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Abstract— This paper studies indoor localisation problem
by using low-cost and pervasive sensors. Most of existing
indoor localisation algorithms rely on camera, laser scanner,
floor plan or other pre-installed infrastructure to achieve sub-
meter or sub-centimetre localisation accuracy. However, in some
circumstances these required devices or information may be
unavailable or too expensive in terms of cost or deployment.
This paper presents a novel keyframe based Pose Graph Si-
multaneous Localisation and Mapping (SLAM) method, which
correlates ambient geomagnetic field with motion pattern and
employs low-cost sensors commonly equipped in mobile de-
vices, to provide positioning in both unknown and known
environments. Extensive experiments are conducted in large-
scale indoor environments to verify that the proposed method
can achieve high localisation accuracy similar to state-of-the-
arts, such as vision based Google Project Tango.

I. INTRODUCTION

Localising humans in Global Positioning System (GPS)
denied indoor environments by using low-cost and pervasive
sensors remains a challenging problem. When many practical
requirements, such as reducing system cost and protecting
privacy, are considered, it becomes more difficult.

Some conventional solutions rely on dedicated infrastruc-
ture or powerful sensors, such as laser scanner, to conduct in-
door localisation. However, they could be expensive in terms
of system setting up or device cost. Although floor plan and
opportunistic signals, e.g., radio and WiFi, can be utilised to
realise indoor localisation in an inexpensive manner, they are
subject to availability and reliability. Leveraging ubiquitous
information and low-cost sensors to achieve accurate ego-
motion is increasingly demanded.

Recently, vision based method has attracted considerable
interest [1], [2] as cameras have been available in most
of mobile devices. It is a promising technique which can
perform high-precision localisation and mapping. However,
in some scenarios cameras are not allowed due to security
and privacy concerns. Unlike outdoor applications, indoor
localisation needs to take privacy into particular considera-
tion. For example, “No Photography” sign can be usually
found in buildings. Besides, it may be uncomfortable or
unacceptable to consistently face a camera around. In ad-
dition, vision based techniques tend to be computationally
expensive, consuming much energy.

Geomagnetic field which has noticeable signatures for
different indoor areas can be a viable alternative because it
has been known that animals use it for navigation [3]. As an
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(b) Proposed method.
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(c) Google Tango.

Fig. 1. (a) Floor plan of a museum (about 5000m2 in size) superimposed
with trajectory. Note the trajectory only shows an approximate path rather
than ground truth and floor plans throughout the whole paper are for
visualisation purpose only. (b) Localisation result of proposed method after
1.2km walking. (c) Corresponding localisation result of Google Tango.

ambient signal, geomagnetic field has several special charac-
teristics in indoor environments, which make it suitable for
localisation. It presents ubiquitously with significant anoma-
lies owing to various distortion sources, such as electric
equipment and rebar in building structures. Meanwhile, the
anomalies are reasonably stable in a long period of time. The
fluctuation in the geomagnetic field is also easy to measure
by normal mobile devices.

In order to benefit from a geomagnetic field, there are
some challenges to tackle [4]. Since the anomaly of an indoor
geomagnetic field is highly non-linear and seriously coupled
with surroundings, it is extremely difficult to model or predict
it accurately. This means a prior map of a geomagnetic
field is unavailable. Therefore, fingerprinting is popular to
obtain it before localisation. Collecting fingerprints, however,
is labour-intensive and time-consuming in large-scale spaces
and is inapplicable in unknown environments. Moreover, the
anomalies of a geomagnetic field are only discriminative to
some extent, i.e., a unique location signature may not be
guaranteed. In fact, a single geomagnetic measurement is
not informative enough to provide position estimation.

In this paper, a novel keyframe based approach is proposed
to achieve accurate and reliable ego-motion estimation by
making full use of geomagnetic field, motion pattern and
low-cost sensors. It is applicable to devices which contain
accelerometer, gyroscope and magnetometer, e.g., a normal
mobile phone. The main contribution is threefold: 1) A
keyframe based loop closure detection which correlates ge-
omagnetic measurements with motion pattern is developed
to build reliable front-end for graph optimisation. Since the
keyframes are generated in local coordinate systems, it is
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efficient for large-scale environments. 2) A Graph Simulta-
neous Localisation and Mapping (SLAM) based algorithm
is proposed to simultaneously localise devices and generate
geomagnetic map with small human effort in unknown
environments. A user can conduct this by simply holding a
mobile device and walking. 3) Motion pattern is incorporated
with a prior geomagnetic map of a known environment for
real-time localisation in the framework of Bayesian filter-
ing. It eliminates the dependence on highly non-linear and
complicated physical models of indoor geomagnetic fields
or fine-grained geomagnetic maps for localisation in large
spaces.

The rest of this paper is organised as follows. Section II
reviews related work. The proposed algorithms in unknown
and known environments are provided in Section III and IV,
respectively. Section V presents experimental results. Finally,
conclusion is drawn in Section VI.

II. RELATED WORK

Recently, geomagnetic field based indoor localisation has
attracted significant interest in both academia and industry.
Related work is reviewed in this section, discussing differ-
ences between the proposed method and existing ones.

In order to perform localisation, some methods build a
geomagnetic map in advance by using fingerprinting [4]–
[9], etc. Then, matching of geomagnetic fields [4]–[8], [10]
or Bayesian filtering [9], [11]–[13] is adopted to localise
a robot or person with respect to the built geomagnetic
map. Specifically, in [5] landmarks, such as rooms and
corridors, are recognised by matching geomagnetic fields
against a geomagnetic map generated from fingerprinting.
Euclidean distance based Least Mean Square is used in
[4] to check similarity between magnetic measurements and
map, deriving positions with respect to the known map.
However, Euclidean distance metric is seriously degraded
by signal contraction and expansion. Therefore, Dynamic
Time Warping (DTW) is employed in [7], [8] to classify
magnetic signatures which are not temporally well aligned.
Similarly, DTW is used in [10] to match magnetic sequences
against previously recorded ones. In order to consider motion
model, [9] fuses dead-reckoning information from robots
and humans with geomagnetic maps by using Monte Carlo
Localisation (MCL). However, the algorithm is developed for
one-dimensional localisation and the map is built based on
positions solely from dead-reckoning, which is prone to drift.
Motion capture system is utilised in [11] to provide accurate
poses for creating high-precision geomagnetic map, which is
adopted for localisation of legged and non-legged locomotion
based on MCL. The system, however, is confined in a space
where motion capture system covers and relies on two foot-
mounted Inertial Measurement Unit (IMU) sensors. [12] also
proposes MCL based on a magnetic map that is built by a
robot using Gaussian process (GP) although a laser based
robot localisation is required to estimate poses when mapping
the magnetic field. In [13], MCL based method does not
require special hardware but a floor plan of an environment
is necessary to build a geomagnetic map.
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Fig. 2. PDR based estimation on displacement and heading change.

The previous work does not accurately localise platforms
that measure the geomagnetic field or acquires locations
from additional devices, such as motion capture system and
laser scanner. Moreover, it is not applicable to unknown
environments. In order to overcome these, SLAM based
approaches are developed [14], [15]. In [14], MCL based
SLAM is proposed for robot localisation by modelling the
geomagnetic field using GP. However, due to limitations of
GP for large-scale environments, experiments are conducted
in rather small areas (about 100m2 in size). In contrast, MCL
based SLAM algorithm in [15] can be applied for large-scale
indoor environments by using IMU and geomagnetic field.
Although the proposed approach is superior, IMU sensor has
to be mounted on foot.

Graph SLAM is recently introduced for geomagnetic field
based localisation [16], [17]. In [16], sequences of geo-
magnetic measurements are matched by Euclidean distance
based loop closure detection for robot localisation. Since
Euclidean distance metric does not work well in the present
of misalignment or handle sequences with different sizes,
it is difficult to detect loop closure with varying speeds.
Moreover, there is no particular consideration on how to
reduce the number of false-positive closures. [17] uses DTW
for sequence matching and checks segment topology based
on variances of sequences’ coordinates. However, a WiFi
and Bluetooth signal map is employed for localisation rather
than geomagnetic maps. Meanwhile, loop closure detection
is limited in 10m distance to reduce false-positives. This
could be a strong hypothesis which assumes small drift of
dead-reckoning, making loop closures undetected in large-
scale environments.

III. KEYFRAME BASED GRAPH SLAM IN UNKNOWN
ENVIRONMENTS

In this section, keyframe based Graph SLAM by using
geomagnetic field and motion pattern is proposed to achieve
localisation and build geomagnetic map simultaneously in
unknown environments. It is composed of dead-reckoning,
keyframe based front-end construction (keyframe generation
and loop closure detection) and graph optimisation.

A. Dead-Reckoning

Dead-reckoning provides motion perdition without relying
on exteroceptive devices. Robot localisation usually performs
dead-reckoning by using odometry which is not available for
mobile devices. In this work, Pedestrian Dead Reckoning

1911



previous trajectory

current trajectory

keyframe sequence

current keyframe

loop closure detection

Dynamic Time Warping

magnitude of geomagnetic field

Iterative Closest Point

relative positionswalking pattern

Curvature Computation

Fig. 3. Keyframe generation and loop closure detection.

(PDR) [18], which uses an accelerometer, a gyroscope and a
magnetometer to estimate displacement and heading change
with respect to a previous pose, is adopted as a solution to
dead-reckoning. As shown in Fig. 2, it mainly consists of step
detection, step length estimation and heading estimation. A
zero crossing detector with linear stride length model is used
to estimate step length, while relative heading is computed
by fusing readings from a magnetometer and a gyroscope in
the framework of unscented Kalman filter. For each step, the
PDR derives motion ûk = [dk,∆θk]T where dk and ∆θk
are displacement and heading change of step k, respectively,
with respect to last pose.

PDR can calculate movement of each step with a rela-
tively small error. However, as one kind of dead-reckoning
techniques, it also suffers from significant drift over time,
especially compared with foot-mounted PDR. For instance,
Fig. 15(a) shows a drifted PDR trajectory. In order to amend
this, Graph SLAM using geomagnetic field and motion
pattern is proposed.

B. Keyframe Generation

Since it is known that a single observation is not infor-
mative enough to distinguish ambiguities of a geomagnetic
field [10], [16], [17], the main idea of our keyframe based
method is to incorporate geomagnetic measurements with
motion, increasing information dimension and then realising
reliable loop closure detection. To this end, a keyframe is
described by features extracted from both geomagnetic field
and motion pattern in several consecutive steps, see Fig. 3.

Keyframes are consistently generated as travelling in the
environment. For each keyframe, it is composed of the
following three parts:

1) Multi-Scaled Magnitudes of Geomagnetic Field. Al-
though the maximum sampling rate of a magnetometer
is around several hundreds Hertz, to reduce computation
and increase resilience to noise, magnitudes of geo-
magnetic field are gathered together in a step-specific

fist layer: down sampled

original magnitude

scale
second layer: down sampled

Fig. 4. Pyramid representation of multi-scaled magnitudes of magnetic
field. Measurements of magnitudes are down-sampled by a factor of 2 for
each layer.

manner, i.e., for a step there is only one magnetic
reading averaged over measurements of the step. Then, a
coarse-to-fine representation is introduced. Specifically,
as shown in Fig. 4, the original sequence of magnitudes
of a geomagnetic field is down-sampled to several new
layers by a factor of 2. This multi-scaling approach is
widely used in the computer vision community to in-
crease efficiency and mitigate influence of noise. We use
the magnitude rather than three-axis readings because
the magnitude is not affected by device orientation and
it is difficult to consistently track device orientation in
3D by only using an IMU and a magnetometer.

2) Walking Pattern. Curvature of each step with respect
to last one is computed. A set of curvatures is used
to determine a walking pattern in a keyframe, such as
turning direction and angle, and optionally reduce the
number of keyframes.

3) Relative Positions. In order to alleviate the drift prob-
lem of PDR, the motion trajectory in a keyframe is
represented as relative positions in a local coordinate
system. Taking the initial pose of the trajectory in
a keyframe as the origin of a coordinate frame and
transforming subsequent steps in this keyframe to this
coordinate frame produce a set of poses defined in the
local coordinate system.

Keyframes can be created for the whole trajectory or
when the motion pattern satisfies some requirements. For
example, since walking straight gives limited information on
movement, producing keyframes only around turning points
dramatically reduces the number of keyframes, enhancing
efficiency of keyframe search during loop closure detection.

C. Loop Closure Detection

Along with the keyframe generation, loop closure of
keyframes is detected to build a front-end pose graph for
Graph SLAM. A current keyframe is maintained to conduct
keyframe based similarity search. As shown in Fig. 3, there
are mainly three parts in the loop closure detection.

1) Magnitudes of Geomagnetic Field: DTW which mea-
sures distance between two temporal signals by using dy-
namic programming [19] is employed for similarity check
of magnitudes of a geomagnetic field. This is because DTW
distance is better than Euclidean distance if two sequences
have different sizes or misalignment in terms of phase, see
Euclidean matching of two sequences of magnitudes of a

1912



Map Query

(a) Euclidean matching.

Map Query

(b) DTW matching.

Map
5 10 15 20 25 30

Q
u

e
ry

5

10

15

20

25

30

(c) DTW warping path.

Fig. 5. Euclidean and DTW alignments of two sequences of magnitudes of
a geomagnetic field. Euclidean distance metric cannot handle misalignment
or series with different sizes (missing matching marked in (a)).

geomagnetic field in Fig. 5(a) and its DTW counterpart
in Fig. 5(b). Therefore, it realises more robust similarity
check in terms of different walking speed and pattern. Fig.
5(c) presents corresponding warping matrix and optimal
warping path to align the two sequences. The DTW based
matching is performed in a top-down manner for each layer
of the multi-scaled magnitudes. The pyramid representation
of magnitudes in Section III-B achieves efficient matching
and offers more resilience to noise.

2) Walking Pattern: Since magnitudes of a geomagnetic
field are only one-dimensional time-series signals, they are
not informative enough to distinguish many keyframes in
large environments, especially when each keyframe is only
built by few steps. Therefore, it is necessary to incorporate
other information. Walking patterns, such as turning direc-
tion and angles, are adopted to correlate with geomagnetic
measurements, which indirectly increases the dimension of
the data. Because turns are one of the most salient features
during human walking, keyframes generated around turns are
compared in terms of turning direction and curvature. DTW
based curvature matching is employed to tackle the problem
of different turning speeds. Meanwhile, keyframes obtained
from straight walking are tested with an extra requirement on
variance of magnitudes of a geomagnetic field, ensuring more
reliable matching. This is because we usually walk straight in
indoor environments and it is less informative than turning.
Note that since the curvature is computed between two
consecutive steps, the walking pattern is accurate although
PDR drifts over time in global coordinate systems.

3) Relative Positions: The set of relative positions in a
keyframe defines a trajectory in a local coordinate system.
As shown in Fig. 6, two sets of relative positions in their
local coordinate systems could have rather big Euclidean
distance without rotation. In order to mitigate this effect,
Iterative Closest Point (ICP) which considers translation and
orientation without scaling is employed to check similarity
of the trajectories in different keyframes, see the matching
after ICP in Fig. 6. Since there are only several positions in a
keyframe and rotation between trajectories in two candidate
keyframes tends to be small, the ICP is very efficient.

after ICP

local coordinate frame

before ICP

Fig. 6. ICP Matching of relative positions in two keyframes which have
different local coordinate frames.

D. Graph Optimisation

If a loop closure is detected between two keyframes, their
consecutive poses are correspondingly connected. Then, a
pose graph is produced after the loop closure detection.
However, there may be some false-positives in large-scale
environments, particularly for geomagnetic field based meth-
ods which have limited information compared to vision based
ones. Therefore, a robust graph optimisation is necessary. In
this work, Vertigo [20] is employed as the back-end of the
pose Graph SLAM.

IV. LOCALISATION WITHIN PRIOR GEOMAGNETIC MAPS

This section describes an approach to utilising a prior
geomagnetic map and motion pattern for localisation in the
framework of Bayesian filtering. Once a geomagnetic map
of an unknown environment is built by the algorithm in
the previous section, localisation can be realised in real-
time based on it. This not only reduces computation costs
without using the Graph SLAM any more, but also enables
the system to work in a many-to-many way, i.e., users who
are new to an environment can benefit from a map built
and shared by others. Since the geomagnetic map is solely
composed of magnitudes of a geomagnetic field at different
locations, its size is very small (the size of our map of
the 5000m2 museum is about 100 Kilobytes), which makes
the geomagnetic field based method suitable for resource-
constrained devices. This is different from image sequences
or point cloud maps adopted by techniques relying on vision.

Because indoor geomagnetic fields are highly non-linear
and location-specific, it is difficult to model them. Therefore,
based on the architecture of the keyframe based method
in last section, a Kalman Filter (KF) based algorithm is
proposed to fuse PDR with measurements incorporating
geomagnetic maps and motion information. Although other
kinds of Bayesian estimation techniques, such as particle
filters, can be applied, KF could be more efficient, in
particular for mobile devices.

A. Prediction

The PDR in Section III-A is introduced as prediction.
Then, the process model is

xk = f(xk−1,uk,wk) (1)

where xk is the pose at time k, uk is the motion between time
k − 1 and k, and wk ∼ N (0,Qk) is an additive Gaussian
noise on this dead-reckoning.
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Fig. 7. DTW based subsequence search. There could be several matched
candidates.

B. Update based on Geomagnetic Map and Motion

Since the PDR drifts over time, the predicted state needs
to be corrected. Instead of directly taking geomagnetic ob-
servations as measurements, they are correlated with motion
information to obtain pose measurements on the available
geomagnetic map according to the keyframe based method
in Section III. This allows us to get rid of highly non-linear
and complicated physical models of indoor geomagnetic
fields or fine-grained geomagnetic maps in large spaces
[21]. Specifically, last several PDR steps and observations
of magnitudes of a geomagnetic field are combined together
to produce a keyframe to be searched. Firstly, a DTW based
subsequence search of magnitudes against the geomagnetic
map is conducted to find potential matches. In case the
size of the geomagnetic map is huge, the search is limited
to ±3σ confidence interval of xk to reduce computational
cost. The DTW based subsequence search could find a few
candidates matched in the geomagnetic map, as shown in Fig.
7. Secondly, the found candidates are checked according to
the criteria of the walking pattern and the relative positions
in Section III. It could be possible to still have several
candidates left. Thirdly, in order to find the true-positive
matches, these candidates are clustered into some groups in
terms of their poses on the geomagnetic map. The groups are
ranked according to the number of the candidates, the DTW
distances and the ICP distances. The candidates in the best
matched group are selected to generate a pose measurement
for KF. Therefore, the measurement model at time t is

zk = h(xk,vk) (2)

where zk is the measured pose on the geomagnetic map and
vk ∼ N (0,Rk) is a Gaussian noise. Due to the simplicity
of the KF, the details on how to update the state and the
covariance are omitted here.

V. EXPERIMENTAL RESULTS

The proposed method is tested in two indoor environments
to evaluate its performance. One is an office building (about
1100m2 in size), while the other is a museum (about 5000m2

in size). Since both of the scenarios are public and large-
scale, it is difficult to obtain accurate ground truth. Therefore,
a Google Project Tango device [22], which is a state-of-the-
art vision aided inertial navigation system providing accurate
positioning (about 0.1%− 0.5% drift of travelling distance),
is attached onto our mobile device to evaluate the proposed
algorithm. Note that the Tango is introduced for evaluation
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Fig. 8. Localisation in the office building. (a) Floor plan of an office
building superimposed with trajectory. Note the trajectory only shows an
approximate path rather than ground truth. (b) Pseudo ground truth and
localisation results.
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Fig. 9. Distribution and histogram of the localisation errors in the office
building.

purposes only, and we are not trying to compete against it.
This is because the proposed method is a SLAM system,
while the Tango is an odometry technique which uses camera
and is capable of estimating motion in 6 Degree-of-Freedom.
A Google Nexus 5 mobile phone is used in our experiments.

A. Results in Unknown Environments

The floor plan of the office building and the walking
trajectory are shown in Fig. 8(a). As mentioned before, the
trajectory only shows an approximate path rather than ground
truth. A person walks about 0.75km in the building, holding
the mobile phone and the Tango at the same time. Since the
Tango drifts slightly fast in this indoor environment, it is not
very meaningful to directly compare the localisation results
against its. Therefore, in order to evaluate the performance
quantitatively, a pseudo ground truth is manually marked
on the floor plan and further interpolated into fine grids.
Although there may be errors of the manually selected points,
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Fig. 10. Features extracted from images of wide-angle camera of Google
Tango. In some challenging indoor environments, such as corridors in the
office building, most of features gather around texture objects or the number
of features is limited. Vision based methods benefit from open space areas.
In contrast, the geomagnetic field based method is not affected.

scale problem of the floor plan, etc., this ground truth can still
reflect the performance to some extent. The pseudo ground
truth and the localisation results of the proposed method and
the Tango are given in Fig. 8(b). It can be seen that the
proposed method can achieve better localisation accuracy
than the Tango. For example, for the part marked by dashed
lines, the positions estimated by the proposed method are
close to the ground truth, while these of the Tango are located
in a wrong room.

Fig. 9 presents the distribution and the histogram of the
localisation errors in the office building. Specifically, as
shown in Fig. 9(a), 80% of the positions estimated by the
proposed method are within 0.5m errors, while it is 1m
for the Tango. The histograms of the two methods in Fig.
9(b) also describes the proposed method can provide reliable
localisation results within high accuracy.

Since the office building has some narrow spaces with
texture-less surroundings, such as white walls shown in Fig.
10, it is sometimes challenging for vision based techniques
to work well. This should be also one of important reasons
why the Tango drifts slightly fast. Meanwhile, it suggests
that our proposed method could be an appealing alternative
or additional auxiliary system for vision based approaches.

In order to improve the Tango’s performance for further
evaluation, a public museum which has many open spaces
and texture-rich objects is adopted. The floor plan and the
estimated trajectories after about 1.2km walking are given
in Fig. 1. Fig. 11(a) shows the corresponding pseudo ground
truth and localisation results, which suggest the similar
performance as in the office building. For this large-scale
environment, 80% of the errors of the proposed method are
less than 1m, see the distribution of errors in Fig. 11(b).
This slightly outperforms the results of the Tango. Fig. 11(c)
demonstrate the percentages of the localisation errors in the
form of histogram.
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Fig. 11. Localisation in the museum. (a) Pseudo ground truth and local-
isation results of proposed method and Tango. (b) Cumulative distribution
of the localisation errors. (c) Histogram of the localisation errors.

TABLE I
ERRORS (METER) OF THE TWO SCENARIOS

Office Museum
Proposed Tango Proposed Tango

Mean 0.3676 0.6239 0.6014 0.8273
Maximum 1.5168 3.4395 3.0938 3.8292
Minimum 0.0022 0.0003 0.0078 0.0012

errors of the proposed method and the Tango in the two sce-
narios are given in TABLE I. For the proposed method, the
mean errors are 0.3676m and 0.6014m in the office building
and the museum, respectively. In general, the performance of
the proposed method is better than that of the Tango, which
further verifies that the geomagnetic field based approach is
capable of achieving high localisation accuracy. Since the
proposed method only employs the ambient geomagnetic
field and the low-cost and pervasive sensors, there are some
advantages when it is applied in practice.

B. Loop Closure Detection

The loop closure detection is discussed to show why
incorporating geomagnetic field with motion pattern can
significantly improve it. Fig. 12(a) presents a false-positive
loop closure of two keyframes detected by only using
geomagnetic measurements. According to Fig. 12(b), their
magnitudes of the geomagnetic field are similar. However,
when the motion patterns are taken into consideration, the
false-positive loop closure can be easily rejected, see big
differences presented in their curvatures and ICP results in
Fig. 12(c) and Fig. 12(d), respectively.

Precision-recall curve is shown in Fig. 13. Since empirical
curve reduces accuracy with a small set of samples, an
alpha-binormal model based precision-recall curve [23] is
also given in Fig. 13(b). It can be seen that the precision is
considerably increased once introducing motion pattern into
loop closure detection. This is coherent to the example in
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measurements can be rejected when considering motion pattern.
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Fig. 13. Precision-recall curve.

Fig. 12. Since in this work the loop closure is detected across
the whole map rather than limited in a certain small space
as in [17], it tends to suffer from more false-positives. The
motion pattern is particularly useful for this. In fact, without
correlating motion information, the number of false-positive
loop closures dramatically grows.

C. Results in Known Environments

Once a map of a geomagnetic field is built by the proposed
algorithm for unknown environments, the localisation can be
performed in real-time based on it. The geomagnetic map of
the office building produced by the experiment in Section V-
A is given in Fig. 14, whose colour represents the different
magnitudes of the geomagnetic field. It can be seen that the
anomalies of the geomagnetic field are location-specific. The
consistency of the map also verifies the high localisation
accuracy of the proposed method for unknown environments.

In order to test the proposed method in known envi-
ronments in Section IV, a person walks randomly with a
mobile phone. Fig. 15(a) and Fig. 15(b) present the PDR
and the localisation results, respectively. While the PDR
drifts significantly, the localisation results of the proposed
method consistently match the floor plan. For instance, as
shown in the enlargement, all of the trajectories are located
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Fig. 14. Geomagnetic map of the office building built by our algorithm
for unknown environments. The colour bar indicates the magnitudes of the
geomagnetic field (µT ).
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(a) PDR of random walk.
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(b) Localisation results.

Fig. 15. Localisation in the office building based on the geomagnetic map
in Fig. 14. (a) PDR of a random walk. (b) Corresponding localisation results.

in the doorway which is about 1m wide. Note that as
aforementioned the floor plan is used only for visualisation
purpose rather than localisation.

The geomagnetic map and the localisation results of the
museum are provided in Fig. 16. Based on the geomagnetic
map in Fig. 16(a), the proposed method can achieve high
localisation accuracy which is similar or better than the
Tango’s, see Fig. 16(b) and two enlarged parts in it. More-
over, the proposed method is applicable to unmapped areas,
such as the shaded portion in Fig. 16(b). Fig. 16(c) shows
±3σ confidence intervals of this test. It can be seen that
the uncertainties are all bounded over time, which indicates
that the pose measurements from the geomagnetic map
and the motion pattern are reliable. It is worth mentioning
that there are about 2 months gap between building the
geomagnetic map and conducting the localisation, which
means the geomagnetic field is temporally stable for a while
and our proposed method is efficient to handle the variations.

VI. CONCLUSIONS

This paper presents an indoor localisation system for both
unknown and known environments based on geomagnetic
field and motion pattern. A keyframe based Graph SLAM
approach is proposed to simultaneously achieve accurate
positioning and generate geomagnetic maps in unknown
environments. Based on a prior map and motion pattern,
localisation can be performed by Bayesian filtering in real-
time. The effectiveness of the proposed system is validated
by extensive experiments in two large-scale scenarios. The
geomagnetic field is ubiquitous and the sensors required by
the system are low-cost and pervasive. Therefore, the system
could be auxiliary for others. Meanwhile, it is easy to use by
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(a) Geomagnetic map of the museum.
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Fig. 16. Localisation in the museum based on a prior geomagnetic map. (a) Geomagnetic map of the museum built by our algorithm for unknown
environments. (b) Localisation results of a random walk. Starting and ending points are marked as a (green) circle and a (orange) square, respectively. (c)
3σ confidence intervals of the localisation in the museum.

simply walking around with a mobile device. Anyone having
a mobile phone can benefit from and contribute to the system
by navigating in unknown environments and building and
sharing a geomagnetic map.

Although the proposed technique works well in con-
strained indoor spaces, like corridor and small rooms, it tends
to fail in large open spaces if the trajectories are not similar.
Our future work will focus on how to solve this.
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