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ABSTRACT

Real-time processing of data coming from multiple heterogeneous
data streams and static databases is a typical task in many industrial
scenarios such as diagnostics of large machines. A complex diag-
nostic task may require a collection of up to hundreds of queries
over such data. Although many of these queries retrieve data of the
same kind, such as temperature measurements, they access struc-
turally different data sources. In this work, we show how Seman-
tic Technologies implemented in our system OPTIQUE can sim-
plify such complex diagnostics by providing an abstraction layer—
ontology—that integrates heterogeneous data. In a nutshell, OP-
TIQUE allows complex diagnostic tasks to be expressed with just
a few high-level semantic queries, which can be easily formulated
with our visual query formulation system. OPTIQUE can then auto-
matically enrich these queries, translate them into a large collection
of low-level data queries, and finally optimise and efficiently exe-
cute the collection in a heavily distributed environment.
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1. INTRODUCTION

Motivation. Siemens runs service centres dedicated to diagnos-
tics of thousands of power-generation appliances across the globe.
One typical task for these centres is to detect in real-time poten-
tial failure events caused by, e.g., an abnormal temperature and
pressure increase. Such tasks require simultaneous processing of
(i) sequences of digitally encoded coherent signals produced and
transmitted from thousands of gas and steam turbines, generators,
and compressors installed in power plants, and (ii) static data that
include the structure of relevant equipment, history of its exploita-
tion and repairs, and even weather conditions. These data are scat-

*This paper extends our earlier accepted demo [4] with a more de-
tailed demo scenario and the STREAMV QS system.
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tered across a large number of heterogeneous data streams in addi-
tion to static DBs with hundreds of TBs of data.

Even for a single diagnostic task, such as checking if a given
turbine might develop a fault, Siemens engineers have to analyse
streams with temperature and other measurements from up to 2, 000
sensors installed in different parts of the turbine, analyse historical
temperature data, compute temperature patterns, compare them to
patterns in other turbines, compare weather conditions, etc. This
requires to pose a collection of hundreds of queries, the majority of
which are semantically the same (they ask about temperature), but
syntactically different (they are over different schemata). Formulat-
ing and executing so many queries, and then assembling the com-
puted answers, takes up to 80% of the overall diagnostic time [8].

Our Proposal. In order to streamline the diagnostic process at
Siemens, we propose a data integration approach based on Se-
mantic Technologies. In this paper we will refer to our approach
as Ontology-Based Stream-Static Data Integration (OBSSDI). It
follows the classical data integration paradigm that requires the
creation of a common ‘global’ schema that consolidates ‘local’
schemata of the integrated data sources, and mappings that define
how the local and global schemata are related [3]. In OBSSDI the
global schema is an ontology: a formal conceptualisation of the do-
main of interest that consists of a vocabulary, i.e., names of classes,
attributes and binary relations, and axioms over the terms from the
vocabulary that, e.g., assign attributes of classes, define relation-
ships between classes, compose classes, class hierarchies, etc. OB-
SSDI mappings relate each ontological term to a set of queries over
the underlying data. For example, the generic ontology attribute
temperature-of-sensor is mapped to all specific data and procedures
that return temperature readings from sensors in dozens of differ-
ent turbines and DBs storing historical data, thus, all particularities
and varieties of how the temperature of a sensor can be measured,
represented and stored are captured in these mappings. In OBSSDI
the integrated data can be accessed by posing queries over the on-
tology, i.e., ontological queries. These queries are hybrid: they
refer to both streaming and static data. Evaluation of an ontologi-
cal query in OBSSDI has three stages: (i) in the enrichment stage
ontology axioms are used to expand the ontological query in order
to access as much of relevant data as possible; (ii) in the unfolding
stage the mappings are used to translate the enriched ontological
query into (possibly many) queries over the data; and (iii) in the ex-
ecution stage the unfolded data queries are executed over the data.

Our Contributions. We developed a system OPTIQUE that im-

plements OBSSDI and has the following novel components:

(C1) Semi-automatic support to construct high quality ontologies
and mappings over relational and streaming data.

(C2) Query language over ontologies that combines streaming and
static data, and allows for efficient enrichment and unfolding
that preserves the semantics of ontological queries.



(C3) End-user oriented query formulation support to construct con-
tinuos ontological queries.

(C4) Backend for optimising large numbers of queries automati-
cally generated via enrichment and unfolding, and efficiently
execute them over distributed streaming and static data.

The component C1 is practically important since such support can

dramatically speed up deployment and maintenance (e.g., adjust-

ment to new query requirements) of OBSSDI systems. The com-
ponent C2 is crucial since, to the best of our knowledge, no dedi-
cated query language for hybrid semantic queries has the required
properties. The component C3 is essential since it allows for fast
and easy data access for non-experts to state-of-the-art technolo-
gies. The component C4 is vital since even in the context where
the data is only static and not distributed, query execution with-
out dedicated optimisation techniques performs poorly since the
queries that are automatically computed after enrichment and un-
folding can be very inefficient, e.g., they may contain many redun-
dant joins and unions [2]. See Section 2 for more details on the
OPTIQUE components.

Demo Overview. Attendees will see how OPTIQUE simplifies
diagnostics for Siemens: how to set and monitor continuous diag-
nostic tasks, how the system can handle more than a thousand com-
plex diagnostic tasks, and how to deploy OPTIQUE over Siemens
data. See Section 3 for more details on demo scenarios.

2. OPTIQUE SYSTEM

OPTIQUE is an integrated system that consist of multiple com-
ponents to support OBSSDI end-to-end [7, 9, 10]. For IT special-
ists OPTIQUE offers support for the whole lifecycle of ontologies
and mappings: semi-automatic bootstrapping from relational data
sources, importing of existing ontologies, semi-automatic quality
verification and optimisation, cataloging, manual definition and edit-
ing of mappings. For end-users OPTIQUE offers tools for query
formulation support, query cataloging, answer monitoring, as well
as integration with GIS systems. Query evaluation is done via OP-
TIQUE’s query enrichment, unfolding, and execution backends that
allow to execute up to thousands complex ontological queries in
highly distributed environments. We now give some details of the
C1-C4 OPTIQUE components.

Deployment Support. In order to support OPTIQUE’s deploy-
ment we developed a BOOTOX [6, 13] system for “bootstrapping”
(i.e., extracting) W3C standardised OWL 2 ontologies and R2ZRML
mappings from static and streaming relational schema and data.
Consider, e.g., a class Turbine; a mapping for it is an expression
of the form: Turbine(f(Z)) < 3y SQL(Z, %), that can be seen as
a view definition, where SQL(Z, %) is an SQL query, & are its out-
put variables, ¥ are its variables that are projected out and f is a
function that converts tuples returned by SQL into identifiers of ob-
jects populating the class Turbine. Intuitively, mapping bootstrap-
ping of BOOTOX boils down to discovery of ‘meaningful’ queries
3y SQL(Z, ¥) over the input data sources that would correspond to
either a given element of the ontological vocabulary, e.g., the class
Turbine or attribute temperature-of-sensor, or to a new ontological
term. BOOTOX employs several novel schema- and data-driven
query discovery techniques. The ontological terms bootstrapped
by with BOOTOX provide the vocabulary for the formulation of
STARQL ontological queries. We now discuss STARQL queries
and how we process them.

Diagnostic Queries. In order to formulate diagnostic tasks as
semantic queries that blend streaming with static data, we devel-
oped a query language STARQL [12]. The syntax of STARQL ex-
tends so-called basic graph patterns of W3C standardised SPARQL
query language for RDF databases. STARQL queries can ex-
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press basic graph patterns, and typical mathematical, statistical,
and event pattern features needed in real-time diagnostic scenar-
ios. Moreover, STARQL queries can be nested, in the sense that
the result of one query may be used in the construction of another
query. STARQL has a formal semantics that combines open and
closed-world reasoning and extends snapshot semantics for win-
dow operators [1] with sequencing semantics that can handle in-
tegrity constraints such as functionality assertions.

STARQL has favourable computational properties [12]: despite
its expressivity, answering STARQL queries is efficient since they
can be efficiently enriched and then unfolded into efficient rela-
tional stream queries. STARQL query enrichment is polynomial-
time in the size of the input ontology if the ontology is expressed
in the OWL 2 QL ontology language and the queries are essentially
conjunctive with value comparison and aggregates. STARQL as-
sumes global-as-view mappings [3] of ontological terms to under-
lying data and thus unfolding of STARQL queries is linear-time
in the size of both mappings and query and enriched STARQL
queries can be unfolded into relational stream queries. We de-
veloped a dedicated STARQL2SQL(+) translator that unfolds
STARQL queries to SQL™ queries, i.e. SQL queries enhanced
with the essential operators for stream handling.

Streaming and Static Relational Data Processing. Re-
lational queries produced by the STARQL2SQL™) translation,
are handled by EXASTREAM, OPTIQUE’s high-throughput distri-
buted Data Stream Management System (DSMS). The EXASTREAM
DSMS is embedded in EXAREME, a system for elastic large-scale
dataflow processing in the cloud [11, 16]. In the following, we
present some key aspects of EXASTREAM.

EXASTREAM is built as a streaming extension of the SQLite
DBMS, taking advantage of existing Database Management tech-
nologies and optimisations such as query planners. It provides a
declarative language, namely SQL™), for querying data streams
and relations that conform to the CQL semantics [1]. EXASTREAM
natively supports User Defined Functions (UDFs) with arbitrary
user code. The engine blends the execution of UDFs together with
relational operators using JIT tracing compilation techniques speed-
ing up the execution time. UDFs allow to express very complex
dataflows using simple primitives. For OPTIQUE we used UDFs
to implement communication with external sources, window parti-
tioning on data streams, data mining algorithms such as the Locality-
Sensitive Hashing technique [5] for computing the correlation be-
tween values of multiple streams. More importantly, the main oper-
ators that incorporate the algorithmic logic for transforming SQLite
into a DSMS are implemented as UDFs.

In order to enable efficient processing of data streams of very
high velocity we have implemented a number of optimisations in
the stream processing engine, such as adaptive indexing. With this
technique EXASTREAM collects statistics during query execution
and, adaptively, decides to build main-memory indexes on batches
of cached stream tuples in order to expedite query processing.

Visual Query System. Most diagnostic engineers cannot be ex-
pected to learn a formal query language like STARQL. OPTIQUE
therefore contains a visual query system, STREAMVQS (a variant
of OPTIQUEVQS [14, 15]), that makes it easy for users without IT
background to formulate the most commonly needed queries. Due
to usability considerations STREAMV QS supports only the essen-
tial, i.e., the most frequently used fragment of STARQL that cor-
responds to tree-shaped conjunctive queries with aggregates and
stream related constructors such as window width and slide param-
eters. STREAMV QS allows domain experts to construct and regis-
ter continuous queries by combining query-by-navigation and facet
refinement over multiple representation paradigms including range
and gradient checks and spikes.



3. DEMONSTRATION SCENARIOS

Demo Overview. For the demonstration purpose we selected
20 diagnostic tasks typical for Siemens service centres and ex-
pressed these tasks in STARQL and STREAMVQS. Then, we pre-
pared a demo data set of streaming and static data from 950 gas
and steam turbines in the time from 2002 to 2011. This data is
anonymised in a way that preserves the patterns needed for demo
diagnostic tasks. During the demo we will ‘play’ the streaming
data and thus emulate real time streams. Then, we distributed the
demo-data in several installations with different number of nodes
(VMs) ranging from 1 to 128, where each node has 2 processors
and 4GB of main memory. To demonstrate diagnostics results we
prepared a dedicated monitoring dashboard for each diagnostic task
in the catalog. Dashboards show diagnostics results in real time, as
well as statistics on streaming answers, relevant turbines, and other
information that is typically required by the service engineers at
Siemens . Finally, we deployed OPTIQUE over the Siemens data
by bootstrapping ontologies and mappings and then manually post-
processing and extending them so that they reach the required qual-
ity and contain necessary terms and mappings to cover 20 Siemens
diagnostic tasks.
During the demo OPTIQUE will be available in three scenarios:

[S1] Diagnostics with user’s deployment: the attendees will be
able to deploy OPTIQUE over the Siemens data by bootstrap-
ping ontologies and mappings, saving them, and observing
and possibly improving them in dedicated editors. Then,
they will query their deployed instance with diagnostic tasks
either from the Siemens catalog or their own, i.e., they will be
able to formulate such tasks in STREAMV QS as parametrised
continuous queries and register concrete instances of these
tasks over specific data streams.
Diagnostics with our deployment: The attendees will be able
to query our preconfigured (high quality) Siemens deploy-
ment using diagnostic tasks either from the Siemens catalog
and their own.

Performance showcase of our deployment: the attendees will
be able to run various tests over our deployment using one
of 128 preconfigured Siemens distributed environments and
one of 10 test sets of queries. While running the tests they
will monitor the throughput and progress of parallel query
execution processes.

[S2]

[S3]

Use Case. We now illustrate the three scenarios above on a use
case inspired by Siemens. Assume that the relational data about
turbines that we want to access via an ontology is stored in two
alternative relational schemata:

Sensors Measurements

d Component_Id Type_Id

fbine_Components
Id Turbine_Id Type_Id

Sensor_Id Time Value

12 1 3 134 12 3 134 426°C
L -
Turbine,Compﬂ \easuremenls
Id Turbine_Id Type_Id Sensor_Id Sensor_Type Senso? Id Time Value
12 1 3 134 3 134 .. 799°F

Schema 1 contains the following tables and their attributes:

(i) Turbine_Components: This table is used to store static
information about turbines’ components and some relevant
metadata. The attribute Id is the component’s unique identi-
fier, the attribute Turbine_ Id identifies the turbine to which
this component belongs to, and the attribute Type_ Id iden-
tifies the components type, for example a component of type
3 is a burner tip.

Sensors: This table is used to store static information about
sensors. The attribute Id is the sensor’s unique identifier, the
attribute Component_Id is used to determine the compo-

(ii)
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Figure 1: Monitoring dashboards

nent that uses this sensor, and the attribute Type_Id is used
to identify sensor’s type, i.e. a sensor of type 1 measures tem-
perature.
Measurements: This table is used to store archived stream-
ing sensor readings. The attribute Sensor_Id identifies the
sensor that took the measurement, the attribute Time contains
the temporal index of each measurement, and the attribute
Value the actual value that was assessed.
Schema 2 is designed to store the same information as Schema 1
with the difference that Turbine_Components and Sensors
of Schema 1 are merged into one table Turbine_Components.
Also the temperature in Measurements is measured in Fahren-
heit and not Celsius degrees. Note that the tables Measurements
of Schemata 1 and 2 correspond to the archived parts of streams,
while their live parts can be accessed as the EXASTREAM’s virtual
table Live_Measurements. Asarule of thumb, we will assume
that the prefix ‘Live_’ is used to differentiate between the live and
the archived part of each stream and that the live and archived part
are described by identical attributes.

Consider a Siemens inspired diagnostics task:

(iii)

‘Detect a real-time fault in a burner tip turbine compo-
nent caused by a temperature increase within 10 sec’.

Finally, consider fragments of Siemens ontology [8]: two classes
sie:BurnerTipand sie:TemperatureSensor,
as well as an object and a data property:
sie:monitoredBy and sie:hasValue,

where the prefix sie stands for the URI of the Siemens ontology.
We will now illustrate the three scenarios above using the schemata,
diagnostic task and the ontology above.

Scenario S1: For this scenario, by using BOOTOX the attendees
will automatically create their ontologies and mappings from the
schemata above. Then, they will modify them appropriately in
order to provide homogeneous access on the two different data
sources. Thus, differences between the two schemata will be hid-
den by the ontological terms and OBSSDI mappings. In particular,
the result of bootstrapping will contain the following mapping:

sie : TemperatureSensor(Id) <
SELECT Id FROM Sensors WHERE Type,, = 3 UNION
SELECT Id FROM Turbine_Components WHERE Sensor_Type = 3

Scenario S2: For this scenario, we will explain how the example
diagnostics task above can be expressed over the Siemens ontol-
ogy whose fragments we presented earlier. In Figure 2 (left) the
task is expressed as STARQL, in Figure 2 (right) it is visualised
in STREAMVQS, and in Figure 1 there are results of task’s evalua-
tion visualised in OPTIQUE dashboards. An output stream S_out



/CREATE STREAM Str_out AS \
[ CONSTRUCT GRAPH NOW { ?c2 rdf:type :MonInc }
FROM STREAM Str_Msmt [NOW-"PT10S""xsd:duration, NOW]->
"PT1S""xsd:duration,
STATIC DATA <http://www.optique-project.eu/siemens/

Static>,

ONTOLOGY <http://www.optique-project.eu/siemens/
Ontology>
USING PULSE WITH START = "00:10:00CET", FREQUENCY = "1S"
WHERE {?cl a sie:BurnerTip. ?c2 a sie:TemperatureSensor

?cl sie:monitoredBy ?c2.}
\ " SEQUENCE BY StandardSequencing AS seq
ﬂAVING MONOTONIC.HAVING(seq, ?c2, sie:hasValue) ///

~

/tREATE AGGREGATE MONOTONIC.HAVING ($seq, $var, $attr) AS

HAVING EXISTS ?k IN $seq: GRAPH ?k {$var sie:showsFault "true"}
AND FORALL ?i, ?j 1IN $seq:
IF ( ?i < ?j < ?k AND GRAPH ?i {$var S$attr ?x}
N AND GRAPH ?j {$var $attr ?y}) THEN ?x < ?y Y,

Figure 2: Example monitoring task in STARQL (on the left) and STREAMV QS (on the right)

is defined by the following language constructs: The CONSTRUCT 4. REFERENCES
specifies the format of the output stream, here instantiated by RDF
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Here this condition is abbreviated by MONOTONIC.HAVING (?c, Integration. Morgan Kaufmann, 2012.
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Y. Theodoridis. In-network approximate computation of out-

Scenario S3: For this scenario, the corresponding STARQL queries liers with quality guarantees. In: Information Systems 38.8
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