
Encounter Based Sensor Tracking

Andrew Symington
Department of Computer Science

University of Oxford
Oxford, United Kingdom

andrew.symington@cs.ox.ac.uk

Niki Trigoni
Department of Computer Science

University of Oxford
Oxford, United Kingdom

niki.trigoni@cs.ox.ac.uk

ABSTRACT

This paper addresses the problem of tracking a group of mo-
bile sensors in an environment where there is intermittent or
no access to a localization service, such as the Global Posi-
tioning System. Example applications include tracking per-
sonnel underground or animals under dense tree canopies.
We assume that each sensor uses inertial, visual or mechan-
ical odometry to measure its relative movement as a series
of displacement vectors. Each displacement vector suffers a
small quantity of error which compounds, causing the over-
all accuracy of the positional estimate to decrease with time.
The primary contribution of this paper is a novel offline
method of counteracting this error by exploiting opportunis-
tic radio encounters between sensors. We fuse encounter in-
formation with the displacement vectors to build a graph
that models sensor mobility. We show that two dimensional
sensor tracking is equivalent to finding an embedding of this
graph in the plane. Finally, using radio, inertial and ground
truth trace data, we conduct simulations to observe how the
number of anchors, transmission range and radio noise affect
the performance of the proposed model. We compare these
results to those from a competing model in the literature.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords

Localization, Tracking, Encounters, Rigidity

1. INTRODUCTION
A Wireless Sensor Network (WSN) is a group of intercon-

nected, resource-constrained devices (“sensors”) that instru-
ment the environment, store data, perform processing tasks
and forward information. There are many applications in
which sensor location awareness is advantageous, or even es-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’12, June 11–14, 2012, Hilton Head Island, SC, USA.
Copyright 2012 ACM 978-1-4503-1281-3/12/06 ...$10.00.

sential. Example applications include tracking mineworkers
underground, or groups of animals over long periods.

One widely-used system for localization is the Global Po-
sitioning System (GPS). However, many sensor deployments
preclude the use of GPS for one or more of the following rea-
sons. Firstly, the service may not be available in satellite-
denied environments. Secondly, GPS consumes a signifi-
cant amount of energy, which reduces the sensors’ lifetime.
Thirdly, the technology requires expensive hardware, mak-
ing it infeasible for use in large-scale sensor networks that
feature many nodes. GPS is one example of anchor-based
localization, which assumes the availability of a set of fixed
sensors. Such an infrastructure is often difficult – or impos-
sible – to set up, for example in disaster scenarios.

When a fixed localization infrastructure is unavailable,
one may measure relative changes in position using an in-
ertial navigation system [9]. The micro electro-mechanical
sensing (MEMS) devices used to instrument inertial changes
are becoming increasingly energy efficient and cheaper to
manufacture, making them feasible for use in WSNs. How-
ever, measurements from such devices are typically corrupted
by a small quantity of error, arising from bias, noise or in-
formation quantization. Since the measured changes are rel-
ative, these small errors compound over time. This causes
the positional estimate to drift, which means that one cannot
accurately track a sensor by inertial measurement alone.

In this paper we propose a centralised model that counter-
acts sensor drift by exploiting opportunistic radio encounters
between pairs of sensors, as well as between sensors and an-
chors. In so doing we provide a method by which sensors
may be tracked for longer periods in the absence of a local-
ization infrastructure. We use encounters and displacement
estimates to build a graph that models sensor mobility. A
vertex represents either the fixed position of an anchor, or
the position of a sensor during an encounter. Edges repre-
sent the physical distances between vertices. Our proposed
tracking model then finds an embedding of this graph in
the plane, thereby localizing the encounter points. Finally,
the original positional estimates are threaded through the
embedding to obtain a drift-corrected trajectory. To sum-
marize, our work makes the following contributions:

1. We propose a novel Encounter Based Tracking (EBT)
model that converts encounters and displacement vec-
tors to a graph, solving the tracking problem with a
single application of graph realization.

2. We propose a novel drift correction algorithm, entitled
Radial Drift Correction, that outperforms Linear Drift
Correction when used in conjunction with EBT.

15

(a) Encounter graph. (b) Distance matrix. (c) Planar realization of graph.

Figure 1: Overview of Encounter Based Tracking: Diagram 1a shows the actual (solid) and estimated (dotted)
trajectories for two sensors, starting at SA and SB. The vertices and edges for the corresponding graph are
shown by circles and solid lines respectively. We use displacement vectors drawn from estimated trajectories,
as well as distance estimates from radio encounters between sensors and anchors to insert edges into the
graph. The positions of the vertices are unknown, and so the graph is described by the distance matrix
in 1b. We perform graph realization on this matrix to obtain the planar embedding in 1c. The estimated
trajectories are threaded through this embedding to obtain a drift-corrected trajectory for each sensor.

3. We evaluate the performance of EBT using a realis-
tic radio model and trajectories drawn from real trace
data. We conduct a sensitivity analysis of EBT and
show that it performs well relative to Directed Diffu-
sion Tracking [6], a related model from the literature.

The remainder of this paper is organized as follows. Sec. 2
positions our work relative to existing localization literature.
Sec. 3 provides an overview of our proposed model. Secs 4
to 6 describe each of our model’s three main steps in detail.
Sec. 7 discusses the experimental setup used to calibrate our
model, and measure its performance. Sec. 8 discusses the
results of our experimental study. Finally, Sec. 9 concludes
this paper and highlights directions for future work.

2. RELATED WORK
From a sensor networking perspective, localization is typ-

ically seen as the process of converting low-level measure-
ments (received signal strength, time of arrival, time differ-
ence of arrival) to higher-level information (proximity, range
or angle between pairs of sensors) that is then fused together
to obtain an estimate of a sensor’s location (in relative or
global coordinates). Traditional methods localize each sen-
sor in isolation, by estimating multi-hop distances to nearby
anchors. Patwari et al [18] define cooperative localization
as a method whereby the pairwise distances between neigh-
bouring sensors are used to simultaneously localize all sen-
sors in the network. Graph realization is a well-studied [3,
4, 15, 20] family of solutions to the cooperative localiza-
tion problem, which has seen little application to tracking
mobile sensors. Macagnano and de Abreu [17] propose a
method of using MDS to track sensors relative to a set of
anchor points. However, their representation does not take
into account peer to peer encounters, dynamic or kinematic
constraints. Cabero et al. [5] propose a Dynamic Weighted
Multidimensional Scaling (DWMDS) model for pedestrian
tracking that fuses encounters with ranging information. In
this model dynamic constraints are encoded directly into a
particular graph realization technique. In contrast, our pro-
posed model encodes measured displacements directly into

the graph itself, allowing a wide variety of graph realization
algorithms to be used. The key feature that distinguishes
our model is that we integrate mobility information with
ranging information to localize sensors simultaneously over
space and time. Constandache et al. [6] propose a similar
model that uses directed diffusion to propagate position cor-
rections amongst a set of mobile sensors. Their model con-
siders nodes to be collocated during encounters, and thus
ranging information is essentially ignored, which we show to
significantly affect tracking accuracy.

From a robotics perspective, localization and mapping
are dealt with together in the Simultaneous Localization
and Mapping (SLAM) problem. The objective of SLAM
is to fuse process updates (relative changes in the robots
pose) with measurement updates (distances to features in
the world) in order to find a maximum likelihood estimate
(MLE) of the robot’s state over time (localization) and the
fixed positions of features (mapping). This is closely re-
lated to mobile sensor localization, the key exception be-
ing that in sensor networks feature positions and correspon-
dences are typically known a prior i. In Thrun and Monte-
merlo’s GraphSLAM [22] a single robot’s trajectory is mod-
eled as a graph, which is similar to our model. Subsequently,
Kim et al [13] extended GraphSLAM to leverage encounters
between robots. Wymeersch et al [23] propose a distributed
model called SPAWN that uses a statistical technique, in
conjunction with process and measurement models, to infer
the state of the sensors over time. Importantly, this model
makes the restrictive assumption that sensors move inde-
pendently according to a memoryless walk. Our approach
differs from this family of approaches because we consider
the sensor’s state as a position only. The ‘dissimilarity’ be-
tween encounters is therefore simply the Euclidean distance,
which means that we are able to exploit existing, fast dimen-
sionality reduction algorithms to obtain a solution.

3. ENCOUNTER BASED TRACKING
We begin with the assumption that mobile sensors are

equipped with radios, and that they exchange beacons at

16

regular intervals. When a sensor receives a beacon an en-
counter is recorded, which comprises of a time stamp, two
sensor identification numbers and an estimated distance.
This distance is obtained by passing the signal strength of a
radio beacon through a path loss model. We assume further
that the sensors use instrumentation in conjunction with
a navigation system to determine an estimated trajectory.
This is essentially a series of two-dimensional displacement
vectors, which model the position of the sensor relative to its
starting point (0,0). We assume further that this estimated
trajectory suffers drift, and so these positional estimates be-
come less accurate with time. At the core of our model lies
the intuition that whenever two sensors encounter one an-
other, it relates them in space and time. We model these
encounters, and hence sensors’ mobility, with a connected
graph. The overall goal of EBT is to firstly find an assign-
ment of two dimensional coordinates to the graph vertices
(a planar embedding) that satisfies the observed distances,
and to then use this embedding to subtract the drift out
from the estimated trajectories. EBT does not require an-
chors to drift-correct the estimate trajectories. However,
several anchors (these can be known start or end points on
the estimated trajectory) are required to project the final
embedding into a usable coordinate frame, such as meters
north or east. Fig. 1 provides an overview of EBT, which
may be broken down in to the following three steps:

1. Graph construction – A graph is built using the en-
counters and estimated trajectories. Fig. 1a shows
the sensors’ positions during an encounter as vertices
in this graph; edges represent the observed pairwise
distances between the vertices. In general, the relative
positions (coordinates) of the vertices are not known,
and so the problem can be entirely described by the
distance matrix given in Fig. 1b.

2. Graph realization – This is the process of assigning
a two dimensional coordinate to each vertex of the
graph, such that the resultant pairwise distances agree
with the observed distance matrix in Fig. 1b.

3. Drift correction – Each sensor’s estimated trajectory is
threaded through the embedding. The drift-corrected
trajectories are shown as solid lines in Fig. 1c.

The following sections examine each step in closer detail.

4. GRAPH CONSTRUCTION
Fig. 2 shows a toy example that illustrates how the graph

is constructed. In this example there are two anchors, shown
as dark circles with the numbers 1 and 2. There are two
sensors labeled A and B, which follow the path indicated by
the corresponding dotted arrows. When these two sensors
come within communication range they exchange a radio
beacon, and an encounter is recorded. In the example there
are two such encounters that occur, depicted as light circles
marked 3A/3B and 5A/5B. Two vertices are added for each
encounter – one for each of the two sensor positions at that
point in time. When encounter is between a sensor and an
anchor, only one vertex is added (Circle 4 in Fig. 2).

With the exception of the anchors, the coordinates of the
graph vertices are unknown. However, the estimated trajec-
tories, encounters, and anchor positions (if available) pro-
vide us with information about the pairwise distances be-

Figure 2: Sensor and anchor positions are shown
by light and dark circles respectively. The dotted
arrows show the trajectories of sensors A and B.
Circles and straight lines correspond to graph ver-
tices and edges respectively. Dashed, dotted and
solid edge lengths are obtained respectively from es-
timated trajectories, the signal strength of a radio
beacon, and the known distances between anchors.

tween vertices. In our model this information is captured
by graph edges. We distinguish between three edge types:

1. Mobility edges – Recall that encounters occur at dis-
crete points in time. The distance between two en-
counters on a single sensor’s trajectory is given by
sampling that sensor’s estimated trajectory over the
appropriate time interval. Mobility edges are shown
by dashed lines in Fig. 2.

2. Anchor edges – These are included only when anchor
information is available. Since the position of each
anchor is known a priori, it follows that the subgraph
for the anchors is fully-connected. Anchor edges are
shown by solid lines in Fig. 2.

3. Radio edges - The distance separating two sensors, or
sensor and an anchor, is found using a path loss model,
which estimates a distance between the two vertices
from the signal strength of the received beacon frame.
Radio edges are shown by dotted lines in Fig. 2.

4.1 Vertex merging
In Fig. 2 the layout of the graph is relatively simple,

as there are very few encounters. Depending on the radio
communication range and beaconing rate, a series of dupli-
cate encounters may arise from sensors being spatially and
temporally collocated for short periods. Since the complex-
ity of EBT scales with the number of graph vertices, this
number should be kept to a minimum. To this end, we pro-
pose the following vertex merging algorithm. We begin by
selecting some constant time threshold Tm, which defines
the time granularity of our graph. The merging algorithm
searches for a pair of duplicate encounters with the smallest
time difference. If this time difference is less than Tm, both
encounters are merged into a single encounter, with a time
and distance equal to the mean of the merged pair. The
algorithm then repeats until no matching pair is found.

4.2 Edge selection
Consider the subgraph that contains only the vertices for

a single sensor (eg. vertices 3B, 4 and 5B form an exam-
ple subgraph for Sensor B in Fig. 2). Such a subgraph

17

Figure 3: Left, a flexible graph that fails generic lo-
cal rigidity: a continuous force applied to vertices 1
and 2 shifts them relative to vertices 3 and 4. Mid-
dle, a locally rigid graph structure that is not glob-
ally rigid: vertices are rigid against a small contin-
uous force, there exists a reflection (edge e1,4) that
satisfies the observed edges. Right, a globally rigid
graph with a unique planar embedding.

forms a crude, discrete time trace of the given sensor’s tra-
jectory. We are able to measure the distance between any
pair of vertices in this subgraph by sampling the estimated
trajectory. We therefore have sufficient information to fully-
connect this subgraph. We refer to this as the complete edge
selection rule. This rule always yields a subgraph that can
be uniquely embedded in the plane.

As a result of drift, a displacement vector measured be-
tween two points on an estimated trajectory contains a quan-
tity of error, which increases proportionally to the time sep-
arating the two points. An alternate approach to the com-
plete edge selection rule is to remove those edges connecting
vertices with a large time differences. However, we should
only remove those vertices that retain the subgraph’s unique
embeddability. To achieve this, we must first introduce the
notion of graph rigidity [8]. We will use this theory to derive
a conservative edge selection rule, that seeks to connect the
graph with a minimum number of short edges in a way that
preserves unique planar embeddability.

We begin by considering only generic graphs – those hav-
ing no d + 1 vertices that are collinear in R

d. Such graphs
are said to be rigid if they do not bend or flex under a
small force. Generally speaking, the more edges one adds
to a graph the more rigid the graph becomes, as a result
of more constraints being placed on motion. A graph con-
taining n vertices has 2n possible independent motions in
two dimensions, corresponding to a horizontal and vertical
translation of each node. It is impossible to constrain the
three global graph motions, namely a horizontal translation,
vertical translation and rotation. This intuitive notion of
constrained movement lies at the core of Theorem 1 below,
which provides a test for two dimensional rigidity [16].

Theorem 1. The edges of a graph G = (V,E) are inde-
pendent in R

2 iff. no subgraph G′ = (V ′, E′) has more than
2n′ − 3 edges, where n′ is the number of vertices in G′.

Graphs that satisfy the Laman condition are referred to
as being locally rigid. Furthermore, a graph is said to be re-
dundantly rigid if and only if the removal of any single edge
results in a graph that is locally rigid. Local and redundant
rigidity do not necessarily imply unique graph realizability.

Graphs that satisfy a stronger condition, global rigidity, are
rigid against both continuous and discontinuous forces. Re-
fer to Fig. 3 for examples of flexible and rigid graphs.

Theorem 2 frames global rigidity certification as composi-
tion of 3-connectivity1 and redundant rigidity testing, both
having polynomial time algorithms. Refer to Jackson and
Jòrdan [10] for a proof of this theorem. No equivalent result
exists for three dimensions or greater.

Theorem 2. A graph G = (V,E) with n ≥ 4 vertices is
generically globally rigid in R

2 if and only if it is 3-connected
and redundantly rigid in R

2.

Having outlined conditions for unique localizability, we
may now define the conservative edge selection rule. Con-
sider the case where we connect every vertex i to its three
neighbours, as shown in Fig. 4. The resulting graph is an
instance of a trilateration graph [24] and is therefore globally
rigid. Applying this rule over the entire trajectory results in
the subgraph being globally rigid. However, this rule does
not guarantee global rigidity of the entire graph.

Figure 4: Dotted lines show a globally rigid sub-
graph formed by connecting each vertex to its three
adjacent neighbours. If all encounters are connected
in this way, the resultant graph is globally rigid.

5. GRAPH REALIZATION
Consider a graph G = (V,D) with V being a set of n

vertices, and D being a n × n symmetric matrix of pair-
wise distances between these vertices. The graph realization
problem seeks to find a d-dimensional embedding – the co-
ordinates of V in R

d – that preserves D. The d-dimensional
graph realization problem is an instance of dimensionality
reduction that is provably NP-Hard in the general case [19],
and also when radio propagation is modelled as a unit disc
graph [2]. We showed in the previous section that if one
assumes that the graph vertices are algebraically indepen-
dent, then it is possible to certify the uniqueness of a planar
embedding. The embedding itself may be found using one
of many graph realization algorithms.

In this section we survey three types of graph realization
that are commonly used for static sensor localization. We
conclude this section with an analysis of their applicability
for use in our proposed Encounter Based Tracking model.

1A graph G = (V,E) with n vertices is k-connected if the
removal of any i < k vertices results in a connected subgraph
G′ = (V ′, E′) with n− i vertices.

18

5.1 Multidimensional Scaling (MDS)
The objective ofmultidimensional scaling (MDS) is to find

an embedding X =
[

x1 · · · xn

]T
of all n vertices in d-

dimensional space, given some distance matrix D, through
the minimization of the stress function shown in Eqn 1.

X = argmin
X

∑

<i,j>∈D

(∥

∥

∥xi − xj

∥

∥

∥− dij
)

2 (1)

A shortcoming of MDS is that a complete distance matrix
is required to find a solution, which is typically unavailable.
Typically, unknown edges are calculated using a shortest
path method, as in MDS-MAP by Shang et al. [21].

MDS has the side-effect of pulling nodes towards the cen-
troid of the embedding, meaning that it tends to perform
poorly on irregularly-shaped graphs. Shang and Ruml [20]
proposed an extension, called MDS-MAP(P), in which MDS-
MAP is applied in patches across the network. A patch is
a subgraph produced for every node in the network, includ-
ing all neighbours within some hop count (typically 2-hops).
For each patch an MDS solution is first obtained, which is
then followed by an iterative least squares minimization of
stress between the measured and MDS distance values. The
maps are then merged together to form a global map.

5.2 Spectral Graph Drawing (SGD)
Like MDS, spectral graph drawing (SGD) may be ex-

pressed as a minimization problem [15]. The objective is
to find a planar realization of n vertices. The neighbourhood
N(i) is a set of vertices connected by an edge to vertex i. Eqn
2 defines W as a weighting matrix derived from distances,
K as the degree matrix and L as the Laplacian matrix.

[W]ij = wij , [K]ii =
∑

j=N(i)

wij , L = K −W (2)

SGD finds an optimal embedding x̃ that satisfies the mini-
mization problem shown in Eqn 3. It therefore favours solu-
tions that push together those vertices connected by high
weighted edges. Clearly, the edge weights should be in-
versely proportional2 to distance. One trivial solution that
satisfies this minimization problem is to select all nodes to be
at the same position. To prevent this, a constraint xTx = 1
is added, which forces the solution to have a non-zero vari-
ance. The selection of the variance to be 1/n is arbitrary and
simply governs the spread of the solution. The second con-
straint xT1n sets the mean of the solution to zero, making
the solution translation-invariant.

x̃ = argmin
x

[

xTLx
]

s.t xTx = 1

xT1n = 0 (3)

Koren [15] argues that SGD performs poorly on irregular
graphs, as it tends to draw nodes into the graph centroid.
Koren goes on to propose a variant of SGD, called degree
normalized spectral graph drawing (DN-SGD). This model
updates the variance constraint of SGD to weight the po-
sition of the graph vertices by their degree. That is, the
constraint xTx = 1 in Eqn 3 is replaced by xTKx = 1.
For regular graphs, the degree matrix is close to a scaled

2In spectral graph drawing the edge weighting wij ∈ W is
typically calculated as either 1

1+dij
or e−dij for dij ∈ D.

identity matrix, which makes the constraint optimization
problem equivalent to that of regular SGD. One of Koren’s
primary contributions is a proof showing that the solution to
this constrained optimization problem is equivalent to find-
ing the generalized eigenvectors of (L,K). Broxton et al. [4]
applied DN-SGD to static localization and found that it re-
quired a refinement step to obtain a reasonable embedding.

5.3 Semidefinite Programming (SDP)
Assume that a graph contains n nodes and m anchors,

with known positions A = {a1, . . . , am}. Let D ∈ R
n×n

represent the pairwise distances between all nodes. Simi-
larly, let D ∈ R

m×n represent the pairwise distances be-
tween all nodes and anchors. A value of zero in either
dij ∈ D or d̄ij ∈ D̄ indicates that no distance informa-
tion is available. The sets Nx = {(i, j) : ∀i<jdij 6= 0}
and Nx = {(k, j) : d̄kj 6= 0} therefore contain all unique
node-node and node-anchor edges respectively. Semidefinite
programming (SDP) is a method of solving a minimization
problem with a specific form, using a interior point algo-
rithm. The sensor localization problem may be expressed
as the minimization problem Eqn 4, with X = {x1, . . . , xn}

being a candidate embedding, and X̃ being the optimal em-
bedding. The α and β terms are slack variables that seek to
minimize the error between the observed and the predicted
distances. Although we have not included it in this paper
for space reasons, this formulation of the sensor localization
problem may be relaxed into SDP form.

X̃ = argmin
X





∑

(i,j)∈Nx

(α+
ij + α−

ij) +
∑

(k,j)∈Na

(β+
kj + β−

kj)





s.t ‖xi − xj‖
2 + α+

ij − α−

ij = d2ij ∀(i,j) ∈ Nx

‖xi − aj‖
2 + β+

kj − β−

kj = d̄2kj ∀(k,j) ∈ Na

α+
ij ≥ 0, α−

ij ≥ 0, ∀(i,j) ∈ Nx (4)

β+
kj ≥ 0, β−

kj ≥ 0, ∀(k,j) ∈ Na (5)

Biswas and Ye [3] applied SDP to the problem of sensor
localization with noisy range estimates. Subsequently, Kim
et al. [14] expanded on this work, exploiting matrix sparsity
to reduce the amount of time required to obtain a solution.
Recent results by Javanmard and Montanari [12] provide
analytical performance bounds for SDP localization where
nodes are distributed randomly according to a uniform dis-
tribution within a bounded d-dimensional hypercube.

5.4 Graph realization and EBT
In our particular sensor tracking problem, there are two

aspects that affect the performance of the realization algo-
rithms. Firstly, the graph is likely to be regularly shaped, as
the sensors’ movement is sampled from an overlapping tra-
jectory. Secondly, the graph is comprised of several clusters
of densely connected vertices (see Fig. 6a). Each cluster
corresponds to a single sensor’s trajectory, and it is densely
connected because is possible to sample an inertial trajectory
between any two points. These clusters are loosely intercon-
nected by comparatively fewer edges, which arise from op-
portunistic contacts. Our first expectation is that DN-SGD
will ‘push’ these clusters away from one other. This will
result in there being little spatial overlap between the sen-
sors’ trajectories, which will yield an incorrect embedding.
Although an iterative refinement step will reduce this error,

19

it will invariably converge to a local minimum. Our sec-
ond expectation is that MDS will outperform SGD, which
we infer directly from the minimization functions. MDS
seeks to directly minimize the sum squared error between
the observed and predicted distances, whereas SGD seeks
to push together those vertices connected by short edges.
They key problem is that SGD places no constraint on how
close any pair of vertices may be to one another, but only
on the spread of the entire embedding. We therefore expect
that SGD will yield an acceptable overall distribution of ver-
tices, but on a local level vertices will deviate significantly
from their correct position. We expect SDP to perform sim-
ilarly to MDS, but at a higher computational cost. Finally,
we have chosen not to test MDS-MAP(P) for two reasons.
Firstly, we expect the graph to be regular, implying that
MDS-MAP(P) will perform approximately just as well as
straight MDS. Secondly, the computational complexity re-
quired to obtain a solution scales poorly with the number of
vertices: preliminary experiments showed a run time of 200
seconds for a graph containing fewer than 100 vertices.

6. DRIFT CORRECTION
In the final step of EBT we use the projected graph em-

bedding to drift-correct the sensors’ estimated trajectories.
Piecewise drift correction is applied independently to each
sensors’ estimated trajectory between encounter points. We
begin with a description of an existing approach from the lit-
erature, Linear Drift Correction. We then propose a novel
alternate method, which we call Radial Drift Correction.

Linear Drift Correction was proposed by Constandache et
al. [6], and it assumes that the positional estimate drifts

linearly with time. Let P̃ (t) be the trajectory estimate for
a given node, at some time t. Let ti and ti+1 be the time
associated with two adjacent graph vertices representing en-
counters along a given sensor’s path. Let X(ti) and X(ti+1)
be the coordinates of the first and second encounter respec-
tively, obtained directly from the graph embedding.

Linear Drift Correction begins by shifting the sensor’s
estimated trajectory to begin at the position of the first
encounter X(ti). The approach then adds the difference
between the estimated and known end points linearly over
the period (ti+1 − ti). This is done by first calculating a

shift vector ~v = X(ti) − P̃ (ti) and then a correction vec-

tor ~c = X(ti+1) + ~v − P̃ (ti+1). Eqn 6 shows how the final
drift-corrected trajectory segment P (t) is calculated.

P (t) = P̃ (t) + ~v +
t− ti

ti+1 − ti
~c, ti ≤ t ≤ ti+1 (6)

We observed that Linear Drift Correction distorted the
shape of the curve, most notably in cases where there was
a large angular difference in the direction vector between
the two points on the estimated trajectory and the two en-
counter points. To counteract this, we propose an alternate
drift-correction method called Radial Drift Correction. In
this method the starting point of the estimated trajectory
is first shifted to the first encounter. Rather than adding
the drift correction linearly along the curve, we rotate the
curve about the starting encounter by some angle α, until
the estimated displacement vector and actual displacement
vector are aligned. Finally, we scale the estimate trajectory
by β to align its end point with the second encounter. We
denote ~a = X(ti)−X(ti+1) and ~m = P̃ (ti) − P̃ (ti+1) to be
the displacement vectors measured between the two given

encounter points, according to the embedded graph vertices
and the trajectory estimate. Eqn 7 and Eqn 8 show how ~a
and ~m are used to find the rotation angle α and scale β.

α = atan2(~ay,~ax)− atan2(~my, ~mx) (7)

β =
‖~a‖

‖~m‖
(8)

The updated trajectory segment P (t) is given by Eqn 9 using
the rotation angle α and scale factor β defined above.

P (t) = X(ti) + β

[

cosα −sinα
sinα cosα

]

(

P̃ (t)− P̃ (ti)
)

(9)

7. EXPERIMENTAL SETUP
To evaluate the performance of our model we synthetically

created five sensors by randomly sampling the source data,
discussed in Sec. 7.1.1, at different 30 second intervals. We
shifted the all trajectories to begin at time zero, and calcu-
lated the encounter points between sensors and anchors. At
these encounter points the pairwise distances between sen-
sors were convoluted by additive white noise, with param-
eters drawn from experiments, which are discussed in Sec.
7.1.2. In Sec. 7.2 we discuss the parameters that were var-
ied, models that were tested and metrics for analysis, while
Sec. 7.3 shows how our EBT was calibrated. Each combina-
tion of the simulation parameters was repeated 100 times in
order to obtain 99% confidence intervals. The simulations
were conducted over two days using three parallel Matlab
processes on a 2.4 GHz Core 2 Quad with 4GB RAM.

7.1 Source data

7.1.1 Inertial and ground truth traces

Our model was evaluated on trace #13 from Angermann
et al. [1], which is a recording of a random walk in a 6 x
8 meter room. The trace offers two time-synchronized data
streams: a ground truth trajectory recorded from an opti-
cal localization system, and an inertial trajectory, which the
authors obtain by passing raw measurements from a shoe-
mounted inertial sensor through Foxlin’s Inertial Pedestrian
Dead Reckoning algorithm [9].

7.1.2 Radio noise model

To test the performance of our tracking model under more
realistic conditions, we used the radio model proposed by
Patwari et al [18]. We staggered 10 wireless stations at
1.8m intervals from a given receiver, and measured their
signal strength for a 10 minute period. We assumed that
the distance d in meters relates to the RSSI r in dBm ac-
cording to the free space path loss model shown in Eqn. 10.
We used a non-linear fitting technique to find p1 and p2 for
our data set. We assumed further that the received signal
strength was corrupted by Additive White Gaussian Noise
(AWGN) with a constant standard deviation p3, measured
directly from the trace data. Our radio data and path loss
model is summarized in Fig. 10.

r = p1 − p210log10(d) (10)

We used the following method to model the effect of ra-
dio noise on our tracking algorithms. Each simulation run
was assigned a radio noise multiplication factor nf , which
weights the standard deviation of the additive white Gaus-
sian noise. Assuming an observed distance of dtij between

20

4 6 8 10 12 14 16 18 20 22
−95

−90

−85

−80

−75

−70

−65

−60

−55
Radio model: Distance versus Received Signal Strength Indicator

Distance (meters)

R
S

S
I

(d
B

m
)

p1 = −50.385

p2 = 2.256

p3 = 10.8864

Figure 5: This graph shows the received signal
strength (in dBm) as a function of the distance be-
tween a sender and receiver. Small crosses represent
beacon frame measurements, while the solid line is
the path loss model fitted to the measured data.

two sensors i and j at time t, then the RSSI for the bea-
con frame is given by r̃tij = p1 − p210log10(d) + e, where
e ∽ N(0, nfp3). This RSSI was fed back through the path

loss model to obtain a noise-corrupted distance d̃tij .

7.2 Models and Performance Metric
The objective of our experiments was to measure how

the following two tracking algorithms perform as a function
of the number of anchors (4 to 12), communication range
(0.25m to 1.5m) and radio noise factor nf (0 to 2):

• Drift Correction Tracking (DDT) - This model was
taken from Constandache et al. [6] and operates in the
following way: whenever a sensor encounters another
sensor, or anchor, with a fresher positional estimate, it
assumes the position of its peer, and corrects for drift
between the previous and current encounter.

• Encounter Based Tracking (EBT) - This is the pro-
posed tracking algorithm, which was described in Secs
4-6. The model was calibrated as per Sec. 7.3.

We used the Procrustes Transform [7] to express the out-
put trajectories in a common coordinate frame, relative to
a minimum of four non-collinear anchor points. The per-
formance of both tracking models was measured by the root
mean square error (RMSE), over the errors between points
along the output trajectory Pi and the ground truth trajec-
tory Gi, for every sensor i. Assuming that we have S sensors
and T discrete time ticks, then the RMSE e is given by Eqn
11, where ‖·‖ represents the standard Euclidean norm.

e =

√

∑S

s=1

∑T

t=1 ‖Ps(t)−Gs(t)‖
2

ST
(11)

(a) Before Floyd-Warshall (b) After Floyd-Warshall

Figure 6: The heat map representation of a sample
EBT distance matrix. The upper-left block on the
diagonal corresponds to the known anchor distances,
while the remaining five blocks correspond to pair-
wise distances between points on each trajectory.
Off-diagonal elements correspond to encounters.

7.3 Calibration of Encounter Based Tracking

7.3.1 Vertex merging

If the vertex merging threshold is set to a value that is
too high, then EBT may merge encounters that take place
in very different locations. In this case the average distance
does not accurately represent the samples that are merged,
and the end result is a lower tracking resolution. Conversely,
if the value is set too low then the graph contains a large
number of vertices, increasing the complexity of graph re-
alization. We determined empirically that five seconds is a
sufficient threshold for vertex merging on our trace data set.
With this threshold set, in the worst case all graph realiza-
tion algorithms obtained a solution within one minute.

7.3.2 Edge selection

In Sec. 4 we introduced the idea of graph rigidity, and
we showed how it relates to unique localizability. We also
proposed two edge selection rules for connecting encounters
along a single sensor’s path. The complete edge selection rule
fully-connected all encounters on a single sensor’s trajectory.
The conservative edge selection rule sought to reduce the
amount of inertial error in the representation, while preserv-
ing generic global rigidity. Given perfect distance measure-
ments, it should be possible to find a unique embedding in
both cases. However, because of the NP-Hardness of graph
realization, in practice this cannot be achieved. Through
a series of experiments, we observed that all of the tested
approximation algorithms performed favourably using the
complete edge selection rule. We attribute this behaviour
to the density of the distance matrix and its effect on ap-
proximation algorithms for graph realization. Although the
remaining edges introduce larger quantities of measurement
error, this error has less impact on the final solution that
the loss of information about vertex connectivity.

7.3.3 Graph realization

Here, our objective was to determine which graph real-
ization algorithm performs well with EBT. To do this we
implemented MDS, SGD and DN-SGD, and used the SDP
localization implementation by Kim et al. [14]. Fig. 7a
and Fig. 7b show how, for these four graph realization al-

21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

8

9

10

Transmission range (in meters)

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r
(i
n

 m
e

te
rs

)

Transmission range versus graph realization accuracy

MDS

SGD

DN−SGD

SDP

(a) Transmission range versus graph realization accuracy.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−2

10
−1

10
0

10
1

10
2

Transmission range (in meters)

R
e
a
liz

a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Transmission range versus graph realization speed

MDS

SGD

DN−SGD

SDP

(b) Transmission range versus graph realization speed.

Figure 7: Comparing the accuracy and speed of EBT using four different graph realization algorithms.

gorithms, EBT accuracy and speed change as a result of
an increase in radio transmission range. The RMSE metric
used to assess accuracy is given by Eqn 11. An increase in
transmission range results in a greater number of encounters,
increasing the overall number of vertices in the graph, and
thus the speed of graph realization (in our experiments the
number of vertices is bounded to approximately 500 by the
vertex merging mechanism). As predicted in Sec. 5.4 the
accuracy of the two SGD algorithms was significantly lower
than the others. SGD, DN-SGD and MDS implementations
all rely on eigendecomposition of a square matrix, which
means that they should exhibit similar time performances.
However, a MDS requires preliminary step to determine un-
known elements of the distance matrix (see Fig. 6). Our
implementation uses a Floyd-Warshall shortest path algo-
rithm, which has a complexity of O(n3) for a matrix with
n× n vertices. This is why the speed of MDS is lower than
the other two methods. Our results suggest that for prob-
lems with over 500 encounters, switching from MDS to SDP
may provide a good trade-off between speed and accuracy.

8. RESULTS AND DISCUSSION
Fig 8 provides a summary of our sensitivity analysis. We

have included an Inertial curve, which shows the RMSE of
the inertial data without any drift-correction. It serves as
a worst-case benchmark for the tracking algorithms. Take
note that only noise-free data is used in Figs 8a and 8b.
In EBT, Radial Drift Correction showed a consistent 10cm
improvement over Linear Drift Correction.

8.1 Sensitivity analysis for EBT and DDT

8.1.1 Number of anchors

For DDT, increasing the number of anchors is equivalent
to sampling the search space at a greater resolution. As
Fig. 8a illustrates, the DDT error drops at a decreasing
rate, as more anchors are added to the system. Presumably,
this is because a doubling in resolution requires a square

increase in the number of anchors. For EBT, we observe
that an increase in the number of anchors greatly improves
the tracking performance. Increasing the number of anchors
yields more encounters, thereby increasing the total number
of sensor to anchor encounters in the experiment. In addi-
tion to adding more information to the model, such encoun-
ters help ‘pin’ the sensors’ trajectories to the rigid cluster
formed by the anchors, thereby improving graph rigidity.

8.1.2 Transmission range

Fig. 8b shows how the performance of DDT and EBT
change as the radio transmission range increases, equally
for both sensors and anchors. In general, an increase in
the transmission range yields a greater number of encoun-
ters. This adds more information to both EBT and DDT,
thus improving performance. A transmission range of less
than 0.5m yields very few encounters. For DDT this means
that positional updates are less frequent, yielding a poor
tracking performance. For EBT this poses a bigger prob-
lem – a small number of encounters causes a flexible en-
counter graph, resulting in a bad realization (see Sec. 8.2).
This is why the EBT error for small transmission ranges is
greater than DDT. However, once the graph is rigid, EBT
performs significantly better than DDT. We attribute this to
two things. Firstly, DDT assumes that when an encounter
takes place, the two devices are collocated. As the transmis-
sion range increases, so this assumption becomes less valid.
Secondly, EBT performs a global correction of encounter
points, whereas DDT perform a local correction that only
involves the two sensors at the point of encounter.

8.1.3 Transmission noise

Fig. 8c shows how the performance of EBT and DDT scale
as more white noise is added to radio distance estimates.
Since DDT does not take into account radio distance, it fol-
lows that its performance remains consistent across all ex-
periments. EBT showed an exponential drop in performance
as a function of noise. This relationship arises directly a re-
sult of the path loss model: a linear increase in RSSI error

22

3 4 5 6 7 8 9 10 11 12 13
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Number of anchors

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

(i
n
 m

e
te

rs
)

Performance of tracking algorithms versus the number of anchors

Directed Diffusion Tracking

EBT (Linear Drift Correction)

EBT (Radial Drift Correction)

Inertial

(a) Increasing the number of fixed anchors.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Transmission range (in meters)

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r
(i
n

 m
e

te
rs

)

Performance of tracking algorithms versus the transmission range

Directed Diffusion Tracking

EBT (Linear Drift Correction)

EBT (Radial Drift Correction)

Inertial

(b) Increasing the transmission range.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Radio noise scale factor

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

(i
n
 m

e
te

rs
)

Performance of tracking algorithms versus the radio noise scale factor

Directed Diffusion Tracking

EBT (Linear Drift Correction)

EBT (Radial Drift Correction)

Inertial

(c) Increasing the RSSI additive white noise variance.

Figure 8: Sensitivity analysis results for Encounter
Based Tracking and Directed Diffusion Tracking.

yields an exponential error in distance. Extremely noisy dis-
tance data results in EBT pushing apart sensor’s subgraphs
in the plane, in order to satisfy artificially-long edges.

8.2 The effect of graph rigidity on EBT
One limitation of EBT is that it requires that the under-

lying graph is globally rigid. Although we can construct
globally rigid subgraphs for each sensor, the global rigidity
of the joint graph is a function of the opportunistic encoun-
ters made by each sensor. If a graph does not satisfy global
rigidity, multiple embeddings will exist that satisfy the ob-
served pairwise distances. Fig. 9a shows a graph from an
example simulation run that exhibits such behaviour. We
analysed the graph with the 2D Pebble Game [11] in order
to find the minimum number of locally rigid clusters. Local
flexibility results in unconstrained vertices, which causes an
indeterminacy in the realization solution space. This mani-
fests in a poor embedding, resulting in the trajectory being
reconstructed incorrectly, which we highlight in Fig. 9b.

9. CONCLUSION AND FUTURE WORK
In this work we proposed a novel offline Encounter Based

Tracking (EBT) algorithm, which uses opportunistic peer-
to-peer and sensor-to-anchor radio encounters to correct drift-
corrupted trajectories. Although EBT may also be used for
three dimensional tracking, polynomial time rigidity certi-
fication for three dimensions and higher remains an open
problem. Through experimentation, we have shown that 2D
EBT tracking outperforms a competing model in the litera-
ture, over a wide range of network parameters. Our results
also show that EBT scales predictably with additive white
Gaussian noise corrupted radio distances. In future work we
plan to investigate more sophisticated drift-correction algo-
rithms, how to include measurement uncertainty into EBT,
and how to calibrate EBT for scenarios containing irregular
graph formations – those in which the encounter points are
not uniformly distributed on the plane.

Acknowledgements

This research was supported by the Sensing Unmanned Au-
tonomous Aerial Vehicles (SUAAVE) research project un-
der EPSRC grant EP/F064217/1. We would like to thank
Hongkai Wen for his help collecting RSSI data, and Simon
Julier, Mihai Cucuringu, Andrew Markham, Sarfraz Nawaz
and Nadine Levin for reviewing earlier versions of this work.

10. REFERENCES
[1] Angermann, M., Robertson, P., Kemptner, T.,

and Khider, M. A high precision reference data set
for pedestrian navigation using foot-mounted inertial
sensors. In Indoor Positioning and Indoor Navigation
(IPIN), 2010 Intl Conference on (2010), pp. 1–6.

[2] Aspnes, J., Goldenberg, D., and Yang, Y. R. On
the computational complexity of sensor network
localization. Algorithmic Aspects of Wireless Sensor
Networks (2004), 32–44.

[3] Biswas, P., and Ye, Y. Semidefinite programming
for ad hoc wireless sensor network localization. In
Proc. of the 3rd Intl Symposium on Information
Processing in Sensor Networks (2004), pp. 46–54.

[4] Broxton, M., Lifton, J., and Paradiso, J. A.

Localization on the pushpin computing sensor network

23

(a) Rigidity graph highlighting two non-rigid vertices.

(b) The net effect of non-rigid vertices on sensor tracking.

Figure 9: The effect of non-rigid graph vertices on
the accuracy of Encounter Based Tracking.

using spectral graph drawing and mesh relaxation.
ACM SIGMOBILE Mobile Computing and
Communications Review 10, 1 (2006), 1–12.

[5] Cabero, J. M., Torre, F. D. l., Sanchez, A., and

Arizaga, I. Indoor people tracking based on dynamic
weighted multidimensional scaling. In MSWiM ’07.
Proc. of the 10th ACM Symposium on Modeling,
Analysis, and Simulation of Wireless and Mobile
Systems (2007), pp. 328–335.

[6] Constandache, I., Bao, X., Azizyan, M., and

Choudhury, R. R. Did you see Bob?: human
localization using mobile phones. In Proceedings of the
sixteenth annual international conference on Mobile
computing and networking (2010), pp. 149–160.

[7] Cox, M., and Cox, T. Multidimensional scaling.
Handbook of data visualization (2008), 315–347.

[8] Eren, T., Goldenberg, O. K., Whiteley, W.,

Yang, Y. R., Morse, A. S., Anderson, B. D. O.,

and Belhumeur, P. N. Rigidity, computation, and
randomization in network localization. In INFOCOM

2004. 23rd Conf. of the IEEE Computer and Comms
Societies (2004), vol. 4, pp. 2673–2684.

[9] Foxlin, E. Pedestrian tracking with shoe-mounted
inertial sensors. IEEE Computer Graphics and
Applications (2005), 38–46.

[10] Jackson, B., and Jordán, T. Connected rigidity
matroids and unique realizations of graphs. Journal of
Combinatorial Theory, Series B 94, 1 (2005), 1–29.

[11] Jacobs, D. J., Thorpe, M. F., and Chubynsky, M.

2D Pebble Game with Central Forces, November 2011.

[12] Javanmard, A., and Montanari, A. Localization
from incomplete noisy distance measurements. In
Information Theory Proceedings (ISIT), 2011 IEEE
International Symposium on (31 2011-aug. 5 2011),
pp. 1584–1588.

[13] Kim, B., Kaess, M., Fletcher, L., Leonard, J.,

Bachrach, A., Roy, N., and Teller, S. Multiple
relative pose graphs for robust cooperative mapping.
In Robotics and Automation (ICRA), 2010 IEEE Intl
Conf. on (may 2010), pp. 3185–3192.

[14] Kim, S., Kojima, M., and Waki, H. Exploiting
sparsity in SDP relaxation for sensor network
localization. Tokyo, Japan: Department of
Mathematical and Computing Sciences, Tokyo
Institute of Technology (2008).

[15] Koren, Y. On spectral graph drawing. Computing
and Combinatorics (2003), 496–508.

[16] Laman, G. On graphs and rigidity of plane skeletal
structures. Journal of Engineering mathematics 4, 4
(1970), 331–340.

[17] Macagnano, D., and de Abreu, G. Tracking
multiple targets with multidimensional scaling. In
Wireless Personal Multimedia Comms (2006).

[18] Patwari, N., Ash, J. N., Kyperountas, S., Hero,

A. O., . I. I. I., Moses, R. L., and Correal, N. S.

Locating the nodes: cooperative localization in
wireless sensor networks. Signal Processing Magazine,
IEEE 22, 4 (july 2005), 54–69.

[19] Saxe, J. B. Embeddability of weighted graphs in
k-space is strongly NP-hard. Carnegie-Mellon
University, Dept. of Computer Science, 1980.

[20] Shang, Y., and Ruml, W. Improved MDS-based
localization. In INFOCOM 2004. 23rd Conf. of the
IEEE Computer and Communications Societies
(2004), vol. 4, pp. 2640–2651.

[21] Shang, Y., Ruml, W., Zhang, Y., and Fromherz,

M. P. J. Localization from mere connectivity. In Proc.
of the 4th ACM international symposium on Mobile ad
hoc networking & computing (2003), pp. 201–212.

[22] Thrun, S., and Montemerlo, M. The graph SLAM
algorithm with applications to large-scale mapping of
urban structures. The International Journal of
Robotics Research 25, 5-6 (2006), 403–429.

[23] Wymeersch, H., Lien, J., and Win, M. Z.

Cooperative Localization in Wireless Networks.
Proceedings of the IEEE 97, 2 (feb. 2009), 427–450.

[24] Zhu, Z., So, A. M.-C., and Ye, Y. Universal
Rigidity and Edge Sparsification for Sensor Network
Localization. SIAM J. on Optimization 20, 6 (oct
2010), 3059–3081.

24

