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Abstract— This paper studies monocular visual odometry
(VO) problem. Most of existing VO algorithms are developed
under a standard pipeline including feature extraction, feature
matching, motion estimation, local optimisation, etc. Although
some of them have demonstrated superior performance, they
usually need to be carefully designed and specifically fine-tuned
to work well in different environments. Some prior knowledge
is also required to recover an absolute scale for monocular
VO. This paper presents a novel end-to-end framework for
monocular VO by using deep Recurrent Convolutional Neural
Networks (RCNNs). Since it is trained and deployed in an
end-to-end manner, it infers poses directly from a sequence
of raw RGB images (videos) without adopting any module in
the conventional VO pipeline. Based on the RCNNs, it not
only automatically learns effective feature representation for
the VO problem through Convolutional Neural Networks, but
also implicitly models sequential dynamics and relations using
deep Recurrent Neural Networks. Extensive experiments on the
KITTI VO dataset show competitive performance to state-of-
the-art methods, verifying that the end-to-end Deep Learning
technique can be a viable complement to the traditional VO
systems.

I. INTRODUCTION

Visual odometry (VO), as one of the most essential
techniques for pose estimation and robot localisation, has
attracted significant interest in both the computer vision and
robotics communities over the past few decades [1]. It has
been widely applied to various robots as a complement to
GPS, Inertial Navigation System (INS), wheel odometry, etc.

In the last thirty years, enormous work has been done to
develop an accurate and robust monocular VO system. As
shown in Fig. 1, a classic pipeline [1], [2], which typically
consists of camera calibration, feature detection, feature
matching (or tracking), outlier rejection (e.g., RANSAC),
motion estimation, scale estimation and local optimisation
(Bundle Adjustment), has been developed and broadly recog-
nised as a golden rule to follow. Although some state-of-the-
art algorithms based on this pipeline have shown excellent
performance in terms of accuracy and robustness, they are
usually hard-coded with significant engineering effort and
each module in the pipeline needs to be carefully designed
and fine-tuned to ensure the performance. Moreover, the
monocular VO has to estimate an absolute scale by using
some extra information (e,g., height of the camera) or prior
knowledge, making it prone to big drift and more challenging
than the stereo VO.

Deep Learning (DL) has recently been dominating many
computer vision tasks with promising results. Unfortunately,
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Fig. 1. Architectures of the conventional feature based monocular VO and
the proposed end-to-end method. In the proposed method, RCNN takes a
sequence of RGB images (video) as input and learns features by CNN for
RNN based sequential modelling to estimate poses. Camera image credit:
KITTI dataset [3].

for the VO problem this has not arrived yet. In fact, there
is very limited work on VO, even related to 3D geom-
etry problems. We presume that this is because most of
the existing DL architectures and pre-trained models are
essentially designed to tackle recognition and classification
problems, which drives deep Convolutional Neural Networks
(CNNs) to extract high-level appearance information from
images. Learning the appearance representation confines the
VO to function only in trained environments and seriously
hinders the popularisation of the VO to new scenarios. This
is why the VO algorithms heavily rely on geometric features
rather than appearance ones. Meanwhile, a VO algorithm
ideally should model motion dynamics by examining the
changes and connections on a sequence of images rather than
processing a single image. This means we need sequential
learning, which the CNNs are inadequate to.

In this paper, we propose a novel DL based monocular
VO algorithm by leveraging deep Recurrent Convolutional
Neural Networks (RCNNs) [4]. Since it is achieved in an
end-to-end manner, it does not need any module in the
classic VO pipeline (even camera calibration). The main
contribution is threefold: 1) We demonstrate that the monoc-
ular VO problem can be addressed in an end-to-end fashion
based on DL, i.e., directly estimating poses from raw RGB
images. Neither prior knowledge nor parameter is needed to



recover the absolute scale. To the best of our knowledge,
this is the first end-to-end approach on the monocular VO
through Deep Neural Networks (DNNs). 2) We propose a
RCNN architecture enabling the DL based VO algorithm
to be generalised to totally new environments by using
the geometric feature representation learnt by the CNN.
3) Sequential dependence and complex motion dynamics
of an image sequence, which are of importance to the VO
but cannot be explicitly or easily modelled by human, are
implicitly encapsulated and automatically learnt by deep
Recurrent Neural Networks (RNNs).

The rest of this paper is organised as follows. Section II
reviews related work. The end-to-end monocular VO algo-
rithm is described in Section III, followed by experimental
results in Section IV. Conclusion is drawn in Section V.

II. RELATED WORK

Early work on the monocular VO is reviewed in this
section, discussing various algorithms and their differences
from others. There are mainly two types of algorithms in
terms of the technique and framework adopted: geometry
based and learning based methods.

A. Methods based on Geometry

Theoretically based on geometric theory, geometry based
methods, which dominate the area of VO, rely on geometric
constraints extracted from imagery to estimate motion. Since
they are derived from elegant and established principles
and have been extensively investigated, most of state-of-
the-art VO algorithms fall into this family. They can be
further divided into sparse feature based methods and direct
methods.

1) Sparse Feature based Methods: Sparse feature based
methods, whose typical pipeline is shown in Fig. 1, employ
multi-view geometry [5] to determine motion after extract-
ing and matching (or tracking) salient feature points from
a sequence of images, such as the algorithm in [6] and
LIBVISO2 [7]. However, due to the presence of outliers,
noises, etc., all VO algorithms suffer from drifts over time.
To mitigate this problem, visual Simultaneous Localisation
and Mapping (SLAM) or Structure from Motion (SfM) can
be adopted to maintain a feature map for drift correction
along with pose estimation [8]. Examples include keyframe
base PTAM [9] and ORB-SLAM [10].

2) Direct Methods: Feature extraction and matching of
sparse feature based methods are computationally expensive.
More importantly, they only use salient features without
benefiting from rich information contained in the whole
image. Direct methods, in contrast, are capable of exploiting
all the pixels in consecutive images for pose estimation under
the assumption of photometric consistency, e.g., DTAM in
[11]. Recently, semi-direct approaches which realise superior
performance are developed for the monocular VO [12]–
[14]. Since the direct methods tend to be more accurate in
principle than feature based ones and can work better in
texture-less environments, they are increasingly gaining more
favour.

B. Methods based on Learning

As data-driven approaches, learning based methods are
to learn motion model and infer VO from sensor readings
by Machine Learning techniques without explicitly applying
geometric theory. Optical flow is used to train K Nearest
Neighbour (KNN), Gaussian Process (GP) and Support Vec-
tor Machines (SVM) regression algorithms for the monocular
VO in [15], [16] and [17], respectively. Since the learning
based methods are recently emerging, there is limited amount
of work and no one has directly dealt with raw RGB images
yet.

It has been widely recognised that traditional Machine
Learning techniques are inefficient when encountering big or
highly non-linear, high-dimensional data, e.g., RGB images.
DL which automatically learns suitable feature representation
from large-scale dataset provides an alternative solution to
the VO problem.

1) Deep Learning based Methods: DL has achieved
promising results on some localisation related applications.
The features of CNNs, for instance, have been utilised for
appearance based place recognition [18]. Unfortunately, there
is little work on VO or pose estimation. To our knowledge,
[19] firstly realises DL based VO through synchrony detec-
tion between image sequences and features. After estimating
depth from stereo images, the CNN predicts the discretised
changes of direction and velocity by the softmax function.
Although this work provides a feasible scheme for DL based
stereo VO, it inherently formulates the VO as a classification
problem rather than pose regression. Camera relocalisation
using a single image is solved in [20] by fine-tuning im-
ages of a specific scene with CNNs. It suggests to label
these images by SfM, which is time-consuming and labour-
intensive for large-scale scenarios. Because a trained CNN
model serves as an appearance “map” of the scene, it needs
to be re-trained or at least fine-tuned for a new environment.
This seriously hampers the technique for widespread usage,
which is also one of the biggest difficulties when applying
DL for VO. To overcome this problem, the CNNs are
provided with dense optical flow instead of RGB images
for motion estimation in [21]. Three different architectures
of CNNs are developed to learn appropriate features for VO,
achieving robust VO even with blurred and under-exposured
images. However, the proposed CNNs require pre-processed
dense optical flow as input, which cannot benefit from the
end-to-end learning and may be inappropriate to real-time
applications.

Because the CNNs are incapable of modelling sequential
information, none of the previous work considers image
sequences or videos for sequential learning. In this work,
we tackle this by leveraging the RNNs.

III. END-TO-END VISUAL ODOMETRY THROUGH RCNN

In this section, the deep RCNN framework realising the
monocular VO in an end-to-end fashion is described in detail.
It is mainly composed of CNN based feature extraction and
RNN based sequential modelling.
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Fig. 2. Architecture of the proposed RCNN based monocular VO system. The dimensions of the tensors shown here are given as an example based on
the image size of the KITTI dataset. The CNN ones should vary according to the size of the input image. Camera image credit: KITTI dataset.

A. Architecture of the Proposed RCNN

There have been some popular and powerful DNN ar-
chitectures, such as VGGNet [22] and GoogLeNet [23],
developed for computer vision tasks, producing remarkable
performance. Most of them are designed with tackling
recognition, classification and detection problems in mind,
which means that they are trained to learn knowledge from
appearance and image context. However, as discussed before,
VO which is rooted in geometry should not be closely
coupled with appearance. Therefore, it is impractical to
simply adopt the current popular DNN architectures for
the VO problem. A framework which can learn geometric
feature representations is of importance to address the VO
and other geometric problems. Meanwhile, it is essential to
derive connections among consecutive image frames, e.g.,
motion models, since the VO systems evolve over time
and operate on image sequences acquired during movement.
Therefore, the proposed RCNN takes these two requirements
into consideration.

The architecture of the proposed end-to-end VO system
is shown in Fig. 2. It takes a video clip or a monocular
image sequence as input. At each time step, the RGB image
frame is pre-processed by subtracting the mean RGB values
of the training set and, optionally, resizing to a new size
in the multiple of 64. Two consecutive images are stacked
together to form a tensor for the deep RCNN to learn how to
extract motion information and estimate poses. Specifically,
the image tensor is fed into the CNN to produce an effective
feature for the monocular VO, which is then passed through
a RNN for sequential learning. Each image pair yields a
pose estimate at each time step through the network. The
VO system develops over time and estimates new poses as
images are captured.

The advantage of the RCNN based architecture is to allow
simultaneous feature extraction and sequential modelling of
VO through the combination of CNN and RNN. More details
are given in the subsequent sections.

TABLE I
CONFIGURATION OF THE CNN

Layer Receptive
Field Size Padding Stride Number

of Channels
Conv1 7× 7 3 2 64
Conv2 5× 5 2 2 128
Conv3 5× 5 2 2 256
Conv3 1 3× 3 1 1 256
Conv4 3× 3 1 2 512
Conv4 1 3× 3 1 1 512
Conv5 3× 3 1 2 512
Conv5 1 3× 3 1 1 512
Conv6 3× 3 1 2 1024

B. CNN based Feature Extraction

In order to automatically learn effective features that are
suitable for the VO problem, a CNN is developed to perform
feature extraction on the concatenation of two consecutive
monocular RGB images. The feature representation is ideally
geometric instead of being associated with appearance or
visual context because the VO systems need to be generalised
and deployed in unknown environments. The structure of the
CNN is inspired by the network for optical flow estimation
in [24].

The configuration of the CNN is outlined in TABLE I
and an example of its tensors on KITTI dataset is given
in Fig. 2. It has 9 convolutional layers and each layer is
followed by a rectified linear unit (ReLU) activation except
Conv6, i.e., 17 layers in total. The sizes of the receptive
fields in the network gradually reduce from 7 × 7 to 5 × 5
and then 3 × 3 to capture small interesting features. Zero-
paddings are introduced to either adapt to the configurations
of the receptive fields or preserve the spatial dimension of
the tensor after convolution. The number of the channels,
i.e., the number of filters for feature detection, increases to
learn various features.

The CNN takes raw RGB images instead of pre-processed
counterparts, such as optical flow or depth images, as input
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because the network is trained to learn an efficient feature
representation with reduced dimensionality for the VO. This
learnt feature representation not only compresses the original
high-dimensional RGB image into a compact description,
but also boosts the successive sequential training procedure.
Hence, the last convolutional feature Conv6 is passed to the
RNN for sequential modelling.

C. RNN based Sequential Modelling

Following the CNN, a deep RNN is designed to conduct
sequential learning, i.e., to model dynamics and relations
among a sequence of CNN features. Note that this modelling
is performed implicitly by the RNN to automatically discover
appropriate sequential knowledge. Therefore, it may come
out more than the models we use to describe physical
movement and geometry.

Since the RNN is capable of modelling dependencies in a
sequence, it is well suited to the VO problem which involves
temporal model (motion model) and sequential data (image
sequence). For instance, estimating pose of current image
frame can benefit from information encapsulated in previous
frames. In fact, this insight has already existed in the conven-
tional VO systems. For example, multi-view geometry is able
to avoid some issues in two-view geometry [5]. However,
RNN is not suitable to directly learn sequential representation
from high-dimensional raw data, such as images. Therefore,
the proposed system adopts the appealing RCNN architecture
with the CNN features as the input of the RNN.

RNN is different from CNN in that it maintains memory
of its hidden states over time and has feedback loops among
them, which enables its current hidden state to be a function
of the previous ones, as the RNN part shown in Fig. 2. Hence,
the RNN can find out the connections among the input and
the previous states in the sequence. Given a convolutional
feature xk at time k, a RNN updates at time step k by

hk = H(Wxhxk +Whhhk−1 + bh)

yk = Whyhk + by

(1)

where hk and yk are the hidden state and output at time k
respectively, W terms denote corresponding weight matrices,
b terms denote bias vectors, and H is an element-wise non-
linear activation function, such as sigmoid or hyperbolic
tangent. Although in theory the standard RNN can learn

sequences with arbitrary lengths, it is limited to short ones in
practice due to the known vanishing gradient problem [25].

In order to be able to find and exploit correlations among
images taken in long trajectories, Long Short-Term Memory
(LSTM) which is capable of learning long-term dependencies
by introducing memory gates and units [26] is employed
as our RNN. It explicitly determines which previous hidden
states to be discarded or retained for updating the current
state, being expected to learn the motion during pose es-
timation. The folded LSTM and its unfolded version over
time are shown in Fig. 3 along with the internal structure of
a LSTM unit. It can be seen that after unfolding the LSTM,
each LSTM unit is associated with a time step. Given the
input xk at time k and the hidden state hk−1 and the memory
cell ck−1 of the previous LSTM unit, the LSTM updates at
time step k according to

ik = σ(Wxixk +Whihk−1 + bi)

fk = σ(Wxfxk +Whfhk−1 + bf )

gk = tanh(Wxgxk +Whghk−1 + bg)

ck = fk � ck−1 + ik � gk

ok = σ(Wxoxk +Whohk−1 + bo)

hk = ok � tanh(ck)

(2)

where � is element-wise product of two vectors, σ is sigmoid
non-linearity, tanh is hyperbolic tangent non-linearity, W
terms denote corresponding weight matrices, b terms denote
bias vectors, ik, fk, gk, ck and ok are input gate, forget gate,
input modulation gate, memory cell and output gate at time
k, respectively,

Although the LSTM can handle long-term dependencies
and has deep temporal structure, it still needs depth on
network layers to learn high level representation and model
complex dynamics. The advantages of the deep RNN ar-
chitecture have been proved in [27] for speech recognition
using acoustic signal. Therefore, in our case the deep RNN
is constructed by stacking two LSTM layers with the hidden
states of a LSTM being the input of the other one, as
illustrated in Fig. 2. In our network, each of the LSTM layers
has 1000 hidden states.

The deep RNN outputs a pose estimate at each time step
based on the visual features generated from the CNN. This
progresses over time as the camera moves and images are
captured.

D. Cost Function and Optimisation

The proposed RCNN based VO system can be consid-
ered to compute the conditional probability of the poses
Yt = (y1, . . . ,yt) given a sequence of monocular RGB
images Xt = (x1, . . . ,xt) up to time t in the probabilistic
perspective:

p(Yt|Xt) = p(y1, . . . ,yt|x1, . . . ,xt) (3)

The modelling and probabilistic inference are performed in
the deep RCNN. To find the optimal parameters θ∗ for the



VO, the DNN maximises (3):

θ∗ = argmax
θ

p(Yt|Xt;θ) (4)

To learn the hyperparameters θ of the DNNs, the Eu-
clidean distance between the ground truth pose (pk,ϕk) at
time k and its estimated one (p̂k, ϕ̂k) is minimised. The
loss function is composed of Mean Square Error (MSE) of
all positions p and orientations ϕ:

θ∗ = argmin
θ

1

N

N∑
i=1

t∑
k=1

‖p̂k − pk‖22 + κ‖ϕ̂k −ϕk‖22 (5)

where ‖ · ‖ is 2-norm, κ (100 in the experiments) is a scale
factor to balance the weights of positions and orientations,
and N is the number of samples. The orientation ϕ is
represented by Euler angles rather than quaternion since
quaternion is subject to an extra unit constraint which hinders
the optimisation problem of DL. We also find that in practice
using quaternion degrades the orientation estimate to some
extent.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed end-to-
end monocular VO approach on the well-known KITTI
VO/SLAM benchmark [3]. Since most of existing monocular
VO algorithms do not estimate an absolute scale, their
localisation results have to be manually aligned with ground
truth. Therefore, the open-source VO library LIBVISO2 [7]
which uses a fixed camera height to recover the scale for
the monocular VO is adopted for comparison. Its stereo
version which can directly obtain the absolute poses is also
employed.

A. Training and Testing

1) Dataset: The KITTI VO/SLAM benchmark [3] has 22
sequences of images, of which 11 ones (Sequence 00-10)
are associated with ground truth. The other 10 sequences
(Sequence 11-21) are only provided with raw sensor data.
Since this dataset was recorded at a relatively low frame
rate (10 fps) by driving in urban areas with many dynamic
objects and the speed of the driving was up to 90 km/h, it
is very challenging for the monocular VO algorithms.

2) Training and Testing: Two separate experiments are
conducted to evaluate the proposed method. The first one
is based on the Sequence 00-10 to quantitatively analyse
its performance by ground truth since the ground truth
is only provided for these sequences. In order to have a
separate dataset for testing, only the Sequence 00, 02, 08
and 09 which are relatively long are used for training. The
trajectories are segmented to different lengths to generate
much data for training, producing 7410 samples in total. The
trained models are tested on the Sequence 03, 04, 05, 06, 07
and 10 for evaluation.

Since the ability to generalise well to real data is essential
for DL based approaches, the next experiment aims to
analyse how the proposed method and the trained VO models
behave in totally new environments. For the VO problem,
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Fig. 4. Training losses and VO results of two models. Figures in the left and
right columns are about the over-fitted and well-fitted models, respectively.
(a)-(b) Training and validation losses. (c)-(d) Estimated VO on training data
(Sequence 00). (e)-(f) Estimated VO on testing data (Sequence 05).

this is further required as aforementioned. Therefore, models
trained on all the Sequence 00-10 are tested on the Sequence
11-21 which do not have ground truth available for training.

The network is implemented based on the famous DL
framework Theano and trained by using a NVIDIA Tesla
K40 GPU. The Adagrad optimiser is employed to train the
network for up to 200 epochs with learning rate 0.001.
Dropout and early stopping techniques are introduced to
prevent the models from overfitting. In order to reduce both
the training time and data required to converge, the CNN is
based on a pre-trained FlowNet model [24].

3) How overfitting affects the VO: It is well known that
overfitting is an undesirable behaviour for Machine Learning
based methods. However, its meaning and influence are un-
clear in the context of the VO problem. Concrete discussions
on this, which can guide a better training on the VO system,
are still missing. Some insights on our training procedure and
results are described here. In Fig. 4, the losses and VO results
of two models are given. The big gap between the training
and validation losses in Fig. 4(a) indicates serious overfitting
compared to the proper losses in Fig. 4(b). Reflecting on the
estimated VO of the training data, the results of the over-
fitted model are much more accurate that those of the well-
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(c) Translation against speed.
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Fig. 5. Average errors on translation and rotation against different path
lengths and speeds. The DeepVO model used is trained on Sequence 00,
02, 08 and 09.

fitted model, as shown in Fig. 4(c) and Fig. 4(d). However,
when applying the trained models on the testing data, the
well-fitted model yields much better results, see Fig. 4(e) and
Fig. 4(f). This is also very likely to happen when the model
is deployed in practice working on real data. Therefore,
overfitting should be carefully examined when training a
model for the VO. Based on this example, it is can be
seen that for the DL based VO problem overfitting has very
intuitive outcomes and can seriously degrade the odometry
estimation. A well-fitted model is key to ensuring good
generalisation and reliable pose estimation of the trained VO
models to untrained environments. In our work, we observed
found that the orientation is more prone to overfitting than
position. This could be because the orientation changes are
usually smaller. In terms of underfitting, we assume this is
rare because the capacity of the DNN is typically large and
the size of training data tends to be limited.

B. VO Results

The performance of the trained VO models is analysed
according to the KITTI VO/SLAM evaluation metrics, i.e.,
averaged Root Mean Square Errors (RMSEs) of the transla-
tional and rotational errors for all subsequences of lengths
ranging from 100 to 800 meters and different speeds (the
range of speeds varies in different sequences).

The first DL based model is trained on Sequence 00, 02,
08 and 09 and then tested on Sequence 03, 04, 05, 06,
07 and 10. The average RMSEs of the estimated VO on
the test sequences are given in Fig. 5 with the translation
and rotation against different path lengths and speeds. Al-
though the result of the DeepVO is worst than that of the
stereo VISO2 (VISO2 S), it is consistently better than the
monocular VISO2 (VISO2 M) except for the translational
errors of the DL model at high speeds, which are slightly
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(b) Sequence 05.
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Fig. 6. Trajectories of VO testing results on Sequence 04, 05, 07 and 10.
The DeepVO model used is trained on Sequence 00, 02, 08 and 09.

higher than the monocular VISO2. We presume that this is
because the maximum velocity of the Sequence 00, 02, 08
and 09 is below 60 km/h and there is very limited number
of training samples whose speeds are bigger than 50 km/h.
Without being trained with enough data covering the high-
speed situation, the network tries to regress the VO but
probably suffers from high drifts. It is interesting that the
rotational errors become smaller on high velocities, which is
opposite to the translation. This may be due to the fact that
the KITTI dataset was recorded during car driving, which
tends to go straight on high speeds yet rotate when slowing
down. Moving forward, as a dynamics without significant
changes on rotation, can be easily learnt to model by the
RNN in terms of orientation, but the velocity varies fast.
As the length of the trajectory increases, the errors of both
the translation and rotation of the DeepVO significantly
decrease, approaching to the stereo VISO2 as shown in Fig.
5(a) and Fig. 5(b).

The estimated VO trajectories corresponding to the pre-
vious testing are given in Fig. 6. It can be seen that the
DeepVO produces relatively accurate and consistent trajec-
tories against to the ground truth, demonstrating that the
scale can be better estimated than using prior information,
such as camera height. Note that no scale estimation or post
alignment to ground truth is performed for the DeepVO to
obtain the absolute poses. The scale is completely maintained
by the network itself and implicitly learnt during the end-to-
end training. Since recovering accurate and robust scale is
surprisingly difficult for the monocular VO, this suggests an
appealing advantage of the DL based VO method. The de-
tailed performance of the algorithms on the testing sequences
is summarised in TABLE II. It indicates that the DeepVO
achieves more robust results than the monocular VISO2.

Although the generalisation of the DeepVO model has



TABLE II
RESULTS ON TESTING SEQUENCES.

Seq.
DeepVO VISO2 M VISO2 S

trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦)

03 8.49 6.89 8.47 8.82 3.21 3.25
04 7.19 6.97 4.69 4.49 2.12 2.12
05 2.62 3.61 19.22 17.58 1.53 1.60
06 5.42 5.82 7.30 6.14 1.48 1.58
07 3.91 4.60 23.61 29.11 1.85 1.91
10 8.11 8.83 41.56 32.99 1.17 1.30

mean 5.96 6.12 17.48 16.52 1.89 1.96
• trel: average translational RMSE drift (%) on length of 100m-800m.
• rrel: average rotational RMSE drift (◦/100m) on length of 100m-800m.
• The DeepVO model used is trained on Sequence 00, 02, 08 and 09. Its

performance is expected to improve when it is trained on more data.

been evaluated in the previous experiment, in order to further
investigate how it performs in entirely new scenarios with
different motion patterns and scenes, the network is tested
on the testing dataset of KITTI VO benchmark. The DeepVO
model is trained on all the 11 training sequences of the KITTI
VO benchmark (i.e., Sequence 00-10), providing more data
to avoid overfitting and to maximise the performance of the
network. Due to the lack of ground truth for these testing
sequences, no quantitative analysis can be performed on
the VO results. For qualitative comparison, some predicted
trajectories of the DeepVO, the monocular VISO2 and the
stereo VISO2 are shown in Fig. 8. It can be seen that
the results of the DeepVO are much better than these of
the monocular VISO2 and roughly similar to the stereo
VISO2’s. It seems that this larger training dataset boosts the
performance of the DeepVO. Taking the stereo properties
of the stereo VISO2 into consideration, the DeepVO, as
a monocular VO algorithm, achieves an appealing perfor-
mance, showing that the trained model can generalise well
in unknown scenarios. An exception could be the test on
Sequence 12 in Fig. 8(b) which suffers from rather high
localisation errors although the shape of the trajectory is
close to the stereo VISO2’s. There are several reasons. First,
the training dataset does not have enough data on high
speeds. Among all the 11 training dataset, only the Sequence
01 has velocities that are higher than 60 km/h. However,
the speeds of the Sequence 12 span from 50km/h up to
about 90km/h. Moreover, the images are captured at only
10 Hz, which makes the VO estimation more challenging
during fast movement. The large open area around highway
(lacking of features) and dynamic moving objects, shown in
Fig. 7, can degrade the accuracy as well. These reasons also
apply to Sequence 21. In order to mitigate these issues, the
conventional geometry based methods could increase feature
matching and introduce outlier rejection, such as RANSAC.
However, for the DL based method, it is unclear how to
embed these techniques yet. However, a feasible solution is
to train the network with more data which not only reflects
these situations but also is deliberatively augmented with
noise, outliers, etc., allowing the network itself to figure out
how to deal with these problems.

Ti
m
e

moving object

Fig. 7. Sample images from Sequence 12. There are some moving objects
and large open areas in this sequence.

V. CONCLUSIONS

This paper presents a novel end-to-end monocular VO
algorithm based on Deep Learning. Leveraging the power of
Deep RCNNs, this new paradigm is able to achieve simulta-
neous representation learning and sequential modelling of the
the monocular VO by combining the CNNs with the RNNs.
Since it does not depend on any module in the conventional
VO algorithms (even camera calibration) for pose estimation
and it is trained in an end-to-end manner, there is no need
to carefully tune the parameters of the VO system. Based on
the KITTI VO benchmark, it is verified that it can produce
accurate VO results with precise scales and work well in
completely new scenarios.

Although the proposed DL based VO method presents
some results on this area, we stress that it is not expected as a
replacement to the classic geometry based approach. On the
contrary, it can be a viable complement, i.e., incorporating
geometry with the representation, knowledge and models
learnt by the DNNs to further improve the VO in terms of
accuracy and, more importantly, robustness.
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