
Auditable PAKEs: Approaching Fair Exchange

Without a TTP

A W Roscoe, P Y A Ryan

March 13, 2017

Abstract

Roscoe recently showed how HISPs, a class of protocol to allow
humans to contribute to the creation of secure authentic channels be-
tween them, can be made auditable in the sense that a failed attack
on them cannot be disguised as communication failure. In this paper
we study the same issue for PAKEs: password authenticated key ex-
changes. We find that because this second style of protocol relies on
long term state, it is harder to make them auditable, and that to do
so we have to develop new ideas on how to approximate fair exchange
without a TTP.

1 Introduction

In [11], the first author showed how HISPs (Human-Interactive Security
Protocols [9]) could be transformed to allow a pair of users to detect when an
attacker had deliberately tried to break into their run. This was achieved by
using the construct delay(x, T) which allows a user to put the data x beyond
anyone’s reach for time T , but which the users themselves can eventually
open. Some options for implementing delay are discussed in [11]. These
are based on trusted third parties or alternatively sequential computation.
We say that a protocol is auditable if the legitimate players can distinguish
online guessing attacks from network failures.

The purpose of this paper is to describe how PAKEs (Password Authen-
ticated Key Exchange protocols) may be rendered auditable in a manner
analogous to HISPs. Like HISPs, conventional PAKEs are vulnerable to
guess and abort style attacks: an attacker attempts a protocol run with a
legitimate party and aborts as soon as he knows that his guess at the pass-
word is false. By suitable choice of role and timing the attacker can ensure

1

that the legitimate party does not hold enough information to determine
whether she has been interacting with an attacker or has simply been the
victim of a network failure.

PAKEs are structurally quite different to HISPs. As a consequence the
technique used to render HISPs auditable is not enough to achieve complete
auditability in PAKEs. In essence this is because PAKEs, unlike HISPs,
have persistent state, meaning we need to protect this state (the password)
between runs. To do this we need a more elaborate scheme to achieve
auditability, and in fact only achieve a stochastic result: if an attacker makes
a guessing attempt then in order to have a chance of gaining information,
he has to yield an approximately equal chance of being caught. To achieve
this we develop some new stochastic approximations to fair exchange, which
we hope will find other applications. Nevertheless, the delay construct used
to make HISPs auditable is once again invaluable.

The rest of this paper is structured as follows. In the next section we
outline PAKEs and their structure, and in appendix A we give a number
of examples. In Section 2 we examine the important differences between
HISPs and PAKEs, and show that copying the auditability transformation
used in [11] for HISPs does not, in fact, work because PAKEs have an
extra attack vector that is not present in HISPs. To solve this problem we
require an exchange of information to be as fair as possible, and therefore
in the full version of the paper we describe a new solution to achieving
exchange using delay that, while not completely fair, can be made as close
to stochastic fairness as we choose. We then introduce the transformation to
the confirmation stage of PAKEs that gives them an auditability property.

We believe the stochastic fair exchange mechanism we introduce here
will find uses beyond making PAKEs auditable, and discuss this in Sec-
tion 5. Appendices give an overview of PAKEs and of key derivation and
confirmation mechanisms.

2 Reviewing PAKEs

Password Authenticated Key Establishment protocols (PAKEs) provide a
way to establish secure channels in the absence of a PKI (or web of trust or
similar), and without requiring empirical channels as is the case for HISPs.
Instead, they rely on the parties having a previously shared, low-entropy
secret: such as a password or similar. We assume that the parties have
been able to previously agree this secret via some authenticated, private
channel, e.g. meeting in person over a cocktail. This password will be used

2

repeatedly in authenticating future session key establishment protocol runs.
The goal of a PAKE is for the parties to establish a secret, mutually

authenticated, high-entropy session key that can subsequently be used for
secure communication. What PAKEs and HISPs have in common is that
authentication typically involves human participation, in one case agreeing,
remembering and typing in passwords, and in the other communicating a
short seemingly random string between devices. In both cases this means
that there is a distinct trade-off between humans’ appetite and willingness
for cognitive effort, and the amount of security obtained. In both cases
the compromise in security is a small but non-negligible probability that an
attacker can break authentication. In the case of PAKEs this is that the
password may not be strong enough and so might be guessed. A crucial
difference is that HISPs are stateless while PAKEs are stateful, in the form
of the password.

PAKEs work by authenticating a key establishment protocol using com-
mon knowledge of a password between the parties involved, all over insecure
(Dolev-Yao) channels. They work by each of the parties Pi computing a
value Vi that is a function of the fresh entropy exchanged and the password.
Subsequent key confirmation involves exchanges of values based on the Vi
allow the various parties to determine whether the other parties with whom
they have been running the protocol indeed computed the same values, and
by implication share the same password.

Note that, in contrast to AKEs where a PKI is available, it is not pos-
sible to explicitly authenticate the messages of the PAKE. If we were to try
to it would have to be on the basis of the password and so would provide
an attacker with the possibility to launch offline dictionary attacks. Conse-
quently the authentication in a PAKE has to be implicit as a result of the
key confirmation steps.

Our proposal is to add features to PAKE protocols, including delay terms
and time-outs, so that by the time any man-in-the middle has discovered
whether or not the password guess he has made is correct, he has, with high
probability, had to deliver confirmation messages (perhaps delayed) to the
attacked party, or parties, which will ultimately reveal his presence in the
case of an incorrect guess.

For concreteness in what follows we will describe the modifications re-
quired in the case of two-player protocols, but the techniques can be readily
adapted to multi-party protocols.

The PAKEs known to us all follow the same high-level pattern: some
key establishment steps, typically Diffie-Hellman based, with the password s
folded into the calculation of the session key in some way. Thus, each party

3

contributes fresh, high-entropy values and the session key is computed as a
function of this fresh entropy and the low-entropy, long-term password. If
the messages are not corrupted and both parties used the same password
they will compute the same session key.

The key establishment phase is followed by a key confirmation phase
that allows the parties to confirm that they have computed the same key,
thus providing implicit authentication. Note that the key establishment and
key confirmation phases may overlap: the first party to reach a state where
it can compute the session can issue key confirmation data along with key
establishment data in the next emitted message.

Care must be taken in the design of the entire protocol, key establish-
ment and confirmation phases, to ensure that an attacker, passive or active,
cannot launch an offline dictionary attack based on terms derived from runs
of the protocol. Thus, the attacker, with polynomially bound computational
power, should never derive enough information to confirm or eliminate pass-
word guesses with better than negligible probability.

The attacker can of course always launch online guessing attacks: sim-
ply interacting with a legitimate party with a guess at the password and
observing if this succeeds. This cannot be avoided. The goal therefore is to
ensure that this is the optimal attack strategy. Thus, the goal of the design
is to ensure that an attacker can test at most one password per attempted
run with a legitimate party. The situation is thus analogous to that for
HISPs, which seek to ensure that no meaningful combinatorial attack can
improve the attacker’s chances to more than what they would be with a
single completely random attempt at a man-in-the-middle attack.

We identify a difficulty with existing PAKEs analogous to the one dis-
cussed for HISPs in [11]: an attacker can disguise attempted guessing attacks
as network communication failures. Specifically, he can arrange the attack
so that he learns whether his guess is good before the legitimate participants
learn of a confirmation failure. When the attacker learns that his attack has
failed, i.e. his guess was wrong, he can block subsequent messages. When
the attacked party time-out, there is no difference in what it will have seen
to a communications failure at the same point in the protocol. Consider the
following example based on the SPEKE protocol [6] with key confirmation:

1. A→ B : X := hash(sA)2x

2. B → A : Y := hash(sB)2y

A computes KA = K = Y x = hash(sB)2yx and B computes
KB = K = Xy = hash(sA)2xy.

4

3. A→ B : hash1(KA, A,B)

4. B → A : hash2(KB, A,B)

Here the first two messages allow A and B each to compute a proposed
key based on their respective values sA and sB of the shared secret. The
key feature of SPEKE is that the DH generator is not publicly known but
rather is computed by the parties as a function of the password, hence K is a
function of the password. The final two messages allow them to confirm that
they have computed the same K and hence, with high probability, sA = sB,
implying that they have each been running the protocol with the intended
party. hash, hash1 and hash2 are different cryptographic hash functions
which each offer no information about each other in the sense that knowing
the result of applying each to any x conveys no information that allows us
to compute the others.

Note that the agent playing the role of Bob receives Message 3, the one
which confirms (if true) that the party she is running the protocol shares
knowledge of the password KA(= KB), before Alice gets the reverse confir-
mation, provided by Message 4. Thus if “Bob” is actually fraudulent and
has made a guess at the password, he will discover if this guess is correct
before he has to send the message that will give Alice the same information.
If this guess was correct, he will carry on, and Alice will be (incorrectly)
convinced of the authentication. If it was not, he can abandon the run at
this point and Alice will have no direct evidence of the attacker’s presence:
all she sees can be explained by a communications failure. This analysis
replicates that for HISPs done in [11], except that here life is easier for the
attacker because there is no need for the real Alice and Bob both to be
present. The danger is that the attacker may be able to perform repeated
attacks without the participants being sure that they are subject to attack.
In the case of PAKEs he can potentially attack both of the owners of a
password separately, doubling his chance of obtaining it.

Even if a legitimate party in a PAKE reached the point at which she sees
that the computed keys do not match, there may be an innocent explanation:
that one of the parties mistyped their password. It would therefore be
greatly to our advantage if we could eliminate such mistakes for PAKE
users: we hope to introduce such a method in a subsequent paper. In the
rest of our present discussion we will assume that a password mismatch in
any run is indicative of an attack.

With the strategy of making failed guesses look like communications fail-
ures, the attacker can expect to increase his chances of success, by allowing
him to make more attempts before the legitimate parties start to suspect

5

an attack and take evasive action. Such a strategy would be particularly
effective where the attacker attacks many nodes in parallel.

In [11], one of us showed how to transform HISPs to prevent this by
systematic transformation of the protocols. In other words, we demonstrated
how all HISPs could be transformed in essentially the same way to eliminate
these attacks.

The fact that known PAKEs essentially all follow the same structure, of
a key sharing phase followed by a confirmation phase, suggests firstly that a
similar approach might work for PAKEs and that the place to concentrate
on is the confirmation phase.

Our objective is thus to find a similar transformation for PAKEs that
ensures that the legitimate parties can distinguish with high probability any
online guessing attack from a communications failure of the network. The
legitimate parties will therefore be able to take remedial action and warn
others.

While there are similarities between HIPSs and PAKEs, there are also
some significant differences.

• The absence of an out-of-band channel and the need to keep passwords
secret make it much harder for Alice and Bob to discriminate between
a mistake they may have made and an attack. If Alice simply types
in the wrong password, Bob may think he is being attacked.

• A second, and more significant, difference is that PAKEs employ long
term shared secret state (the password between a pair of parties)
whereas all runs of HISPs are completely independent. It follows that
even though an attack on a PAKE may have little chance of succeeding
in the sense of getting a faked connection for the attacker on the same
session, it may reveal useful things to him about the long term state.
This difference means that we cannot simply apply the transformation
that Roscoe developed for HISPs to PAKEs in order to render them
auditable. While this can prevent an attacker successfully carrying
out a one-off attack that simultaneously carries no chance of revealing
the attacker and yet gives him a chance of completing a connection, it
does not prevent one that can possibly reveal the password to be used
in a second session.

Roscoe’s HISP transformation sends data to allow comparison under a
delay that opens too late to complete the present session: this prevents
the attacker getting any useful information about whether this attack
will succeed or fail. Nor does it assist in future attacks, since no state is

6

shared between HISP runs. However, the PAKE attacker can afford to
wait for this delay to open when he aborts immediately after receiving
it: if his password guess was right or wrong in this session it will also
be right or wrong in the next. And even if it is wrong the attacker can
eliminate it from his search.

For example, Roscoe’s transformation on SPEKE would replace the
final two key confirmation messages by the following sequence:

3. A→ B : delay(hash1(KA, A,B), T)

4. B → A : hash2(KB, A,B)

A : intime(hash1(KA, A,B))

5. A→ B : hash1(KA, A,B)

in which the first message is sent delayed so that B must send his
confirmation before he can know whether the delayed confirmation
from A was correct or not.1

If B is an attacker, he has no chance of using a correct guess at the
password to obtain connection in this run without giving away his
presence (if is guess was wrong) by sending Message 4. The same
holds if A is an attacker, because she has had to give away the delayed
version of the confirmation for Bob to continue to Message 4, If she
sent it honestly, Bob will be able to open the delay eventually and
discover if her password guess was correct, and if she sends a wrongly
formatted Message 3 this will also give her away.

On the other hand, Bob as attacker can now simply accept Message 3
and then abandon the run. This particular run will fail to complete,
but he can wait for delay(H(KA, A), T) to open and thus find out if
his guess sB at the shared secret was correct. Thus he can either use
the password in a future run, or reduce his search space for future
attempts. No similar strategy is useful for HISPs.

• A third difference is that the security level can easily be varied dynam-
ically in HISPs: the length of a digest can be increased when there is

1There is no need for B to check that the correct value was delayed in Message 3 if
he gets the correct Message 5 here. This would have not have been the case if the third
and fourth messages of the original protocol were H(H(KA)) and H(KB), namely nested
hashing, because the former can be computed from the latter in the case where KA = KB

without knowledge of KB . Since opening delays is potentially expensive, this explains
why we used the form of confirmation messages we did.

7

evidence or suspicion of attack attempts. In PAKEs the password pre-
agreed by Alice and Bob cannot be changed so easily: essentially the
only way of reducing the likelihood of an attack in the presence of a
known attacker is to restrict or ban use of the protocol.

It is clear that in performing this type of fishing-for-information attack,
it is necessary to play the role of the first of the two parties who gets the
confirmation message in the original PAKE (the responder B in the case of
our SPEKE/key confirmation example above).

In all standard PAKEs, the issue of who sends this type of information
first is determined by which role a participant in playing: Alice or Bob.
We need to improve on this. Note that the difficulty with the transformed
SPEKE above is that the attacker knows exactly at what point he has the
relevant information and so he can abort as soon as he reaches this point,
even if the information is temporarily inaccessible to him due to a delay
wrapper. In the next section we exploit this observation by introducing a
stochastic element to the points at which the key information is transmitted.

A slight improvement on the above is to have the parties in effect toss a
coin to decide who goes first. (There are cryptographic solutions to doing
this fairly, including have each of the two send a delayed random bit2 with
each requiring the other before its own delay opens, and xor-ing them. This
is a case where Roscoe’s transformation does work, because no state is car-
ried from one toss to the next.) Using this would mean that the attacker
would not know at the outset whether he will be able to get Alice to reveal
her confirmation value to him first, but he will know that he will have a 50%
chance of achieving this and can abort the run if the coin goes against him.
We need to improve on this.

3 Two-party Stochastic Exchange

Ideally we would like to achieve fair exchange of the confirmation values VA
and VB: we would like B to get VA if and only if A gets VB. We assume
that these can be revealed publicly at appropriate junctures without giving
away the the key: they may for example be hashed versions of the two sides’
keys.

It is known[10] that complete fair exchange, where one party gets what
they want if and only if the other party or parties do also, is not possible

2In the case where the delay construction is determinisitic, it will be necessary to salt
these bits with a random nonce.

8

without a Trusted Third Party (TTP) or a majority of honest parties. In this
context we have only two parties, and the use of a TTP seems inappropriate:
it necessitates additional trust assumptions and introduces a bottleneck and
single point of failure3. In particular this means that in the two party setting
we cannot achieve complete fairness. We can however get close to achieving
what we term stochastic fairness: ensuring that the probability of each party
getting what it wants from an aborted exchange is always equal.

What we actually achieve is to bound the difference between these prob-
abilities to be below any positive tolerance. This is done by ensuring that A
and B are ignorant of which of a number of messages they send or receive
actually communicates VA or VB. This is done by a combination of ran-
domisation, blinding and delay: each sends the other a series of messages,
knowing that one of the messages in each direction actually communicates
VA or VB but such that neither of them know which until this process is
complete because either these messages or something that enables them is
delayed. Here, by “communicates”, we mean that if A, say, receives all
messages from B up to and including this one, then it will eventually (i.e.
perhaps after waiting for one or more delays to open) be able to calculate
the value VB without any further input from B (or anyone else).

We will first examine the extent that this can be done without delay.
After some preliminary communication, each of A and B creates a num-

ber of messages MAi and MBi. For the sake of argument we will assume
they each create the same natural number k of these, but it is not essen-
tial that they create the same number. In each case exactly one of these
messages will, given the other’s knowledge up to that point (and without
the other MAj or MBj), reveal the value of (respectively) VA or VB or, in
the case where it is intended that VA and VB are equal, allow the receiving
agent to discover this. Each of A and B chooses a blinding key bA and bB.
Here, blinding means applying some encryption B(b,M) to M which has
the properties:

(i) receiving multiple messages encrypted under the same key does not
significantly diminish security (as it would with Vernam, for example)
and

(ii) B(b1, B(b2,M)) = B(b2, B(b1,M)) for all M , b1 and b2.

(iii) For each b there is a key b−1 such that B(b−1(B(b, x)) = x for all x.
Thus unblinding fits into the commutative framework implied by (ii).

3Optimistic fair exchange protocols, e.g. [1] where TTPs are only used in the case of
disagreement, counter some of these.

9

The natural candidate for such a blinding is exponentiation in a suitable
Diffie-Hellman type group, i.e. one in which taking discrete logs is deemed
intractable. Thus, for example if we work in Z∗p for a suitable, large prime
p:

B(b,m) := mb (mod p)

These two sets of blinded messages are then sent in arbitrary order,
either as separate messages or arranged into a list, to the other party. Thus
A now has all the messages MBi created by B, though blinded under bB,
and vice-versa. These messages, because they are blinded, reveal nothing
about VA or VB, and because the index of the crucial member of this list is
kept secret, the recipient does not know which, if unblinded, would reveal
these values.

Each of A and B then re-blind the messages, so these become respectively
B(bA, B(bB,MBi)) and B(bB, B(bA,MAi)), and each performs a random
permutation on the results. These are once more passed to the other party,
who then removes the blinding he or she has performed, which is possible
thanks to the assumed commutativity of blinding.

Now A and B respectively hold B(bB,MAi) and B(bA,MBi), but in
each case neither agent knows which of these messages provides the revela-
tion of VA or VB. The most crucial step is how these messages are passed
over once more: note that if B receives B(bB,MAi) he can unblind it to
produce MAi, meaning that exactly one of these messages will reveal VA to
him, and vice-versa. We term this the reveal phase. As far as each of the
parties is concerned, a random member of each list will do the revealing and
neither has any idea which (either of the ones it is sending or the ones it is
receiving).4

Imagine A and B exchanging the B(bB,MAi) and B(bA,MBi), in pairs.
Typically we will determine who has the job of sending the first of each pair,
and who the second. We might, for example, give A the job of sending the
first of the first pair, then B the first of the second pair, and so continuing
to alternate so that A sends 1 message, then each sends 2 alternately until
there is only one left (which will be sent by A if k is even and B if it is
odd). For symmetry, assume that the parties “toss a coin” as discussed

4It is at this point that we can argue that the use of Vernam encryption would be
insecure for blinding: necessarily A has to use the same key in blinding all of the messages
MAi because she does not know which is which when she unblinds them. As soon as B
receives one of the B(kB ,MAi) he will know kA under Vernam because he has already
seen B(kA, B(kB ,MAi)). Because he has seen all the terms of the latter sort he no longer
needs to participate in the exchange to learn all the MAj .

10

above to decide which goes first. Suppose A is communicating with some
impostor I pretending to be B. One of the B(bA,MBi) that I holds will
probably reveal to A that I is an impostor, but I does not know which one.
If I now aborts before he sends any of these he now has only a 1

2k chance
of being able to check if VA = VB. To improve his chance of obtaining
this information he should send some of his messages. Let’s examine what
happens if he decides to send his messages until he gets the crucial one from
A, he has approximately a 50% chance of “winning” (i.e. checking his to see
if VA = VB without letting A doing the same.) He is able to do this because
he knows immediately when the crucial B(bB,MAi) is sent, and can then
abort.

This does not apply if he cannot determine which of the messages is
the crucial one that communicates VX until beyond a time by which all the
exchanges must have taken place. The use of such delays means that I must
effectively decide ab initio how many of his messages to risk in order to get
some of A’s: he does not get any useful information about those he receives
during the process to modify his strategy. This means that in order to get
chance α of discovering if VA = VB he has to give away at least an α− 1

k of
A discovering this (given the pattern of exchange described above).

The obvious way of introducing this delay is to apply it to theB(bB,MAi)
and B(bA,MBj) that are sent in the exchange. However an equivalent and
probably more efficient one is for each of A and B to send a single delayed
message such as a key which is needed to reveal which of the MXi is cru-
cial. Thus they might exchange delay(kA) and delay(kB), with the MAi
and MBi being encryptions of k different things, only one of which is VA or
VB respectively. There would be no need to add extra messages since the
delayed keys could be included in an existing one, provided it was no later
than the first sent by the respective party in the exchange. The improved
efficiency of this approach would be apparent when auditing a failed run
since only a single delay term would need to be opened.

This technique set out here is not a fair exchange in the classical sense
defined above, because either side can abort the exchange when either might
unknowingly have made the reveal to the other. However it approximates
what we termed stochastic fairness, meaning that in this case the proba-
bilities of the reveal having been made either way is itself fair. Because of
the particular approach we have taken to swapping messages in the reveal
phase, the agents will alternately have a 1

k advantage in this probability.
We call this technique and the variants introduced below stochastic ex-

change.
There are two important things we have not addressed in the above:

11

efficiency and preventing fraud by I in what messages he sends. The for-
mer, as in the auditable protocols in [11], can be helped by ensuring that
delay(x, T) terms only need to be opened during the auditing process as
opposed to normal complete protocol runs. The amount of cryptography
(particularly with expensive functions) and number of messages sent and
received plainly have a major effect on efficiency. It follows that there will
be a trade-off between how much work the parties do and how close they
come to stochastic fairness.

The latter is achieved by commitment to subsequent sends in advance,
on the assumption that the attacker does not want to be caught cheating.

One way of achieving this is as follows: assume that the parties hold VA
and VB which they wish to exchange.

3.1 Putting the pieces together

We have described the various pieces of plumbing we require and we now
put these together in the full protocol. For ease of presentation we opt for
the (1, 2, 2 · · · , 2) pattern of exchanges where both parties generate k − 1
fake values. We suppose that A and B have just run a PAKE and so have
computed KA and KB respectively, and they now wish to establish in a
probabilistically fair fashion if KA = KB. In fact, they will not of course
reveal these in the clear but rather values derived in a one way fashion from
these, e.g:

VA := Hash(KA, A,B)

VB := Hash(KB, B,A)

3.1.1 Phase 1-Setup

A generates a random seed value s from which the the fake key values MA,i

will be generated, an index cA for the real VA, a fresh key kA, and blinding
factors bA and b′A:

s ∈R K,
kA ∈R K
cA ∈R {1, · · · , k}
bA ∈R B
b′A ∈R B
πA ∈R Πk

12

Here ∈R X indicates drawn at random from the set X and Πk denotes
the set of permutations of k objects. K is the space of keys, which we will
assume is the same as the blocksize of the cipher C, e.g. 128 bits. B is the
space from which the blinding factors are drawn. The unprimed blinding
factors bX will be used by the parties to blind their own M terms, while the
primed factors b′X will re-blind the M terms received from the other party.

A now computes:

MA,i := Hash(i, s), i ∈ {1, · · · , k}/ca
MA,cA := {VA}kA

A now blinds the MA,i terms using her first blinding factor bA. Note all
the terms are blinded with the same factor in order to allow A to unblind
them later without knowing which is which.

B performs the corresponding calculations with A↔ B.

3.1.2 Phase 2-Commitment

They now exchange Delay terms containing the encryption key, the index
cX (to the term containing their real VX), their WX terms and their permu-
tation. At the same time they exchange the blinded MX terms, but without
delay wrappers:

A→ B : Delay(kA), Delay(cA), Delay(πA), Delay(sA),

〈B(bA,MAi) | i← 〈1, . . . , k〉〉
B → A : Delay(kB), Delay(cB), Delay(πB), Delay(sB), 〈B(bB,MBi) | i

← 〈1, . . . , k〉〉

Note that the Delay terms serve a dual purpose: to conceal the con-
tents for some lower bounded time period and to commit the sender to the
contents.

3.1.3 Phase 3-Reblind and Shuffle

Now each re-blinds the MX terms that they have just received under their
own second blinding key b′X , they permute the resulting terms under their
chosen permutation πX and send the resulting list back to the other:

A→ B : 〈B(b′A, B(bB,MB,πA(i))) | i← 〈1 . . . k〉〉
B → A : 〈B(b′B, B(bA,MA,πB(i))) | i← 〈1 . . . k〉〉

13

On receipt of these terms, each can strip off their own blinding factor to
yield a list of their own MX terms but blinded and shuffled by the other.
Consequently, neither knows which term contains their real VA. This A now
holds the list: 〈B(b′B,MA,πB(i)) | i← 〈1 . . . k〉〉, and similarly for B.

3.1.4 Phase 4-Fair Exchange

Now they are ready to start exchanging these terms progressively according
the prescribed alternating schedule. Note that they should not apply any
further shuffle at this point, they should send them in the order they received
them. This is to ensure that later each is able to identify the critical term
once they learnt the other’s index value.

A→ B : B(b′B,MA,πB(1))

B → A : B(b′A,MA,πA(1)), B(b′A,MA,πA(2))

A→ B : B(b′B,MA,πB(2)), B(b′B,MA,πA(3))

.

.

B → A : B(b′A,MA,πA(k−1)), B(b′A,MA,πA(k))

Each can strip off their own blinding factor to reveal the encryptions of
the other’s MX terms, one of which should be the encryption of VX and the
others dummies.

3.1.5 Phase 5-Reveal

Assuming that this runs to completion they can now exchange their kX and
cX terms:

A→ B : kA, cA, sA

B → A : kB, cB, sB

Now that they know the others index value, so with the knowledge of
their own permutation they can identify which term contains the real VX
and they can decrypt this with the newly revealed kX .

3.2 When things go wrong

If either party fails to receive the expected response in a timely fashion
it sends no further message and abandons the protocol. If the protocol is

14

aborted before Phase 4, neither node has received enough to determine if
KA = KB in the exchange.

If it is aborted in Phase 4, and once the delays have opened, an honest
node can audit the messages received so far to determine whether all the
messages it has received are coherent, and whether it should hold sufficient
information to determine the other’s VX . That is, it extracts the other
party’s index value from the Delay and from this along with knowledge of
the permutation it applied it can determine if the real VX term should be in
the set received to that point. It also knows if its own VX has been revealed.

If it is aborted after Phase 4, an honest node can audit as above but now
certainly has the information to determine VX , or establish that the other
party cheated in the construction of the terms.

The delays only have to be opened in an aborted run because in a com-
pleted run the values VA and VB will have been exchanged and can be
checked against the values committed earlier.

3.3 Auditing

Here we detail the auditing steps that a party X should take. In the event of
the protocol aborting, these may have to tale place after the delay wrappers
have been opened:

• Check that the other party Y has provided a valid key kY ∈ K, a valid
index cY in the range (1, . . . , k), a valid blinding key b′X and a valid
permutation πY over k objects and finally a valid seed value sY ∈ K.

• Check, using knowledge of πx and b′x, whether Y performed the com-
mitted permutation of the re-blinding.

• If the protocol aborts at some point in Phase 4, say afterX has received
l terms from Y , then X computes πX(cY) and if this is less that l then
the {VY }kY terms should be in the set X has received. X should
decrypt this term and can now establish if KX = KY . If πX(cY) > l
then he has not received the critical term and cannot conclude whether
KA = KB or not.

• For all the terms received in Phase 4, X should check that they are
correctly formed, i.e. of the form Mi,Y = Hash(π−1X (i), sY), for all
i ≤ l and i 6= cY . This check should be performed even if Phase 4
competes, i.e. if l = k.

15

By this means X will be able to tell if Y has followed the protocol
correctly. If not an attacker is present. If so and he can tell that KA 6= kB
then Y has made an incorrect guess so is assumed to be an attacker.

4 Playing with probability

Imagine the following scenario. In a given network there are 2N parties who
will pair off and try to connect to one another in N protocols runs. The
probability of an individual password guess by an intruder being correct is
ε. Each pair are prepared to make T tries at pairing if they think that
communications failings are getting in their way. Therefore, if the pairs use
some PAKE to establish their links without using our modified protocols,
the intruder can expect to have approximately NTε successes in breaking
into the pairs without any chance of being discovered. (The approximation
is because the intruder only needs to break each pair once, and so will stop
attacking a given pair before the T th if it succeeds before then. It is however
a good approximation provided the probability of it succeeding in T tries is
significantly less than 1, something we would expect in practice.)

If the protocol were now changed to one of our auditable PAKEs, this
expectation would decrease to N(T−1)ε

2k : the −1 is explained because in order
to break in with no chance of being detected a run must be abandoned,
so cannot be the last of T . (The discovered password is then used on a
subsequent run within the T .) If on each run the intruder is willing to give
away a (1− ε)/k chance of being caught (i.e. give away one of his MBi) this
will multiply the expected successes by 3 (rather than only getting only one
share in half the runs he will now get one in half the runs and two in the
other half), but will have an expectation of being discovered approximately
N(T−1)(1−ε)

2k times. This means near certain discovery in many cases. In
effect the intruder playing this game would give him 3ε successes for each
time he is discovered.

With the pattern of exchange we nominated earlier, the ratio of successes
gets worse for the attacker as the number of MBi that he is willing to send
increases. For example if he is willing to send 2 or 3 it reduces to (5/3)ε or
(7/5)ε. (In essence if prepared to give up r, the intruder has a 0.5 probability
of giving up r − 1 for r of Alice’s and a 0.5 probability of giving up r for
r + 1, depending on who starts the exchange.

By picking a different sending strategy to the 1, 2, 2, 2, · · · one we could
keep all the ratios below 3ε and substantially reducing the number of mes-
sages sent. For example sending 1, 2, 3, 4, · · · would still result in rations

16

converging to 1 as the attacker yields more shares, with first term 3ε, but
use only about

√
k exchanges. However picking k large enough to keep

N(T−1)ε
2k sufficiently small may require nodes to create and blind more MXi

than is ideal.
One can reduce the amount of work the nodes have to do by replacing

what we might term the linear division strategy (i.e. the probability of being
able to deduce VX grows linearly with the number of MXi one has seen)
by a quadratic one. In this there are two specific MXi that are required
to deduce VX , meaning that the probability of having them both grows
quadratically with the number one has, in the initial phase of the exchange.
For example X might initially send {{VX}kx1}kx2 under a delay, making
the MXi a number of keys that include kx1 and kx2. Of course one could
extend this to higher degrees. In the quadratic case with k messages in all,
one must have r > 1 of them to have any chance of having both the two
crucial ones, with the probability then being r(r−1)

k(k−1) .
If, for example, we picked k = 10 and the MXi exchanged using the

1, 2, 2, 2, · · · pattern we assumed previously, the attacker could give away
one key without fear of giving himself away, and could (if willing to go no
further) expect a 1

90 chance of having his guess checked, and therefore a ε
90

chance of obtaining the key. This improves from the ε
20 chance using k = 10

with the linear approach. The amount of blinding (which is likely to be
comparatively the most expensive part of our approach, computationally)
is exactly the same in these quadratic and linear examples.

Therefore this quadratic approach reduces the chance our attacker has
of breaking any of the N runs without giving away a much bigger chance of
being caught.

The designer of any implementation is of course free to choose an ap-
proach to devising and exchanging tokens that is believed to be optimal in
terms of the perceived threat, communication costs and computation costs.
What we have shown in this section is that there are many options other
than the linear 1, 2, 2, 2, · · · one adopted earlier.

5 Game playing: other uses of stochastically fair
exchange

What we have demonstrated is how to build PAKE protocols in which we
can make the rate at which an attacker can gain information about keys
without yielding evidence of his existence as small as desired, while the
number of guesses at passwords he can check by other means will give away

17

his existence to the trustworthy parties approximately the same number of
times (stochastically).

The main part of this class of protocols is something we did not need at
all for HISPs, a way of ensuring a nearly fair game between two players who
are each supposed to give each other something, in the absence of a TTP.

Clearly the probabilistic fair exchange mechanisms proposed here could
find application in other contexts, for example contract signing. In place
of the VX values we might have signatures and use the probabilistic fair
exchange to provide abuse-freeness. The idea here is to avoid situations in
which one party is able to gain some advantage by being able to prove to
a third party that they have the ability to determine whether the protocol
will complete successfully or abort.

6 Analysis

Our goal in this paper has been to devise a protocol to prevent an attacker
being able to test guesses at the password in a way that will not be detected
by the honest participants, or more precisely, in way that they cannot dis-
tinguish from network failures. Ideally we would like to ensure that if the
attacker can determine that his guess is wrong then the honest party will
also know that the keys do not match. We cannot achieve perfect fairness in
this sense, at least in the two-party setting without TTP, but we argue that
the protocol described here allows us to get arbitrarily close to this. More
precisely, we achieve the following property:

Definition 1 δ Probabilistic Fairness: A protocol Π satisfies δ probabilistic
fairness if:

Let pX be the probability that X possesses the necessary information to
establish whether VA = VB, possibly after delay terms have been revealed,
then at any point in the execution of the protocol, we have:

|pA − pB| ≤ δ

Our basic protocol above satisfies 1/k probabilistic fairness.

6.1 Sketch proof of stochastic fairness

Up to the end of Phase 3, neither party has any access to the V terms. They
do have access to terms that contain the other party’s V terms but these
are wrapped first by an encryption under a key that is under a Delay but

18

more importantly the encryption us shrouded by an unconditionally hiding
blinding. In fact, both parties hold k such terms all blinded by the same
factor which might seem dangerous, but in fact the security can be shown
to reduce that that of RSA .

Thus, if the protocol aborts before the end of Phase 3 the attacker learns
nothing about the validity or otherwise of his guess at the password.

If the protocol runs to the end of Phase 4, the fair exchange, then it is
clear that both parties will have enough information to establish if VA = VB,
or that the other party provided inconsistent terms. The interesting part is
if the protocol aborts at some point during Phase 4.

First we will analyse phase 4 under the assumption that the two parties
follow the protocol, later we will discuss how it deals with possible departures
from the protocol if one of the parties is adversarial.

By the end of Phase 3, each party will have received back its MX terms
blinded and shuffled by the other party. We need to show that they cannot
determine which term contains their real V . The blinding/shuffle construc-
tion is essentially the exponentiation mix construction of [12]. As long as the
terms that are input to the mix are independent in the sense that there is
no pair MXi, MXj for which the attacker knows y such that (MXi)

y = MXj ,
then it can be shown that breaking the secrecy of the shuffle is reducible to
the DDH assumption. On the other hand, if the attacker can arrange for a
pair of inputs such that he knows the discrete log then it is easy for him to
trace these through the mix. It is to avoid this that we use the hash func-
tion construction for the fake MX values: the party has to commit to the
seed value that is fed into the hash along with the index values to generate
the M terms. Assuming that the hash is such that computing pre-images
is intractable then he will not be able to produce dependent MX values
consistent with the committed seed s.

This establishes the key property: each party will not know which of the
shuffled terms contains their real V and consequently they will not know at
what point in phase 4 they pass this term to the other. Equally, they will
not know at which point that have received the term containing the other’s
real V term because, although they know what shuffle they applied they do
not know which index the other used. Thus, after the first send B will have
a 1/k chance that he has VA (still concealed under a Delay). After the next
send of two terms from B, A will have a 2/k chance of having VB, etc. We
see that, for this schedule of exchanges, the difference in their advantages is
always bounded by 1/k. As explained earlier, we can improve on this bound
by suitable threshold constructions and scheduling, but the arguments will
be essentially the same.

19

Of course, either party may chose to depart from the protocol by for
example sending random terms rather than the actual terms, but this will
only result in either the other finding that the keys do not match or the
deviation will be evident on audit in the event of an abort.

7 Conclusions

In this paper we show that PAKEs, like HIPSs, are vulnerable to an attacker
disguising guessing attacks as network failures, We have shown that PAKEs
present significantly more challenges than HISPs to making them auditable,
and outlined the approach we will take to solve this. The new construction,
stochastic fairness, is likely to find application beyond PAKEs, e.g. in fair
exchange schemes.

Appendix A: a brief survey of PAKEs

Here we briefly describe a number of representative PAKE protocols. This
is purely for illustrative purposes; the techniques we describe below should
work for all PAKEs. For simplicity we omit various checks that need to be
performed. A comprehensive survey of PAKEs can be found in chapter 40
of the Computer And Information Security Handbook 2nd Edition, Ed J
Vacca, Elsevier 2013.

Such protocols come in two phases: key establishment and key confir-
mation. The first establishes a key based on the shared password, and the
second allows each party to confirm that the other knows the password, im-
plying that the key establishment phase was run with the intended party.
These phases can generally be chosen independently of each other.

PAKE key establishment

EKE (Encrypted Key Exchange)

The original EKE, [2], is essentially Diffie-Hellman with the DH terms en-
crypted with a symmetric key s∗ derived from the shared password s using
a public, deterministic function f, s∗ = f(s):

A→ B : {gx}s∗
B → A : {gy}s∗

The session key is formed as K = gxy.

20

The original EKE has undergone several fixes to counter flaws, notably
the fact that an attacker can eliminate a large number of putative passwords
by decrypting the exchanged terms with a guessed password and observing
if the resulting plaintext lies in the subgroup.

SPEKE (Simple Password Exponential Key Establishment)

SPEKE, [6], is essentially a D-H protocol but with the difference that the
generator is not fixed and public but rather is computed as an agreed func-
tion of the shared secret s, for example:

h(s) := (H(s))2 (mod p)

The squaring guarantees that g lies in the appropriate subgroup assum-
ing that we are assuming a safe prime p where p = 2q− 1 with q also prime.
The protocol is thus essentially a D-H protocol using the shared secret gen-
erator.

A→ B : h(s)x

B → A : h(s)y

K = g(s)ab

PKK

A rather elegant protocol, PKK due to MacKenzie and Boyko [3], is in
simplified form for illustration:

A→ B : X := h(sA) · gx,
B → A : Y := h(sB) · gy

Here h denotes a suitable mapping from the password space to the DH
group.

A computes: KA := (Y/h(sA))x

B computes: KB := (X/h(sB))y

J-PAKE

J-PAKE, [5], uses a quite different approach: the so-called juggling of D-H
terms. The original J-PAKE involved both parties generating and trans-
mitting two D-H terms. For simplicity of presentation we describe here a
lightweight version, [8], that requires just one D-H term from each party but
involves a so-called Common Reference String (CRS) construction.

21

J-PAKE-CRS

Here we assume that there is an agreed element h of the group G with
unknown log w.r.t. g (in effect a so-called Common Reference String CRS).

A→ B : gx, ZKP (x, g)

B → A : gy, ZKP (y, g)

Round two:

A→ B : X := (h · gy)(x.s), ZKP (x.s, h · gy)
B → A : Y := (h · gx)y.s, ZKP (y.s, h · gx)

A computes: KA := (Y/gy.x.s)x

B computes: KB := (X/gx.y.s)y

Thus, if sA = sB(= s) then KA = KB = hx.y.s

ZKP (x, y) denotes Zero-Knowledge Proofs of knowledge of a discrete
log of x w.r.t. the base y.

Appendix B: Key Derivation and Confirmation

Having established a DH shared secret we typically need to derive a suit-
able session key for a symmetric algorithm. Various approaches have been
proposed and we will not go into the details here but we refer the interested
reader to, for example the NIST recommendations, [4], and Krawczyk et al.
[7]. A typical approach is to derive the key from the DH value is to use a
suitable hash function that yields a close to flat distribution over the key
space and include parameters associated with the session:

SK := Hash1(K,A,B)

Where K is the DH value. Now the parties have to compare their keys,
which they might do by, for example, exchanging hashes of the form:

A→ B : Hash2(1,KA, A,B)

B → A : Hash2(2,KB, A,B)

An alternative approach is to segment the derived key into three parts:

SK = sk||kA||kB
Where || denotes concatenation. A and B now exchange the appropriate

segments as follows:

22

A→ B : kA

B → A : kB

A and B now check that the received values agree with those they com-
puted internally. Assuming that they do indeed find agreement they can
proceed to use sk as the session key. This may require the calculation of a
much larger key than normal, possibly requiring key expansion, see [7].

References

[1] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair ex-
change of digital signatures. IEEE Journal on Selected Areas in Com-
munications, 18(4):593–610, 2000.

[2] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In IEEE
SYMPOSIUM ON RESEARCH IN SECURITY AND PRIVACY,
pages 72–84, 1992.

[3] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure
password-authenticated key exchange using diffie-hellman. In Proceed-
ings of the 19th International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT’00, pages 156–171, Berlin,
Heidelberg, 2000. Springer-Verlag.

[4] Lily Chen. Nist special publication 800-56c recommendation for key
derivation through extraction-then-expansion. 2011.

[5] Feng Hao and Peter Y. A. Ryan. Password authenticated key exchange
by juggling. In Proceedings of the 16th International Conference on Se-
curity Protocols, Security’08, pages 159–171, Berlin, Heidelberg, 2011.
Springer-Verlag.

[6] David P. Jablon. Strong password-only authenticated key exchange.
SIGCOMM Comput. Commun. Rev., 26(5):5–26, October 1996.

[7] Hugo Krawczyk. Cryptographic extraction and key derivation: The
hkdf scheme. In Proceedings of the 30th Annual Conference on Advances
in Cryptology, CRYPTO’10, pages 631–648, Berlin, Heidelberg, 2010.
Springer-Verlag.

23

[8] Jean Lancrenon, Marjan Skrobot, and Qiang Tang. Two more efficient
variants of the j-pake protocol. Cryptology ePrint Archive, Report
2016/379, 2016. http://eprint.iacr.org/2016/379.

[9] L.H. Nguyen and A.W. Roscoe. Authentication protocols based on
low-bandwidth unspoofable channels: a comparative survey. Journal
of Computer Security, 19, 2011.

[10] Henning Pagnia and Felix C Gärtner. On the impossibility of fair ex-
change without a trusted third party. Technical report, Citeseer, 1999.

[11] A.W. Roscoe. Detecting failed attacks on human-interactive security
protocols. 2016.

[12] Douglas Wikström. A sender verifiable mix-net and a new proof
of a shuffle. In Proceedings of the 11th International Conference on
Theory and Application of Cryptology and Information Security, ASI-
ACRYPT’05, pages 273–292, Berlin, Heidelberg, 2005. Springer-Verlag.

24

