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Tracking People in Highly Dynamic Industrial
Environments
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Abstract—To date, the majority of positioning systems have been designed to operate within environments that have long-term stable
macro-structure with potential small-scale dynamics. These assumptions allow the existing positioning systems to produce and utilize
stable maps. However, in highly dynamic industrial settings these assumptions are no longer valid and the task of tracking people is
more challenging due to the rapid large-scale changes in structure. In this paper we propose a novel positioning system for tracking
people in highly dynamic industrial environments, such as construction sites. The proposed system leverages the existing CCTV
camera infrastructure found in many industrial settings along with radio and inertial sensors within each worker’s mobile phone to
accurately track multiple people. This multi-target multi-sensor tracking framework also allows our system to use cross-modality training
in order to deal with the environment dynamics. In particular, we show how our system uses cross-modality training in order to
automatically keep track environmental changes (i.e. new walls) by utilizing occlusion maps. In addition, we show how these maps can
be used in conjunction with social forces to accurately predict human motion and increase the tracking accuracy. We have conducted
extensive real-world experiments in a construction site showing significant accuracy improvement via cross-modality training and the
use of social forces.

Index Terms—Wireless Sensor Networks, Positioning

F

1 INTRODUCTION

I N today’s large and complex industrial environments such as
construction sites the need of advanced planning and schedul-

ing, careful coordination, efficient communication and reliable ac-
tivity monitoring is essential for productivity and safety purposes.
Accurate and cost effective positioning and identification are the
two main key requirements in order to meet all the above goals.
Although positioning technologies have reached a significant level
of maturity over the last years there is still no adequate solution for
providing accurate positioning services across large and complex
industrial settings.

More specifically, tracking the workers in a construction site
is much more challenging than indoor positioning mainly due
to the many moving parts and the fast large-scale changes that
occur in these complex environments. For instance, in an indoor
environment, the positions of walls and floors remain constant over
time, whereas positions of furniture vary little from day to day.
Existing indoor positioning systems leverage this environmental
stability to provide accurate location services with the use of stable
maps. In contrast, the construction site evolves rapidly from day to
day, precluding the use of systems which rely on stable, long-term
maps for positioning. Currently, there is no system that allows
for workers to be tracked reliably and robustly during all phases
of construction. As a case in point, consider the challenges in a
unified positioning system that works equally as well during deep
foundation excavation through to an almost complete multi-storey
building. At different points in time, the performance of different
techniques alters, with some improving and some degrading.

In this paper, we propose a multi-sensor tracking system which
makes use of visual, radio and inertial measurements in order
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Fig. 1: The WiFi signal strength received by the worker in circle
is affected by the installation of a new wall (a) Before the
installation, there are direct WiFi signals from the access point
(shown as triangle) to the worker, (b) The worker is blocked by
the new wall, which affects the propagation properties of the WiFi
signals as shown in the graph above.

to tackle the problem of accurate localization and identification
in construction sites which are characterized by rapid large-scale
changes in structure. For example, Fig. (1) shows the effect of a
wall being installed in the middle of one of our tracking exper-
iments. The received signal strength of a worker’s smartphone
from one of the access points dropped considerably after the
installation of the wall, in a matter of minutes. The field of
view of the camera also changed, not allowing us to directly
visually track the people behind the wall. In addition to these
short changes, during our experiments we observed much more
significant long term changes (Fig. (2)); within periods of a few
weeks, the scene changed dramatically, staircases or entire floors
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Fig. 2: We have conducted tracking experiments in a construction
site setting: (a) the construction site on day 1, (b) the construction
site on day 36. The site changes rapidly from day to day, preclud-
ing the use of positioning systems which rely on stable, long-term
maps.

were added, obfuscating the view to the first floors and creating
additional layers where people needed to be tracked. Moreover,
the radio and magnetic maps proved unstable with the movement
of large structures and the uniforms that people wear for safety
make them very hard to distinguish visually, necessitating the use
of a multi-sensor tracking framework.

Our aim is to provide a system that can monitor the location
of workers to indicate working hazards (e.g. red and green zones),
which can be individually tailored. For example, a steel-worker
has the training to operate in areas which might not yet be
poured with concrete whilst forming the steel rebar. Conversely, a
general construction worker should not venture into regions where
steel-work has not been completed. This level of safety requires
positioning precision beyond the majority of indoor positioning
solutions, with desired sub-meter accuracy.

In essence, we are exploiting the fact that different sensing
technologies have uncorrelated failure modes to provide a robust,
adaptive positioning framework. To summarize, the major contri-
butions of this work are as follows:

1) We are investigating the problem of tracking in highly dy-
namic industrial settings and we a are proposing a position-
ing framework explicitly designed for these rapidly chang-
ing environments. Our particle-filter based multi-hypothesis
tracking framework utilizes three different sensor modalities
(i.e. vision, radio and inertial) to allow for accurate tracking
in challenging conditions and environments such as con-
struction sites which are characterized by rapid large-scale
changes in structure.

2) A technique for cross-modal sensor parameter learning. The
proposed system is able to automatically tune the parameters
of its sub-systems (e.g. radio model, visual detector, step-
length) by making use of the tracking output and a subset of
sensor modalities.

3) We demonstrate the impact of applying the social force
model to improve tracking in dynamic environments. In a
construction site the environment changes rapidly with the
addition of new walls, corridors, etc. These changes define
the walkable area by restricting human motion in certain
locations. In this work we show how to take advantage of
these environmental changes with social forces to signifi-
cantly increase the tracking accuracy.

4) We have conducted extensive experiments in a real
construction site with the help and guidance of our industrial
partners.

2 PROBLEM DEFINITION

In this paper we tackle the problem of tracking people in
environments equipped with one or more stationary calibrated
cameras. We assume that people that desire to be tracked carry
a mobile device, such as a smartphone or customized worker
safety equipment, and move freely in and out of the field of
view (FOV). We divide time into short time intervals, and at each
time t we receive a number of camera detections of the moving
objects denoted as Ct = {c1t , c2t , ..., c

j
t , ...}, 1 ≤ j ≤ |Ct|. A

camera detection cjt represents the bounding box of the jth object
generated by a foreground detector. Note that at time t we could
be receiving camera detections not only from people but also from
other moving objects (i.e. vehicles); false positive detections are
also received due to illumination changes, shadows, etc. In order
to reduce the number of false positive detections and concentrate
on detecting only people we apply a head detector to the output
of a foreground detector. A camera detection cjt is projected into
the ground plane via a projective transformation which will be
denoted as ĉjt in this paper.
At time t we also receive a collection of radio measurements
Rt = {rkt }, 1 ≤ k ≤ K where K is the total number
of people with mobile devices who wish to be tracked and
rkt = [rss1, ..., rssm]kt is a vector of received signal strength
(RSS) measurements of the kth device from m access points.
Additionally, we assume that each mobile device is equipped with
an inertial measurement unit (IMU) containing an accelerometer
and a magnetometer. This allows us to generate at time t a
collection of inertial measurements denoted as St = {skt } where
skt = [bkt , d

k
t , θ

k
t ] is a vector that contains the step indicator, step-

length and heading of the kth person respectively. Each index k
uniquely identifies a person and corresponds to a unique MAC
address of the mobile device.

The problem to solve is the following: Given anonymous
camera detections C1:t, id-linked radio measurements R1:t and
id-linked inertial measurements S1:t estimate the trajectories of
all users carrying mobile devices and moving inside the camera
FOV.

3 SYSTEM OVERVIEW

An overview of the proposed system architecture is shown in
Fig. (3). The Positioning and Identification filter obtains anony-
mous camera detections, radio and inertial measurements from
multiple people and is responsible for solving three problems.
Firstly, it establishes the correspondences of camera detections
across frames, that is, it links together anonymous camera de-
tections that correspond to the same person. Secondly, it finds
the mapping between anonymous camera detections and id-linked
smartphone (radio and step) measurements. Finally, it identifies
and estimates the positions of multiple targets.
The Adaptive Learner uses the output of the filter in combination
with the input observations, and performs cross-modality training.
Specifically, it configures the foreground detector’s internal pa-
rameters taking into account available motion measurements. In
addition, it tunes the step-length estimation method by leveraging
reliable camera measurements. Finally, it exploits camera mea-
surements to learn the radio model; radio, magnetic and occlusion
maps can also be learned which can be used to further improve the
system’s accuracy. The remaining components of the system are
existing modules which pre-process raw sensor data and transform
them to camera, step and radio measurements.
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Fig. 3: Overview of the proposed system architecture.

4 MULTIPLE TARGET TRACKING

In this section we provide a brief overview of previous work on
multiple target tracking (MTT). A more detailed description of
MTT algorithms can be found in [1].

4.1 Introduction to Multiple Target Tracking
Under the general MTT setup a number of indistinguishable
targets are assumed to move freely inside the field of view; they
can enter and exit the FOV at random times. The system receives
sensor data about the position of the targets periodically which are
noisy, include false alarm measurements (i.e. background noise
or clutter) and occur with some detection probability. Each target
follows a sequence of states (e.g. positions) during its lifetime
called track. The main objective of MTT is to collect sensor data
containing multiple potential targets of interest and to then find the
tracks of all targets and filter out the false alarm measurements.
If the sequence of measurements associated with each target is
known (i.e. id-linked measurements) then the MTT reduces to
a state estimation problem (e.g. distinct Kalman/particle filters
can be used to follow each target). However, when the target-to-
measurements association is unknown (for example, anonymous
measurements from cameras, radars and sonars are used) the data
association problem must be solved in addition to state estimation.
Essentially, the data association problem seeks to find which
measurements correspond to each target.

4.2 Rao-Blackwellized Particle Filtering
The main idea of Rao-Blackwellized particle filtering (RBPF)
[2], [3] is to reduce the number of variables that are sampled
by evaluating some parts of the filtering equations analytically.
This reduction makes RBPF computationally more efficient than
the standard particle filter, especially in high dimensional state-
spaces.

The Rao-Blackwellized Monte Carlo Data Association filter
(RBMCDA) [4], [5] is a sequential Monte Carlo MTT method
that uses Rao-Blackwellized particle filtering (RBPF) to estimate
the posterior distribution of states and data associations efficiently.
More specifically, instead of using a pure particle representation
of the joint posterior distribution of states and data associations
RBMCDA proceeds by decomposing the problem into two parts:
a) estimation of the data-association posterior distribution and
b) estimation of the posterior distribution of target states. The
first part is estimated by particle filtering and the second part is
computed analytically using Kalman filtering The aforementioned

decomposition is possible, since in RBMCDA the dynamic and
measurement model of the targets are modeled as linear Gaussian
conditioned on the data association thus can be handled efficiently
by the Kalman filter.

1: Input: N particles, a measurement vector yt.
2: Output: p(xt, λt|y1:t): the joint distribution of target states

and target-to-measurement associations at time t given mea-
surements up to time t.

3: for each particle i ∈ (1..N) do
4: For all targets run Kalman filter prediction step.
5: Form the importance distribution as:

For all association events j calculate the unnormalized
association probabilities:
π̂

(i)
j = p̂(yt|λ(i)

t = j, y1:t−1, λ
(i)
1:t−1)p(λ

(i)
t = j|λ(i)

1:t−1)
6: Normalize the importance distribution.
7: Draw new λ

(i)
t from the importance distribution.

8: Update target λ(i)
t with yt using Kalman correction step.

9: Update particle weight.
10: end for
11: Normalize particle weights.
12: Resample.
13: Approximate p(xt, λt|y1:t) as:

p(xt, λt|y1:t) ≈
∑N
i=1 w

(i)
t δ(λt − λ

(i)
t )N (xt|M (i)

t , P
(i)
t )

where (M
(i)
t , P

(i)
t ) are the means and covariances of the

target states of the ith particle.

Algorithm 1: A high-level description of the RBMCDA filter

A high level overview of the RBMCDA algorithm is shown
in Alg. (1). The algorithm maintains a set of N particles and
each particle corresponds to a possible association of anonymous
measurements (yt) to tracks. Each particle maintains for each
target its current state xt (e.g. location) and state uncertainty
(i.e. posterior distribution p(xt|y1:t)). In the first step (line 4),
a Kalman filter is used to predict the next state of a target
based on its previous state (p(xt|y1:t−1)). Then, the algorithm
considers associating each anonymous measurement with each one
of the targets in the particle and estimates the probability of each
candidate association event (lines 5-6). The association events are
modeled with the association indicator λt (e.g. (λt = 0) =⇒
clutter association at time t, (λt = j) =⇒ target j association
at time t, etc). The association probability π̂j for target j is
computed from the measurement likelihood p̂(yt|λt) and the
prior probability of data associations p(λt|λt−1). By sampling
the resulting importance distribution, the algorithm selects only
one of the candidate associations (line 7) and updates the state of
the respective target with the anonymous measurement (line 8).
This is repeated for each anonymous measurement (e.g. for each
camera detection in the camera frame). The particle’s weight is
then updated taking into account its previous weight and the
probabilities of selected associations (line 9). Once all particles
have been updated and their weights normalized (line 11), they
are re-sampled based on their normalized weights (line 12). At the
end of each iteration, the positions of the targets are estimated as
a weighted average (i.e. mixture of Gaussians) across all particles
(line 13). Note that the algorithm above allows us to enforce data
association constraints. For instance, we can express that each
track is updated by at most one visual measurement, by suitably
modeling association priors in line 5. The existing RBMCDA
algorithm is designed to work with anonymous observations. In
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Fig. 4: Fusing camera and inertial measurements. The dotted
circles show the predicted location using inertial measurements
(i.e. a step classifier, shown in the top picture, indicates if a step
has been taken or not.) Square boxes indicate a camera detection
(i.e. the location of a person). When a step is classified correctly
the predicted location is collocated with the camera detection
(picture on the left). The tracking accuracy can be decreased
significantly when the step detector misclassifies a step. However,
in the proposed system, the fusion with camera measurements
allows to navigate towards the right path in cases where we have
unambiguous trajectories (picture on the right).

the next section we point out how we extend it in order to exploit
radio and inertial observations that are inherently linked to unique
device IDs (i.e. MAC addresses).

5 PROPOSED APPROACH

We are now in a position to describe how we extend the RBMCDA
framework to address the identification and tracking problem in a
construction site setting. The key difference here is that we intro-
duce id-linked observations in addition to the anonymous camera
observations This impacts a number of steps in the algorithm
above as explained in this section.

5.1 State Prediction and Update
As in the original algorithm, each particle uses a set of Kalman
filters to track targets; however, in our case, we are not interested
in tracking all targets within FOV; we only track people equipped
with mobile devices and we continue to do so when they temporar-
ily come out of the FOV. We extend the framework in [4], [5], in
order to use id-linked observations in the prediction and correction
steps of the Kalman filter. In particular, we use inertial sensor
measurements to predict the next state of a person (instead of only
relying on the previous state as in line 4). Furthermore, we use
WiFi/BTLE and camera measurements to correct the person’s state
(instead of only anonymous camera measurements as in line 8).
More specifically, the target’s dynamics in our system are modeled
by the following linear equation:

xt = xt−1 +Bt

[
d∆t cos(θ∆t)

d∆t sin(θ∆t)

]
+ wt (1)

where t denotes the time index, xt = [x, y]T is the system state
i.e. a 2-D vector of the target’s position on the ground plane

and the pair (d∆t,θ∆t) represents the target’s step-length and
heading respectively calculated within the tracker’s cycle time
(∆t). Finally, Bt is a control input indicating whether a step has
been taken or not and wt is the process noise which is assumed
to be normally distributed with mean zero and covariance matrix
Λ (i.e. wt ∼ N (0,Λ)). In order to calculate the step-length of a
person we use an empirical model that takes into account the step
frequency obtained from the accelerometer data (see Section. 6)).
In addition, the control input Bt is the output of a HMM-based
step classifier which takes as input the accelerometer data from
the user’s device and returns a step indicator that shows whether
a step has been taken or not. A low-pass Butterworth filter (8th
order) is being used to smooth out the accelerometer data prior
to step classification step. We should also note here that the
aforementioned step classifier has classification error of 8.4% for
our dataset. As we already mentioned in Section 2, our objective
is to track all people that carry mobile devices. Thus, once we
associate a camera measurement to a person ID (i.e. device ID),
Eqn. (1) is used as the predictive distribution of a Kalman filter
to model the motion of the identified person using his/her inertial
measurements.

Compared with existing techniques (i.e [6]) that use heuristics
to model the human motion, we will show in the evaluation section
that the use of inertial measurements in our approach results in
more accurate tracking. In addition we have observed that in
a construction site workers do not walk regularly, instead they
often make big, small and irregular steps depending on the task
performed. This makes motion prediction even more challenging
since it makes it harder for the step detector/classifier to detect
some of the steps correctly. It is worth noting here that the
proposed system can correct these step misclassification errors in
many situations with the help of visual observations. For instance,
when our step classifier predicts wrong for a specific target that a
step has been taken, our system can still correct the final estimated
position using the location of the camera measurement. Under the
assumption of unambiguous tracks the proposed technique can
handle similar situations very efficiently. Figure (4) illustrates the
scenario discussed above.

Unlike the original RBMCDA filter that only uses anonymous
observations to update the target’s state (line 8), in our system a
measurement yt at time t is a vector containing an anonymous
location measurement (2D image coordinates transformed to the
world plane via a projective transformation [7]) from the camera
system and multiple id-linked radio signal strength measurements
from people’s mobile devices. More formally the measurement
vector is defined as yt = [ĉt, rss

1
t , ..., rss

m
t ]T where ĉt is a

camera observation which contains the 2D target coordinates on
the ground plane and rss1

t , ..., rss
m
t denote the received radio

signal measurements from m access-points of a particular mobile
device. Thus, the state vector xt of a target is related to the system
measurements yt according to the following model:

yt = f(xt) + vt =



xt

RSS1 (xt))

RSS2 (xt))

...

RSSm (xt))


+ vt (2)

where f is a non-linear function that translates the true system
state vector to the measurement domain and vt is the measurement
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noise which follows a normal distribution with zero mean and
covariance matrix R (vt ∼ N (0, R)). The function RSSi is given
by:

RSSi(xt) = Pi − 10nilog10‖Ai − xt‖2 , i ∈ [1..m] (3)

where m is the total number of WiFi/BTLE access points and
RSSi(xt) is the expected signal strength at location xt with
respect to transmitter Ai. Pi is the received power at the reference
distance of 1 meter and ni is the path loss exponent. In order
to meet the requirements of the RBMCDA filter, i.e. calculate
analytically the posterior distribution of the target states with a
Kalman filter, Eqn. (2) must be linear Gaussian. The non-linearity
of the measurement model in our case is handled via the unscented
transformation [8]. Thus, the state estimation can be computed
analytically using the unscented Kalman filter (UKF) and each
particle contains a bank of UKFs; one filter for each target.

1: Input: N particles, camera (Ct), radio (Rt) and inertial (St)
measurements.

2: Output: p(xt, λt|y1:t).
3: Apply Eqn. (4) to Ct and Rt to create yt.
4: for each measurement m ∈ (1..|yt|) do
5: for each particle i ∈ (1..N) do
6: For all targets in i run prediction step (Eqn. (1)).
7: Form the importance distribution and draw new associa-

tion event (λ(i)
t ).

8: Update target λ(i)
t with m using UKF correction step.

Update particle weight.
9: end for

10: end for
11: Normalize particle weights.
12: Resample.
13: Approximate p(xt, λt|y1:t) as in Algorithm 1

Algorithm 2: A high-level work-flow of the proposed system.

5.2 Tracking and Identification

In this section, we show how we modified the association steps in
lines 5-7 to leverage id-linked measurements.

Suppose for instance that at time t we receive camera de-
tections Ct = {cjt}, 1 ≤ j ≤ |Ct| and radio measurements
Rt = {rkt }, 1 ≤ k ≤ K where K is the number of people
with a mobile device. Each one of the |Ct| anonymous camera
detections could be one of the following three types: (a) a person
with a device, (b) a person without a device or (c) clutter (e.g false
camera detection caused by illumination changes). Our objective
is to associate the type (a) camera detections with the correct
radio measurements. In order to do that we follow the following
procedure. We enumerate all possible combinations Ω = |Ct|×K
between the camera detections and the id-linked measurements
and we create new measurements yit, i ∈ [1..Ω] with the following
structure:

yit = {ĉmt , r
j
t}, m ∈ [1..|Ct|], j ∈ [1..K] (4)

where ĉmt is the camera measurement cmt projected into the
ground plane. Now, a measurement yit which contains a correct
association will have the following property RSS(ĉmt ) ≈ rjt for
the correct (m, j) pair, where RSS() is the function in Eqn. (3).

In other words, if a person is detected by the camera, then his/her
radio measurements (i.e. received signal strength) at that location
should match the predicted radio measurements at the same
location. Camera detections of type (b) and (c) would normally
not exhibit the same property. From our experiments in a real
construction site, we have observed that the radio measurements
are reasonably stable but only for short periods of time depending
on the environmental dynamics. As we discuss in Section (6) by
periodically re-learning the radio model, we make our system
adaptive to the changing environment and thus we can use the
procedure above to track and identify the people in the scene.

Moreover, the proposed algorithm can handle the creation
and termination of tracks. For instance when a new person (i.e.
a new mobile device) is entering the FOV, we initiate a new
track by initializing the system state with the camera location
that best matches the received radio measurements. Additionally,
we allow a target to die when for a fixed period of time no
camera observation has been used to update its state. The above
procedure runs continuously thus new tracks are created and others
are terminated dynamically as people are entering and leaving the
FOV.

As we have already mentioned the association probability
is computed as the product of the measurement likelihood and
association prior. The measurement likelihood of associating yit
with target j, p̂(yit|λt = j) is computed as p̂(yit|λt = j) =
N (yit; ŷt, Vt) where ŷt is the expected measurement of target j
at the predicted state and Vt is the innovation covariance obtained
from the UKF.

Given m simultaneous measurements within a scan the pre-
dictive distribution of data associations can be defined as an
mth order Markov-chain p(λmt |λm−1

t , ..., λ1
t ) which allows us

to enforce certain association restrictions. In our system this
predictive distribution is defined (i.e. assigns zero probability to
unwanted events) so that the following conditions are met:

1) A track can be updated with at most one measurement.
2) A measurement can only be used to update at most one track.
3) An already established track (with a specific sensor ID) can

only be updated with a measurement of the same sensor ID.
4) Once a camera detection is assigned to a track all other

measurements which include the latter camera detection are
classified as clutter.

5) A new target is not born if there is an existing target with the
same sensor ID as the newborn target. This means that each
particle maintains only targets with unique sensor IDs.

Some of the above restrictions can be relaxed depending on the
application scenario. For instance, when two people are close to
each other they can be detected as one object. In this case the
4th restriction can be relaxed in order to allow two tracks (i.e.
two people with different sensor IDs) to be updated with the same
camera detection.

To summarize, a particle represents states only for people
carrying mobile devices - not for all people in the field of view.
Inertial data of each person’s device are used to predict their next
state. Anonymous camera data are associated with a person’s track
only if they agree with both their inertial and radio data. At
first a foreground detector is used to detect the moving people
in the scene and then the 2D image coordinates of the detected
people are projected into the world plane (i.e. ground plane)
via a projective transformation (i.e. homography). Given a set
of points pi in the projective plane IP2 and a corresponding
set of points p̂i likewise in IP2 we would like to compute the
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projective transformation that takes each pi to p̂i. In our case
we consider a set of point correspondences pi ↔ p̂i between
the image plane and the world ground plane and we need to
compute the projective transformation H3×3 such that Hpi = p̂i
for each i. The matrix H can be computed using the Direct Linear
Transformation (DLT) algorithm [7] which requires at least 4 point
correspondences. Additional points can improve the estimation
by minimizing a suitable cost function such as the geometric
distance between where the homography maps a point and where
the point’s correspondence was originally found, i.e. we would
like to find the matrix H which minimizes

∑
i d(p̂i, Hpi)

2 where
d(., .) is the Euclidean distance between the two points.

Once we calculate H we can use it to project the targets from
the image plane into the ground plane and obtain their location on
the ground plane. We can then use inertial and radio data using
Eqns. (1) and (2) as explained earlier in this section.

Finally, we should note here that when at some time-step
a particular target does not receive radio measurements then if
the target is a new target the identification and creation of a
new track is postponed until radio measurements are available.
Otherwise, if the target is an existing target, tracking proceeds by
only considering the motion model of the target (Eqn. (1)). A high-
level work-flow of the proposed technique is shown in Alg. 2).

6 CROSS-MODALITY LEARNING

In this section we will show how our framework is capable of
cross-modality learning, i.e. how a subset of sensor modalities
is used by the Adaptive Learner (Fig. (3)) to train the internal
parameters of the system.

6.1 Track Quality Estimation
As we have briefly mentioned in the introduction the output (i.e.
track) of our Positioning and Identification filter can be used
to learn the parameters of various internal components of our
system. Once we have identified a track (i.e. we have linked a
visual trajectory with radio and inertial measurements), we can
use it to learn, for example, the radio propagation model since this
track contains all the necessary information (i.e. location-RSS data
points) for this purpose. In a similar manner we can learn radio
and magnetic maps, train the foreground detector and improve the
step-length estimation. All the these will be discussed in more
detail later in this section. However, in order to achieve all of
the above objectives, we first need to assess the quality of output
tracks to make sure that they qualify for the training process. Thus,
the goal of the Track Quality Estimation phase, is to find candidate
tracks which can be used for cross-modality training.

Let us assume that at time-step (or scan) t we receive m
measurements {y1

t , y
2
t , ..., y

m
t }. In addition y0

t is defined for each
time-step to be a dummy variable indicating the possibility of a
missed detection. Then the incremental quality score of a track j
during this time-step is defined as:

∆Ljt =

log
(
p̂(yit|λt = j)pd
p̂(yit|λt = 0)

)
, if ∃ i ∈ [1..m] s.t λt = j

log (1− pd) , otherwise

where the quantity p̂(yit|λt = j) is the likelihood of the measure-
ment assigned to track j. The term p̂(yit|λt = 0) = p(clutter) is
the likelihood of the measurement originating from clutter which
has a uniform probability density over the measurement space

Fig. 5: Track quality estimation: The figure shows the quality score
of 16 tracks along with their RMSE. Tracks with quality score
above the horizontal dotted line are considered qualifying and can
be used for cross-modality training

of volume V (i.e. p(clutter) = V −1) and finally pd is the
probability of detection. Then, the cumulative quality score of
track j is given by:

Qj =
T∑
t=1

∆Ljt (5)

where T is the total length of the track. As we can see the
quality score Q of a track penalizes the non-assignments due
to missing detections while favoring the correct measurement-
to-track associations. Fig. (5) shows that the quality score is
negatively correlated with the root mean square error. Finally, in
order to mark a track as a high confidence track that qualifies
for cross-modal training its quality score is tested against a pre-
determined threshold QTh. If Qj ≥ QTh then the track is qualified
(i.e. high quality track) and it can be used for cross-modality
training, otherwise the track is rejected (Fig. (5)).

6.2 Foreground Detector Training

The mixture of Gaussians (MoG) [9] foreground detection which
is used by our system is one of the most popular approaches
for detecting moving targets from a static camera. This approach
maintains a statistical representation of the background and can
handle multi-modal background models and slow varying illumi-
nation changes.

In the original algorithm the history of each pixel is modeled
by a mixture of K (typically 3-5) Gaussian distributions with
parameters (βk, µk, σkI) for the mixture weight, mean and covari-
ance matrix of the kth Gaussian component. In order to find the
pixels that belong to the background, the Gaussian distributions
are ordered in decreasing order according to the ratio (βk/σk);
background pixels exhibit higher weights and lower variances
than the foreground moving pixels. The background model is
obtained as B∗ = arg minB

(∑B
k=1 βk > Pb

)
where Pb is

the prior probability of the background. The remaining K − B∗
distributions represent the foreground model.

On the arrival of a new frame each pixel is tested against
the Gaussian mixture model and if a match is found the pixel
is classified as a background or foreground depending on which
Gaussian component it was matched with. If no match is found the
pixel is classified as a foreground and it is added to the mixture
model by evicting the component with the lowest weight. When
a pixel is matched, the weight of that kth Gaussian component
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is updated using an exponential weighting scheme with learning
rate α as βt+1 = (1 − α)βt + α, and the weights of all
other components are changed to βt+1 = (1 − α)βt. A similar
procedure is used to update the mean and covariance of each
component in the mixture.

The learning rate (α) controls the adaptation rate of the
algorithm to changes (i.e. illumination changes, speed of incor-
porating static targets into the background) and is the most critical
parameter of the algorithm. Fast learning rates will give greater
weight to recent changes and make the algorithm more responsive
to sudden changes. However, this can cause the MoG model to
become quickly dominated by a single component which affects
the algorithm’s stability. On the other hand slow learning rates
will cause a slower adaptation change which often results in pixel
misclassification. Over the years many improvements have been
suggested by the research community that allow for automatic
initialization and better maintenance of the MoG parameters [10].
More recent techniques [11], [12] address challenges like sudden
illumination variations, shadow detection and removal, automatic
parameter selection, better execution time, etc .

In this section we propose a novel method for obtaining the
optimum learning rate α∗ of the foreground detector using the
high-quality tracks of our filter. Suppose we are given a track
Xj

1:T = {xj1, x
j
2, ..., x

j
T } of length T where xjt , t ∈ [1..T ]

denotes the state of the track at time t. Since, both camera and
inertial measurements could have been used to estimate track
Xj

1:T then its states xjt , t ∈ [1..T ] are of two types: type (a) states
that have been estimated using camera and inertial measurements
and type (b) states that have been estimated only using inertial
measurements. A high-quality track ensures that Xj

1:T contains
the right mixture of type (a) and type (b) states and thus does
not deviate significantly from the ground truth trajectory. This
is possible, since propagating a track by only using inertial
measurements is accurate enough for short periods of time. This
key property of the inertial measurements allows us to use a high
quality track as if it was the ground truth trajectory to train the
learning rate of the foreground detector. In other words the type
(b) states of a high quality track tells us that the target is moving
to specific locations and the foreground detector does not detect
any target at those locations.

The quality score of tracks (Eqn. (5)) can be used to find
the optimum learning rate by solving the following optimization
problem: Given a time window T find a learning rate α∗ so that
the cumulative quality score (CQS)

∑
j Qj of all high quality

tracks j ∈ T is maximized.

6.3 Optimizing the Step Length Estimation

Similar to the foreground detector training procedure, high quality
tracks can also be used to learn the step-length model of each
person being tracked. More specifically, the step-length of a user
can be obtained from the universal model proposed in [13] as:

s = h(a′fstep + b′) + c′ (6)

where s is the estimated step-length, h denotes the user’s height,
fstep is the step frequency obtained from the device’s accelerom-
eter and (a′, b′, c′) are the model parameters. The model above
describes a linear relationship between step-length and step fre-
quency weighted by the user’s height. Since the heights of people
that we need to track are not known a priori every time a new track
is initialized that contains a sensor ID which has not been recorded

Fig. 6: The figure shows the occlusion maps learned during a
period of 10 minutes for each map. (a) Areas that appear to have
no human activity are marked as occlusions, (b) As the constuction
site evolves new occlusions are created. In this case the installation
of a new wall creates a new occlusion. These changes are detected
automatically by our system and are used to improve the tracking
accuracy via the use of social forces.

before, the step-length estimator uses Eqn. (6) to provide an initial
estimate of the target’s step-length. At this point the height value
is set to the country’s average for men of ages between 25 and 34
years old. The parameters (a′, b′, c′) have been pre-computed with
a training set of 8 people of known heights using foot mounted
IMUs.

As the tracking process proceeds high quality tracks are ob-
tained periodically for each target. From these tracks the following
IMU data are extracted for each step: a) step frequency, b)
step start-time and c) step end-time. The start/end times of each
step obtained from the IMU data are then matched to camera
detections in order to obtain the position of the target during those
times which are essentially the step-lengths measured from the
camera system. Thus, for each target we obtain a collection of n
calibration points {Svi, f istep}ni=1 where Svi is the visual step-
length of the ith step and f istep its frequency obtained from the
IMU. The calibration set of each target is then used to train a
personal step-length model of the form Sv = %1fstep + %0 using
the least squares fitting. Finally, the step-length estimator can
switch to the trained model once the least squares goodness of
fit
(
R2 = 1− residual sum squares

total sum squares

)
exceeds a pre-defined threshold.

6.4 Radio Model/Maps Learning

High quality tracks are also being used in order to learn the
parameters of the radio propagation model which our system uses
as explained in Section 5. More specifically, from a high quality
track Xj

1:T = {xj1, x
j
2, ..., x

j
T } of length T , the type (a) states are

extracted. Let us call a type (a) state as x̃jt ; this state has been
estimated using camera, radio and inertial measurements. Thus a
collection of type (a) states S = {x̃jt : j ∈ K, t ∈ T }n of length
n where K is the total number of people with smartphones and
T is the running time of our filter, contains n pairs of (location,
RSS) measurements. Now, this collection of (location, RSS) points
can be used to estimate the parameters of the log-normal radio
propagation model [14] given by Eqn. (3) for each access point
using least squares fitting. At regular intervals we re-estimate
the radio model parameters based on the most recent portion of
collected data. We should note here that the parameters of the radio
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Fig. 7: Illustrative example showing the position estimate with and
without social forces. The figure shows that repulsive physical
forces from the environment improve the position estimate by
taking into account obstacles and other enviromental constraints.

model are initialized empirically based on a number of studies for
different environments [14].

Additionally, we can follow similar procedure to learn radio,
magnetic and occlusion maps. The radio and the magnetic maps
can be combined and used for localization in situations where the
camera is occluded by an obstacle or they can be used in con-
junction with the radio model to improve the system’s accuracy.
Additionally, the occlusion map, which is derived from the camera
detections provides statistics about the environment (i.e. frequent
visited areas, inaccessible areas, etc) which our system can use to
improve its performance. For instance, suppose that a particular
person is not detected by the camera during some time and our
filter reverts to IMU tracking; the occlusion map can help us filter
out impossible trajectories.

In order to learn the occlusion map we use the following
procedure: We first discretize the world plane creating a 2D grid.
During a time-window we then project the camera detections
into the world plane and we count the number of hits in each
cell creating a 2D histogram. The normalized histogram is then
thresholded and the cells that are found to be below a predefined
threshold are marked as occlusions/obstacles; this is shown in
Fig. (6). The set of occlusions found O = {oj}No

j=1 are also
used to model repulsive forces exerted from the environment onto
people; this will be discussed in Section (7).

7 INTEGRATION OF SOCIAL FORCES

In this section we describe how we have modified our system
to make use of the Social Force Model (SFM) [15], [16] for
accurate motion prediction. More specifically the Social Force
Model assumes that the behavior of human motion is affected
by the motion of other people and also by obstacles from the
environment. Thus the SFM aims to describe and predict the
behavior of human motion with the introduction of repulsive
forces exerted on people by modeling the interactions between
people and the influence of the environment on human motion.
As we have already mentioned in the previous section our system
is able to automatically learn the occlusion map witch contains
the location of obstacles and other environmental constrains. This
occlusion map is now integrated into the social force model which
help us improve the prediction of human motion.

7.1 The Social Force Model
More formally in the Social Force Model a person pi with mass
mi aims to move with a certain desired speed ν̂i in a desired
direction ε̂i. In our system the desired direction is taken from
the IMU measurements (i.e. heading) so that ε̂i = θi and the
desired speed ν̂i is calculated as d∆t/∆t where d∆t is the step-
length from the IMU and ∆t the tracker’s cycle time. At each
time step the motion of people is described by the superposition
of repulsive and physical forces exerted from other people and the
environment.

7.1.1 Repulsive Forces
As we already mentioned the human motion is affected by envi-
ronmental constrains (i.e. obstacles) and from the motion of other
people. Thus in the presence of other people or obstacles a person
might not be able to keep the desired direction and speed. These
disturbances are described by repulsive forces which prevent a
person from moving along the desired direction. More specifically
the repulsive force FRi is modeled as the sum of social forces f soc

i,k
exerted by other people or obstacles according to:

F R
i =

∑
j∈P\{i}

f soc
i,j +

∑
j∈O

f soc
i,j (7)

where P = {pj}
Np

j=1 is the set of all people (i.e tracks) and O =

{oj}No
j=1 is the set of all environmental constraints (i.e. obstacles).

The above social repulsive forces are described as:

f soc
i,j = αje

(
ri,j−di,j

bj

)
ni,jγ(λ, φi,j) (8)

where j ∈ P ∪ O and aj , bj denotes the magnitude and range
of the force respectively. People and obstacles are assumed to be
circular objects with certain radii, thus ri,j denotes the sum of
radii of entities i and j and di,j is the Euclidean distance between
their centers. The term ni,j describes the direction of the force,
(normalized vector ) pointing from entity j to entity i. Finally, the
social forces are limited to the field of view of humans, therefore
the anisotropic factor γ(λ, φi,j) is added to the model and is given
by:

γ(λ, φi,j) = λ+ (1− λ)
1 + cos(φi,j)

2
(9)

where λ denotes the strength of the anisotropic factor and
cos(φi,j) = −ni,j · ε̂i is the cosine of the angle between the
desired direction and the direction of the force.

7.1.2 Physical Forces
Finally, environmental constraints (i.e. walls, obstructions, etc)
define the walkable area by restricting human motion in certain
locations. These hard constraints can be modeled as physical
forces exerted from the environment onto people and can be
defined as follows:

F phys
i =

∑
j∈O

f phys
i,j (10a)

f phys
i,j =cjg(ri,j − di,j)ni,j (10b)

where cj denotes the magnitude of the force and g(x) is defined
as g(x) = x if x ≥ 0 and 0 otherwise, making g(x) a contact
force. We should note here that physical forces can also be applied
between people if desired (i.e. so that different people would not
occupy the same space). This can be done by adding an additional
term in Eqn. (10a) to account for forces between people as we did
in Eqn. (7).
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7.2 Social Forces for Motion Prediction
The total force F tot

i exerted on a particular person pi is the
superposition of all repulsive and physical forces given by:

F tot
i = F R

i + F phys
i (11)

We can now include F tot
i to our motion model (Eqn. (1)) by

making use of Newton’s second law given by F tot
i = mi

dυi
dt so

that Eqn. (1) becomes:

xt = xt−1 +Bt

[
d∆t cos(θ∆t)

d∆t sin(θ∆t)

]
+

1

2

F tot

m
∆t2 + wt (12)

As we can see from Eqn. (12) the predicted motion of a person is
calculated by taking account the previous position, inertial mea-
surements (i.e. step-length and heading), and the forces exerted to
this person by other people and the environment. Equation (12)
can now be used in our tracking framework as the predictive
distribution of the Kalman filter. This predictive distribution is
given by:

p(xt|xt−1, S
′
t, Pt, Ot) =

N (xt;ψ(xt−1, S
′
t, Pt, Ot), JψΣt−1J

T
ψ + Λ) (13)

where S′t = [d∆tcos(θ∆t), d∆tsin(θ∆t)]
T is a vector that con-

tains the step-length and heading at time t, Pt is the set of all peo-
ple tracked and Ot is the set of all obstacles from the environment.
The function ψ(xt−1, S

′
t, Pt, Ot) = xt−1 +BtS

′
t + 1

2
F tot

m ∆t2 is
the mean of the predicted location, Σt−1 is the covariance matrix
of the estimate, Λ is the covariance matrix of process noise and
Jψ = ∂ψ(·)

∂x is the Jacobian of ψ(·).
With the above motion model, in each time step in addition to

the inertial measurements we can now use repulsive and physical
forces exerted on targets in order to improve the predicted location
estimates (Fig. (7)). We will show in the evaluation section that
the integration of social forces in our motion model allows us to
make better motion predictions and improve the accuracy of our
tracking system.

8 SYSTEM EVALUATION

8.1 Experimental Setup
In order to evaluate the performance of the proposed approach
we have conducted two real world experiments in a construction
site (Fig. (2)). In both experiments we placed two cameras with
non-overlapping FOV at approximately 8 meters above the ground
facing down. In the first experiment the two cameras were cover-
ing an area of approximately 11m × 9m each and in the second
experiment an area of 14m × 4m each. The duration of each of
the experiments was approximately 45 minutes with the cameras
recording video at 30fps with a resolution of 960 × 720 px. We
should also mention here that each camera was processed sepa-
rately (i.e. we do not consider the multi-camera system scenario).
The area of the site was outfitted with 12 WiFi and 8 BTLE access
points and 5 workers were supplied with smartphone devices. The
total number of people in the scene was varying from 3 to 12 as
workers were entering and exiting the field of view. The objective
of the experiment was to identify and track the workers who were
carrying a smartphone device using camera, radio and inertial
measurements. The radio measurements were obtained by their
smartphones receiving WiFi and BTLE beacons at 1Hz and 10Hz
respectively. The inertial measurements (i.e accelerometer and

TABLE 1: Empirical Values and Thresholds used in our Imple-
mentation

Symbol Description Values, [Units]

Λ Process noise co-
variance

diag{0.32, 0.32},
[m2, m2]

R Measurement noise
covariance

diag{0.22, 0.22, 3.22, . . .},
[m2, m2, dBm2, . . .]

α MoG learning rate 0.0032 (learned)

Pb MoG prior prob-
ability of back-
ground

0.82

K MoG number of
Gaussians

5

QTh Quality Score
threshold

300

(a′, b′, c′) Step-length empiri-
cal model

(0.1244, 0.066, 0.2000)

(aj , bj , cj) Social Forces pa-
rameters

(50, 0.5, 250),
[N, m, N/m]

(a) (b)

Fig. 8: (a) Cumulative distribution function of RMSE for differ-
ent learning settings. (b) Accuracy comparison of the proposed
approach and the original RBMCDA (vision only) algorithm.

magnetometer) obtained from their smartphones had a sampling
rate of 100Hz.

To obtain the ground truth of people’s trajectories we followed
the same approach proposed in [6]. We supplied all people to be
tracked with helmets of different colors and their ground truth
trajectories were obtained using a mean-shift tracker [17] to track
the colored helmets. We have decided to use the procedure above
for obtaining the ground truth trajectories since with GPS we
could not get the required accuracy (i.e. GPS achieved a room-
level accuracy during our experiments at the construction site) for
this specific task.

In our implementation we have used RGB images as input
to the MoG foreground detector, however we have not used any
color features for people identification and our filter tracks only
the position of targets. Any target detector which outputs target
coordinates can be used with the proposed technique without any
changes to the algorithm. It is also worth mentioning that the
proposed system can also be extended to utilize visual features
(i.e. color) for target identification, however these features are not
always available and therefore cannot be relied on to uniquely
identify the workers. Finally, Table (1) shows all the empirical
values and thresholds that we have used in our implementation.
These values have been obtained experimentally unless otherwise
stated.
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Fig. 9: The figure shows the cumulative quality score (CQS) over
a period of time as a function of the foreground detector learning
rate (α). The optimum learning rate according to RMSE maxi-
mizes CQS, thus this metric can be used to train the foreground
detector.

8.2 Results

Accuracy and learning: The first set of experiments evaluates
the tracking accuracy of our system (i.e. how well we can identify
and track people with smartphone devices among all people in the
FOV). Moreover, we examine what is the effect of cross-modal
training on the performance of our system. Our performance
metric in this experiment is the root mean square error (RMSE)
between the ground-truth and the estimated trajectory. In all the
experiments shown here we have used 100 particles. In addition,
instead of using line 13 of Alg. (1) to estimate the filtering
distribution, in each step the location of each target is estimated
using the particle with the highest weight. For this test we used 30
minutes worth of data running our filter on time-windows of one
minute (i.e. 1800 frames). Figure (8a) shows the error CDF over
this period over all targets for different settings. More specifically,
our approach achieves a 90 percentile error of 2.0m when the
system is untrained, which improves to 1.8m when the foreground
detector is trained. The error decreases further as the parameters of
the radio propagation model are learned, achieving a 90 percentile
error of 1 meter. Finally, once the optimum step-length of each
person is learned the accuracy increases further to approximately
0.8 meters. As we can see the error decreases significantly once
both the foreground detector and the radio model are learned.
This is expected since our system requires both camera and radio
measurements in order to determine the correct measurement to
track association and update the target states. In the case of
excessive missing camera detections, the trajectory of a target is
estimated only by inertial measurements which is the main cause
of the low accuracy. On the other hand, if the radio model was
not trained, camera detections would not be able to be linked with
radio measurements, which would also cause identification and
tracking errors. Once the foreground detector and the radio model
are trained Fig. (8a) does not show any significant improvement
after learning the step-length model. This is reasonable since, in
this case most of the time the targets are updated with camera
observations which are used to correct the predicted by the IMU
states. However, from our experiments we have observed that
once the camera becomes unavailable, the difference in accuracy
between a trained and a universal step-length model is significant.

Figure (9) shows how our approach can find the optimum
learning rate (α∗) of the foreground detector by solving the
optimization problem discussed in Section 6.2. In the example
above we used 5 minutes of data, running the foreground detector

Fig. 10: Tracking accuracy between the proposed approach and
RAVEL. Proposed denotes our approach where the foreground
detector and step-length model are not trained. PropTr1 is our
approach after the foreground detector has been trained and further
in PropTr2 the step-length model is also trained. RAVEL(30s) and
RAVEL(60s) is the competing technique evaluated at window sizes
of 30 and 60 seconds respectively.

for different values of (α) and calculating the cumulative quality
score (CQS) for that period. Our intuition is that the optimum
learning rate will reduce the number of missing detections, thus
increasing the number of high quality tracks as well as their quality
score. This is shown in Fig. (9) where the optimum learning rates
achieve a high CQS, also evident by the low RMSE.
Comparison with other techniques: In our second test we com-
pare the proposed approach with the original RBMCDA algorithm
(referred to as vision-only tracker in this section) which uses
only visual observations for tracking. In this test we used the
same experimental setup as described in the previous paragraph.
Both techniques use the same foreground detector settings and
in addition the proposed method uses a learned radio model.
Figure (8b) shows the error CDF for the two methods. As we can
observe the proposed technique achieves a 90 percentile error of 1
meter as opposed to vision-only tracking which has a 90 percentile
error of 1.8 meters. The main source of error for the vision-only
tracking is due to data association ambiguities which the proposed
technique reduces significantly with the help of radio and inertial
measurements. Moreover, the proposed technique supports target
identification which is not possible when pure visual tracking
techniques are used. In addition, Figure (8b) shows how the
proposed technique stacks up against WiFi fingerprinting. For
comparison we have implemented the continuous space estimator
of the Horus [18] fingerprinting system (termed as Radio only) by
taking into account the 12 WiFi access points in the construction
site environment. Figure (8b) gives us a quite good idea of how the
WiFi fingerprinting approach performs compared to the proposed
system. The 90 percentile error of the radio only technique is
approximately 2.5 meters compared to the 1 meter accuracy that
the proposed technique achieves.
The next step is to compare our technique with the recently
proposed RAVEL system [6] which is also a multiple hypothesis
tracking and identification system. RAVEL which is discussed
in more detail in Section 8 exploits the smoothness of motion
and radio signal strength data in order to track and identify
targets. Unlike our technique, RAVEL is more of a reconstruction
technique (i.e. performs off-line tracking) as it requires to observe
all measurements over a time window (W ) in order to provide
the trajectories of each target. We have tested RAVEL using
time windows of sizes 30 and 60 seconds over a period of 10
minutes and we have compared it with the proposed online system.
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(a) (b)

Fig. 11: (a) The figure shows the RMSE between the proposed
technique and the vision-only tracking for different amounts of
occlusion. The use of inertial measurements by the proposed
technique improves tracking significantly in noisy scenarios. (b)
Illustrative example showing the difference between vision-only
tracking (red line) and the proposed approach (blue line) in the
presence of occlusions (gray area). In cases of prolonged missing
camera detections (green squares) the constant velocity model
of the vision-only tracker is not sufficient enough to maintain
tracking. On the other hand the proposed technique with the aid
of inertial measurements is capable of closely following the target
despite the presence of long-term occlusions.

Fig. 12: The RMSE of the proposed technique under different
amounts of injected heading error.

Both systems are capable of learning the radio model parameters,
thus we performed these tests using the learned radio model for
both systems. In Fig. (10) RAVEL(30s) and RAVEL(60s) shows
the accuracy of RAVEL for window sizes of 30 and 60 seconds
respectively. Proposed denotes the proposed system with learned
radio model, PropTr1 is the proposed system optimized one level
further i.e. foreground detector training and PropTr2 denotes the
proposed approach when the step-length model is also learned.
Fig. (10) shows that the average error of RAVEL decreases from
1.2m to 0.9m as we increase the window size. Our approach with a
trained radio model is slightly worse than RAVEL(60). However,
once our system trains the foreground detector, the average error
decreases significantly and continues to decrease as the step-length
model is also learned. Unlike our system, RAVEL estimates the
trajectory of a target using only visual data thus it becomes easily
susceptible to errors due to missing camera detections. Our system
without training achieves a similar performance but in real-time.
Robustness: This set of experiments aims to demonstrate the
robustness of the proposed technique. First we wanted to see
how our technique performs on difficult trajectories (i.e. various
amounts of occlusions and missing detections). In order to sim-
ulate occlusions we remove a specific area of the field of view
(FOV) by disabling the camera detections inside that area. More
specifically, we generated occlusions at random locations that

occupy a rectangular area of specific size inside the FOV. Then
we evaluated the accuracy of the proposed approach compared
to the vision-only tracker on 50 trajectories of variable length
generated from our ground truth data. Fig. (11a) shows the RMSE
over all trajectories between the proposed system and the vision-
only tracker for different configurations of occlusions (i.e. shown
as the percentage of occluded FOV). For each configuration we
run the test 10 times; each time the occlusion was positioned
to a different location. The two methods achieve a comparable
performance when there are no occlusions. However, the proposed
approach significantly outperforms the vision-only tracking in
scenarios with long-term occlusions and large amounts of missing
detections. In the presence of long-term occlusions the constant
velocity/acceleration motion model utilized by most visual track-
ing techniques fails and cannot be used to reliably model the
inherently complex human motion. On the other hand Fig. (11a)
shows that the use of inertial measurements by the proposed
technique provides a more accurate model of human motion. An
illustrative example is shown in Fig. (11b).

Additionally in order to study how our approach can cope
with variable noise from the inertial sensors we followed a similar
procedure as in the previous paragraph and we generated 50
trajectories from our ground truth data. At each time-step and
for each trajectory we inject a random bias error to the heading
estimator. More specifically we sample a heading error uniformly
from a specific range of the form [a..b] degrees and we add
it to the output of the heading estimator. By doing this we can
get an idea of how our approach performs in environments with
disturbed magnetic fields. Fig. (12) illustrates the results of this
experiment for different amounts of injected noise. As we can
see the proposed technique can cope with moderate amounts of
inertial noise; achieving a sub-meter accuracy for bias up to 30
degrees.

Moreover, we wanted to see how the number of people in the
scene affects the performance of our system and in addition what
is the impact of visual noise on the tracking accuracy. In order to
study this, we used 10 minutes worth of data (i.e. 18000 frames)
from our construction site dataset. For each frame in this dataset
we have superimposed visual objects from future timestamps in
order to increase the visual noise and the number of people in
the scene. We have split the dataset in windows of 1 minute each
(i.e. 1800 frames) and we recorded the RMS error for different
number of visual objects as shown in Fig. (13). It is worth noting
that, the number of people that we track includes only the people
which carry mobile devices (i.e. 5 people). As we can see from
Fig. (13) as we increase the number of visual objects in the scene
the accuracy drops. More specifically when we have relatively
small number of objects in the scene (i.e. 3-4 per frame) the error
is approximately 0.7 meters and increases to approximately 1.9
meters when the number of objects increases to 13-15 per frame.
The reason behind this is due to the fact that the WiFi cannot
distinguish close-spaced targets and despite the use of IMU data
for motion prediction a track can incorrectly be updated with the
wrong visual observation (i.e. visual noise). Possible solutions to
this problem, is to consider the evolution of the WiFi signal over
multiple frames as opposed to the on-line filtering approach that
we have currently implemented. Additionally multiple overlapping
cameras can also help but this will increase the system’s cost and
complexity.
Impact of social forces: The last set of experiments aims to
investigate the impact of social forces on the performance of our
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Fig. 13: The RMSE of the proposed technique under different
amounts of visual noise. (a) Camera snapshot without visual noise
where we track the people in red rectangles. (b) Visual noise is
injected in the scene (i.e. objects in blue rectangles). (c) Additional
visual noise is injected in the scene. (d) The impact of visual noise
on the performance of the proposed approach.

system. For this experiment we used our improved motion model
given by Eqn. (12) that takes into account the influences of people
and the environment on human motion. Two tests were conducted;
first we have investigated the scenario where the visual detector
(i.e. foreground detector in our case) does not perform optimally
and so the missing camera detection rate is high. The second test
deals with a trained visual detector. In the first case, our system
will rely mostly on inertial measurements. Our intuition is that the
addition of social forces will improve the motion prediction; thus
increasing the overall tracking accuracy. Social forces essentially
help us avoiding predictions through obstacles (i.e. walls) and also
help us model the interactions between people. Figure (14a) shows
the results of this test which is based on 15 minutes worth of data,
where we compare the impact of social forces on two different
settings of the foreground detector (i.e. not trained and trained). In
this test we assume that people have a mass of 70Kg and a radius
of 0.2m. The rest of SFM parameters are as follows aj = 50N,
bj = 0.5m, λ = 0.5 and cj = 250N/m. As we can see the
social forces improve the overall accuracy by approximately 20%
on a non-trained foreground detector and the improvement on a
trained foreground detector is roughly 10%. The reason behind
these improvements is due to the more accurate motion prediction
which allows a person to move more accurately in the environment
even without camera detections. As the environment is populated
with more constraints (i.e. walls, corridors) the gain of using the
SFM is increasing. A second reason for these improvements is due
to the fact that now the predicted locations are more aligned with
the actual observations which improves the final position estimates
and in addition reduces the data association errors.

Finally, we should note that selecting correctly the parameters
of the social force model is very important if we would like the
SFM to be beneficial and improve the tracking accuracy. Figure.
(14b) shows the impact of the force magnitude (cj) from Eq.
(10a) on the accuracy of the system in the case of an erroneous
obstacle (i.e. we have incorrectly estimated the presence of an

(a) (b)

Fig. 14: (a) Impact of Social Forces on the performance of our
system. (b) Tuning the parameters of the social force model. The
graph shows the impact of the force magnitude (cj) from Eq. (10a)
on the accuracy of the system.

obstacle, when in fact it does not exist). More specifically, in
this example we assume that an erroneous obstacle is blocking
the trajectory of a person. This obstacle exerts physical forces to
this person in order to restrict his motion. During time steps 1
to 5 the obstacle is far away and the social force has no effect
on the human motion. However, when the person is close enough
(e.g. time step 7), the social force exerted onto him is opposite
to the direction of his motion (this is to prevent a person to go
through the obstacle). As we increase the force magnitude (cj)
the error from the ground truth (i.e. cj = 0 N/m) increases since
this increasing force is pushing the person further away. Now, for
some values of cj (e.g. 150-250 N/m) the acting force has the right
magnitude and allows a person to go through the obstacle in cases
where we have measurements on and beyond the obstacle area.
However, when the force is too large (i.e. 450 N/m) , a person
cannot go through the obstacle and in the scenario of an erroneous
obstacle the correct path (i.e. cj = 0 N/m) cannot be recovered as
shown in the graph. We have found experimentally that the SFM
works best if it is tuned so that it would point towards the right
direction but without causing significant repulsion. This strategy
allows us to have improved location predictions that align better
with the actual observations but also allows targets to go through
obstacles/occlusions in cases of incorrect obstacle inference.

9 RELATED WORK

A variety of positioning systems have been proposed by the
research community over the past ten years. Recent surveys
outlining the different techniques and their accuracies can be
found in [19], [20]. In this section we will give a brief overview
on the most recent positioning systems that make use of radio-,
inertial- and visual- sensing ( i.e. using a stationary camera) to
track multiple people. The positioning systems to be described
here can be divided into two categories: a) systems that combine
visual and radio measurements and b) those that combine visual
and inertial measurements.
Vision+Radio positioning systems: The Radio And Vision En-
hanced Localization (RAVEL) system [6] fuses anonymous visual
detections captured by a stationary camera with WiFi readings to
track multiple people moving inside an area with CCTV coverage.
The WiFi measurements of each person are used to add context to
the trajectories obtained by the camera in order to resolve visual
ambiguities (e.g. split/merge paths) and increase the accuracy of
visual tracking. RAVEL operates in two phases namely tracklet
generation and WiFi-aided tracklet merging. In the first phase
visual detections collected over a period of time are used to
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form unambiguous small trajectories (i.e. tracklets). In the second
phase, RAVEL uses the aforementioned tracklets to create tracklet
trees for each person (i.e. probable trajectory hypotheses). Then,
the WiFi measurements of each person are used to search through
the tracklet tree in order to find their most likely trajectory. The
most likely trajectory is the one that agrees the most with the
WiFi measurements. Unlike our technique, RAVEL performs off-
line tracking, i.e. the trajectory of each person is reconstructed
after all camera detections and WiFi measurements for a period
of time have been observed. In addition, RAVEL does not make
use of inertial measurements and thus it is more susceptible to
positioning errors due to missing detections (i.e. static people that
become part of the background).

In a similar setting the EV-Loc system [21] estimates the
position of multiple people using both WiFi and camera mea-
surements. More specifically, EV-Loc estimates the distance of
each person from a number of access points first using camera
measurements and then using WiFi readings. The Hungarian
algorithm [22], [23] is then used to find the best mapping between
camera and WiFi measurements. After this optimization problem
is solved, the camera and WiFi locations of each person are fused
to form a weighted average final location. Unlike our work, EV-
Loc concentrates on the problem of finding the best matching
between camera and WiFi traces (i.e. the matching process is
performed after the visual tracking is completed ) and does not
provide a general tracking framework that incorporates multiple
sensor modalities. The more recent RGB-W system [24] also uses
wireless signals emitted by people’s mobile phones in combination
with cameras to track and identify people. The authors show
how the wireless signals can be used as a rough proxy for
depth information which allows them to achieve better localization
accuracy.

Mandeljc et al. presented in [25], [26] a fusion scheme
that extends the probabilistic occupancy map (POM) [27] with
radio measurements. In [25] the POM is extended so that the
cell occupancy probabilities are estimated using ultra-wideband
(UWB) radio sensors in addition to the cameras. This additional
radio information increases the accuracy and robustness of the
algorithm. Later in [26], the POM is extended further so that
the anonymous camera detections are augmented with identity
information from radio tags. The augmentation of anonymous
detections with identity information is done on a frame-by-frame
basis where at each time instant the optimal assignment between
radio and camera locations is obtained using the Hungarian algo-
rithm. The fusion scheme of [25], [26] was evaluated using only
UWB radios which exhibit sub-meter accuracy and there is no
indication of how this method will perform with radios of lower
accuracy (i.e. WiFi). Finally, in [28] Goller et al. presents a hybrid
RFID and computer vision system for localization and tracking of
RFID tags. The authors show increased accuracy by combining the
two complimentary sensor modalities in a probabilistic manner.
Vision+Inertial positioning systems: Instead of using radio
measurements for identification the methods in this category use
inertial measurements. For instance, the system in [29] fuses
motion traces obtained from one stationary camera mounted on the
ceiling and facing down with motion information from wearable
accelerometer nodes to uniquely identify multiple people in the
FOV using their accelerometer node IDs. Background subtraction
is used to detect people from the video footage and then their
floor-plane acceleration is extracted by double differentiation. The
camera acceleration traces are then compared against the overall

body acceleration obtained from the accelerometer nodes using
the Pearson’s correlation coefficient. The acceleration correlation
scores among all possible combinations of camera-accelerometer
pairs are then used to form an assignment matrix. Finally, the
assignment problem is solved using the Hungarian algorithm. The
initial algorithm of [29] is extended in [30] to allow for better path
disambiguation based on people’s acceleration patterns by keeping
track of multiple trajectory hypotheses.

10 FUTURE WORK

In this paper we have presented a novel tracking system that uses
three different sensor modalities (i.e. visual, radio and inertial) to
accurately track and identify multiple people in a construction site
setting. In addition we have developed learning techniques that
make the proposed system able to adapt to the highly dynamic
environment of the construction site. So far in our system we used
a single stationary camera in order to monitor and track the people
in the scene. Our next step is to extend our system to use multiple
cameras in order to provide location services to larger areas.

Since the proposed technique is able not only to track but also
to identify the people a simple approach would be to replicate and
deploy the existing system in different areas (i.e. each deployment
would use a single camera). However, we believe that better
performance can be achieved by considering the collaboration
between different cameras. The next step is to extend the pro-
posed technique to a multi-camera multi-target tracking system
by taking into account transition probabilities between multiple
non-overlapping cameras. So far we have covered the case of 2D
tracking in large unconstrained/open areas. As a future step we
will also consider extending the current system to cover tracking
in 3D.

Furthermore, building a stable network that can support such
a system is also a challenging task. We need to think about the
required network bandwidth, efficient communication between the
different sub-systems and synchronization. However, all the above
are going to be investigated in our future work.

11 CONCLUSION

In this paper we proposed a multi-modal positioning system for
highly dynamic environments. We showed that it is possible
to adapt Rao-Blackwellised particle filters - traditionally used
to discern tracks using anonymous measurements - in order to
both identify and track people being monitored by CCTV and
holding mobile devices. We further showed that there is significant
scope for automatically training the various sensor modalities, and
this proved particularly useful in rapidly changing environments.
Additionally, we showed that the use of social forces in dynamic
industrial environments is highly beneficial and improves the
tracking accuracy. Our experiments showed that even without
training, our online approach achieves similar positioning accu-
racy to the existing off line RAVEL approach; with training the
positioning error is decreased by a further 50%. We also showed
that the proposed technique is robust in scenarios with visual
and inertial noise. Lastly, with the integration of social forces we
improved the accuracy by 10-20%.
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