOnto, and MaSI3.

References

1. Dadzie, A.S., Rowe, M.: Approaches to Visualising Linked Data: A Survey. Semantic
Web 2(2) (2011)

2. Katifori, A., et al.: Ontology visualization methods - A survey. ACM Computing
Surveys 39(4) (2007)

3. Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society (in
press)

4. Catarci, T., et al.: Visual query systems for databases: A survey. Journal of Visual
Languages and Computing 8(2) (1997)

5. Giese, M., et al.: Optique: Zooming in on Big Data. IEEE Computer Magazine
48(3) (2015)

6. Leone, S., et al.: Exploiting Tag Clouds for Database Browsing and Querying. In:
CAiSE’10. (2011)

7. Soylu, A., et al.: Towards Exploiting Query History for Adaptive Ontology-based
Visual Query Formulation. In: MTSR’14. (2014)

8. Soylu, A., et al.: Ontology-based End-user Visual Query Formulation: Why, what,
who, how, and which? Universal Access in the Information Society (submitted)

9. Soylu, A., Martin, G.: Qualifying Ontology-based Visual Query Formulation. In:
FQAS’15. (2015)

10. Arenas, M., et al.: Faceted Search over Ontology-Enhanced RDF Data. In: CIKM’14.
(2014)

11. Ambrus, O., et al.: Visual Query System for Analyzing Social Semantic Web. In:
WWW’11. (2011)

12. Hogenboom, F., et al.: RDF-GL: A SPARQL-Based Graphical Query Language for
RDF. In: Emergent Web Intelligence. Springer (2010)

13. Barzdins, G., et al.: Graphical Query Language as SPARQL Frontend. In: ADBIS’09.
(2009)

14. Haag, F., et al.: Visual Querying of Linked Data with QueryVOWL. In: SumPre’15
and HSWI’14-15. (2015)

15. Heim, P., Ziegler, J.: Faceted visual exploration of semantic data. In: HCIV’09.
(2011)

16. Haag, F., et al.: Visual SPARQL Querying Based on Extended Filter/Flow Graphs.
In: AVI’14. (2014)

17. Ambrus, O., et al.: Konduit VQB: a Visual Query Builder for SPARQL on the
Social Semantic Desktop. In: VISSW’10. (2010)

18. Brunetti, J.M., et al.: From Overview to Facets and Pivoting for Interactive
Exploration of Semantic Web Data. International Journal on Semantic Web and
Information Systems 9(1) (2013)

	Ontology-based Visual Query Formulation: An Industry Experience

