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Abstract—Computer network attackers chain system exploits
together to achieve their goals, which range from stealing data to
corrupting systems. Attack graphs represent these paths through
the network, and provide the basis for calculating many security
metrics. In this paper, we seek to extend graph-based analysis
from the consideration of single graphs to the consideration of
multiple. By performing analysis on many graphs at once, we
consider the range of threats faced and avoid the downsides of
several current techniques, which focus purely on known and
expected attackers. In particular, we propose a novel method
of generating a set of attack graphs, parametrised by attacker
profiles. Our technique would enable security analysts to consider
the security of their network from the perspective of many
attackers simultaneously. This contrasts with existing techniques,
which typically analyse attacker-independent graphs or graphs
constructed around predefined attacker profiles. We analyse the
resulting set of graphs first through deterministic methods and
then using a probability measure.

Keywords–Attack Graphs; Attacker Profiling; Intrusion Detec-
tion.

I. INTRODUCTION
Attack graphs are a useful tool for network security

analysts, facilitating quantitative study of computer network
security. The graph acts as a map of the vulnerabilities in
the network, revealing how attackers can combine exploits to
achieve their goals. Attack graphs are the basis for calculating
many security metrics which provide the analyst with practical
information [5].

There are many approaches to attack graphs, and one of the
most relevant to our work is presented by Dantu et al., who
examine attack paths using three attacker profiles [1]. Their
approach examines the risk posed to assets from attackers
matching each profile, which represent the network’s most
significant adversaries. Zhang et al. use modelling artefacts
to capture relationships between exploits, in a manner similar
to our method’s capabilities [9].

Another area of relevance to our work is metrics on graphs.
Wang et al. emphasise the importance of careful composition
of individual metrics, and demonstrate that poor interpretation
of metrics can decrease security [8]. Homer et al. present a
probabilistic method to quantify risk on attack graphs [3].
They observe that assuming attack paths have independent
probabilities will most likely not lead to the correct conclusion.
They also claim precise that estimates are not required to take
action; it is sufficient to be able to class vulnerabilities as “high
risk” or “low risk” if, for example, this facilitates patching of
“high risk” vulnerabilities first.

The contribution of this paper is towards expanding pro-
filing techniques: generating complete sets of profiles instead
of choosing them individually; defining a probability measure
to enable a risk-centric analysis; and making these large

sets practical by aggregating metrics across them. This paper
represents a work-in-progress, and challenges with the current
method and potential future work are discussed at the end.

The remainder of this paper is structured as follows: in
Section II, we provide context for our approach. Section III
introduces our technique. In Section IV, we discuss applica-
tions, in particular looking at ways our method can be applied
deterministically and probabilistically to provide actionable
information to analysts. Finally, in Section V, we reflect on our
method, providing a summary of the benefits and challenges.

II. CONTEXT
The precise definition of attack graph varies between

authors. With this in mind, our technique aims to avoid being
prescriptive – it can be adapted to any typical definition (e.g.
[4][7]). For clarity, we choose a definition of attack graph
that will be used throughout the paper. Specifically, an attack
graph, G = (V,E), is a graph consisting of a vertex set V
and a (directed) edge multiset E. It may be a multigraph
(with multiple edges between the same vertex pair). A simple
example graph is presented in Figure 1.

Figure 1. An example attack graph; the initial state is a diamond, the
attacker’s goal is a red star.

Vertices correspond to states of the network and attacker,
and edges correspond to actions that the attacker can take. The
attacker seeks to move the network between states, starting
from the initial state and potentially reaching the goal. The
presence of an edge indicates a possible action that an attacker
could take, but not necessarily an action that they will take.
We do not have a strict definition of state – but these typically
reflect both the condition of the network and the attacker’s
access to it. A state might be, for example, that the attacker
has root access to a given server, or it might be that a piece
of software has been crashed by the attacker.

A. Attacker Profiling
Attacker profiling brings knowledge of the attackers into

the modelling process. Network intruders have varying abilities
and resources – nation states are likely to have vastly different
capabilities to disgruntled ex-employees, who might have
subtly different capabilities to those who deface websites. As a
result, each attacker has a different set of exploits available to
them. Essentially, for each attacker we can derive an individual
attack graph, containing only the actions they can perform.
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It is impractical, however, to predict precisely the attributes
of attackers who will attack the network. Instead, attackers
are usually categorised into more general profiles. (This is not
necessarily a loss of accuracy; if an exploit requires £500 to
perform it is not important whether an attacker has £1,000
available to them or £1,000,000. It is sufficient to know that
they have more than £500, and so our attacker profile need
only contain this fact.)

Existing work uses a variety of methods to decide how
these attack profiles are created – typically focused around
contributions from experts. The aim is to focus analysis:
creating profiles to disregard unlikely exploits and give more
attention to exploits that attackers are capable of. To facilitate
this, a small number of profiles are designed: Grunske and
Joyce illustrate their method with two pre-determined profiles
[2]; Dantu et al. create three profiles based on a survey [1].
These techniques capture the risk posed by these profiles,
but with a loss of generality – it may be true that attackers
primarily fall into expected categories, but it is not certain
that every attacker will. Additionally, if the wrong profiles are
chosen then the analysis will be inaccurate as a result.

Our technique seeks to benefit from attacker profiling
without neglecting unexpected attackers. To achieve this, we
generate a profile for each possible combination of attributes.
We restrict ourselves (for the sake of practicality) to binary
facts about the attackers. This, we feel, is justified because the
impact on the resulting attack graphs is also binary – either an
exploit is possible or it is not; either an edge is present or it is
not. Using this large and complete family of profiles we aim
to have considered the network’s security from the perspective
of any possible attacker.

III. ATTACKER PARAMETRISATION
To perform our technique, we require a well-structured set

of attacker profiles, and a map from these attacker profiles
to attack graphs. With these, we will be able to move from
conclusions about individual graphs (corresponding to indi-
vidual attackers) to conclusions about the set of graphs (cor-
responding to all attackers). A well-structured set of attackers
allows us to translate observations about the resulting graphs
to observations about the underlying structure.

To achieve our method, we first define an attacker profile
as a set of capabilities. Each capability is a property which
the profile either has or does not have. Such a capability
might be “physical access”, representing attackers who can
gain physical access to the relevant hardware, or “access to X
hacking toolkit”, representing attackers who can use a specific
piece of software. From a set of n capabilities, we generate
a total of 2n attacker profiles, corresponding to each different
combination of capabilities. By defining the profiles in this
way, we have a set of profiles which is as complete as possible
– every combination of capabilities is represented, regardless of
how likely or expected they are. Some of these profiles will be
those we expect, possessing some (but not all) the capabilities.
Others will represent much less plausible attackers; one profile
has every capability, one has no capabilities at all.

To utilise the profiles, we use a base attack graph.
This is the attack graph generated through standard methods,
without of consideration of the attackers. We then augment this
graph by assigning each edge a condition on profiles. These
conditions represent the ability to perform the corresponding
attack. A condition could be “does the profile have capability

X?”, but they do not need to be simple – a complex condition
could require multiple capabilities: “does the profile have X ,
or Y and Z?”. For example, pressing a hardware reset button
on a piece of equipment would require physical access, so the
corresponding edge might have the condition “does the profile
have the physical access capability?”.

We then prune the base attack graph with respect to a
profile in order to create an attacker-profile graph. This graph
corresponds to only the attacks of which the profile is capable.
To perform the pruning, we simply remove all edges whose
conditions are not satisfied by the profile. We can create such a
graph for each possible profile (i.e., each possible combination
of capabilities). Consequently, we have converted a base attack
graph and a collection of capabilities into a complete set of
attacker-profile graphs. Each graph in this set represents how
our network appears from the perspective of an attacker with
a particular set of capabilities. This is illustrated in Figure 2.

Figure 2. The attacker-profile graphs drawn out for each profile, correspond-
ing to the example in Figure 3.

Formally, we will let C denote the set of all capabilities. An
attacker profile is then a subset of C, containing the capabilities
of the profile. An attacker-profile graph for the profile A ⊆ C
will be denoted GA. This is the graph that contains only edges
whose condition is satisfied by the profile A. We will also use
µ to denote a metric on attack graphs, so that µ(G) ∈ R, for
an attack graph G. For example, µ could be the number of
paths from the initial state to a given goal vertex.

IV. APPLICATION OF THE APPROACH
Using every possible attacker-profile graph ensures the

analysis is general. However, considering a large number of
profiles requires special techniques, as it is impractical to
individually examine each graph. Analysis of a single attacker-
profile graph may be beneficial, and standard techniques can
be applied to these. However, the key benefits of our method
will be gained when analysts are able to consider every graph
simultaneously, minimising the additional work while still
treating every attack profile separately for as much of the
process as possible. To this end, we first explore key properties
of the set that may be useful to analysts. We then investigate
the effect of defining a probability measure on the set of
capabilities, which will enable a risk-centric examination.
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Figure 3. An attack graph, each edge labelled with a single capability that
is sufficient and necessary to perform that edge. Vertex vi is labelled i.
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To illustrate the following techniques and to demonstrate
them, we will refer to the example attack graph in Figure 3,
in which each edge has been labelled with the capability from
the set {α, β, γ, δ, ε} that (alone) enables it (i.e., each edge has
the condition “does the profile have capability X?”, where X
is the label in the corresponding white circle on the graph).

A. Deterministic Analysis
Security analysts may be interested in how well their net-

work is defended against different combinations of capabilities.
Which sets of capabilities (there may be multiple) are sufficient
to reach the goal? Which capabilities are necessary? By de-
termining these, analysts can examine which capabilities they
need to concern themselves with the most. If it is discovered
that physical access is necessary to reach the goal, then they
may be well-advised to increase their protection of physical
systems. Conversely, if physical access is not necessary nor in
any of the sufficient sets then it may be that their efforts are
better focused elsewhere.

In the example, {α} is a sufficient set: an attacker with this
capability would be able to reach the goal. From a network-
defence standpoint this may be a concern is a sufficient set
– attackers need only one capability to reach the goal. This
would be of particular concern if α is a simple capability (e.g.,
access to a common piece of hacking software), but may be
of less concern if α is an unusual capability or one that can
perhaps be controlled (e.g., physical access to a server room).

This can be generalised to looking at vertices other than
the goal node. For a vertex v ∈ V (G) we can define n(v)
to be the set of necessary capabilities that an attacker must
have in order to reach the vertex v. If an attacker had been
detected (through, for example, an Intrusion Detection System)
as having reached a set of states {v1, v2, · · · vk} then it can be
inferred that they have, at least, the capability set

⋃
i∈[k] n(vi).

Subsequent decisions on how to react to the attack, or where
else the attacker might have reached, can be informed by this.
Any state for which this capability set is sufficient to access
is a target which the attacker has shown they have the ability
to reach.

Relating this again to our example above, we can see that
n(v2) = {α} (v2 is labelled simply as “2” in Figure 3).
This, together with the fact that {α} is a sufficient set for
the goal, implies that an attacker who is detected at v2 has
the capability to reach the goal. Even if the system is only
capable of detecting attackers reaching v2 and not the other
states, then a detection at v2 is a suggestion that the attacker
may have also reached the goal, as they have demonstrated the
capability to do so. This could act as an early warning when
reacting to live events – especially if an attacker demonstrates
unusual capabilities early in their intrusion.

B. Probabilistic Analysis
Many existing attack graph techniques use probability to

capture the uncertainty in predicting the attributes of attackers.
We define a probability measure, P, on the set of attack
profiles, weighting the profiles according to the likelihood that
an attacker matches them. For a profile A ⊆ C, P[{A}] is the
probability that an attacker has the capabilities in profile A
(and no other capabilities). P[{B ∪ {α} : B ∈ P(C)}] is the
probability that an attacker has, at minimum, the capability α.

For the example, we will assume that each capability has
a probability of 1

2 , and that each capability is independent of

the others. From this, we can derive the probability of each
profile – in this example, we see that each profile has the same
probability, 2−5 = 1

32 .
By assigning probabilities to profiles we capture some

dependencies between exploits. Compare the two paths to the
goal v1 → v4 → v6 → v8 and v1 → v3 → v5 → v6 →
v7 → v8. The first path consists of 3 actions (or edges) and
the second path consists of 5. If independent probabilities were
assigned directly to edges, this would imply that the probability
that an attacker can successfully perform the first path is 1

8 and
the second path is 1

32 – leading to the conclusion that the first
path is the more likely. However, by assigning probabilities
to profiles we see that in fact all the actions in the second
path are similar; an attacker who can perform one of the
attacks can perform the rest. As a result, they all require the
same capability and so the probability that an attacker can
perform the entire path is the probability that an attacker has
that capability: 1

2 . By factoring in this additional information
we reach a contradictory (but more accurate) conclusion: the
second path is, in fact, more likely despite being longer.

Using the probability measure we are able to generalise any
metric on a single attack graph to being a metric on the whole
set of attack graphs. Let µ be a metric that maps a graph to a
number, representing some property of the graph. Then we can
extend µ to the set of graphs by taking its expectation. If the
probabilities and capabilities are accurate, this gives a much
more representative value than applying the metric to the base
attack graph directly. Indeed, the base attack graph assumes
the worst-case scenario: it assumes every attacker has every
capability. By splitting the attackers into profiles and applying
the metric to each profile, we capture interactions between
different profiles and exploits. By weighting them with the
probability measure and aggregating them, we create a risk-
centric summary of the metric.

One metric we can apply to our example is the number
of paths, that is, we let µ1 be the number of paths that
exist from the initial state v1 to the goal state v8. For the
base graph, µ1(G) = 6. In contrast, E[µ1(G·)] ≈ 1.19, a
considerably lower value. This is because the vast majority of
attackers do not have every capability. By treating each profile
separately and then combining the results of the metric, we
get a much more reasonable answer – the expected number
of paths an attacker has to the goal is about 1.19. This is a
much more meaningful (and potentially reassuring) statement
than the conclusion that any attacker can choose from 6 paths
to the goal, which the base attack graph might suggest.

We can also define metrics that are not particularly useful
on individual graphs but aggregate to give useful results. For
instance, we define µ2 to be 1 if there is any path to the goal
and 0 otherwise. Unsurprisingly µ2(G) = 1, telling us that, for
the profile with every capability, there is at least one path to the
goal. On the other hand, E[µ2(G·)] ≈ 0.56, which indicates
that about 44% of attackers have no path to the goal. Such
a value might be useful when evaluating the security of two
possible network configurations.

Modelling each profile with a separate graph enables us
to look at properties which depend on the whole graph. It
may be the case that the system administrators are able to fix
some small set of exploits, but not all of them (it could be too
cost prohibitive, or impact usability too much). Attack graphs
provide an excellent basis for making this decision; the graph
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shows the consequences of each exploit and demonstrates
the impact of removing it. However, using a base attack
graph for this decision is equivalent to making your decision
solely around attackers with every capability. Through our
method, we can make this decision to target as many attackers
(weighted by probability) as possible. As a result, the exploits
removed will lead to the greatest reduction in risk.

In the example, removing the edge from v4 → v6 appears
to have the most benefit to the base attack graph. It removes
the shortest path, and can only be circumvented by the com-
paratively long route v1 → v3 → v5 → v6. The number of
paths metric supports this: removing v4 → v6 has the greatest
effect, lowering the metric from 6 to 2 – the next-best removal
only lowers the metric to 3. If we use the expected number of
paths instead, we see that removing edge v4 → v6 does lower
the metric to 0.75, an improvement on the original 1.19. But
this is not the optimal edge removal: removing v5 → v6 lowers
the expectation even further to 0.44. This is because attackers
only use edge v4 → v6 when they also have other capabilities
(a successful attack via this edge requires γ or both α and β
to reach the edge, and then α or ε to reach the goal). So its
removal has significant impact for the few attackers with many
capabilities, but little or no impact for the majority. Conversely,
removing v5 → v6 prevents the most likely attack path, and
has the greatest impact for typical attackers.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed an extension of existing attacker-

profiling techniques on attack graphs. Our method improves
on existing methods by constructing profiles from a set of
capabilities, resulting in a complete collection of profiles for
analysis, providing a more rounded consideration of attackers.

A. Contribution and Summary of Benefits
Our method has two main improvements over existing

techniques. Firstly, we model each profile with its own attack
graph, giving us a conclusion based only on attacks from
that profile. These conclusions are then aggregated to give an
overall picture of the network. In this way, we avoid conflating
attacker profiles and over- or underestimating attackers.

Secondly, we define profiles as collections of capabilities
and generate a complete set of profile. This ensures analysis is
not only about expected attackers. We use flexible definitions
of capabilities to allow analysts to model attackers in as much
(or as little) detail as required. Considering attackers in terms
of their capabilities leads to useful statements about these
capabilities. Necessary or sufficient capability sets provide in-
formation to analysts which can aid them both when designing
and evaluating networks, and when reacting to live incidents.

We avoid complex probability assignments by shifting
probabilities from edges to capabilities. In particular, we do
not require many large conditional probability tables, as in
Bayesian Attack Graphs [6]. The number of capabilities is
also much smaller than the number of edges, meaning fewer
probability assignments must be made. A typical attack graph
could have hundreds or thousands of edges [4], but could be
modelled with far fewer capabilities. By assigning probabilities
to a smaller set we make it feasible for analysts to spend more
time on each value and consider each dependency. Capability
probabilities may also be reusable between different networks
and potentially even between similar organisations. This would
result in significant reductions to the work required.

As demonstrated above, applying metrics to the base attack
graph assumes the worst-case scenario. While this evaluation
is useful, an expectation-based method gives more realistic
results, factoring in knowledge about the attacker to provide
a risk-based summary of the network. Our method allows the
extension of any metric on individual graphs, enabling use of
the substantial existing work on attack graph metrics.

B. Challenges for Future Work
Future work in this area will seek to address several

key challenges: Firstly, it is not yet clear how best to build
capability sets. These are crucial for successful application, so
a framework for finding them would be greatly beneficial. It
is expected that this process could be supported by automated
techniques, or by shareable and reusable templates.

Secondly, it is not straightforward to assign probabilities.
In any probability-based attack graph, considerable effort must
be applied to assign probabilities. This is particularly true
when dependencies between values are considered. We believe
our method alleviates this difficulty by reducing the number
of required assignments (other methods require thousands of
edges to have assigned probabilities, while our method only
requires them for capabilities). However, this is still a challenge
which could be improved with further work.

Thirdly, as our method is still at an early point, we have
not undertaken testing to validate results. We do not believe
our method will have significant computational overhead, but
it may require additional effort from experts compared to some
existing methods.
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