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ABSTRACT
Real-time processing of data coming from multiple heterogeneous
data streams and static databases is a typical task in many industrial
scenarios such as diagnostics of large machines. A complex diag-
nostic task may require a collection of up to hundreds of queries
over such data. Although many of these queries retrieve data of the
same kind, such as temperature measurements, they access struc-
turally different data sources. In this work we show how Seman-
tic Technologies implemented in our system OPTIQUE can sim-
plify such complex diagnostics by providing an abstraction layer—
ontology—that integrates heterogeneous data. In a nutshell, OP-
TIQUE allows complex diagnostic tasks to be expressed with just
a few high-level semantic queries. The system can then automat-
ically enrich these queries, translate them into a collection with a
large number of low-level data queries, and finally optimise and
efficiently execute the collection in a heavily distributed environ-
ment. We will demo the benefits of OPTIQUE on a real world sce-
nario from Siemens.

1. INTRODUCTION
Motivation. Real-time processing of streaming and static data
is a typical task in many industrial scenarios such as diagnostics
of large machines. This task is challenging since it often requires
integration of data from multiple sources. For example Siemens
runs service centres dedicated to diagnostics of thousands of power-
generation appliances across the globe. One typical task for such
centres is to detect in real-time potential faults caused by, e.g., an
abnormal temperature and pressure increase. Such tasks require si-
multaneous processing of sequences of digitally encoded coherent
signals produced and transmitted from thousands of power generat-
ing turbines, generators, and compressors installed in power plants,
and of static data that includes the structure of relevant equipment,
history of its exploitation and repairs, and even weather conditions.
These data are scattered across a large number of heterogeneous
data streams in addition to static DBs with hundreds of TBs of data.

Even for a single diagnostic task, such as checking if a given
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turbine might develop a fault, Siemens engineers have to analyse
streams with temperature and other measurements from up to 2, 000
sensors installed in different parts of the turbine, analyse historical
temperature data, compute temperature patterns, compare them to
patterns in other turbines, compare weather conditions, etc. This
requires to pose a collection of hundreds of queries, the majority of
which are semantically the same (they ask about temperature), but
syntactically different (they are over different schemata). Formulat-
ing and executing so many queries, and then assembling the com-
puted answers, takes up to 80% of the overall diagnostic time [10].

Ontology-Based Integration Approach. In order to stream-
line the diagnostic process at Siemens, we propose a data integra-
tion approach based on Semantic Technologies. In this paper we
will refer to our approach as Ontology-Based Stream-Static Data
Integration (OBSSDI). It follows the classical data integration para-
digm that requires the creation of a common ‘global’ schema that
consolidates ‘local’ schemata of the integrated data sources, and
mappings that define how the local and global schemata are re-
lated [8]. In OBSSDI the global schema is an ontology: a formal
conceptualisation of the domain of interest that consists of a vo-
cabulary, i.e., names of classes, attributes and binary relations, and
axioms over the terms from the vocabulary that, e.g., assign at-
tributes of classes, define relationships between classes, compose
classes, class hierarchies, etc. The Siemens ontology that we de-
veloped [10] encodes generic specifications of appliances, char-
acteristics of sensors, materials, processes, descriptions of diag-
nostic tasks, etc. OBSSDI mappings relate each ontological term
to a set of queries over the underlying data. For example, the
generic attribute temperature-of-sensor from the Siemens ontol-
ogy is mapped to all specific data and procedures that return tem-
perature readings from sensors in dozens of different turbines and
DBs storing historical data, thus, all particularities and varieties of
how the temperature of a sensor can be measured, represented, and
stored are captured in these mappings.

In OBSSDI the integrated data can be accessed by posing queries
over the ontology, i.e., ontological queries. These queries are hy-
brid: they refer to both streaming and static data. Evaluation of
such queries in OBSSDI has three stages: (i) in the enrichment
stage ontology axioms are used to expand the ontological query in
order to access as much of relevant data as possible; (ii) in the un-
folding stage the mappings are used to translate the enriched onto-
logical query into (possibly many) queries over the data; and (iii) in
the execution stage the unfolded queries are executed over the data.

The main benefit of OBSSDI is that the combination of ontolo-
gies and mappings allows to ‘hide’ the technical details of how the
data is produced, represented, and stored in data sources, and to



show only what this data is about. This allows us to formulate the
Siemens diagnostic task above using only one ontological query in-
stead of a collection of hundreds data queries that today have to be
written or configured by IT specialists. Note that this collection of
queries does not disappear: the enrichment and unfolding stages of
the evaluation by an OBSSDI system will automatically compute it
from the the high-level ontological query. Another important bene-
fit of OBSSDI is modularity and compositionality of its assets: each
mapping relates one ontological term to the data, which allows the
mappings to be constructed independently and on demand; and the
same ontological term can be used in different queries, so defin-
ing mappings for even a few terms enables the evaluation of many
different ontological queries.

OBSSDI extends existing semantic data integration solutions that
either assume that data is in (static) relational DBs, e.g [3, 6], or
streaming, e.g., [5, 17] but not of both kinds. OBSSDI also extends
existing solutions for unified processing of streaming and static se-
mantic data e.g. [7], since they assume that data is natively in the
WC3 standardised RDF semantic data format while we assume the
data to be relational and mapped to the semantic format.

Research Challenges. The benefits of OBSSDI come at a price.
The main practical challenges for OBSSDI that are not addressed
by existing Semantic Technologies include:
[C1] development of tools for semi-automatic support to construct

high quality ontologies and mappings over relational and
streaming data;

[C2] development of a query language over ontologies that com-
bines streaming and static data, and allows for efficient en-
richment and unfolding that preserves the semantics of onto-
logical queries; and

[C3] development of a backend that can optimise large numbers of
queries automatically generated via enrichment and unfold-
ing, and efficiently execute them over distributed streaming
and static data.

Construction of ontologies and mappings in OBSSDI is done inde-
pendently and prior to query formulation and processing. Never-
theless, addressing C1 is practically important since such tools can
dramatically speed up deployment and maintenance (e.g., adjust-
ment to new query requirements) of OBSSDI systems. Address-
ing C2 is crucial since, to the best of our knowledge, no dedicated
query language for hybrid semantic queries has the required prop-
erties. Addressing C3 is vital to ensure that OBSSDI queries are
executable in reasonable time. Note that C3 is not trivial since even
in the context where the data is only static and not distributed, query
execution without dedicated optimisation techniques performs poor-
ly since the queries that are automatically computed after enrich-
ment and unfolding can be very inefficient, e.g., they may contain
many redundant joins and unions [6].

Our Contributions. Besides proposing OBSSDI, we addressed
the challenges C1-C3 and implemented our solutions in the OP-
TIQUE [11] system that has been successfully applied in several
industrial contexts [12, 10, 2]. In order to address C1, we devel-
oped BOOTOX [9, 4], a system for “bootstrapping” OBSSDI as-
sets by extracting, ontologies and mappings from static and stream-
ing relational schema and data. In order to address C2, we intro-
duced STARQL [19], a query language that allows for semantic
queries over both streaming and static data. STARQL queries
are expressed over OWL 2 QL ontologies, which are mapped to
the underlying data via global-as-view mappings [8]. STARQL
queries admit polynomial-time enrichment and can be unfolded
into SQL(+) queries, i.e. SQL queries enhanced with operators for

stream handling. Finally, in order to address C3, we introduced EX-
ASTREAM [15, 18], a highly optimised engine capable of handling
complex hybrid queries in real time. EXASTREAM supports paral-
lel query execution and its Infrastructure as a Service architecture
enables us to elastically scale the system to support user-demand in
complex diagnostic scenarios. EXASTREAM incorporates several
query optimisations such as adaptive main-memory indexing of
stream measurements and native User Defined Functions that per-
mit a user to express complex operators in a concise way. See Sec-
tion 2 for more details on OPTIQUE solutions for C1-C3 challenges.

Demo Overview. Attendees will see how OPTIQUE simplifies
diagnostics for Siemens: they will see how to set and monitor con-
tinuous diagnostic tasks as STARQL queries, how EXASTREAM
can handle more than a thousand complex diagnostic tasks, and
how to deploy OPTIQUE over Siemens data using BOOTOX. See
Section 3 for more details on demo scenarios.

2. OPTIQUE SYSTEM
OPTIQUE is an integrated system that consist of multiple com-

ponents to support OBSSDI end-to-end [11, 13]. For IT special-
ists OPTIQUE offers support for the whole lifecycle of ontologies
and mappings: semi-automatic bootstrapping from relational data
sources, importing of existing ontologies, semi-automatic quality
verification and optimisation, cataloging, manual definition and edit-
ing of mappings. For end-users OPTIQUE offers tools for query
formulation support, query cataloging, answer monitoring, as well
as integration with GIS systems. Query evaluation is done via OP-
TIQUE’s query enrichment, unfolding, and execution backends that
allow to execute up to thousands complex ontological queries in
highly distributed environments. In this section we give some de-
tails of three OPTIQUE components that address the C1-C3 chal-
lenges above.

Deployment Support. Our BOOTOX component extracts W3C
standardised OWL 2 ontologies and R2RML mappings from rela-
tional streaming and static data. Consider, e.g., a class Turbine; a
mapping for it is an expression: Turbine(f(~x)) ← ∃~y SQL(~x, ~y),
that can be seen as a view definition, where SQL(~x, ~y) is an SQL
query, ~x are its output variables, ~y are its variables that are projected
out and f is a function that converts tuples returned by SQL into
identifiers of objects populating the class Turbine. Intuitively, map-
ping bootstrapping of BOOTOX boils down to discovery of ‘mean-
ingful’ queries ∃~y SQL(~x, ~y) over the input data sources that would
correspond to either a given element of the ontological vocabulary,
e.g., the class Turbine or attribute temperature-of-sensor, or to a
new ontological term. BOOTOX employs several novel schema-
and data-driven query discovery techniques. E.g., BOOTOX can
map two tables like Turbine and Country into classes by project-
ing them on primary keys, and the attribute locatedIn of Turbine
into an object property between these two classes if there is either
an explicit or implicit foreign key between Turbine and Country.
For more complex mappings, BOOTOX requires users to provide a
set of examples of entities from the class, e.g., Turbine, where each
example is a set of keywords, e.g., {albatros, gas, 2008}. Then the
system turns these keywords into SQL queries by exploiting graph-
based techniques similar to [16] for keyword-based query answer-
ing over DBs. Moreover, BOOTOX also allows us to incorporate
third party OWL 2 ontologies in an existing OPTIQUE’s deploy-
ment using ontology alignment techniques.

The ontological terms bootstrapped by means of BOOTOX pro-
vide the vocabulary for the formulation of STARQL ontological
queries and the bootstrapped mappings. In the following we will
discuss STARQL queries and how we process them.



CREATE STREAM  Str_out AS 
CONSTRUCT      GRAPH NOW { ?c2 rdf:type :MonInc }  
FROM           STREAM Str_Msmt [NOW-"PT10S"^^xsd:duration, NOW]-> 
                               "PT1S"^^xsd:duration, 
               STATIC DATA sie:Static, 
               ONTOLOGY sie:Ontology 
USING          PULSE WITH START = "00:10:00CET", FREQUENCY = "1S" 
WHERE          {?c1 a sie:Assembly. ?c2 a sie:Sensor.  
               ?c1 sie:inAssembly ?c2.} 
SEQUENCE BY    StandardSequencing AS seq 
HAVING         MONOTONIC.HAVING(seq, ?c2, sie:hasValue) 

CREATE AGGREGATE MONOTONIC.HAVING ($seq, $var, $attr) AS 
       HAVING EXISTS ?k IN $seq: GRAPH ?k {$var sie:showsFault "true"}  
       AND FORALL ?i, ?j  IN $seq:  
           IF ( ?i < ?j < ?k  AND GRAPH ?i {$var $attr ?x}  
           AND GRAPH ?j {$var $attr ?y}) THEN ?x < ?y 

Figure 1: An example diagnostic task in STARQL, where the
prefix sie stands for the URI of the Siemens ontology

Diagnostic Queries. In order to express diagnostic tasks we
developed a query language STARQL [19] that allows us to per-
form complex semantic queries blending streaming with static data.

The syntax of STARQL extends so-called basic graph patterns
of W3C standardised SPARQL query language for RDF databases.
STARQL queries can express basic graph patterns, and typical
mathematical, statistical, and event pattern features needed in real-
time diagnostic scenarios. Moreover, STARQL queries can be nes-
ted, in the sense that the result of one query may be used in the con-
struction of another query. STARQL has a formal semantics that
combines open and closed-world reasoning and extends snapshot
semantics for window operators [1] with sequencing semantics that
can handle integrity constraints such as functionality assertions.

Due to the space limitation we cannot present STARQL in de-
tails. Instead, we will illustrate its main features on the follow-
ing example diagnostic task: Detect a real-time fault in a tur-
bine caused by a temperature increase within 10 seconds. This
task can be expressed in STARQL over the Siemens ontology [10]
as in Fig. 1 and it requires to combine streaming and static data.
An output stream S_out is defined by the following language
constructs: The CONSTRUCT specifies the format of the output
stream, here instantiated by RDF triples asserting that there was
a monotonic increase. The FROM clause specifies the resources on
which the query is evaluated: the ONTOLOGY, STATIC DATA,
and input STREAM(s), for which a window operator is specified
with window range (here 10 sec) and with slide (here 1 sec). The
PULSE declaration specifies the output frequency. In the WHERE
clause, bindings for sensors (attached to the assembly structure of
the turbine) are chosen. For every binding, the relevant condition
of the diagnostic task is tested on the window contents. Here this
condition is abbreviated by MONOTONIC.HAVING(seq, ?c,
sie:hasValue) using a macro that is defined at the bottom of
Fig. 1 in an AGGREGATE declaration. In words, the conditions asks
whether there is some state ?k in the window s.t. the sensor shows
a failure message at ?k and s.t. for all states before ?k the attribute
value ?attr (in the example instantiated by sie:hasValue) is
monotonically increasing.

STARQL has favourable computational properties [19]: despite
its expressivity, answering STARQL queries is efficient since they
can be efficiently enriched and then unfolded into efficient rela-
tional stream queries. STARQL query enrichment is polynomial-
time in the size of the input ontology if the ontology is expressed
in the OWL 2 QL ontology language and the queries are essentially
conjunctive with value comparison and aggregates. STARQL un-
folding is linear-time in the size of both mappings and query and
enriched STARQL queries can be unfolded into relational stream
queries. We developed a dedicated STARQL2SQL(+) translator
that unfolds STARQL queries to SQL(+) queries, i.e. SQL queries
enhanced with the essential operators for stream handling.

Figure 2: Distributed Stream Engine Architecture

Streaming and Static Relational Data Processing. Re-
lational queries produced by the STARQL2SQL(+) translation,
are handled by EXASTREAM, OPTIQUE’s high-throughput distri-
buted Data Stream Management System (DSMS). The EXASTREAM
DSMS is embedded in EXAREME, a system for elastic large-scale
dataflow processing in the cloud [18, 15] that is publicly available
as an open source project under the MIT License. In the following,
we present some key aspects of EXASTREAM.

EXASTREAM is built as a streaming extension of the SQLite
DBMS, taking advantage of existing Database Management tech-
nologies and optimisations. It provides a declarative language,
namely SQL(+), for querying data streams and relations that con-
form to the CQL semantics [1]. In contrast to other DSMS, the user
does not need to consider low-level details of each query execution.
Instead, the system’s query planner is responsible for choosing an
optimal plan depending on the query, the available stream/static
data sources, and the execution environment.

EXASTREAM’s optimizer makes it possible to process SQL(+)

queries that blend streaming with static data. This has proven par-
ticularly useful in the Siemens use case since it allows us to com-
bine streaming attributes (such as temperature measurements of a
turbine) with metadata that remain invariant in time (such as the
model or structure of a turbine) as well as archived stream data
(such as past sensor readings, temperature measurements, etc.).
Static relational tables may be stored in our system, or, they may
be federated from external data-sources. Moreover, EXASTREAM
allows defining database schemata on top of streaming and static
data. This gives a wide range of opportunities for applying Seman-
tic Web technologies and optimisations, e.g., bootstrapping tech-
niques, that rely on these features.

EXASTREAM supports parallelism by distributing processing ac-
ross different nodes in a distributed environment. Its architecture
is shown in Figure 2. Queries are registered through the Asyn-
chronous Gateway Server. Each registered query passes through
the EXAREME parser and then is fed to the Scheduler module. The
Scheduler places stream and relational operators on worker nodes
based on the node’s load. These operators are executed by a Stream
Engine instance running on each node.

The EXASTREAM system natively supports User Defined Func-
tions (UDFs) with arbitrary user code. The engine blends the exe-
cution of UDFs together with relational operators using JIT tracing
compilation techniques. This greatly speeds up the execution as
it reduces context switches and, most importantly, only the rele-
vant execution traces are used, allowing the engine to perform op-
timizations at runtime that are not possible when the query is pre-
compiled. UDFs allow us to express very complex dataflows us-
ing simple primitives. For OPTIQUE we used UDFs to implement
communication with external sources, window partitioning on data
streams, and data mining algorithms such as the Locality-Sensitive
Hashing technique [14] for computing the correlation between val-
ues of multiple streams.



Figure 3: OPTIQUE screenshots

Whenever SQL abstractions are not sufficient (or efficient) for
complex stream processing scenarios, we use standard SQL to com-
bine data and process them with UDFs. Two main operators, imple-
mented as UDFs, that incorporate the algorithmic logic for trans-
forming SQLite into a DSMS are timeSlidingWindow and wCache:
• timeSlidingWindow groups tuples from the same time win-

dow and associates them with a unique window id,
• wCache acts as an index for answering efficiently equality

constraints on the time column when processing infinite stre-
ams. The time column may be the window identifier pro-
duced by the timeSlidingWindow operator. WCache will then
produce results to multiple queries accessing different streams.

The purpose of these UDFs is to perform the STARQL2SQL(+)

translation, while they remain hidden from OPTIQUE’s users.
In order to enable efficient processing of data streams of very

high velocity we have implemented a number of optimisations in
the stream processing engine. An optimisation that will be pre-
sented in the demo is adaptive indexing. With this technique EX-
ASTREAM collects statistics during query execution and, adaptively,
decides to build main-memory indexes on batches of cached stream
tuples. These statistics are then used to expedite query processing
during a complex operation (as in a join).

3. DEMONSTRATION SCENARIOS
We will demo the benefits of OPTIQUE on a real-world scenario

from Siemens. In Figure 3 we presented some OPTIQUE screen-
shots about the deployment module and monitoring dashboards.

For the demonstration purpose we selected 20 diagnostic tasks
typical for Siemens service centres and expressed these tasks in
STARQL. An example diagnostic task is to calculate the Pearson
correlation coefficient between turbine data streams. Then, we pre-
pared a demo data set of streaming and static data from 950 turbines
in the time from 2002 to 2011. This data is anonymised in a way
that preserves the patterns needed for demo diagnostic tasks. Dur-
ing the demo we will ‘play’ the streaming data and thus emulate
real time streams. Then, we distributed the demo-data in several
installations with different number of nodes (VMs) ranging from 1
to 128, where each node has 2 processors and 4GB of main mem-
ory. To demonstrate diagnostics results we prepared a dedicated
monitoring dashboard for each diagnostic task in the catalog. Dash-
boards show diagnostics results in real time, as well as statistics on
streaming answers, relevant turbines, and other information that is
typically required by the service engineers at Siemens. Finally, we
deployed OPTIQUE over the Siemens data by bootstrapping ontolo-
gies and mappings and then manually post-processing and extend-
ing them so that they reach the required quality and contain neces-
sary terms and mappings to cover 20 Siemens diagnostic tasks.

During the demo OPTIQUE will be available in three scenarios:
[S1] Diagnostics with our deployment: The attendees will be able

to query our preconfigured Siemens deployment using diag-
nostic tasks from from the Siemens catalog and using their
own STARQL queries, i.e., they will be able to create diag-
nostic tasks as parametrised continuous queries and register
concrete instances of these tasks over specific data streams.

[S2] Performance showcase of our deployment: the attendees will
be able to run various tests over our deployment using one
of 128 preconfigured Siemens distributed environments and
one of 10 test sets of queries. While running the tests they
will monitor the throughput and progress of parallel query
execution processes.

[S3] Diagnostics with user’s deployment: the attendees will be
able to deploy OPTIQUE over the Siemens data by bootstrap-
ping ontologies and mappings, saving them, and observing
and possibly improving them in dedicated editors. Then, they
will query their deployed instance with diagnostic tasks from
the Siemens catalog or their own STARQL queries.
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