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ABSTRACT
Eye tracking devices have recently become increasingly pop-
ular as an interface between people and consumer-grade elec-
tronic devices. Due to the fact that human eyes are fast, re-
sponsive, and carry information unique to an individual, an-
alyzing person’s gaze is particularly attractive for effortless
biometric authentication. Unfortunately, previous propos-
als for gaze-based authentication systems either suffer from
high error rates, or require long authentication times.

We build upon the fact that some eye movements can be
reflexively and predictably triggered, and develop an interac-
tive visual stimulus for elicitation of reflexive eye movements
that supports the extraction of reliable biometric features in
a matter of seconds, without requiring any memorization or
cognitive effort on the part of the user. As an important ben-
efit, our stimulus can be made unique for every authentica-
tion attempt and thus incorporated in a challenge-response
biometric authentication system. This allows us to prevent
replay attacks, which are possibly the most applicable attack
vectors against biometric authentication.

Using a gaze tracking device, we build a prototype of our
system and perform a series of systematic user experiments
with 30 participants from the general public. We investigate
the performance and security guarantees under several dif-
ferent attack scenarios and show that our system surpasses
existing gaze-based authentication methods both in achieved
equal error rates (6.3%) and significantly lower authentica-
tion times (5 seconds).

1. INTRODUCTION
Eye tracking devices capture precise position and move-

ment of the human cornea on a millisecond scale. This in
turn allows determining tzhe exact location of one’s gaze on
a screen or on surrounding objects. Since analyzing eye be-
havior can give insight into our internal cognitive processes
and even predict conditions such as autism [24], eye track-
ers have been used in neurophysiological research for over
a century, but until recently their use in everyday life was
limited due to prohibitive equipment costs.
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However, the speed and responsiveness of eye movements
strongly motivate their use as an attractive input channel for
human-computer interaction; as a result, recent years have
brought a sharp reduction in retail prices of eye tracking de-
vices. While dedicated trackers can be purchased for as little
as $100 [1], eye tracking capabilities are also being added to
consumer products such as laptops [23], cars [34], tablets,
and mobile phones [32]. Given the diverse advantages and
applications of eye tracking, its widespread expansion into
our everyday lives is only likely to continue.

As we demonstrate in the following sections, tracking a
user’s gaze is particularly suitable for fast and low-effort
user authentication, especially in scenarios where keyboard
input is not available. Eye movements exhibit traits dis-
tinctive enough that classification algorithms (e.g., [13]) can
reliably discern among a large group of individuals. How-
ever, despite the advantages, exploiting eye movements for
user authentication remains a challenging topic. As we sum-
marize in Section 8, previous work on gaze-based authenti-
cation achieves either high error rates (e.g., EER above 15%)
or long authentication times (e.g., above 20 seconds). One
likely explanation for some of these outcomes are overly com-
plex visual stimuli that result in voluntarily triggered eye
movements which are highly dependent on a user’s current
cognitive state.

In this paper, we show how the reflexive physiological be-
havior of human eyes can be used to build fast and reli-
able biometric authentication systems. We utilize the fact
that, even though most eye movements are elicited volun-
tarily, specific reflexive movements can be actively triggered
using a simple visual stimulus. Measuring and analyzing
millisecond-scale characteristics of reflexive eye movements
provides several important benefits. Users’ eyes naturally
and spontaneously react to the shown stimulus so they do
not need to follow any instructions or memorize additional
information. As a result, elicitation of reflexive behavior
requires lower cognitive load and is very fast. This in turn
enables keeping authentication times short while at the same
time extracting large amounts of useful biometric data and
achieving low error rates.

Finally, we show a crucial advantage of exploiting re-
flexive eye movements for authentication: by employing a
challenge-response type of protocol, such systems can pro-
vide security even under a stronger adversary model than
is usually considered for biometrics. One of the obstacles
for widespread use of biometric authentication in our daily
lives is the fact that most biometrics can be captured and
replayed relatively easily. Examples include spoofing image



recognition systems with photographs from social media and
spoofing fingerprint recognition using copies of fingerprints
left behind on everyday items. If the visual stimulus can
be made unique for each authentication attempt, then the
elicited responses will accordingly be different, but still in-
clude user-specific characteristics. By always choosing a new
challenge (randomly generated stimulus) and verifying if the
response (measured eye movements) corresponds to it, our
authentication system can assert that the biometric sample
is indeed fresh. Other biometric systems have to make spe-
cial provisions to achieve a level of spoofing and replay pro-
tection. For example, sophisticated fingerprint readers mea-
sure additional attributes like temperature and moisture in
order to determine liveness. Our gaze-based authentication
system obtains these guarantees practically for free, without
requiring any other information besides the recording of a
user’s eye movements.

2. BACKGROUND ON EYE MOVEMENTS
We start with a short background of the human visual sys-

tem and necessary eye movements terminology; this allows
us to introduce main concepts that motivate our research
and guide the design of the system in the following sections.

Even when one’s gaze is firmly fixated on a single stimulus,
human eyes are never completely still. They are constantly
making hundreds of micro movements per second, which are
interlaced with more than 100,000 larger movements dur-
ing the course of one day [2]. During visual tasks, such as
search or scene perception, our eyes alternate between fix-
ations and saccades. Fixations are used to maintain the
visual focus on a single stimulus, while saccades reorient
the eye to focus the gaze on a next desired position. Sac-
cades are rapid eye movements and they are considered to
be the fastest rotational movement of any external part of
our body, reaching angular velocities of up to 900 degrees
per second, and usually lasting between 20 ms and 100 ms.
In Figure 1, fixations can be seen as areas of large numbers
of closely grouped points, while saccades consist of series of
more spread recordings that depict fairly straight paths.

When a salient change happens in our field of vision, our
eyes naturally reorient on the target, since this is a neces-
sary first step to provide information for further higher-level
cognitive processes [30]. These externally elicited saccades
happen reflexively and are considered to be an effortless neu-
ronal response, requiring very low cognitive load from the
user. After the stimulus onset, a corresponding reflexive
saccade is initiated rapidly, with usual latencies of less than
250 ms. In contrast, voluntary saccadic movements have
larger mean latencies (above 300 ms) which are additionally
influenced by different internal and external factors [41].

The analysis of eye movements has been part of medi-
cal research for more than a century since it offers valu-
able information of our cognitive and visual processing [30,
9, 3]. Keeping the goal of reliable biometric authentica-
tion in mind, we are interested in extracting and combining
multiple characteristics of human eye movements for which
there exists supporting research that they offer stable indi-
vidual differences between users. For example, Castelhano
et al. [8] examine stable individual differences in characteris-
tics of both saccades and fixations and provides support for
their stable use in biometric authentication. Saccades were
also used in [13] to enable stable authentication and iden-
tification. Furthermore, several researchers have analyzed

cher jane

lua

●●
●●●●●
●

●

●

●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●
●
●
●●

●●●●
●●

●●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
● ● ● ●●●

●●●● ● ● ● ●●●●●●●●●●●●●● ●●●●●●●●●●
●●●

●●
●●●●●●●

●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●
●●
●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●

●
●

●
●

●

●

●
●

●●
●

●
●
●
●●
●●●

●●
●●●
●●●●●●

●●●●
●●●●

●
●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●●●●●●
●●
●
●
●
●
●●●

●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●●●●●●●●●●●●●

●

●
●
●
●
●●

●●●
●●●●●●●●●●●●●●●●

●●
●
●
●●
●●
●●
●●●
●●●●●●●●●●●●●●●●● ●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●
●

●

●
●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●
●
●
●●
●●
●●●
●●
●●
●●●

●
●
●
●●●●●●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●●●●●

●●
●●●
●●●●●●●●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●

●
●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●
●●●
●●●●
●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●
●

● ●●
●

●
●

● ● ● ● ● ● ● ●●●● ●●●

●
●●●●●●●●●●●

●●
●
●●
●●●●
●●
●
●
●●●●
●●●●●●●●●
●●

●●
●●

●●
●●●●●●●●●●●●●
●●●●
●
●
●
●●●●●●●●●

●●●●●●●●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●

●●●
●●●●●●●●●●

●
●
●

●
●●●

●
●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●● ● ●

●

●

●
●

●
●

●
●●

●●●●
●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●●●●●●●

●
●

●
●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●●●●

●●
●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●
●●●●●●●● ●●●●●●

●●
●●
●●

●●●
●●
●

●

●

●
●
● ●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●●
●●●
●●●●●
●●●●●●●●●●●

●●●
●●●●●

●●●●●●●
●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●
●●●●●

●●●●●●●●●●●

●

●
●

●

●
●●

●●●●
●●●

●●●●●●●●
●●

●
●
●●●
●
●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●
●●●●●●●●●●●●●●●●●

●
●
●

●
●

●
●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●
●

●
●●
●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●
●●
●●
●●●
●●●●
●●
●●●
●●●
●●
●●●
●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●● ●●●●● ●●

●●●
●●●●●●●●

●●●●●●
●●

●●●
●●●

●●●●●●●●●
●●
●
●
●●
●●
●●
●●
●●●

●●●●●●●
●

●
●
●●●●●●●●●●

●●●
●●●●●●●●●●●●
●●●

●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●

●

●

●

●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●
●
●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●
●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●
●

●
● ●●

●
●
●
●●
●●
●●
●●

●●
●●
●●
●●
●●●●●●●●●●

●●
●●
●
●●
●●
●●●
●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●●
●●●●

●
●
●
●
●●
●●
●
●
●
●
●●
●●

●●●●●●
●
●
●●●●●●●

●●●●
●
●●●
●●●●●
●●
●●
●●
●●●●●●●●●●●●●●●●

●
●
●
●●
●●
●●
●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●
●
●

●
●
●
●
●●●●●

●
●
●●
●●
●●
●●
●●●
●●●

●●
●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●

●●
●●
●●●
●●●●●
●●●
●
●
●
●●
●●●●●●●●●●
●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●
●
●●●●●●●●
●●●

●●
●●
●●

●
●
●
●●
●●
●●
●●●

●
●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●● ● ●●●●●●●

●
●
●●●●●●●●●●

●●
●●●
●●●

●●
●●●

●●●●●●
●●
●●

● ● ●● ●

●
●
●
●
●
●
●●●●●●●●●

●●●●●●●●●●●●●●
●

●

●

●
●
●●
●

●

●

●

●

●
●

●●
●●

●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●

●
●
●
●
●

●●●

●●●●●●●
●●●●●●

●●
●

●
●●●●●

●●●●
●
●

●●

●
●

●

●

●

●

●

●
●●●●●●●●●●●●

●●●
●●●●●
●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●
●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●
●●●●●●●●●

●
●●●●●●●●●●

●
●

● ●
●●●

● ● ● ●
●●●●
●●●
●●
●●
●●●●●●●

●●●●
●●
●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●

●
●
●
●
●●
●●
●●●●●●●●

●

●

●
●
●
●
●●

●

●
●
●
●

●●●
●

●
●
●

●
●●●

●
●
●
●●

●
●●●

●●●●

●●
●●
●●●●●●●●●●●●●●
●●
●●

●
●

●
●●● ●●●●●●●●●●●●

●
●
●
●●
●●
●●●●●

toni

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●
●
●
●
●
●●●●●●●●

●●
●●
●●

●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ●
●

●

●

●

●
●
●

●
●
●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●●

●●
●●●●●●●●●●●●

●

●
●
●●
●●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●
●●●

●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●
●

●

●

●

●
●

● ●
● ●

●

●

●

●

●
●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●

●●●
●●
●

●

●

●

●

●
●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●
●●
●
●●

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●●●●
●●●●●
●●●

●●
●●

●●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●
●●
●●●

●●
●●

●●
●●●

●
●
●●

●
●●

●●
●●

●

●

●
●
●
●
●●
●●●
●
●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●

●

●
●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●

●●
●
●●
●●
●●●
●●
●●●
●●●●
●●●●●●●●

●

●

●

●
●

●

●
●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

●
●

●
●

● ● ●
● ● ●

●
● ●

●
●
●●
●●
●●●
●●●●

fixation

saccade

single gaze
measurement

1

2

3

4
5

6

7

1

2

3

5

6

7

4

1

2
3

4
5

6

7

1

2

3

5

6

7

4

Figure 1: Eye movements of four different users as a response
to the same visual stimulus. Fixations are visible as clus-
tered areas, while saccades consist of series of dots that de-
pict paths. Larger red dots represent the positions at which
the visual stimulus was shown. Despite their distinct char-
acteristics, all four gaze paths closely match the positions of
the stimulus.

eye behavior features of trained shooters [12], professional
baseball players [4] and other specific groups of individu-
als [15], and reported measurable differences between their
eye movements characteristics.

Given that reflexive reactions are less dependent on mo-
mentary conscious states of an individual than conscious ac-
tions, it is expected that biometrics based on reflexive char-
acteristics offer more stable authentication. Furthermore,
taking into account the advantage in faster elicitation times,
the goal of our research is to design a stimulus that supports
the use of reflexive saccades for biometric authentication.
For example, prior research has shown that saccade laten-
cies depend on the dominant eye [31, 26] of the individual,
which is a stable characteristic and provides strong motiva-
tion for using saccade latencies for classification. Finally, it
was shown that saccade latency varies if anticipation (tem-
poral expectancy) is present [40]. This provides an argument
for randomizing the stimulus that is shown to users.

3. ASSUMPTIONS AND GOALS
We start by defining the system and adversary model used

throughout this paper; we then state the design goals for the
visual stimulus and the authentication system.

System Model. We assume the general settings of a user
authenticating to a workstation in an office scenario through-
out the course of a normal work day. A simple visualization
of the system model is shown in Figure 2. The user au-
thenticates to a workstation using a gaze tracking device
throughout the course of a workday. The workstation uses
data acquired by the gaze tracker and a user’s biometric
template to make the authentication decision.

A legitimate user is one who is enrolled with the authen-
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Figure 2: System model. The workstation uses data acquired
by the gaze tracker and user’s biometric template to make the
authentication decision. The adversary has read-write access
to the gaze channel. The visual channel is authenticated and
therefore read-only.

tication system. The enrollment happens in a secure sce-
nario, where the legitimate user authenticates to the work-
station using some other authentication method. During
enrollment, the user is shown several visual stimuli and the
workstation uses the corresponding recordings of the user’s
gaze to create a biometric template used for identity verifi-
cation.

The interaction takes place through three different chan-
nels. The visual channel is an authenticated channel from
the workstation to the user that consists of a screen that dis-
plays information, and the gaze tracking channel from the
user to the gaze tracker allows the workstation to determine
characteristics about the user’s eyes, including where he is
looking on the screen, as well as capture the reflexive eye
movements described in Section 2.

The workstation itself cannot be modified or forced to run
unintended code.

Adversary Model. The adversary’s goal is to impersonate
a legitimate user and successfully authenticate to the work-
station. The adversary can freely choose his victim from the
set of enrolled users. Since he can observe both the visual
and gaze channels, the adversary has access to the biometric
data from previous authentication attempts by the victim.

We focus on two different types of attacks that the adver-
sary can perform:

• Impersonation attack. The adversary tries to gain ac-
cess to the workstation by positioning himself in front
of the gaze tracking device. This is the most common
way of evaluating biometric authentication systems,
and is usually reported in terms of false reject (FRR)
and false accept rates (FAR) as well as equal error
rates (EER).

• Replay attack. The adversary targets a specific user
and replays his previously recorded authentication at-
tempt to the authentication system. This can be done
either at the sensor level (e.g. by using a mechanical
eye replica), or by bypassing the gaze tracking sensor
completely and injecting the recorded samples between
the workstation and the sensor.

Biometrics are non-revocable, and we are surrounded by
sensors that can be used to steal and replay biometric data.
Therefore, we believe that modeling an attacker as having
access to legitimate user’s previous biometric measurements
is a realistic and necessary assumption. Most static biomet-
rics, such as fingerprints or face recognition [5], cannot pro-
vide security under such assumptions; the ability to prevent

replay attacks is one of the major strengths of our scheme
since simply replaying an acquired sample is arguably the
most accessible attack vector for most biometrics.

We do not consider a targeted adversary who is able to
model and generate arbitrary artificial samples of a user’s
eye movements in an interactive manner. As we further
discuss in Section 9, such attacks require significantly higher
levels of complexity and effort from the adversary; a level of
commitment against which most biometric systems can not
provide security guarantees.

Design Goals.

• Low cognitive load: The system should pose low cogni-
tive load on the users. Ideally, users should not be re-
quired to remember credentials, carry tokens, or learn
new procedures. Moreover, the cooperation required
from the user should be as effortless as possible.

• Fast: The duration of a single authentication attempt
should be as short as possible.

• Resistance against replay: The system should make it
difficult for an adversary to replay acquired biometric
samples and thereby successfully authenticate.

4. SYSTEM ARCHITECTURE
We propose an authentication system which works as fol-

lows. The workstation shows an interactive visual stimulus
on the screen (we refer to it as gaze-challenge). Simultane-
ously, the gaze tracking device captures eye movements of
the user as he watches the screen (gaze-response), which the
workstation uses to adapt the stimulus in real time. Finally,
the workstation makes a decision about the user’s identity
and verifies if the received gaze-response corresponds to the
shown gaze-challenge, asserting that the captured eye move-
ments are indeed fresh.

4.1 Stimulus for Reflexive Saccade Elicitation
To achieve stated design goals, a visual stimulus should

satisfy several requirements. It should elicit responses that
are sufficiently distinctive to allow discrimination between
different users. The response should not require high cog-
nitive effort and should not depend on a user’s momentary
cognitive state. The stimulus should be unpredictable to
prevent habituation: seeing an image for the first time will
likely result in a different response than seeing it for the
second and the consecutive times [40]. Finally, in order to
allow fast authentication, the stimulus duration should be
as short as possible.

Design. Considering that reflexive behavior is more stable
and less dependent on a user’s transient internal cognitive
states than voluntary behavior, our goal is to design a stim-
ulus which allows eliciting and measuring individual traits
of user’s reflexive saccadic responses. Reflexive saccades are
triggered by salient objects that appear in one’s field of view;
thus our stimulus consists of presenting a single red dot on a
dark screen that changes position multiple times. As shown
in Figure 3, a user’s eyes respond to the change by eliciting
a reflexive saccade which reorients the gaze towards the dot.
Every time the position of the dot changes, the visual sys-
tem responds by initiating a new reflexive saccade. Due to
saccade latency, this happens after a period of 100-200 ms
during which the visual system processes new information.
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Figure 3: A visualization of the stimulus for reflexive saccade elicitation. At any given time, only a single red dot is shown;
previous positions are shown on this figure to help the reader. Shortly after a red dot appears on the screen (a), a user’s visual
system starts a reflexive saccade to shift the gaze (dotted path) towards its position. Several milliseconds later, as the user’s gaze
enters the invisible perimeter around the stimulus (dashed circles), the dot is considered successfully gazed and momentarily
changes its position. Before a new saccade starts, there is usually a fixation lasting 100-250 ms, during which the visual system
processes new input information (saccade latency). In (d), the presented dot is again successfully gazed, and once more changes
its position.
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Figure 4: Relative frequency of saccade latencies for gaze-
responses used in this paper. Latencies are computed as the
duration between the stimulus change and the start of sub-
sequent saccadic movement. Vertical lines discriminate be-
tween reflexive and other types of saccades based on [41];
latencies of reflexive saccades are usually lower than 250 ms,
in contrast to latencies of voluntary saccades that are over
250 ms. Values under 80 ms are likely the result of noise or
blinks, or voluntary saccades initiated well before the stimu-
lus change.

Ideally, our stimulus should elicit the maximal number of
reflexive saccades in a given period of time, and this highly
depends on the frequency with which the position of the
dot changes. If this frequency is too high, user’s eyes will
not be given sufficient time to perform a full saccade. If it
is too low, the user might get tired of looking at a static
screen and start voluntary saccadic movements. Further-
more, each user is slightly different, so there might not exist
a unique frequency at all. Our stimulus ensures an optimum
between these trade-offs by interactively changing the loca-
tion of the dot as soon as the user successfully gazes the dot,
i.e., when a user’s gaze enters a perimeter of radius r around
the dot’s center. This results in eliciting the maximal num-
ber of full saccades in any given time interval, and ensures
that the user’s visual system receives an outside stimulus
change as often as possible, thus reducing the elicitation of
voluntary saccades which depend on his current cognitive
state. To ensure that the stimulus terminates even if the
user is not looking at the screen, the dot is considered to be
unsuccessfully gazed and moves to the next position after
a specific period of tmax milliseconds has passed. This pro-
cess continues for all N stimulus positions that constitute a
gaze-challenge.

Basing an authentication system on reflexive movements

provides additional benefits: taking into account that reflex-
ive behavior is significantly harder to consciously control,
an adversary is less likely to be able to successfully imitate
another user’s characteristics. Most importantly, because
of the natural and effortless tendency of the human visual
system to keep “catching” the red dot, the response to such
visual stimulus is fully reflexive: users neither need to follow
specific instructions nor invest high cognitive effort —their
eyes do the work themselves.

Effectiveness of the stimulus. In order to evaluate how
effectively our designed stimulus elicits reflexive behavior,
we compute saccade latencies for a total of 991 gaze mea-
surements that constitute the dataset used throughout this
paper. Since each of the measurements represents a gaze-
response to a stimulus with 25 different positions for the dot,
in total, this sums up to analyzing close to 25,000 captured
saccades.

Figure 4 shows the distribution and categorization of the
measured saccade latencies, dividing them into reflexive sac-
cades, voluntary saccades and saccadic movement caused by
blinks. Latencies under 80 ms are physically impossible and
likely to be the result of blinks or noise. Remaining latencies
predominantly fall below 250 ms, the threshold that char-
acterizes reflexive saccades [41]. This lets us conclude that
the stimulus does indeed elicit primarily reflexive behavior.

4.2 Authentication Protocol
We now use the proposed stimulus as a building block in

a challenge-response protocol for biometric user authentica-
tion that is secure against replay attacks. At the end of the
protocol execution, the workstation knows if the user whose
identity is claimed is at the moment present in front of the
gaze tracking device. To that goal, the workstation must
ensure that two properties hold:

Freshness. Freshness of the received biometric data can be
ensured by always showing a different randomly generated
visual stimulus (gaze-challenge) to which every response will
differ in a verifiable way.

Correct Identity. The user has the ability to generate bio-
metric data that corresponds to the claimed user’s template
which was created during enrollment.

The protocol for local biometric authentication is shown in
Figure 5. After the user claims his identity, the workstation
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c = [ (x̂i, ŷi) : 1 ≤ i ≤ N ]

PresentStimulusAt(x̂i, ŷi)

respond to challenge:

gi = LookAt(x̂i, ŷi)
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repeat N :

~g = g1‖ . . . ‖gN

VerifyFreshness(~g, c)
VerifyIdentity(~g, U)

accept / reject

Authentication Protocol

Figure 5: Biometric challenge-response authentication pro-
tocol. User claims his identity, after which the workstation
generates a fresh gaze-challenge c that is an ordered list of po-
sitions in which the stimulus is shown. User looks at (LookAt)
a screen where the stimulus is shown at N positions {(x̂i, ŷi)}.
Meanwhile, the gaze tracking device records the user’s gaze
paths gi for all stimulus positions that constitute the gaze-
response ~g. The workstation verifies the freshness of ~g, and
finally verifies that the biometric features extracted from ~g
correspond to the claimed identity.

generates a fresh visual stimulus, which we refer to as gaze-
challenge (cW ) in the rest of the paper. cW consists of a
set of n randomly chosen coordinates, which uniquely define
the interactive stimulus described in Section 4.1. As the
gaze-challenge is presented to the user, his eyes reflexively
respond with a series of eye movements, which constitute
the gaze-response (rU ). Gaze-response is recorded by the
gaze tracking device through the gaze channel.

In order to accept or reject the user’s authentication re-
quest, the workstation performs two verification steps: Ver-
ifyFreshness and VerifyIdentity. These are described in detail
in Sections 4.3 and 4.4, respectively.

In the final message, the workstation notifies the user if
he has been granted or denied access to the system.

4.3 VerifyFreshness
As described in Section 4.1, each visual stimulus is uniquely

defined by a list of N coordinates; therefore, it is possible
to always present a different random gaze-challenge to the
user. Since no visual stimulus shown to users is ever reused,
in order to verify the freshness of the response, it suffices
to verify if the received gaze-response closely corresponds
to the freshly presented gaze-challenge. As visualized in
Figure 3, if some gaze-response was recorded while specific
gaze-challenge was shown to the user, then the user’s eye
movements should closely resemble the order and positions
in which the stimulus dot was shown. This is visible in Fig-
ure 1: despite differences in gaze patterns of different users,
all of them correspond to the locations of the stimulus dot.

The system determines if the gaze-response is indeed fresh
by ensuring that the user timely gazed at the majority of
the stimulus positions. After a stimulus dot is shown in

one of the N positions, it is considered successfully gazed
only if one of the subsequent measurements of the user’s
gaze position falls within a radius of r pixels from the center
of the stimulus dot. Otherwise, if no gaze measurement
falls within its radius after tmax milliseconds, a position is
considered to be unsuccessfully gazed and the dot moves to
the next position:

gi := [(xj , yj) : ti ≤ tj < ti + tmax]

gazed (x̂i, ŷi) ⇐⇒ ∃(x, y) ∈ gi : ‖(x, y)− (x̂i, ŷi)‖2 ≤ r

In order to decide on the freshness of the received gaze-
response, the system checks if the ratio of successfully gazed
stimulus positions is greater or equal to a chosen percentage
threshold T .

As the threshold T increases, the possibility that an ad-
versary successfully replays an old recording of a legitimate
user’s gaze decreases. On the other hand, this also results in
more legitimate attempts failing freshness verification, e.g.,
because of imprecise gaze measurements. We explore this
trade-off and the security guarantees provided by our sys-
tem against replay attacks in Section 7.3.

4.4 VerifyIdentity
If the received gaze-response passes the freshness verifica-

tion, the system finally verifies that it truly originated from
the user whose identity was claimed at the beginning of the
authentication. The received gaze-response is first used as
input to compute a set of specific feature values that are id-
iosyncratic and support stable classification between users.
Next, the computed features are used as an input to a two-
class classifier which is created during user enrolment. The
classifier determines whether the calculated features more
likely belong to the user whose identity was claimed, or to
some internal or external attacker. As a last step, the au-
thentication system makes a final decision and notifies the
user of acceptance or rejection.

Next section describes the details about the features that
we use and how we train the user classifiers.

5. GAZE CLASSIFICATION
This section describes the process of extracting individual

characteristics from a user’s gaze-response and training a
classifier that can uniquely discriminate between future re-
sponses of the same user and any other user’s gaze patterns.

5.1 Saccade and Fixation Detection
The first step to computing feature values is to split the

input gaze measurement into intervals of saccades and fixa-
tions.

We implement an algorithm [33] that estimates the level
of noise in the data and adaptively determines the thresh-
olds which are used to classify the pattern into periods of
fixations and saccades based on angular speeds and accel-
erations. As seen in Figure 6a, the algorithm also detects
eye movement recordings that could not have been gener-
ated by a human eye under known physiological constraints,
and are usually the result of blinking. Given that the mean
duration of a single blink is close to 200 ms [18], and that
head movements and gazes outside of the screen area usually
last even longer, it is important to denoise the raw data be-
fore further analysis. These artefacts are filtered based on
research that shows the peak angular speed of the human
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Figure 6: Visualization of features on (a) temporal and (b) spatial plots of a the raw gaze tracking data. In Subfigure (a),
the moment when stimulus changes position is depicted with a vertical red line. The period depicted with horizontal stripes
is physiologically impossible for a human eye to perform and is caused by a blink. We remove such artefacts with methods
described in Section 5.

eye to lie between 700 and 900 deg/sec [18], and the peak
angular acceleration to not cross 100000 deg/sec2.

Having grouped the measurements as belonging either to a
fixation or a saccade, we proceed to calculate a set of features
for each recorded gaze sample, ignoring those measurements
that are classified as noise by the procedure.

5.2 Feature Extraction
We next compute the features for gaze classification. The

features should be as varied for different users and as similar
as possible for multiple authentication attempts of the same
user.

As Figure 6a shows, each gaze-response consists of inter-
mixed periods of saccades and fixations, and each such pe-
riod allows us to compute multiple features. However, we
are interested in computing a set of identifiable feature val-
ues for the whole gaze-response, irrespective of the number
of elicited saccades and fixations; to that end, and to reduce
the effect of noise, feature values for a single gaze-response
are computed as the median of feature values computed on
individual saccades or fixations in that gaze measurement.

Since not all potential features contribute the same amount
of distinguishing power, we follow a semi-automated ap-
proach to select the optimal set of features for the authenti-
cation system. Initially, we explore a broader set of fixation
and saccade traits, in addition to a range of other metrics
that measure overall characteristics of the gaze path. Based
on the Relative Mutual Information (RMI), we test the fea-
tures on randomly chosen subsets of the data set, measure
their classification performance, and exclude those that do
not achieve satisfactory results. The RMI values of the re-
sulting features that we use in the remainder of the paper
can be found in Table 1, while Figure 6 illustrates the ex-
traction procedure.

As the RMI values in Table 1 show, medians of average
angular speeds during fixations or saccades, as well as the
duration of fixations are among the most specific features
we tested. This finding is congruent with the feature assess-
ment conducted by Eberz et al. [13], where pairwise speeds
exhibit the highest relative mutual information, only out-
performed by some of their static features, such as pupil

diameter. Contrary to their results, we identify saccade
curviness (ratio of air distance and total distance of a sac-
cade) and saccade latency to be the features that yield the
most distinguishing power. Furthermore, we identify several
discriminative features based on computing a convex hull of
all measurements in a fixation: convex hull and circum-
ference, as well as fixation density, defined as the ratio of
the convex hull area and the number of gaze measurements
in that fixation.

This paper only uses dynamic characteristics of eye move-
ments; we thus purposely forego using several potentially
discriminating features that the gaze tracking devices can
provide, such as an estimate of user’s pupil size and the dis-
tances between the user’s eyes. In prior work, pupil size
was shown to be a discriminative feature for gaze-based au-
thentication systems [13], however, the authors raise valid
concerns that an adversary could manipulate his pupil size,
e.g., by controlling the lightning conditions. Despite poten-
tial classification improvements, in order to provide a more
conservative estimate of the performance that gaze-based
authentication systems can achieve, in this paper we choose
to employ only features that can be extracted from raw co-
ordinates of the user’s gaze.

5.3 User Enrolment
During enrolment, several gaze-responses are used to train

a dedicated 2-class classifier that the system will use as user’s
identity verifier: based on the set of feature values extracted
from any subsequent gaze-response, the classifier makes a
decision whether the values correspond to him or not.

Besides legitimate user’s gaze-responses, the enrolment
procedure requires a similarly sized set of gaze-responses be-
longing to other users that are labeled as negative samples
during classifier training.

We use a Support Vector Machine (SVM) [10] with Radial
Basis Function (RBF) kernel as the classifier, since SVMs are
known to provide strong classification results for non-linear
data sets. We also evaluated other classification algorithms
on a subset of the data, and confirmed that SVMs achieved
stronger classification than other evaluated statistical mod-
els (Random Forrest and AdaBoost Trees).



Table 1: Relative Mutual Information (RMI) of an assortment of the most informative features

Median of saccade RMI Median of fixation RMI Overall RMI

Duration 0.1864 Duration 0.1959 Avg. time per stimulus 0.1824

Avg. speed 0.1921 Avg. speed 0.2150 Avg. distance per stimulus 0.1927

Max. speed 0.1709 Max. speed 0.1968 Avg. speed 0.2053

Latency 0.2041 Max. distance to center 0.1604

Max acceleration 0.1675 Convex hull area 0.1894

Ratio air/total distance 0.2397 Convex hull circumference 0.1899

Density 0.2063

SVMs with RBF kernels are fully defined by two hyper-
parameters: 1) C, which controls the trade-off between the
penalty of incorrect classification and the margin of the deci-
sion hyperplane, and 2) σ, which is a parameter that defines
the scale of the radial basis function. The optimal pair of
hyper-parameter values is chosen from a predetermined set
of potential values, based on the evaluation that uses 5-fold
cross-validation: for each pair of potential hyperparameters,
80% of the enrolment data is used to train the resulting clas-
sifier, while the remaining 20% of the enrolment data is used
to evaluate the classification performance; this is repeated
five times.

The pair of hyperparameters that resulted in strongest
classification performance is finally used to derive the final
user classifier which is used in future authentication.

6. DATA ACQUISITION
In order to experimentally evaluate the performance of

the proposed system and protocol, we developed a proto-
type and ran a series of user experiments to gather data for
analysis.

6.1 System Prototype
Setup. Our prototype setup is composed of a gaze track-
ing device (SMI RED 500 [38]), a 24-inch LED screen and
a desktop computer. The generation of the visual stimu-
lus and the gaze sampling was performed by a custom-built
software library that controls the gaze tracking device. We
implemented procedures that take care of the internal cali-
bration of the gaze tracker, the measurement of the sampling
accuracy and the visual presentation of the stimulus, as well
as the acquisition of the gaze samples captured by the gaze
tracker.
Parameters. For each authentication attempt, the system
generated a visual challenge consisting of N = 25 random
dot positions. Red stimulus dot was shown on a plain dark
background, with a diameter of 0.7 cm. In order to detect
that a dot was successfully gazed, we used a perimeter radius
of r = 1.4 cm. If not successfully gazed, the dot changed
position after tmax = 1000 ms. The distance between users’
eyes and the gaze tracking device (positioned directly un-
derneath the screen) was 70 cm.

6.2 User Experiments
Experiment Design. For the purpose of assessing feasibil-
ity and performance of the proposed system, we conducted a
series of user experiments that reflect the scenario described
in Section 3. We refer to a series of consecutive authentica-
tion attempts with the same participant as one session. Each
session lasted about 10 minutes and included a briefing and
15 authentication attempts. Before participant’s first session

we generated a calibration profile that was reused during all
subsequent sessions with that participant. To analyze the
performance of our system, both from the perspective of a
user and an attacker, we divided the participants into two
groups: legitimate users who have completed the enrollment
procedure, and external attackers, whose gaze characteris-
tics were not known to the system.

In order to show that our system can successfully authen-
ticate users over the course of a normal work day (without
re-calibration), we require each enrolled user to take part
in a minimum of three (up to four) sessions. The first two
sessions are five minutes apart and mimic a legitimate user
leaving his desk to take a break or use the restroom. All
subsequent sessions are at least 6 hours apart. Participants
acting as external attackers are only invited to one session
where they are asked to impersonate a legitimate user, i.e.,
the system uses the calibration profile and biometric tem-
plate of the chosen legitimate user. Every external attacker
tries to authenticate as 5 different legitimate users, at least
3 times per user. In their last session, legitimate users were
asked to act as internal attackers and each performed a min-
imum of 15 attempts of impersonating other users, analo-
gously to external attackers.

Test Population. Experimental data was acquired from
a total of 30 participants aged 21 to 58 who were recruited
from the general public through public advertisements, email
lists, and social media. The only requirement was a mini-
mum age of 18. The test population consists of 7 women and
23 men. Out of the 30 recruited participants, 22 participants
were enrolled as legitimate users and 8 participants repre-
sented external attackers whose gaze characteristics were not
known to the system. The acquired data set consists of a
total of 1602 gaze-responses: 1021 authentication attempts
by legitimate users and 581 simulated attack attempts by
either internal or external attackers.

Participants were told that their eye movements will be
recorded for the purpose of evaluating the feasibility of dis-
tinguishing individuals based on their behavioral gaze-based
biometrics. They then signed a written consent form in
accordance with the experiment ethics review approved by
the University’s research ethics committee, reference number
SSD/CUREC1A/14-226. Names have been replaced with
pseudonyms.

Participants who do not have normal vision wore contact
lenses or were asked to remove their glasses. This was done
to remove the possibility that classification relies on poten-
tial specific characteristics of recorded gaze when glasses are
worn. For the same reason, lighting conditions were not
changed during all experiment sessions.



EE
R

 [%
]

M
ed

ia
n 

tim
e 

to
 a

ut
he

nt
ic

at
e 

[s
]

Number of dot positions per authentication (N)

9

9

12

6

7

5

3

2

10 15 20

10 15 20

Figure 7: Measured authentication time and EER as a func-
tion of gaze-challenge complexity N. As N increases from 8
to 24, the EER reduces from above 12% to under 6%, while
at the same time, the median time to authenticate grows lin-
early from 2 seconds to about 9 seconds. The vertical line
depicts a scenario where 15 positions are used in a challenge:
the median authentication time is around 5 seconds, while
the EER is close to 7%.

7. SYSTEM EVALUATION
We now experimentally evaluate the proposed system with

respect to the design goals stated in Section 3.

7.1 Varying the Challenge Complexity N

One of the defining parameters of the proposed system
is N , the number of stimulus positions in a single gaze-
challenge. We first analyze the effect that varying N has
on authentication time and overall user classification perfor-
mance. Incrementing N directly increases the complexity of
gaze-challenge, thus requiring more time to respond to the
visual stimulus. At the same time, larger N should allow
the system to extract more stable features and thus achieve
stronger classification results. On the other hand, as N de-
creases, both the authentication time, and the classification
performance are likely to decline.

Setup. Since all user experiments were run with gaze-
challenges that had N = 25 stimulus dot positions, we can
evaluate the classifier performance in a scenario where gaze-
challenges consist of K < N positions by simulating that the
stimulus presentation and gaze recording stopped after the
K-th position was gazed. Such an adapted dataset is con-
structed by only considering gaze measurements that were
recorded before the (K + 1)-th stimulus position is shown.

The classification performance for each K and for each
user is estimated by computing an Equal Error Rate (EER)
while performing a five-fold cross-validation of the individual
classifiers as follows. In each of five repetitions, four out of
five folds of the legitimate user’s authentication attempts
are provided as enrolment data for user enrolment that was
performed as described in Section 5. The remaining fold was
used to evaluate classifier performance against other users’
authentication attempts as negative samples. The resulting
EER for any K is computed as an average across all five
folds of all individual users’ classifiers for that K.

Results. We show the effect of varying N on authentication
time and classification performance in Figure 7. The median
time for a single authentication attempt grows linearly from
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Figure 8: Empirical cumulative distribution function for du-
ration of all measured authentication attempts when N = 15.
Close to 50% of the attempts took less than 5 seconds, while
more than 80% of the attempts lasted less than 7.5 seconds.

2 seconds for 8 stimulus positions, to about 9 seconds for 24
stimulus positions. At the same time, the overall EER of
the classification falls from around 12% when only 8 stim-
ulus positions are used, to a level of 6% when 24 stimulus
positions are used in a challenge.

Since N = 15 shows a balanced trade-off between classifi-
cation performance and median authentication time, we use
this value to report results in the remainder of the analysis.
In order to provide a more comprehensive estimate of the
time required for the majority of users to authenticate than
just median, in Figure 8 we show a cumulative density func-
tion of the authentication times for all users when N = 15.
The figure shows that half of the users authenticate in 5
seconds or less, while the authentication for more than 80%
of the users takes less than 7.5 seconds. As we discuss in
Section 9, these times are favorable to previous related work
in gaze-based authentication, as well as reported password
authentication times.

7.2 Impersonation Attacks
Setup. Recall that, in an impersonation attack, the at-
tacker targets a specific user with the goal of responding to
the gaze-challenge posed by the system, and successfully im-
personating the legitimate user in order to gain access. The
attacker is permitted to use the gaze-based authentication
system in any way he wishes, such as purposely moving or
altering the angle of his head to try to increase the chance
of gaining access.

As described in Section 6.2, we purposely design the user
experiments to simulate this type of attack as closely as pos-
sible: all participants were asked to perform multiple“attack
attempts”, in which they falsely claimed some other user’s
identity and tried to authenticate with the gaze calibration
profile of the legitimate user loaded by the system.

For each user, we perform a five-fold cross-validation to
estimate the performance of the system under such attacks.
We enrol the user as described in Section 5, using four out
of five folds of legitimate user’s samples, and then evaluate
the performance of the whole authentication system on the
remaining one fifth of the legitimate user’s gaze-responses
that were not used for enrollment. During evaluation, legit-
imate user’s samples are labeled as positive, while all attack
attempts that other users made while pretending to be the
legitimate user are labeled as negative. We consider an au-
thentication attempt accepted by the system only if it passes
both the identity verification and the freshness verification.
For freshness verification, we use a threshold T = 50%.
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Figure 9: The ROC curves that show authentication perfor-
mance under impersonation attacks. Red and green curves
represent only internal and external attackers, while blue
curve shows the overall combined performance. The EER
for internal attackers equals to 6.2%, while for external at-
tackers it is expectedly slightly higher, and amounts to 7.3%.
The overall EER for all attackers is 6.3%.

Besides overall performance, we also separately evaluate
two disjunct subsets of the attack attempts: those originat-
ing from external attackers, who are unknown to the sys-
tem, and those originating from internal attackers, whose
previous authentication attempts might have been used as
negative samples during enrollment.

Results. We show the system performance against imper-
sonation attacks as an ROC curve in Figure 9. Since individ-
ual user classifiers output a probability that a given sample
belongs to the respective legitimate user, we can achieve
different classification performance by varying the thresh-
old above which a sample is considered legitimate. As this
threshold increases, so does the likelihood of falsely rejecting
a legitimate user (FRR) increase, but at the same time, the
likelihood of falsely accepting an attacker (FAR) decreases.
Different combinations of FAR and FRR values for three
attack scenarios (internal, external, and all attackers) are
shown in Figure 9. For all three scenarios, it is possible
to achieve low FAR values (under 5%) if FRR is increased
closer to 10% and vice-versa.

An Equal Error Rate (EER) is defined as the rate at which
FRR and FAR are equal, and is usually used to compare dif-
ferent classifiers. As expected, in terms of EER, the system
achieves slightly stronger performance against internal at-
tackers (6.2% EER) than external attackers (7.3% EER).
Overall, the system achieves an EER of 6.3% for imperson-
ation attacks; as we discuss in Section 8, this result is prefer-
able to any previously reported performance of gaze-based
authentication systems.

7.3 Replay Attacks
Setup. Recall from Section 4.3 that in order to prevent
reuse of biometric data, the system verifies that the received
gaze-response corresponds to the presented gaze-challenge,
i.e., that the user successfully gazed at no less than a cho-
sen percentage T of the stimulus positions presented during
authentication.

The result of verifying freshness of a received response
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Figure 10: Performance of the freshness verification proce-
dure depending on the chosen threshold T . As we change
the required percentage of successfully gazed stimuli to clas-
sify a gaze sample as “fresh“ from 0% to 50%, the ratio of
successfully detected replay attempts rises from 0 to close to
1. At the same time, the ratio of successfully classified fresh
attempts starts declining as the required threshold increases
over 60%, showing almost perfect results for the thresholds
between 40% and 60%.

does not depend on the claimed identity during authenti-
cation, but only on the positions of the dot in the visual
stimulus. Therefore, in order to provide a more comprehen-
sive estimate of the distinctiveness of a challenge-response
pair, we report the results for a scenario in which identity
verification always returns a positive answer.

In order to evaluate the probability of success of a replay
attack, for each gaze-challenge ci, we simulate a “replay” of
all other gaze-responses gj to the VerifyFreshness function of
the system. We calculate the success rate of replaying gj to
ci as the percentage of stimulus positions from ci that would
be considered successfully gazed if a user’s response was gj .

Since our dataset consists of 1021 legitimate authentica-
tion attempts, each recorded with a unique gaze-challenge,
we are able to simulate more than 106 potential replay at-
tempts in order to estimate the true reject rate. Further-
more, in order to estimate the true accept rates, we use
the same procedure to simulate a total of 1021 legitimate
authentication attempts, in which the gaze-response was in-
deed generated as the user was presented the matching gaze-
challenge.

Results. Figure 10 shows achieved performance of the
challenge-response verification for different values of T , which
we vary from 0% to 100%. As T , the ratio of replay attempts
that are correctly rejected (TRR) increases, while the ra-
tio of legitimate, fresh attempts that are correctly accepted
(TAR) decreases.

A desired threshold is the one that detects all replay at-
tempts, while accepting all legitimate authentication attempts
as fresh. Figure 10 shows a wide range of potential threshold
values that lie between 40% and 60% and almost perfectly
separate the fresh and the replayed gaze-responses. Such a
broad range of thresholds that achieve strong classification is
a desirable property for any classification system as it gives
strong confidence in reported results.

Since we use T = 50% to evaluate impersonation attacks,
we report specific numeric details for this threshold. The
results of simulating more than 106 challenge-response pairs
as replay attempts show that we achieve close to perfect true
reject rates (TRR) of 99.94%. At the same time, very few
legitimate attempts are incorrectly rejected: the evaluation
shows a true accept rate (TAR) of 98.63%, a result of falsely
rejecting only 14 out of 1021 legitimate attempts.



Table 2: Comparison to existing biometric authentication systems based on eye-movements

Analysis of Stimulus Ref. Time [s] EER [%] Notes

h
ig

h
-l

e
v
e
l

f. Scan paths + arch densities Human faces [7] 17 25

Distribution of areas of interest Human faces [14] 10 36.1

Graph matching Human faces [35] 4 30

Fixation density maps Movie trailer [36] 60 14

lo
w

-l
e
v
e
l

f.

Cepstrum transform of raw signal Dot, fixed inter-stimulus [22] 8 N/A FAR 2%, FRR 22%

Oculomotor plant model Dot, horizontal sequence [27] 21 N/A FAR 5.4%, FRR 56.6%

Scan paths and fixation features Read section of text [17] 60 23

Fixation and saccade features Read section of text [16] 60 16.5

Liveness detection Dot, horizontal sequence [28] 100 18 Focus on liveness detection

Fixation features and pupil sizes Click the dot [13] 40 7.8 Continuous authentication

Fixation and saccade features Dot, interactive this paper 5 6.3 Replay: FAR 0.06%

Overall, these results show that our system robustly pre-
vents replay attempts for a wide range of thresholds with
very high success rates. Furthermore, taking into account
that the system can detect repeated replay attempts, and
e.g. lock user’s account after certain number of failed at-
tempts, we finally conclude that our system can effectively
prevent replay attacks.

8. RELATED WORK
While different eye tracking methods have been used in

medical research for over a century, their use in security is
fairly recent. A review paper by Zhang et. al. [43] pro-
vides an overview of authentication methods and systems
proposed before 2010, while Saeed [37] gives a more recent
comparison of methods and results of gaze-based authen-
tication systems proposed up to year 2013. According to
Zhang et. al. [43], existing work in user identification and
authentication can be roughly divided into two categories:
1) using gaze tracking as a human-computer interface (con-
trol channel) to support standard security primitives and
2) using characteristics of the gaze patterns to extract in-
dividual biometric traits that enable distinguishing between
different users.

In the first line of research, individuals use their eyes to
prove their identity by naturally and covertly inputting se-
cret information such as passwords [29, 42, 6] or specific
patterns on the screen [5, 11, 25]. Using eyes as a con-
trol channel has several advantages, such as prevention of
shoulder-surfing and smudge attacks. Unfortunately, these
approaches usually share the negative characteristics of pass-
words, such as requiring the users to learn a procedure or re-
member and recall different pieces of information, as well as
still being susceptible to eavesdropping and replay attacks.

Our work belongs to the second, biometric approach that
uses the characteristics of individual’s gaze patterns to dis-
criminate between different users. Such authentication sys-
tems usually come with the general benefits, but also chal-
lenges typical of biometrics: they usually require no mem-
orization, prevent sharing of credentials, and offer high us-
ability, but at the same time, they suffer from irrevocability,
which renders replay attacks a serious threat if even a single
user’s biometric sample is acquired by an attacker.

Biometric approaches to gaze-based authentication can be
further divided into two subcategories: those that rely on
high-level characteristics of user’s gaze patterns (where and
what the user is looking at), and those that analyze the low-
level traits of how the user’s eyes are moving.

High-level Characteristics. The first approach is moti-
vated by hypotheses that users exhibit individual behavior
during certain tasks, and thus extracts high-level charac-
teristics of users’ responses while the users are instructed
to freely look at videos, photos of faces, or other specific
types of stimuli. Prior work includes analysis of scan paths
and arch densities [7], areas of interest on human faces [14],
graph matching [35] and fixation density maps [36].

As summarized in Table 2, existing work in this cate-
gory mostly achieves Equal Error Rates higher than 15%,
which is likely due to complex features being more depen-
dent on varying cognitive and physiological states of the
user. Furthermore, in order to acquire sufficient data to
extract complex features, these systems require often long
authentication times (measured in tens of seconds!), so fur-
ther improvements are needed before they can be applied to
real-world systems.

Low-level Characteristics. On the other hand, moti-
vated by psychological and neurophysiological research [8]
that suggests stable differences between users [44], several
authors researched systems that use low-level characteris-
tics of users’ eye movements as features for discrimination,
such as eye movement velocity profiles, sizes of fixation ar-
eas, saccade latencies, etc.

Kasprowski is one of the first authors to start systemati-
cally researching the low-level characteristics of user’s gaze
for authentication. In his initial paper [22] and correspond-
ing PhD thesis [19], he proposes using features such as the
distance between the left and right eye-gaze, Fourier and
wavelet transforms of the raw gaze signal, and average ve-
locity directions. The used stimulus consists of 9 LED lights
arranged in a 3x3 grid, where the position of the single active
light changes according to a fixed, equally timed sequence,
regardless of the user’s gaze. An experimental study showed
half total error rates of close to 12%, but with relatively high
false reject rates of 22%. In relation to our proposal, such
stimulus also leads to eliciting some reflexive saccades, but as
Table 2 shows, it results in longer authentication times and
higher error rates. This is likely due to periods of time where
the user has already gazed at the light, but is still waiting
for the position of the active LED to change. Finally, the
authors propose, organize and describe two yearly competi-
tions in eye movements verification and identification using
their datasets [20, 21], which have further increased the re-
search interest in gaze-based authentication.

Komogortsev proposes modeling the physiological prop-
erties of individuals’ oculomotor plant [27] during multiple



horizontal saccades and using the estimated model parame-
ters as features for classification. Related work by Holland
et al. [17] provides an insight into performances of multiple
features such as fixation counts and durations during text
reading and combines these two approaches to achieve an
EER of 23%, while the newer research [16] provides an addi-
tional analysis of 13 classification features based on fixations
and saccades and achieves an EER of 16.5%.

In contrast to point-of-entry authentication, Eberz et al. [13]
propose using 21 low-level characteristics of eye movements
to continuously re-authenticate users, regardless of their cur-
rent task. For one parameter combination, the authors achieve
Equal Error Rates of 7.8% when 40 seconds are chosen as a
period before making the first decision. Primarily because
of requirement of task independence in a continuous authen-
tication scenario, potential replay attacks remain a serious
vulnerability. If the attacker is able to capture even a very
short recording of legitimate user’s gaze, he can continuously
rewind and replay it back to the gaze tracking device, and
this causes the system to (correctly!) accept the received
eye movements as coming from a legitimate user.

9. DISCUSSION
Advanced Attacks. A more sophisticated attacker could
build a model of a legitimate user’s eye movements to suc-
cessfully respond to a given challenge. However, we argue
that performing such attacks is not straightforward and re-
quires a higher level of complexity than simply replaying a
biometric sample.

Firstly, the adversary is likely to be solving a harder prob-
lem than the system; while the system needs to build a
discriminative model that allows making a binary decision
about user’s identity, the adversary needs to actually gen-
erate eye movements which correspond to the legitimate
user. An indication of the difficulty of artificially creating
eye-movements can be found in work by Komogortsev et
al. [28], which evaluated the complexity of a significantly
simpler problem: artificially generating 1-dimensional eye
movements. The paper showed that those movements could
be distinguished from natural recordings with high accu-
racy; creating realistic 2D eye-movements that correspond
to a specific user is likely to be significantly harder.

Secondly, by using a challenge-response type of protocol,
we ensure that the potential generative model of legitimate
user’s eye movements must be able to output results inter-
actively and in real-time since the stimulus is not known in
advance. This requires additional level of sophistication that
is not needed for replay attacks, since the adversary needs
to not only control the gaze tracking channel, but to also
observe and analyze the visual channel.

In conclusion, while we acknowledge that an adversary in
possession of multiple authentication attempts can attempt
different targeted attacks, we argue that they require sig-
nificantly higher level of sophistication and dedication than
what is needed to simply replay an acquired biometric sam-
ple. Therefore, we believe that successfully preventing re-
play attacks, as the most applicable threat vector against
biometrics, is an important step towards their widespread
deployment.

How fast is fast enough? The most common form of user
authentication in today’s world is password-based. Pass-
words are relatively fast to type and easy to implement.
Considering their prevalence and simplicity, we use pass-
words as an informal benchmark in terms of authentication
times and input error rates to assess the future potential of
gaze-based authentication based on reflexive eye behavior.

Over the last few years, a wide range of studies on pass-
word authentication have been published, several of those
focusing on evaluation of entry times for different password
generation strategies, as well as input and recall error rates.
From a usability standpoint, we believe that a recent paper
by Shay et al. [39] provides an estimate of password usage
in a realistic setting and with a large number of users. The
authors evaluate multiple password-composition policies by
running an online experiment with 8,143 participants, who
are asked to create, remember and recall different passwords.
Depending on the required password complexity, the median
input times varied from 11.6 to 16.2 seconds, while input er-
ror rates ranged between 4% and 7%. The authors also note
that more than 20% of participants had problems recalling
their password and more than 35% of participants stated
that remembering a password was hard.

Considering these findings, we believe that our results,
namely a median authentication time of 5 seconds and an
equal error rate of 6.3%, are highly comparable to input
times and error rates on passwords: on average, a successful
authentication attempt with our proposed system does not
take longer than typing a password, with an added benefit
that users need neither learn nor recall any information or
procedure.

10. CONCLUSION
Building upon the core idea of using reflexive human be-

havior for authentication, in this paper we designed an in-
teractive visual stimulus for rapidly eliciting standardized
reflexive eye movements, and showed how such stimulus can
be used to construct a fast challenge-response biometric sys-
tem. Based on a series of user experiments, we showed that
our stimulus indeed elicits predominately reflexive saccades,
which are automatic responses that only pose low cognitive
load on the user. As a result of using reflexive behavior that
is fast and stable, we show that our authentication system
achieves fast authentication times (median of 5 seconds) and
low error rates (6.3% EER).

Most importantly, however, our proposed authentication
method shows resilience against replay attacks, a property
difficult to achieve with most biometrics. Evaluation shows
that the system is able to detect the replay of recorded eye
traces with very high probability of 99.94%, thus preventing
one of the most applicable attacks on biometric systems.

Considering the recent proliferation of reliable and afford-
able eye tracking devices, we believe that achieving fast and
reliable gaze-based authentication is of broad interest and we
consider our work to be an important step in this direction.

Finally, this paper opens several interesting questions for
future work, such as could reflexive human behavior be ex-
ploited in other biometric modalities, or how could reflexive
behavior of human visual system be used to support other
authentication methods?
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