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Abstract—Indoor wireless systems often operate under non-
line-of-sight (NLOS) conditions that can cause ranging errors for
location-based applications. As such, these applications could ben-
efit greatly from NLOS identification and mitigation techniques.
These techniques have been primarily investigated for ultra-wide
band (UWB) systems, but little attention has been paid to WiFi
systems, which are far more prevalent in practice. In this study,
we address the NLOS identification and mitigation problems us-
ing multiple received signal strength (RSS) measurements from
WiFi signals. Key to our approach is exploiting several statistical
features of the RSS time series, which are shown to be particu-
larly effective. We develop and compare two algorithms based on
machine learning and a third based on hypothesis testing to sepa-
rate LOS/NLOS measurements. Extensive experiments in various
indoor environments show that our techniques can distinguish
between LOS/NLOS conditions with an accuracy of around 95%.
Furthermore, the presented techniques improve distance estima-
tion accuracy by 60% as compared to state-of-the-art NLOS mit-
igation techniques. Finally, improvements in distance estimation
accuracy of 50% are achieved even without environment-specific
training data, demonstrating the practicality of our approach to
real world implementations.

Index Terms—NLOS identification and mitigation, machine
learning, hypothesis testing, localization.

I. INTRODUCTION

IN LIGHT of numerous emerging location-aware wireless
applications like cooperative communications [1] and mo-

bile queries [2], various localization approaches based on WiFi
[3]–[5], UWB [6]–[8], ultrasound [9], etc. have been proposed.
UWB and ultrasound-based techniques can provide high local-
ization accuracy but require expensive and specialized infras-
tructure. In comparison, WiFi-based approaches are a better
choice in terms of the cost because they make use of existing
WiFi infrastructure including access points, mobile phones, lap-
tops, etc. Therefore, WiFi-based approaches are regarded as the
most convenient localization method in indoor environments.
Example applications include finding victims in emergencies
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[10], equipment tracking in hospitals [11], and location-based
commerce [12].

However, the accuracy of present WiFi-based localization
approaches is not satisfactory especially those based on re-
ceived signal strength (RSS) because it is detrimentally af-
fected by multi-path effects including reflection, refraction, and
diffraction, especially in non-line-of-sight (NLOS) conditions
when the received signal contains no direct line-of-sight (LOS)
component. Although many indoor localization approaches and
indoor propagation models have been proposed to analyze
or mitigate the influence of multi-path effects [13]–[15], the
mere analysis of multi-path effects without considering the
LOS/NLOS conditions is insufficient.

To reduce the negative influence of multi-path effects, NLOS
conditions need to be first identified and then be mitigated.
The use of LOS/NLOS information can greatly improve the
performance of the localization of people and objects inside
buildings or in urban landscapes. In general, for the same
distance, the RSS in LOS conditions can be over a hundred
times stronger than the RSS in NLOS conditions (as shown
in Section II), which can result in very large distance es-
timation errors when employing simple propagation models.
Furthermore, since multi-path can impact both LOS and NLOS
conditions, accurate path loss models are difficult to ascertain
in practice even if NLOS conditions are identified. Therefore,
other approaches beyond simple propagation models, e.g., re-
gression, should be employed to estimate distance.

NLOS identification and mitigation techniques developed
to date have been primarily investigated for ultra-wide band
(UWB) signals [16]–[22]. Due to the large bandwidth of UWB
signals, the LOS component can be readily identified and
extracted from the received signal. The commonly used tech-
niques in NLOS identification of UWB signals are hypothesis
testing [19], [23] and machine learning [22], [24] based on fea-
tures from the received UWB signals. Features including range
estimates [23] (range and error distribution), channel statistics
[16]–[19] (RMS delay spread, mean/excess delay, amplitude),
and position estimate [20] (ray tracing with map data) of LOS
components differ greatly from those of NLOS components.
However, with much narrower bandwidths, typical mobile WiFi
devices can only report RSS data rather than these detailed
features. As such, our goal in this work is to determine whether
we can both identify and mitigate LOS/NLOS conditions with
this single, rather poor measurement.

NLOS mitigation was achieved in [16], [25], [26] by min-
imizing the weighted residual of estimated distances. Chen
[25] minimized the distance estimation residual by selecting
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Fig. 1. A large number of RSS measurements were collected in a variety of settings (different access points, distances and environments) in both LOS and NLOS
conditions. The propagation model was derived using least square approximations. (a) Linear. (b) Log-distance.

a best subset from available access points (AP). Authors in
[16], [26] improved this algorithm to reduce the computa-
tion complexity and speed the convergence by using only
three distance measurements instead of all available distance
measurements. However, these techniques are not suitable for
environments with few LOS APs and many NLOS APs. A
recent generic NLOS mitigation technique [27] applicable to
all wireless systems, tries to reduce the distance estimation
errors in NLOS conditions using convex programming. But this
approach requires the availability of at least 50% LOS samples,
which is also often unrealistic.

In this paper, we propose and compare three NLOS identifi-
cation and mitigation techniques based only on temporal RSS
measurements from WiFi signals. Through observation of a
series of temporal RSS measurements from the same location,
we explore several features of the RSS data and employ two
machine learning algorithms and a Neyman-Pearson testing
approach to identify LOS/NLOS conditions and mitigate their
impact on distance estimations. The main contributions of this
paper are as follows:

• We present methods of NLOS identification and mitiga-
tion leveraging only RSS measurements, which greatly
improves the potential for RSS-based localization.

• We explore several features from collected RSS measure-
ments, which are shown to be effective in LOS/NLOS
discrimination.

• We employ two classifiers based on machine learning and
one other based on hypothesis testing to identify the NLOS
conditions. These classifiers are shown to perform well
even for environments different from which they were
trained.

• We use two regressors based on machine learning and
one other which fuses hypothesis testing with propagation
models to accurately estimate the transmitter-receiver dis-
tances in NLOS conditions.

• We present the results of several empirical studies in
different environments to show the effectiveness of the
proposed techniques in localization in comparison to the
existing methods.

The remainder of the paper is organized as follows. Section II
formulates the problem and introduces proposed approaches.
Section III presents the feature extraction schemes. Section IV

proposes three algorithms to identify the NLOS conditions.
Section V develops strategies to mitigate the effect of the NLOS
conditions. Section VI evaluates the proposed algorithms in
various settings. Section VII describes the impacts of our
algorithms on positioning system. Section VIII summarizes the
paper and discusses future directions.

II. PROBLEM FORMULATION AND

PROPOSED FRAMEWORK

Problem Formulation: In indoor environments, there are
usually many WiFi access points (AP) which are continuously
transmitting packets including beacons and user data that can
be received with mobile wireless devices. The received signal
strength (RSS) of these packets not only determines link quality
(LQ) but can also be explored for localization of mobile de-
vices. However, in indoor environments it is very common for
the direct path between the transmitter (e.g., AP) and receiver
(e.g., mobile devices) to be obstructed by objects such as walls
and doors, due to which the receiver is unable to directly ‘see’
the transmitter. We define this as the non-line-of-sight (NLOS)
condition. On the contrary, if the receiver can directly ‘see’ the
transmitter, we have line-of-sight (LOS) conditions.

In multi-path environments it is possible to measure the
same RSS for different distances, obstacle, geometries and
transmission powers, as shown in Fig. 1. Although a single
RSS sample tells us little about the transmitter-receiver distance
and LOS/NLOS conditions, a set of T (T � 1) temporal
RSS samples from a certain receiver position L, denoted by
〈P(1), · · · ,P(T )〉, can provide us with much more information.
Given these RSS measurements, we aim to infer whether the
transmitter and the receiver are in LOS or NLOS conditions
(b = 1/− 1), called NLOS identification, and estimate the
transmitter-receiver distance (d), called NLOS mitigation.

Proposed Framework: The proposed framework has two
major stages: training and testing, as shown in Fig. 2. The
training stage consists of the following four steps. 1) An ex-
tensive indoor measurement campaign is performed to collect
training data, including RSS, and receiver locations which
are later used to derive the transmitter-receiver distances and
LOS/NLOS conditions with the aid of the floor plan. Sup-

pose we have obtained temporal RSS samples 〈P(1)
k , · · · ,P(T )

k 〉,
LOS/NLOS conditions bk, and transmitter-receiver distance dk
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Fig. 2. The system architecture of the proposed NLOS identification and mitigation system.

from N locations Lk(k = 1, · · · ,N) which can be used to train
the identification and mitigation models. 2) Then a set of M
features including the mean, χ2 goodness of fit, etc., denoted

with 〈x(1)k , · · · ,x(M)
k 〉 are extracted from the training RSS which

are identified to be effective in distinguishing LOS and NLOS
conditions and estimating transmitter-receiver distances even in
NLOS conditions. 3) Then the parameters of NLOS identifi-
cation/mitigation algorithms are learned and stored from these
features, together with the LOS/NLOS conditions ground truth,
and transmitter-receiver distances with the aid of the floor plan.
Note that the parameters learned from training are different
for each algorithm proposed and are specified in detail in
Sections IV and V.

The testing stage has three steps. 1) A new set of RSS data,

denoted with 〈P(1)
j , · · · ,P(T )

j 〉, are collected in a new location L j.

2) The same set of features 〈x(1)j , · · · ,x(M)
j 〉 are extracted

from the RSS set 〈P(1)
j , · · · ,P(T )

j 〉. 3) Then with identification/
mitigation parameters from training stage, the proposed NLOS
identification/mitigation algorithms predict the LOS/NLOS
conditions (b j = 1/− 1) and the transmitter-receiver distance
(d j). Note that the LOS/NLOS condition from NLOS identifi-
cation is only explicitly used in HTR, but not in LS-SVMR and
GPR, as discussed in detail in Section V.

In this study we propose and compare three distinct NLOS
identification algorithms based on machine learning techniques
and hypothesis testing, namely least square support vector
machine classifier (LS-SVMC), Gaussian processes classifier
(GPC), and hypothesis testing classifier (HTC). LS-SVMC
has a low computational cost compared with other machine
learning techniques while GPC has slightly higher identifica-
tion accuracy. We also present three algorithms to perform
NLOS mitigation including least square support vector machine
regressor (LS-SVMR), Gaussian processes regressor (GPR),
and hypothesis testing regressor (HTR). LS-SVMR and GPR
can explicitly predict the transmitter-receiver distances even in
NLOS conditions. However, the hypothesis testing algorithm
cannot predict distances directly; it first uses the Hypothesis
Testing Classifier (HTC) to infer LOS/NLOS conditions, and
then selects the appropriate radio propagation model for dis-
tance estimation depending on the LOS/NLOS outcome.

III. FEATURE EXTRACTION

In this section, through observation of multiple RSS samples
in LOS and NLOS conditions, we identify several key features
from the collected RSS measurements useful for identifying
NLOS conditions, including the mean, standard deviation, kur-
tosis, skewness, Rician K factor, and χ2 goodness of fit, etc.
Each feature is derived from a set of T (e.g., T = 10–20) RSS
samples [P1, · · · ,P(T )] collected at a particular location over a
short period of time (e.g., 1 s) from one AP. All NLOS iden-
tification and mitigation algorithms in this study are developed
based on these features.

Mean and Standard Deviation (µ,σs) from RSS data can
help NLOS identification with features below.

Kurtosis (K ) measures the peakedness of the probability
distribution. Generally, RSS measurements in LOS conditions
are more centralized than samples in NLOS conditions because
the dominant LOS signal is much stronger in terms of energy.

Skewness (S) measures the asymmetry of the probability
distribution. The skewness of Rayleigh distribution is a constant
(approx. 0.63) which is generally larger than the skewness of
Rician distribution. In other words, the LOS measurements
should have lower skewness than the NLOS measurements.

Rician K Factor (Kr) is defined as the ratio between the
power in the direct path and the power in other scattered paths
K = ν2/(2σ2) [28]. Existing theoretical and empirical studies
have shown that there is a link between the Rician K factor
and the presence of LOS conditions [29]. Specifically, in NLOS
conditions where no direct path exists, the Rician K factor is
expected to be close to zero.

χ2 Goodness of Fit (χ2) measures the distance between
RSS measurements and the underlying Rician distribution.
Compared with other scattered signals, the LOS signal reacts
minimally to the environments, which leads to different em-
pirical distributions and thus different χ2 in LOS and NLOS
conditions.

The log-mean (d̂) is designed primarily for NLOS mitiga-
tion. We convert the RSS to logarithmic space because there is
a linear relationship between the logarithmic distance and RSS.

Feature Distributions are also derived for hypothesis testing
from theory and empirical data. Our data indicates that K fol-
lows closely log-normal distribution, the same as the Kurtosis
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Fig. 3. Illustration of how different features can distinguish between LOS and NLOS conditions. (a) Mean (misclassification 26.46%); (b) Skewness
(misclassification 29.92%); (c) Rician K factor (misclassification 28.79%).

Fig. 4. Map of the office site (65 m × 45 m). Access points and receiver
locations are marked.

of UWB signals [16]. In addition, we also find µ, S , Kr, and
χ2 follow closely the Gaussian distribution. Our preliminary
experiments show that σs does not improve hypothesis testing
accuracy and hence we do not discuss its distribution. Fig. 3
illustrates the values of some typical features in different lo-
cations under both LOS and NLOS conditions. It is observed
that the mean (Fig. 3(a)), the skewness (Fig. 3(b)), and the
Rician K factor (Fig. 3(c)) each can individually achieve an
identification accuracy of around 70 percent alone with a single
threshold estimated using least squares. By fusing features, we
can achieve an identification accuracy of around 95 percent
with techniques discussed below.

IV. NLOS IDENTIFICATION

The training data for the NLOS identification and mitigation
including the RSS, NLOS conditions, and distances were col-
lected in the corridors of our experimental site shown in Fig. 4.
We recorded the RSS from all access points marked in Fig. 4
at locations distributed every 1 meter in the corridors. At each
location, the LOS/NLOS condition and the distance to each
access point were later derived from the recorded locations with
the aid of the map. Details of the experiment setup and how we
collected data can be found in Section VI. Based on the set
of features extracted from the RSS, the task here is to decide
whether a given set of RSS samples corresponds to LOS or
NLOS conditions.

A. Least Square Support Vector Machine Classifier
(LS-SVMC)

Recall that our algorithm is designed for use in mobile de-
vices. As such, the quality of generalization and ease of training
are the two highest priorities in the selection of machine learn-
ing algorithms. Therefore, we propose using the Support Vector
Machine (SVM), a supervised machine learning algorithm that
can be used as a classifier to separate data sets with different
features and whose capabilities in these two aspects is generally
better than other machine learning approaches [30].

Given a set of N training items {xk,bk}N
k=1 where xk is the kth

input consisting of a subset of features described in Section III
and bk ∈ {−1,1} indicates LOS/NLOS conditions (bk = 1 LOS
and bk = −1 NLOS), linear machine learning algorithms are
designed to separate the data set in the following form.

b(x) = sign
[
wT ϕ(x)+w0

]
(1)

in which sign is the signum function, w and w0 are weight
parameters learned from the training data using optimization (3)
discussed below, and ϕ(·) is the predetermined feature mapping
function. Since the LOS/NLOS RSS measurements are not
linearly separable as shown in Fig. 3, we use a Gaussian radial
basis function (RBF) to get a better result than a linear feature
mapping [31]:

k(x,xk) = ϕ(x)T ·ϕ(xk) = exp

[
−‖x− xk‖2

2

2σ2

]
(2)

where σ2 is the hyperparameter learned from the training data
using (3).

To avoid the quadratic programming problem of SVM,
LS-SVM [32] is used in this study, which simplifies the op-
timization to learn the weights w, w0, and the penalty of
misclassification e as follows.

argmin
w,w0,e,σ2

‖w‖2

2
+ c

1
2 ∑N

k=1 e2
k

s.t. bk
[
wT ϕ(xk)+w0

]
= 1− ek, ∀k (3)

where c is the weighting factor that controls the tradeoff be-
tween training error and model complexity. It has been proven
that the optimization problem in (3) is a linear programming
problem [32], which can be solved with its Lagrangian dual and
Karush-Kuhn-Tucker (KKT) conditions [33].
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After we have ascertained the model parameters w0, σ2 from
the training data with (3), the prediction of LS-SVMC is given by

b(x) = sign

[
N

∑
k=1

λkbkk(x,xk)+w0

]
(4)

where λk is the Lagrange multiplier, and k(x,xk) is the kernel
function presented in (2).

B. Gaussian Processes Classifier (GPC)

Gaussian processes have gained much interest in recent
years [34]. Their explicit formulation makes it possible to
both make probabilistic predictions and infer accurate model
hyper-parameters, which provides precise trade-off between
data fitting and smoothing. In addition, their low computational
complexity make Gaussian processes suitable for mobile de-
vices with small data sets [35], such as our application.

To develop classifiers based on Gaussian processes, we im-
plement least-square classification which ignores the discrete-
ness of the target value and treats it as a regression problem.
Given the training data {xk,bk}N

k=1, which are the same as for
LS-SVMC, the LOS/NLOS conditions for a given data point x
is estimated as

b(x) = sign
[
wT ϕ(x)+n

]
(5)

where the weights w ∼ N (0,Σp) and the measurement noise
n ∼ N (0,σ2

n). Given a training set {xk,dk}N
k=1 where xk is the

kth input consisting of a feature subset described in Section III
and dk is the ground truth distance of the kth sample, rather than
search for weights w as in LS-SVMC, we find that:

b ∼ N
(
0,k(x,x′)+σ2

nIn
)

(6)

where In is the identity matrix and the covariance function or
kernel function k(x,xk) = ϕ(x)T Σpϕ(xk). Note that it is usually
assumed that the mean of the Gaussian processes observation is
zero everywhere.

With noisy observations, the joint distribution of the ob-
served target values and the function values under the Gaussian
prior can thus be written as[

b
b∗

]
∼ N

(
0,

[
k(x,x∗)+σ2

nI k(x,x∗)
k(x,x∗) k(x∗,x∗)

])
(7)

where (x,b) is the training set and (x∗,b∗) is the test set. Then
the conditional joint posterior distribution on the observation
p(b∗|b) is Gaussian with mean and variance:

E[b∗|b] = k(x∗,x)
(
k(x,x)+σ2

nI
)−1

b (8)

and variance

cov[b∗|b] = k(x∗,x∗)− k(x∗,x)
(
k(x,x)+σ2

nI
)−1

k(x,x∗). (9)

Note that the mean prediction is a linear combination of
kernel functions, each one centered on a training point, that is

E[b∗|b] =
n

∑
i=1

αik(x j,x
∗) (10)

where αi is the ith element of the vector (k(x j,x∗)+σ2
nI)

−1
b

and x j is a vector representing the jth feature of the training
data set.

The kernel function used for this study is as follows:

k(x,x∗) = σ2
0 exp

(
−|x− x∗|22

2l

)
+σ2

nxT x∗ (11)

where the hyper-parameters σ0 and l are the amplitude and
length scale which can be learned from the training data by
minimizing the negative log marginal likelihood with respect
to the hyper-parameters [36].

The least-square classification is simple and effective, but
generally the misclassification rate is slightly higher than other
approaches, such as neural networks [37]. Other approximation
methods like Laplace approximation [38], [39] can provide
more accurate predictions, but these approaches are very com-
putationally expensive and thus not appropriate for mobile
devices.

C. Hypothesis Testing Classifier (HTC)

The HTC can identify NLOS conditions with only least
square approximation of the means and variances of features.
Compared with LS-SVMC and GPC which are accurate but
expensive in terms of training cost, HTC skips the expen-
sive training phase at the cost of degraded performance and
flexibility.

To identify the LOS/NLOS conditions, we employ the well-
known likelihood ratio test where the two competing hypothe-
ses (LOS/NLOS) are defined as

Hl : h ≤ ht , LOS conditions (b = 1),

Hn : h > ht , NLOS conditions (b =−1). (12)

That is, what we need is a proper function h and a threshold ht

to identify the NLOS conditions.
Recall that only the five features µ, K , S , Kr, and χ2 in

Section III help improve the identification accuracy in hy-
potheses testing. Denote the five features as x(i), i = 1, · · · ,5,
and the joint distribution of M (1 ≤ M ≤ 5) features with
p(x(1), · · · ,x(M)|H). Since the joint distribution requires the
convolution of the PDFs, the computation complexity could
be extraordinarily high. To make the algorithm practical, we
adopt a suboptimal solution which assumes the variables are
independent. Then h is defined as

h =
p
(

x(1), · · · ,x(M)|Hl

)
p
(
x(1), · · · ,x(M)|Hn

) =
M

∏
i=1

p
(

x(i)|Hl

)
p
(
x(i)|Hn

) (13)

where p(x(i)|Hl) and p(x(i)|Hn) are the distributions of feature
x(i) in LOS and NLOS conditions, and the threshold ht = 1.

To provide evidence for the validity of the suboptimal so-
lution, we first learn joint distributions p(µ,K ,Kr|Hl) and
p(µ,K ,Kr|Hn) from 29 700 sets of features extracted from all
RSS we collected in the experiments discussed in Section VI.
Then we count the cases when the learned joint distributions
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without independence assumption and the suboptimal solu-

tion make opposite decisions, e.g., ∏M
i=1

p(x(i)|Hl)

p(x(i)|Hn)
< 1 when

p(x(1),···,x(M)|Hl)

p(x(1),···,x(M)|Hn)
> 1 or the other way around. We observed only

2.02% of such events, which justifies the use of the suboptimal
solution, especially in light of its significantly reduced compu-
tation requirements.

V. NLOS MITIGATION

In this section, we present three algorithms, including LS-
SVMR, GPR, and HTR, to accurately estimate the transmitter-
receiver distances in LOS and NLOS conditions. In addition,
we also make comparisons between the cost and performance
of these algorithms in the context of our application.

A. Least Square Support Vector Machine Regressor
(LS-SVMR)

The training data of the LS-SVMR are various subsets of
features extracted from the RSS samples (input) and the es-
timated transmitter-receiver distances (output), denoted with
{xk,dk}N

k=1. The regressor is very similar to the classifier on
the optimization problem. The regressor is a function from
R

n to R.

d(x) = wT ϕ(x)+w0 (14)

where d(x) is the estimated distance with input x using
LS-SVMR.

The distances between the support vectors and the separating
hyperplane are maximized by (15).

argmin
w,w0,e

‖w‖2

2
+ c

1
2 ∑N

k=1 e2
k

s.t. dk = wT ϕ(xk)+w0 + ek, ∀k. (15)

where c is also the weighted factor as in (3) and ek is the regres-
sion penalty learned from the optimization problem (15). Simi-
lar to the classification optimization problem (3), the regression
problem (15) can also be solved by standard optimization tools.

B. Gaussian Process Regressor (GPR)

As we use least-square classification in GPC, the regression
for Gaussian processes is almost identical to the classification
in Section IV-B with a single difference in the training and
testing output. The output in the classification is the LOS/NLOS
labels while for regression it is the transmitter-receiver distance.
Therefore, given the same training data as in LS-SVMR for
Gaussian processes regression {xk,dk}N

k=1, the linear regression
model with Gaussian noise for regression is

d(x) = wT ϕ(x)+n (16)

where w ∼ N (0,Σp) and the measurement noise n ∼ N (0,σ2
n).

The rest of the regression is identical to the process from (6)to
(11) in GPC with continuous distance d in place of discrete
labels b.

Compared to LS-SVMR, the training phase of GPR is more
expensive because it takes all training and testing samples
which might be thousands of samples as a joint Gaussian
distribution and predicts the output as a conditional mean rather
than only maximizing the distances between the supporting
vectors and the separating hyperplane in LS-SVMR.

C. Hypothesis Testing Regressor

In general, NLOS mitigation is achieved by regression.
However, since hypothesis testing yields binary decision, we
use different propagation models based on the decision. Many
propagation models have been developed so far. For instance,
the log-normal propagation model:

P(d)[dBm] = P(d0)+10γ log
d
d0

+WAF +Xσ (17)

in which P(d) is the path loss in a location d meters away from
the AP, d0 is the reference distance, γ is the distance power loss
coefficient, WAF is the wall attenuation factor which accounts
for both real walls in the environment and other minor obstacles
like the cases of the mobile devices or access points, and Xσ is a
zero-mean Gaussian distributed random variable with variance
σ2 to account for shadowing.

NLOS mitigation is achieved by incorporating HTC and
such propagation models. For LOS and NLOS conditions the
parameters in (17) (especially γ and σ) can vary greatly thus
producing significant errors in distance estimation should in-
appropriate parameters be used. Therefore, we first identify
the LOS/NLOS conditions using HTC and then estimate the
transmitter-receiver distances with different propagation mod-
els for LOS and NLOS conditions. Specifically, we use different
propagation parameters including γ, σ, and WAF , approximated
by least-squares from the training data, for LOS and NLOS con-
ditions. For instance, incorporating the LOS/NLOS conditions
into (17) makes HTR as follows.

P(d) =

{
P(d0)+10γL log d

d0
+WAFL +Xσ, H=Hl ,

P(d0)+10γN log d
d0
+WAFN +Xσ, H=Hn.

(18)

The incorporation of LOS/NLOS conditions with other propa-
gation models is similar.

Compared to LS-SVMR and GPR, HTR only requires least-
square approximation of the propagation parameters (γ, σ, and
WAF) and feature distribution parameters (mean, variance)
from training data. However, the reduced training phase and
the independence assumption between features will degrade the
distance estimation performance.

VI. EVALUATION

This section demonstrates and evaluates the proposed al-
gorithms through extensive data collection at different times
and places. To make the evaluation reliable, RSS samples are
collected during different periods of the day to account for time
variability, and in three experimental sites with different floor
plans to account for the environment variability.
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A. Experiment Setup

Sites: The proposed NLOS identification and mitigation
algorithms were evaluated in three different real-world settings,
namely an office, a basement, and an attic. The site shown in
Fig. 4 is the 4th floor of a multi-storey office building with
a stone and brick construction, reinforced with metal rebars.
The majority of RSS samples in this site were collected along
the corridors surrounded by rooms. The site shown in Fig. 9
is a basement where the RSS samples were collected in both
corridors and rooms which are surrounded by soil and rocks.
Fig. 10(a) shows the layout of the attic test location. All access
points and locations where RSS samples are collected in three
experiment sites are marked in Figs. 4, 9, and 10(a).

Devices and Implementations: To make the proposed
approaches more readily implementable for localization, dif-
ferent mobile devices, including Acer Aspire One ZG5 run-
ning Ubuntu 3.2.0 and Huawei U8160 mobile phones running
Android 2.3.3, were utilized in the experiments. To account
for the various relative antenna orientations that may occur
between transmitters and receivers, the mobile device always
kept face up and oriented parallel to the trajectories taken
so the relative orientation changed with movement during the
data collection. Measurements from over ten different mobile
devices were fused in the experiments to account for hardware
variations between these mobile devices.

Ground truth: To provide accurate ground truth, numbered
labels were placed along corridors and within rooms on a
1 meter grid where experiments were conducted. We recorded
the current time and label number manually when the mobile
device reached a certain label. The labels are then mapped
to locations on the floor plan to obtain the ground truth of
LOS/NLOS conditions and transmitter-receiver distances. With
the settings of access point locations and data collection loca-
tions, the transmitter-receiver distances vary from 0.8 meters to
25 meters with maximum discretization step of 1 m.

Data collection: We implemented two approaches to collect
RSS samples: passive and active. With the passive approach,
a mobile device scans for beacons transmitted by the various
APs and then records RSS values. Given that the default beacon
interval is 102.4 ms (or 51.02 ms for some APs), it is possible
to collect 10–20 samples from each AP per second. APs can
be configured to send beacons as rapidly as 1000 Hz, but
this involves reconfiguring infrastructure, which one does not
necessarily have access to. In comparison, during the active
approach, a mobile device broadcasts probe requests and ob-
tains RSS samples from probe responses. The active approach
collects data much more quickly (can be over 1000 Hz) than
the passive approach at the cost of higher energy consumption
on the mobile device. In practice, one can switch between
the passive approach and the active approach according to the
motion of the user, found by monitoring the change in the
mean per AP RSS. We used the active approach when the RSS
changed rapidly and the passive approach otherwise. We col-
lected 50 to 1000 samples at each given location. Since the
numbers of LOS and NLOS samples differ in various scenarios,
we collect half of the samples in LOS conditions and the other
half in NLOS conditions for training and testing.

B. Data Sets and Training

The accuracy of NLOS identification techniques can be
easily decreased by interference from people walking around
and other signal noise. Although people around may not block
the LOS signal, they may block and absorb other components
of the received WiFi signal which leads to the variation of the
measurement distribution. Moreover, from the long-term per-
spective of practical use, it is impossible to avoid interference
from people.

Therefore, we have two separate categories of RSS samples
in the data sets to account for the interference from people.
The first group of samples was collected during nights when
there were few people walking around to absorb and block
the WiFi signal (called static environment hereafter). The other
group of samples was collected during busy office hours when
there were many people walking around the corridors, which
interfere with the RSS measurements (called dynamic environ-
ment hereafter). Each of the two groups contains approximately
1500 sample sets, each of which is composed of 1000 RSS sam-
ples (3 360 000 RSS samples in total). We divided each sample
set into subsets according to the sample size, as discussed in
the next subsection, and extract features from each subset. As
noted, half of the sample sets in each group were taken from
LOS conditions and the other half from NLOS conditions.

After the database of measurements was built, we tested
the accuracy of the proposed algorithms using five-fold cross
validation. Specifically, we randomly divide all the RSS mea-
surements collected in the office site into five data sets. Then
the algorithms were trained with four datasets and tested with
the remaining dataset. The training and testing processes were
repeated five times until each data set has been tested. Then
we calculate the mean accuracy as the performance metric of
the algorithm on the whole database. The performance of the
classifiers and regressors are discussed in the next subsection.

C. Testing

In this subsection we discuss the performance of the pro-
posed NLOS identification and mitigation algorithms with
both the training data and testing data from the office site
in Fig. 4. For a given number of features, e.g., three, we
performed cross validation with all

(7
3

)
combinations of the

features introduced in Section III. The feature subset with the
lowest misclassification rate and distance estimation errors are
presented in Tables I and II. We denote the feature subsets with
lowest misclassification rate for machine learning techniques
(LS-SVMC and GPC) in static and dynamic environments
with SL

i and DL
i (i = 1, · · · ,5), respectively. The feature subsets

with lowest misclassification rate for HTC in static and dy-
namic environments are denoted with SH

i and DH
i (i = 1, · · · ,4),

respectively. The feature subsets with lowest distance estima-
tion errors for machine learning techniques are denoted with
SR

i (i = 1, · · · ,5).
NLOS Identification: The performance of the algorithms are

measured in terms of missed detection probability pm (deciding
LOS when the RSS samples are from NLOS conditions), false
alarm probability p f (deciding NLOS when the RSS samples
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TABLE I
FEATURES IN DIFFERENT FEATURE SUBSETS

TABLE II
FEATURE SUBSETS FOR LS-SVMR/GPR

are from LOS conditions), and overall misclassification proba-
bility pe = pm + p f .

Fig. 5 shows the misclassification rates of the proposed
techniques in static and dynamic environments using varying
number of features shown in Table I. We can observe that the
misclassification rate of LS-SVMC in the static environment
is far better than those in the dynamic environment. The best
identification errors for LS-SVMC, GPC, and HTC are 0.0648,
0.0599, and 0.1568 in static environments, and 0.1401, 0.1301,
and as high as 0.3744 in dynamic environments. The major
reason for the poor performance of HTC is that HTC is equiv-
alent to a linear classifier while the majority of LOS/NLOS
conditions are not linearly separable, as shown in Figs. 1 and 3,
especially with nonlinear features like χ2 or in dynamic en-
vironments, which explains the poor performance of SH

4 and
feature sets in dynamic environments.

From Fig. 5(a) and (b), Kr appears in most feature sets in
static environments, which proves Kr to be indicative for NLOS
identification in static environment. The reason is straightfor-
ward: Kr measures the difference between a Rician distribution
(LOS condition) and a Rayleigh distribution (NLOS condition).
However in dynamic environments, Kr is no longer an essential
feature, which indicates that the interference actually blurs
the demarcation line between distributions in LOS and NLOS
conditions. Instead, the skewness appears in each data set and
thus becomes the most crucial feature.

Fig. 6 compares the misclassification rate of LS-SVMC
and GPC using different sample sizes in static and dynamic
environments. In both static and dynamic environments, the
misclassification rates are the lowest when the sample size is
1000 and the largest when the sample size is 50, which indicates
that the number of samples collected at each location also
impacts the identification accuracy. The reason for the impact
of sample size is that a larger number of samples can reduce the
influence of noisy RSS samples, which leads to a more precise
fit of the samples to a distribution and thus a more accurate
result.

The number of packets exchanged during the reception of
a standard text email is on average around 30, including the
overhead packets like beacons, handshake, and handoff. Based
on the above experiments the number of RSS samples from
these packets would be sufficient for the proposed technique
to provide an acceptable NLOS identification accuracy. An
email with picture attachments contains hundreds of MAC layer
packets which can make the identification very accurate without
any change to the existing protocol stacks or infrastructures.

Summary: The identification accuracy of LS-SVMC and
GPC can be up to around 95% with training phase while HTC
can greatly reduce the training phase at the cost of lowering the
NLOS identification accuracy to 85%. For all three identifica-
tion techniques, sample size has impact on the accuracy.

NLOS Mitigation: In this subsection, we will discuss the accu-
racy improvement of distance estimation with NLOS mitigation
techniques compared with conventional propagation models.

1) Standard Propagation Model (SPM): This is the first
strawman algorithm used for comparison. We used all
training RSS data including both LOS and NLOS con-
ditions to estimate γ and WAF in (17) with least squares.
Note that SPM does not differentiate between LOS from
NLOS conditions.

2) Breakpoint Propagation Model (BPM): This is the second
benchmark algorithm for comparison [40]. This propaga-
tion model incorporates the breakpoint phenomenon [41]
into the log-distance propagation model, which makes the
breakpoint propagation model [40]. The breakpoint dis-
tance can be determined by the first Fresnel zone [42] and
takes the typical value of 7 m for WiFi signals between
APs and mobile devices in this study [43]. Similarly, we
also use least squares approximation to derive other BPM
parameters such as γ and WAF .

3) Least Square Support Vector Machine Regression (LS-
SVMR): This is the first proposed algorithm. Instead of
estimating the distance with only the mean of RSS mea-
surements in the propagation models, LS-SVMR takes
into account more features of the RSS measurements to
estimate the distances.

4) Gaussian Processes Regression (GPR): This is the second
algorithm proposed. GPR uses the same feature sets as
LS-SVMR.

5) Hypothesis Testing Regression (HTR): This is the third
proposed algorithm which fuses HTC which identifies
LOS/NLOS conditions and SPM/BPM to improve the
distances estimation accuracy. The model given in (18)
is used in this section for comparison.
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Fig. 5. Missed detection probability (pm), false alarm probability (p f ), and overall misclassification probability (pe) of the proposed algorithms, showing the
impact of different feature sets. (a) LS-SVMC. (b) GPC. (c) HTC.

Fig. 6. Overall misclassification probability in (a) static and (b) dynamic environments for different sample size. Features of different sizes are consistent with
Table I. (a) Static environments. (b) Dynamic Environments.

Fig. 7. CDF of various distance estimation methods.

The distance estimation errors of various models are shown
in Fig. 7. It is observed that HTR only improves by around
20% compared to BPM. In comparison, both LS-SVMR and
GPR greatly outperform other models with the mean error from
6.61 m for SPM to 0.86 m for LS-SVMR and 0.82 m for GPR.

Fig. 8 compares the distance estimation performance of
LS-SVMR and GPR with different feature sets. Subsets with
different features are shown in Table II. It is observed that
the GPR works slightly better than LS-SVMR with the best
feature set (SR

2 ) while its performance rapidly drops with other
feature sets. The impact of limited training on the distance
estimation performance is shown in Fig. 8(c). We can observe
that the distance estimation accuracy can be improved with
more training data. This trend is apparent especially when the
percentage of training data is low (less than 40%). Note that
there is no overlap between the training and testing data.

It is observed from Figs. 5 and 8 that the identification ac-
curacy and distance estimation errors of LS-SVMC/LS-SVMR
are more stable with more noisy features than GPC/GPR. As
spline smoothing techniques, both LS-SVM and GP predict a
new target by reweighting the vector of training targets to arrive
at a weight vector which is then used to form an average over
the correlations between the new input point and the training
points. The difference between the two methods lies in the
reweighting factors for the targets. In our implementation of
GPC/GPR, all features share the same length scale to reduce the
training computational complexity, which also reduces the fea-
ture selection ability of GPC/GPR. Therefore, the performance
of GPC/GPR is degraded when noisy features are included. To
increase the feature selection ability and make GPC/GPR robust
to noisy features, we can implement automatic relevance deter-
mination (ARD) in the parameter learning, which, intuitively,
learns different length scales for different features.

It is also observed that HTC/HTR always performs worse
than LS-SVMC/LS-SVMR and GPC/GPR. The underlying rea-
sons are three-fold. As noted, HTC is equivalent to a linear
classifier while the LOS/NLOS conditions are not linearly
separable using only RSS. Even more detrimental, the iden-
tification errors of HTC still have impact on HTR because
HTR is the combination of HTC and propagation models.
Moreover, the log-distance propagation model used in HTR
is only a rough two-parameter approximation of the actual
RSS-distance relation, as shown in Fig. 1. On the contrary,
LS-SVMR and GPR can learn a best model in least square
sense which can describe the RSS-distance relation much better
than a simple log-distance model. Even with only one feature
(e.g., the RSS mean), LS-SVMR and GPR perform much better



1698 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 3, MARCH 2015

Fig. 8. Comparison of distance estimation performance between LS-SVMR and GPR. (a) LS-SVMR. (b) GPRp. (c) Impact of limited training.

than the HTR—the combination of HTC and the log-distance
propagation model. Finally, LS-SVMR and GPR take more
useful features into account for distance estimation than the
propagation model used in HTR, which further helps improve
the distance estimation accuracy.

In addition, Fig. 8 shows that the performance of the regres-
sor does always improve as we add more features. However,
only informative features like µ and d̂ (please refer to Section III
for details) can improve the regression accuracy while noisy
features like σs could degrade the regression performance. That
is why we can observe that the feature set SR

2 that includes both
informative features (µ and d̂) always performs better than any
feature set with more than these two features.

Summary: LS-SVMR and GPR can greatly improve the
distance estimation accuracy to around 0.86 m as opposed to
over 6.6 m with conventional propagation models. In addition,
with a comparatively much shorter training phase, HTR can
achieve an accuracy of 3.5 m.

D. Validation

This subsection validates the performance of the proposed
algorithms in a different experiment site (basement site) than
from where the training data was collected (office site). It is
crucial for practical algorithms to work in different sites without
per-site training because training is highly labour intensive.

To test the robustness of the two machine learning based
NLOS identification and mitigation algorithms over different
sites, we use the same set of parameters trained from the static
environments in the office site in Fig. 4 to identify and mitigate
the NLOS conditions in the basement site as shown in Fig. 9.

The overall misclassification rates of both the LS-SVMC and
GPR with the best 3-feature set SL

3(µ,Kr,χ2) from Fig. 5 are
around 0.091 when tested in the basement site, as opposed to
0.065 when tested in the office site. In terms of average distance
estimation error, the mean distance estimation error is 2.41 m
for LS-SVMR and 2.33 m for GPR in the robustness testing,
as opposed to 0.86 m and 0.82 m when they were trained and
tested in the office site. The observed errors still far outperform
the propagation models by over 60% improvement over SPM.

From the aforementioned experiments, the “general applica-
bility” of the training parameters for machine learning based
NLOS identification and mitigation algorithm makes the train-
ing phase very easy. Therefore, although the training phase
of the machine learning based method is time-consuming and
costly, we do not have to train the parameters every time we

Fig. 9. Map of the basement site (55 m × 40 m). Access points are marked in
the maps.

plan to use them. Instead, we could use the same parameters
from other applications concerning the NLOS identification
and mitigation algorithms. In addition, since RSS is a simple
measurement that every WiFi device can provide, potentially
we can have a huge amount of crowd-sourced data. Based on
such data, it would be possible that an unsupervised learning
algorithms such as Expectation Maximization (EM) [44] could
help in learning the algorithm parameters.

Summary: In a different environment from where the train-
ing parameters are obtained, LS-SVMC and GPC can also
obtain over 90% accuracy in NLOS identification. Meanwhile,
LS-SVMR and GPR can achieve an accuracy 60% higher than
traditional distance estimation approaches.

E. Robustness

It is important that the proposed NLOS identification and
mitigation algorithms take into account the impact of different
signal properties such as the transmission power level and
signal frequency. The goal of the following experiments was
to test whether our algorithms are robust against such changes.

Fig. 10(a) shows the experiment scenario of testing the im-
pact of different WiFi signal properties on our NLOS identifica-
tion algorithms. Four receivers were put inside a room together
with eight LOS transmitters which are evenly distributed within
the room. Meanwhile, one group of five NLOS transmitters are
put in a neighbouring room connected by an open door while
the other NLOS group of three transmitters are put outside the
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Fig. 10. Experiment site and misclassification rate of LS-SVMC in dynamic environment in testing the robustness of our system against various signal properties.
(a) The attic site (17 m × 7 m); (b) The misclassification rates of LS-SVMC.

Fig. 11. The impact of antenna orientation on the NLOS identification and mitigation algorithms. (a) The raw RSS. (b) NLOS identification and mitigation
accuracy.

room where the transmitters and receivers are separated by a
wall built with concrete building materials. Both the LOS and
NLOS transmitters are set to work with different transmission
power levels ranging from 0 dBm to 20 dBm. In addition, some
of the LOS and NLOS transmitters are set to transverse all avail-
able WiFi channels (hop to the next legal frequency band peri-
odically) to test the influence of signal frequency on our system.

Transmission Power Level: The misclassification rate for
LS-SVMC in this experiment is shown in Fig. 10(b). It is ob-
served that the same feature sets in dynamic environment from
Fig. 5 give a misclassification rate as low as 0.0344 for feature
set DL

3(µ,σs,S), which further demonstrates the effectiveness
of our algorithm. The proposed algorithm performs better in
this experiment than in Section VI-C as the extracted RSS
features are able to discriminate better the conditions when the
transmitter is in the same room as the receiver (LOS) and when
the transmitter is in a different room (NLOS).

Signal Frequency: The experiment results show that the
switch from one channel to another does not impact our algo-
rithm. The reason is that we are collecting a large number of
RSS data, we can “average out” small scale multipath effects
which might be more apparent in some channels than others.

Antenna Orientation: We also evaluate the impact of an-
tenna orientations on the proposed algorithms. Fig. 11(a)
shows the mean and 75 percentile of the RSS measurements
we collected in LOS and NLOS conditions with the same
transmitter-receiver distance but different antenna orientations.
It is observed that antenna orientations have impact on the
RSS, especially in NLOS conditions. However, from Fig. 11(b)

we have demonstrated that GPC can identify the LOS/NLOS
conditions with 100% accuracy (please see the “L/N ID” at
the top of the plot). In addition, GPR can also predict nearly
identical distances with different antenna orientations.

Summary: The experimental results show that the pro-
posed NLOS identification and mitigation algorithms are ro-
bust against the change of transmission power level, signal
frequency, and antenna orientations.

VII. IMPACT ON POSITIONING SYSTEM

With the NLOS mitigation techniques in Section VI, we can
derive the locations of the mobile devices with trilateration
[45]. Then we implemented a particle filter to smooth all the
trajectories (200 particles). Fig. 12 compares the trajectories es-
timated from different localization approaches. All trajectories
presented are estimated from the same raw RSS measurements.
The trajectories are estimated from (a) ground truth, (b) SPM,
(c) Guvenc et al. [16], (d) HTR, (e) Fingerprinting (HORUS)
[45], (f) BPM, (g) Nawaz et al. [27], and (h) LS-SVMR. As the
performance of GPR is similar to LS-SVMR, it is not included
here.

It is observed from Fig. 12 that the approach proposed by
Guvenc et al. [16], which selects the AP subset with minimum
weighted residual, works fairly well in our experiments.1 In

1Since the mean excess delay and RMS delay spread measurements are not
available from WiFi signals, we use the best feature set in our experiments (µ,
K , and Kr) instead which are calculated from the directly measurable RSS.
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Fig. 12. Trajectories generated by different algorithms along with the RMS errors: (a) Ground truth, (b) SPM, (c) Guvenc et al., (d) HTR, (e) Fingerprinting
(HORUS), (f) BPM, (g) Nawaz et al., and (h) LS-SVMR.

addition, recall that the generic NLOS mitigation approach
proposed by Nawaz et al. in [27] tries to reduce the estimation
errors by assuming that the number of LOS APs is greater than
the number of NLOS APs. In our experiments this algorithm
results in poor performance at many locations (RMSE up to
10 meters) where NLOS APs outnumber LOS APs.

Fig. 12 also shows that there is only slight improvement in
accuracy for the propagation model derived from hypothesis
testing results, compared with the generic NLOS identification
and mitigation approaches proposed in existing works [16],
[27]. The inability of a simple propagation model to capture
major features of different complicated indoor environments
results in this phenomenon.

We can also see from Fig. 12 that the localization system
based on LS-SVMR improves the localization accuracy by 60%
compared with the trajectories estimated with the state-of-the-
art NLOS mitigation algorithms, which greatly increases the
potential of using WiFi-based localization in practical settings.

We also evaluated the positioning experiment settings includ-
ing AP and receiver locations, attenuation factor distributions
in this study with Cramer Rao Lower Bounds (CRLB) [47].
The path loss based theoretical CRLB of the positioning error is
1.31 m, almost the same as the positioning error of the proposed
machine learning approaches (approx. 1.30 m), which proves
the effectiveness of the proposed methods. The major reasons
why the positioning error of the proposed approaches is slightly
smaller (less than 1%) than CRLB are a) the assumption of
CRLB that each AP has the same distribution for attenuation
factor γ but that is not true in practice, especially in indoor en-
vironments, and b) the particle filtering which removed outliers
and improved the positioning accuracy.

In addition, we implemented the well-known fingerprinting
approach HORUS [45] with the same training and testing data
as the proposed techniques. It is observed from Fig. 12(e) and
(h) that the accuracies of HORUS and LS-SVMR/GPR are
comparable. However, one major advantage of the proposed
approaches is that LS-SVMR/GPR can be used in different

environments (as shown in Section VI-D), which means the
proposed techniques do not require per-site training or extra
user effort. On the contrary, it is well-known that per-site
training is a must for fingerprinting approaches because dif-
ferent sites have different access points and links between the
locations and RSS from different access points.

Summary: The proposed NLOS mitigation algorithms can
greatly improve the distance estimation accuracy and thus im-
prove the RSS-based localization accuracy by over 60% com-
pared with the state-of-the-art NLOS mitigation algorithms.
Performance is also comparable with site-specific fingerprint-
ing approaches.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed three algorithms to address
the problem of NLOS identification and mitigation using only
WiFi RSS measurements. To our knowledge, this is the first
time NLOS identification and mitigation are conducted using
only RSS from real experiments with mobile devices. The
proposed algorithms can not only accurately identify NLOS
conditions, but also greatly improve the transmitter-receiver
distance estimation. In addition, the proposed algorithms are
robust to changes in environments and signal properties, and
conditions without any LOS anchors. That is, algorithms can
be trained on one environment and be utilized in another, which
makes the algorithms, to some degree, generic to a variety of
user locations and greatly improves the potential use of our
algorithms in real world applications.

While designed for implementation on mobile devices, the
limitation of the proposed algorithms is the costly training
phase. To reduce or even eliminate the training phase requires
some other information, either from the environments like the
map and the location of access points or from the existing al-
gorithm database like the training data in some other buildings.
Therefore, our future work will incorporate such information
to develop online learning algorithms or unsupervised machine
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learning algorithms to identify the LOS/NLOS conditions. Al-
ternatively, future models could also be initialized with our
existing data sets and then adapted to new environments. In
addition, the proposed techniques in this study have not ac-
counted for some other interesting problems, e.g., the automatic
switching between static and dynamic settings. These problems
also present interesting directions for future work.
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