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ABSTRACT
Internet of Things applications analyze the data coming from large
networks of sensor devices using relational and signal processing
operations and running the same query logic over groups of sensor
signals. To support such increasingly important scenarios, many
data management systems integrate with numerical frameworks like
R. Such solutions, however, incur significant performance penal-
ties as relational data processing engines and numerical tools op-
erate on fundamentally different data models with expensive inter-
communication mechanisms. In addition, none of these solutions
supports efficient real-time and incremental analysis.

In this paper, we advocate a deep integration of signal processing
operations and general-purpose query processors. We aim to rec-
oncile the disparate data models and provide a common query lan-
guage that allows users to seamlessly interleave tempo-relational
and signal operations for both online and offline processing. Our
approach is extensible and offers frameworks for quick and easy
integration of user-defined operations while supporting incremen-
tal computation. Our system that deeply integrates relational and
signal operations, called TRILLDSP, achieves up to two orders of
magnitude better performance than popular loosely-coupled data
management systems on grouped signal processing workflows.

1. INTRODUCTION
An increasing proportion of today’s data comes from networks

of sensors and devices, commonly known as the Internet of Things
(IoT). IoT applications typically run the same logic over a large
collection of sensor devices using queries that combine relational
and signal processing operations. Data analysts use relational op-
erators, for example, to group signals by different sources or join
signals with historical and reference data. They also use domain-
specific algorithms such as Fast Fourier Transform (FFT) to do
spectral analysis, interpolation to handle missing values, or digital
filters to recover noisy signals. Reconciling these two seemingly
disparate worlds, especially for real-time analysis, is challenging.
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The database community has recognized the need for a tighter
integration of data management systems and domain-specific algo-
rithms. Numerical computing environments like MATLAB and R
provide efficient domain-specific algorithms but remain unsuitable
for general-purpose processing involving relational operations such
as joins, filtering, or group-by aggregation. To enable the use of
specialized routines in complex data processing, increasingly many
data management systems integrate with numerical frameworks, R
in particular: MonetDB and SQL Server support queries that can
invoke R code; SciDB [34, 17], Spark [38], and Pivotal (Green-
plum) [37] provide R packages that allow the user to interact with
these systems directly from R. All these integrations benefit from
re-using unmodified MATLAB/R scripts.

However, the existing integration mechanisms between database
systems and numerical frameworks are suboptimal performance-
wise as they treat both sides as independent systems. Such loose
system coupling comes with significant processing overheads – for
instance, executing R programs requires exporting data from the
database, converting into R format, running R scripts, converting
back into a relational format, and importing into the database. Send-
ing data back and forth between the systems might dominate the ex-
ecution time, for example when running (sub)linear R operators; it
also increases the latency of processing, which makes this approach
particularly unsuitable for real-time processing.

In this paper, we advocate a deep integration of digital signal
processing (DSP) operations with a general-purpose query proces-
sor. Our approach aims to bring signal processing closer to data, not
the other way around, and eliminate the need for expensive commu-
nication with external numerical tools. Integrating DSP operations
into a query engine empowers users to express end-to-end work-
flows more succinctly, inside one system and using one language.

This tight integration poses several requirements and challenges:

1. Query and data model reconciliation. General-purpose query en-
gines and numerical tools use different query and data models.
The former support relational and streaming queries over rela-
tional or tempo-relational data; the latter support domain-specific,
mostly offline, computations on arrays. The key challenge is how
to seamlessly unify these disparate models instead of layering
them on top of each other, and yet provide experts from both re-
lational and signal processing worlds with familiar abstractions.

2. Performance. High performance is always a critical requirement
for analytics. The deep integration approach brings more expres-
siveness to the query language but also carries a risk of throwing
the baby out with the bathwater, that is, completely giving up on
performance. Previous results suggested that simulating array
computations on top of a relational database can yield orders of
magnitude worse performance, which has motivated the devel-
opment of array-based database systems [34, 17]. In order to be



TRILLDSP

1 var q = stream
2 .Map(s => s.Select(e => e.Value), e => e.SensorId)
3 .Reduce(s => s.Sample(100, 0, p => p.FirstOrder())
4 .Window(512, 256, true,
5 w => w.FFT().Select(a => f(a)).InverseFFT(),
6 a => a.Sum()));

R

1 groups <- lapply(split(x,x[,1]),
2 function(y) matrix(y,ncol=3)) # group by id
3 z <- vector(‘‘list’’, length(groups))
4 for (x in groups) {
5 t <- x[, 2]; v <- x[, 3] # times and values
6 qt <- seq(t[1], t[length(t)], by = 100) # probes
7 y <- interp1(t, v, qt, method = ’linear’)
8 frames <- window(y, 512, 256) # create frames
9 Y <- mvfft(frames)

10 Y2 <- f(Y)
11 y2 <- mvfft(Y2, inverse = TRUE)
12 z[[i]] <- unwindow(y2, 512, 256) # merge frames
13 }

SPARKR

1 grouped <- groupByKey(flatMap(rdd, function(x) {
2 groups <- lapply(split(x,x[,1]), # group by id
3 function(y) matrix(y,ncol=3))
4 lapply(groups, # key-value pairs
5 function(y) list(y[1, 1], y[, 2:3]))
6 }, cores)
7 sorted <- lapply(grouped, function(x) {
8 merged <- matrix(rbind(x[[2]]), ncol = 2)
9 merged[order(merged[, 1]),] # sort by time

10 })
11 result <- lapply(sorted, function(x) {
12 t <- x[, 1]; v <- x[, 2] # times and values
13 qt <- seq(t[1], t[length(t)], by = 100) # probes
14 y <- interp1(t, v, qt, method = ’linear’)
15 frames <- window(y, 512, 256) # create frames
16 Y <- mvfft(frames)
17 Y2 <- f(Y)
18 y2 <- mvfft(Y2, inverse = TRUE)
19 unwindow(y2, 512, 256) # merge frames
20 })

Figure 1: Spectrum analysis in TrillDSP, R, and SparkR

welcomed by data scientists and DSP experts, a deeply integrated
system should preserve the performance of existing relational op-
erators while being competitive with MATLAB and R on pure
domain-specific tasks. For workflows mixing relational and DSP
processing, a tightly-coupled system should capitalize the poten-
tial of much better performance than the existing loosely-coupled
alternatives. For achieving this goal, the key challenge is how to
efficiently integrate DSP operators inside a query processor.

3. Extensibility. A query processor with DSP support should allow
domain experts and practitioners to implement custom operators
in a way that feels natural to them – by writing algorithms against
arrays without worrying about the format of the underlying data.
Exposing arrays to operator writers enables easy integration of
existing highly optimized DSP algorithms, for instance, imple-
mentations using SIMD instructions. The system should seam-
lessly integrate new operators with the existing query language.

4. Online and incremental computation. Stream processors loosely
coupled with MATLAB or R cannot incrementalize signal pro-
cessing tasks that operate over hopping (overlapping) windows
of data. The stateless nature of the DSP routines in MATLAB
and R leaves no choice for stream engines but to redundantly
compute over overlapping subsets of data. On the other hand,
deep integration opens up the opportunity for incremental DSP
computation through the use of stateful operators. The opera-
tor writer should decide on which state to maintain and how to
incrementalize computation using deltas provided by the system.
We have built a query engine, named TRILLDSP, that deeply in-

tegrates relational and signal processing while satisfying the above
requirements: (1) it provides a unified query language for process-
ing tempo-relational and signal data; (2) its performance is compa-
rable to numerical tools like MATLAB and R and orders of mag-
nitude better than existing loosely-coupled systems; (3) it provides
mechanisms for defining custom DSP operators and their integra-
tion with the query language; (4) it supports incremental compu-
tation in both offline and online analysis. The following example
compares TRILLDSP against other commonly used systems.

1.1 Example: Spectral Analysis of Signals
An IoT application receives a stream of temperature readings

from different sensors in time order. Each reading has the same

format <SensorId,Time,Value>. The application runs the same
query logic on every signal coming from a different source. The
query consists of several processing stages, which are discussed
next from the viewpoint of three different systems: R, SPARKR,
and TRILLDSP. Table 1 shows their relevant code excerpts.

• Stage 1: Grouping The DSP routines in R cannot process mul-
tiple time-intertwined signals at once. The initial phase in R and
SPARKR has to disentangle readings by their source (SensorId),
while preserving the time order inside each group. The grouping
operations in R (lines 1-2) and SPARKR (lines 1-10) are CPU-
and memory-intensive tasks that involve copying the entire in-
put. SPARKR consolidates the input data in parallel but requires
local sorting of each group to restore the time order (line 9).

TRILLDSP natively supports grouped processing through its data
model and group-aware operators that internally maintain the
state of each group. Grouping in TRILLDSP (line 2) is an in-
place Map operation that associates a group identifier to each
event to enable grouped processing in the downstream operators.
Avoiding data copying brings orders of magnitude better perfor-
mance than R and SPARKR, especially with many groups.

The workflow continues with processing each group either se-
quentially (R) or in parallel (SPARKR and TRILLDSP).

• Stage 2: Interpolation The values within one group might ap-
pear at irregular time intervals due to network delays or never
appear due to message losses. To leverage DSP algorithms that
mostly operate on equally-spaced sequences, the next stage trans-
forms each group into a uniformly-sampled signal with a given
sampling period and offset using first-order (linear) interpolation.
TRILLDSP hides from the user the burden of explicit timestamp
management, in contrast to R (line 6) and SPARKR (line 13).

Sampling and interpolation in TRILLDSP is a group-aware op-
erator with full online support (line 3). The operator’s ability to
simultaneously process intertwined signals can lead up to 146x
better performance than R and SPARKR, seen in the experiments.

The remaining steps describe the fundamental technique of win-
dowing in DSP [33]: (1) decompose the signal into simple compo-
nents, (2) process each of the components in some useful way, and
(3) recombine the processed components into the final signal.



• Stage 3: Windowing Most digital signal processing algorithms
operate over windows of data defined by two parameters: the
window size and the hop size. Using R (or SPARKR) misses the
opportunity for incremental computation over hopping (overlap-
ping) windows. Furthermore, invoking R routines for every win-
dow accumulates their startup costs. In offline analysis, DSP
experts often choose to copy windows out of the array and stack
them into a matrix for batch processing. The window() function
from Table 1 forms such a matrix (details omitted for clarity)
using twice as much memory for the given arguments.

The Window operator in TRILLDSP allows users to express a
hopping window computation as a series of transformations of
fixed-size arrays. One such pipeline transforms all input win-
dows, thus amortizing the startup overhead, while supporting
incremental computation. Based on the window specification,
the operator manages the data on behalf of users using circular
buffers to avoid any redundancy in the input.

• Stage 4: Spectral Analysis The processing pipeline starts with
the Fast Fourier Transform (FFT) that computes the frequency
representation of 512-sample windows at each hopping point. A
user-defined function f modifies the computed spectrum (e.g.,
retains top-k spectrum values with the highest magnitudes, zeros
out others) before invoking the inverse FFT. The output stream
has complex 512-size arrays at each hopping point.

• Stage 5: Unwindowing To restore the signal form, the final
phase projects the output arrays back to the time axis and sums
up the overlapping values. The unwindow() procedure from
Table 1 carries out this task (7 lines omitted for clarity). In
TRILLDSP, the framework performs this task on behalf of the
user using the provided aggregate function (line 6).

TRILLDSP has much lower code complexity than R and SPARKR,
as evidenced in Table 1. The declarative query model of TRILLDSP
allows expressing complex workflows using high-level operators,
whereas R and SPARKR force users to write low-level operations.

All three compared systems support offline analysis, but only
TRILLDSP offers real-time capabilities. The SPARKR program has
hidden performance penalties as the consequence of loose coupling
– each RDD function exports its input into R and imports the output
back into Spark. Together with the other inefficiencies of loosely-
coupled systems described above, SPARKR and SCIDB-R perform
orders of magnitude worse than TRILLDSP in our experiments.

1.2 Contributions
To summarize, we make the following contributions:

1. Following the need for a deep integration of DSP operations and
a general-purpose query processor, we provide a unified query
and data model for relational and signal data. The query lan-
guage allows the end-user to seamlessly interleave tempo-rela-
tional and signal operations when writing relational and stream-
ing queries, without ever explicitly dealing with array data.

2. For DSP experts, we provide frameworks for defining new user-
defined window operations and their integration with the query
language. The framework internally exposes array abstractions
to ease the implementation for DSP experts and enables incre-
mental computation with hopping windows.

3. The unified query model supports both online and offline analy-
sis. Users can build queries from offline data and then put them
unmodified in production.

Signal operations Type Ref

Relational operators (select, where, join, ALJ) N+U §3.2
Arithmetic operations (+, -, *) N+U §3.2
Basic signal operation (scale, shift) N+U §3.2
Functional signal operations N §4.2
Sampling, upsampling, downsampling N+U §5.1
Interpolation U §5.2
Uniform signal aggregates (sum, power, energy) U §3.2
Framework for user-defined digital filters (FIR & IIR
filters, correlation, convolution)

U §5.5

Framework for user-defined window operators
(FFT, windowing functions, auto-correlation, cross-
correlation, element-wise product)

U §5.6

Table 1: (N)on-uniform and (U)niform signal operations in
TrillDSP with references to the used operators or frameworks.

4. The performance of our system, called TRILLDSP, fortifies the
need for a deep integration of DSP and relational query process-
ing. On purely DSP tasks, TRILLDSP is comparable with or
better than best-of-breed for signal processing like MATLAB,
Octave, and R, and outperforms WAVESCOPE [24, 25], another
streaming engine with DSP support. For queries mixing rela-
tional and signal processing, TRILLDSP shows up to 146x better
performance than loosely-coupled systems, such as SPARKR [38]
and SCIDB-R [34, 17].

Table 1 summarizes the supported signal operations in TRILLDSP
with references to the operators or operator frameworks used in
their implementation. Some signal operations are implemented us-
ing purely relational operators. Users can extend the system with
custom operations using the frameworks described in this paper.

This paper is organized as follows. We review related work in
Section 2, then present our data model and relational operators in
Section 3. We introduce signal processing in Section 4 and then
discuss processing of uniformly-sampled signals in Section 5. We
present experimental results in Section 6 and conclude in Section 7.

2. RELATED WORK
Signal Processing Numerical frameworks like MATLAB [3], R,
and LabVIEW [2] provide plenty of highly-optimized algorithms
for signal processing but remain unsuitable for general-purpose re-
lational and stream processing. Spark [38] and SciDB [34, 17] pro-
vide R packages that allow users to write R code that uses these
systems as backend storages with scalable processing capabilities.
MonetDB [15] and SQL Server [5] support queries that can in-
voke R routines. In contrast to all these systems, TRILLDSP uses
one query language and one data model, performs in-situ process-
ing of relational and signal data, and provides true online support.
Plato [28] applies signal processing models to imprecise or incom-
plete data to improve the quality and accuracy of query processing
inside a DBMS, but provides no support for general signal process-
ing in neither offline and streaming environments.
Stream Processing with DSP Functionality The WAVESCOPE
project [25, 24], like our work, recognizes the fundamental need
for unifying relational and signal processing operations using one
query language and implementing in-situ stream operations against
an array abstraction (SigSeg in WAVESCOPE). This system uses
multi-stage compilation to translate queries written in the Wave-
Script language into source code with direct calls to 3rd-party li-
braries. WAVESCOPE provides a much lower programming ex-
perience overall, requiring users to understand multi-stage evalu-



ation and be aware of side effects [10]. WAVESCOPE treats arrays
(SigSegs) as first-class entities that are transmitted in streams. This
approach, however, ties the size of logical windows specified in
queries and the size of physical batches used for processing, mean-
ing that the window specification of a query impacts processing
throughput [29]. In contrast, the DSP functionality in TRILLDSP
is implemented as a library running on top of the existing relational
engine, and the query language benefits from full language integra-
tion with C# (e.g., type system, type inference, parser, etc.). This
walled-garden library defines clear transitions between streams and
signals and integrates seamlessly with other streaming operators as
it never exposes arrays outside user-defined signal operators (un-
less the user explicitly asks for a stream of arrays), thus, decou-
pling window semantics from system performance. In addition,
WAVESCOPE has no built-in support for incremental computation,
signals with functional payloads, frameworks for specifying user-
defined DSP operators, and group-aware stateful operators.

Conventional stream processing engines [13, 19, 11, 23] have
no support for signal processing. We extend Trill [18], a general-
purpose incremental query engine, with signal processing function-
ality. StreamBase [6] enables integration with MATLAB and R
but like other loosely-couple systems uses two different query lan-
guages and data models, requiring back and forth data exchanging.
Gigascope [21] and Tribeca [35] are streaming systems for net-
working applications that support relational queries but cannot ex-
press signal operations. StreamInsight [12] allows domain-specific
extensions but provides no high-level signal processing abstrac-
tions (e.g., arrays) to the user.

User-defined operations. A straw-man solution to enabling DSP
in stream processors is to implement signal operations as user-
defined aggregates. Some stream processors, like Spark Stream-
ing [39], Storm [36], and Heron [30] provide frameworks for defin-
ing arbitrary aggregation logic executed upon receiving new stream
events. Using such a framework, we could maintain arrays of val-
ues as aggregated states and use on-new-event functions to map
event timestamps to array indexes, expire events falling out of the
window range, detect when the window is filled up, and finally
invoke signal operations. Such complex logic would be hard to im-
plement, especially by DSP practitioners, who would need to un-
derstand the details of the underlying data model. Furthermore,
aggregation frameworks typically target commutative operations
where the order of processing input events is irrelevant for the final
state, which is not the case with DSP operations.

For these reasons, we decided to treat signals as first-class citi-
zens in TRILLDSP’s query model and hide the complexity of tran-
siting between relational and signal data, while providing array-
based frameworks for DSP experts to implement custom operators.
Sensor networks TinyDB [31] and COUGAR [16] are sensor
database systems supporting (tempo-)relational processing. Other
specialized systems can handle sensor data [20], but none of them
natively supports high-performance signal processing.

3. BACKGROUND: THE TRILL LIBRARY
We implemented TRILLDSP as an extension library for Trill [18],

a high-performance incremental analytics engine that uses a tempo-
relational model and supports processing of streaming and rela-
tional queries. We briefly summarize Trill’s design in this section.

3.1 Data Model
Trill uses a tempo-relational data model to uniformly represent

offline and online datasets as stream data. Logically, a data stream
consisting of events is regarded as a temporal database [27] that is
presented incrementally [14, 26, 32]. Each stream event is asso-

ciated with a data window (or an interval of application time) that
denotes its period of validity. Such stream events form snapshots of
valid data versions across time. The user query is executed against
these snapshots in an incremental manner.

Trill represents a stream of data with payload type T as an in-
stance of class Streamable<T>. In our introductory example, users
can capture the contents of events using a C# payload type:

struct SensorReading {long SensorId; long Time; double Value;}

The stream type in our example is Streamable<SensorReading>.
The StreamEvent structure provides static methods for creating

stream events, including point events with a data window of one
time unit. In our example, users may ingest sensor readings as
point events at time t as:

StreamEvent.CreatePoint(t, new SensorReading {..})

Physically, a dataset consists of a sequence of columnar batches,
where each columnar batch holds one array for each column in the
event. For example, two arrays hold the start-time and end-time
values for all events in a batch. Trill associates a grouping key with
each event in order to enable efficient grouped operations. It also
precomputes and stores the grouping keys and key hashes as two
additional arrays in the batch, and includes an absentee bitvector to
identify inactive rows in the batch.

Trill creates columnar batches during query compilation. For
example, the generated batch for SensorReading looks like:

class ColumnarBatchForSensorReading<TK> {
long[] SyncTime; long[] OtherTime; // data window
TK[] Key; int[] Hash; long[] BitVector;
long[] SensorId; long[] Time; // payload
double[] Value; //

}

Trill shares these arrays with reference counting; in our example,
SyncTime and Time may point to the same physical array. Trill also
pools arrays using a global memory manager to alleviate the cost
of memory allocation and garbage collection.

3.2 Query Language
Trill’s query language is modeled after LINQ [7], with temporal

interpretation of the standard relational operations and new oper-
ations for temporal manipulation. These operations are exposed
using the class Streamable<T>. Each operator of the query lan-
guage is a function from stream to stream, which allows for elegant
functional composition of queries. In our example, assuming s0 is
a data source of type Streamable<SensorReading>, we can for
instance discard invalid reading values using the Where operator:

var s1 = s0.Where(e => e.Value > 100)

The expression in parentheses is called a lambda expression [1];
it is an anonymous function, in this case from SensorReading to
boolean specifying the condition for keeping each stream event in
the output stream s1. The type of s1 is the same as that of s0.

An operator in Trill accepts and produces a sequence of colum-
nar batches. Trill’s compiler dynamically generate operators and
inlines lambdas (such as the Where predicate) in tight per-batch
loops to operate directly over columns for high performance. The
system provides a rich set of built-in relational operators (e.g., se-
lection, join, and anti-join) as well as temporal operators for defin-
ing windows and sessions.
Grouped computation Trill extends the well-known Map and Re-
duce operations with temporal support to enable parallel execution
on each sub-stream corresponding to a distinct grouping key. Con-
sider a shortened version of the query from Section 1.1:



var s2 = s1.Map(s => s.Select(e => e.Value), e => e.SensorId)
.Reduce(s => s.Sample(10, 0),

(k,p) => new Result { SensorId = k, Temp = p })

The first argument to Map specifies a sub-query (here, the state-
less Select operation) to be performed in parallel on the stream,
while the second argument specifies the grouping key (SensorId)
to be used for shuffling the result streams. The first argument
to Reduce specifies the query to be executed per each group key
(Sample), and the second argument allows us to combine the group-
ing key and the per-group payload into a single result.
Temporal join The temporal join operator in Trill allows one to
correlate (or join) two streams based on time overlap of their events,
with an (optional) equality predicate on payloads. Suppose we wish
to augment the filtered SensorReading stream s1 with additional
information from another reference stream ref1 that contains per-
sensor location data. We would express such a query as:

var s3 = s1.Join(ref1, l => l.SensorId, r => r.SensorId,
(l,r) => new Result { r.SensorLocation, l.Time, l.Value })

The second and third parameters to Join represent the equi-join
predicate on the left and right inputs (SensorId), while the final
parameter is a lambda expression that specifies how matching input
tuples are combined to construct the result payload. The output
stream s3 is of type Streamable<Result>.

Trill’s query language is extensible in several ways. First, users
can express user-defined aggregation logic by providing lambdas
for accumulating and de-accumulating events to and from state.
These lambdas are inlined during compilation in a tight loop for
high performance. Second, advanced users can write new operators
that accept and produce a sequence of (grouped) columnar batches.
Note that every operator understands grouping; for instance, Count
outputs a batched stream of per-key counts. Finally, every operator
is transferable between real-time and offline by construction.

4. SIGNAL PROCESSING IN TRILLDSP
Our goal is to enable high-performance signal processing in a

streaming engine. We first provide the reader with the intuition
behind our design choices, and why and how TRILLDSP differs
from other systems capable of signal processing.

Query and data model reconciliation. Our design choice is not
to extend the tempo-relational data model with arrays as first-class
citizens. We observe that input data almost certainly arrives as
timestamped relational data, not as a sequence of arrays, and that
exposing streams of arrays would burden query writers with details
like array sizes and whether array boundaries align with window
boundaries. More importantly, having arrays at the stream level
would create dependencies between window semantics and system
performance, like in other streaming systems such as WAVESCOPE
and Spark Streaming in which the size of logical windows specified
in queries affects the size of physical batches used for processing.

We decided to use arrays internally, exposing them not at the
stream level but instead only through designated DSP operators that
would abstract away the complexity of on-the-fly transformations
between the relational and array models. In that way, we integrate
DSP functionality without changing the existing relational API and
without affecting the performance of non-DSP queries. At the same
time, we provide for DSP experts an extensible ”walled garden”
with familiar array abstractions and signal operators that can be
interleaved with relational operators inside one query language.

Performance. Our initial design was based on a loose integra-
tion of our streaming engine with R using R.NET [4] as an in-
teroperability bridge between R and the .NET framework. The
impedance mismatch between our system and R quickly became

apparent: when performing FFT over hopping windows of data,
passing data to R and back took more than 91% of the total execu-
tion time and was more than two orders of magnitude slower than
a tightly-coupled solution. These results fortified our decision to
support in-situ DSP operations using one unified query language.

IoT applications run the same query logic over many sensor de-
vices. For that reason, we design signal operations to natively sup-
port grouped processing and implement them as stateful operators
that internally maintain the state of each group. Coupling these op-
erators with Trill’s streaming temporal MapReduce operator is key
to efficient grouped signal processing, as seen in experiments.

We design and implement the DSP functionality in TRILLDSP
as a layer running on top of the unmodified relational engine de-
scribed in Section 3. The layer enriches the query model with sig-
nals as first-class citizens, carefully separating streams from signals
and ensuring type safety of all operations at compile time.

4.1 From Streams to Signals
We consider signals as a special kind of streams in which stream

events have no overlapping lifetimes. Thus, representing signals in
TRILLDSP requires no changes of the underlying tempo-relational
data model. The query model, however, needs to integrate new sig-
nal operators and enable their interleaving with the existing tempo-
relational operators using one unified query language.

Converting streams into signals needs to ensure that at most one
stream event is active at any point in time. This property naturally
emerges after applying an aggregate function over the input stream.
var s0 = stream.Average(e => e.Value)

This query creates a signal by averaging the overlapping stream
events on the Value field. When the stream already has the signal
form – for example, a sensor generates point events with lifetimes
[T,T +1) and increasing timestamps T – users can explicitly obtain
a signal using the stream.ToSignal() method. If the assertion
turns out to be false later on, the system will throw a runtime error.

TRILLDSP considers streams having the signal form as instances
of the class SignalStreamable<T>, which extends the base class
Streamable<T> with signal operators. The system leverages the
strong type-safety of C# to prevent invocation of signal operations
over non-signal streams at compile time.

4.2 Signal Payload
Most often signals are discrete-time sequences of real or com-

plex values called samples. Real-valued signals may originate from
sensors measuring physical phenomena; complex-valued signals
often emerge after processing signals in the frequency domain. Sig-
nals can also take more convoluted forms: IoT signals are often se-
quences of structures carrying multiple sensor measurements; au-
dio and video signals comprise different audio channels or movie
frames. Handling these cases using existing signal processing tools
requires a careful arrangement of these convoluted values into the
matrix form before invoking operations on them.

TRILLDSP can process signals with arbitrary payloads, includ-
ing real- and complex-valued signals, as long as the payload type
T implements the interface TArithmetic<T>, shown in Figure 3.
The interface consists of methods necessary for enabling signal
processing on payloads of type T: a method defining a neutral el-
ement of T, an equivalence method, and four basic arithmetic op-
erations over T. Using this interface, users can customize signal
payloads for processing in different application domains.

4.2.1 Functional Signal Payloads
The tempo-relational data model defines stream events as hav-

ing constant payloads over a time interval, as shown in Figure 2a.



(a) Constant payloads (b) Functional payloads

Figure 2: Signal payload types

interface TArithmetic<T> where T : TArithmetic<T> {
T Zero(); T Plus(T b);
bool Equals(T b); T Minus(T b);
T Scale(double scalar); T Times(T b);

}

Figure 3: Interface for defining custom signal payloads

This model can naturally describe discrete-time signals and step-
like continuous signals. In practice, users also want to work with
more general continuous signals whose values can be expressed as
a function of time, like in Figure 2b1. For example, in amplitude
modulation, users multiply a signal with a continuous carrier signal,
which is usually a sine wave of a given frequency and amplitude.

To support (pseudo-)continuous signals with the tempo-relational
data model, one can materialize point events at every timestamp
from the function domain. Obviously, such an approach brings
huge processing and memory overheads. To capture continuous
signals efficiently, TRILLDSP introduces functional signal pay-
loads that carry a lambda function for computing signal values at
any point in time. Functional payloads delay materialization of sig-
nal events until the user explicitly asks for it. TRILLDSP supports
two types of functional payloads, which we present next.

4.2.2 Heterogeneous Functional Payloads
TRILLDSP allows the user to assign a lambda Func<long,T> to

each stream event. The lambda expression expresses the payload
value as a function of time. TRILLDSP represents such functional
payloads as instances of TFuncPayload<T>. For example, the user
can create the first event from Figure 2b as:

var evt1 = StreamEvent.CreateInterval(40, 80,
new TFuncPayload<double>(t => Sin(2 * Pi * t / 40)))

In order to enable processing of signals with functional payloads,
TFuncPayload<T> implements TArithmetic<TFuncPayload<T>>.
For example, adding two functional payloads creates a functional
payload with a lambda function expressing the addition.

TFuncPayload<T> Plus(TFuncPayload<T> b) {
return new TFuncPayload<T>(t => f(t) + b.f(t)); }

Processing signals with functional payloads is then no differ-
ent than processing any other payload type. For instance, adding
two functional signals corresponds to a temporal join in which the
matching events yield a summed functional payload as described
above. Note that in processing signals with functional payloads,
we always maintain the functional representation of values so as to
avoid materialization and reduce processing and memory costs.

Users can explicitly materialize functional payloads at discrete
time points to obtain a uniformly-sampled signal with the desired
sampling period and offset. For example, one can sample fs0 hav-
ing functional payloads to materialize events at every 10 time units:

var fs1 = fs0.Sample(10); // Materialization

Using TFuncPayload<T> allows heterogeneity in assigning lambda
functions to payloads, that is, each event can take a different func-
tion, like in Figure 2b. This function heterogeneity comes at the
cost of more expensive memory management during query evalu-
ation. New stream events need to instantiate lambda objects, and
since these lambdas have different structures, they cannot be shared
among events or re-used through memory pooling. Instead, lambda
objects are always allocated on the heap and freed through garbage
collection, which increases memory management overheads.
1Strictly speaking, continuous-time signals have a discrete nature
due to the finite time resolution in TRILLDSP.

4.2.3 Homogeneous Functional Payloads
To process functional payloads more efficiently, we trade off

flexibility and allow users to associate one lambda function to the
entire signal rather than to each individual event. In that way, all
stream events can share the same lambda function, hence “homoge-
nous” in the name, and their payloads can represent the function
arguments. For example, users can create stream events with pay-
loads being the arguments of a sine function:

var event = StreamEvent.CreateInterval(0, 100,
new SinArgs { Freq = 50.0, Phase = 0.0 });

Each signal maintains a property that stores its lambda function.
Users can associate a sine function to the signal s1 as follows:

var s2 = s1.setProperty().setFunction(
(t,e) => Sin(2 * Pi * t / e.Freq + e.Phase))

The default signal function is the identity function (t,e) => e.
Supporting homogeneous functional payloads requires a change

of the signature of the signal type from SignalStreamable<T>
to SignalStreamable<TIn,TOut>, where TIn is the payload type
(e.g., SinArgs) and TOut is the result type (e.g., double). The
lambda function is of type Func<long,TIn,TOut>.

Binary signal operations over homogeneous functional payloads
use temporal joins to pair matching payloads from both sides as 2-
tuple structures. For example, multiplying signal s2 with a complex-
valued constant signal yields Tuple<SinArgs,Complex> payloads,
which then serve as arguments to the stream-level lambda function
multiplying these two signals.

Homogeneous functional payloads enable more efficient signal
processing than heterogeneous functional payloads. During query
compilation, we can flatten out homogeneous payloads into a se-
quence of parameters and create their columnar batch representa-
tion. The generated batch for the previous example looks like:

struct ColBatch {double[] Freq; double[] Phase; Complex[] V;}

These columnar arrays are memory-pooled and shared with refer-
ence counting, which alleviates the cost of memory allocation and
garbage collection. For performance reasons, TRILLDSP uses ho-
mogeneous functional payloads as the default payload type.

4.3 Signal Operators
The SignalStreamable<TIn,TOut> class encapsulates opera-

tors that preserve the signal form of a stream. It redefines such
unary operators inherited from the base stream class, like Where
and Select, to return a signal object. Since Select can change the
input payload type TIn, users can also provide a new stream-level
function for computing payload values or default to the identity
function. The signal class also provides operators that build upon
the existing stream operators. For example, Scale multiplies sig-
nal values with a scalar using the Select operator; Shift delays or
advances a signal by changing the time intervals of its events using
the alter-lifetime operator [18].

Users can perform basic arithmetic operations on signals, like
addition, subtraction, or multiplication, as these operations are guar-
anteed to produce at most one event at any point in time. In fact, any



signal operation that uses a temporal join to match events outputs a
signal. Users just need to set the stream-level function to decide on
how to combine matching events into payload values. But not ev-
ery binary stream operation can be lifted to the signal domain. For
example, a union of two signals can produce a stream with overlap-
ping events, so this operator remains in the Streamable domain.

The signal type SignalStreamable also provides methods for
obtaining uniformly-sampled signals, like the Sample() method
that we used to materialize functional payloads. In the next section,
we cover such operations over uniform signals.

5. UNIFORMLY-SAMPLED SIGNALS
Numerical frameworks like MATLAB and R support mostly DSP

algorithms on signals consisting of equally-spaced samples. These
tools consider such uniform signals as real- or complex-valued ar-
rays in which the array index act as a measure of time.

TRILLDSP regards uniform signals as streams consisting of point
events at regular timestamps. Uniform signals have two defining
properties: (1) sampling period defines the time difference between
two consecutive samples, and 2) sampling offset defines the initial
time shift of samples. These two properties can help us correlate
application times of samples with their positions in the array form.

We represent equally-spaced time series as instances of the class
UniformSignalStreamable<T>, which extends the signal class
SignalStreamable<_,T> with uniformly-sampled signal opera-
tors. Uniform signals can have only point events at timestamps
determined by their sampling period and offset. Regular (non-
uniform) signals have no such constraints.

5.1 Sampling
We obtain a uniform signal by sampling a non-uniform signal.

The Sample operator uses a given sampling period T and an offset
O to generate point events at timestamps kT +O, where k is integer,
at which the source signal has an active stream event. The Sample
operator invokes the stream-level lambda function to compute the
payload value of each materialized event. Since uniformly-sampled
signals are discrete-time signals, they have no stream-level lambda
function associated to them.

The Sample operator supports grouped signal computation. In
grouped signals, each stream event carries a group identifier; the
example from Table 1 groups stream events by SensorId. The
Sample operator internally keeps track of active events for each
group seen so far. Since we ingest stream events in a non-decreasing
sync (interval start) timestamp order, each event can move the global
stream time forward. In such cases, the operator needs to produce
samples for each group up to the current time, update the internal
state of each group to remove any inactive events, and update the
current group to include the current event. If the operator detects
overlapping events in the current state, it throws a runtime error
implying that user’s assertion about the signal form of the input
stream is false.

5.2 Interpolation
Non-uniform signals consist of overlapping-free stream events

of arbitrary forms. As shown in Figure 4, a non-uniform signal can
have events with different lifetimes, events appearing at irregular
time instants (e.g., due to network delays), or missing events (e.g.,
due to bad communication). The Sample operator discussed so far
considers only events that are active at predefined sampling beats
(e.g., 30, 60, 90, etc.) and ignores in-between and missing events.

To handle such irregular events, we extend the Sample operator
with an optional parameter – interpolation policy – that specifies

Figure 4: Sampling with interpolation of a non-uniform signal

the rules for computing missing values. An interpolation policy
has two defining properties:

1. Interpolation function determines how to compute missing
samples based on a fixed-size history of observed samples.
TRILLDSP provides a set of common interpolation func-
tions: constant, last-valued, step (zero-order), linear (first-
order), and second-degree polynomial (second-order), and
also supports user-defined interpolation functions.

2. Interpolation window defines the maximum time distance
among the reference samples used for interpolation. For in-
stance, in linear interpolation, if two consecutive reference
samples are more than one interpolation window apart, we
consider them as two different signal sequences and disable
interpolation in that interval, like in Figure 4.

The user can obtain the uniform signal from Figure 4 as follows:

var s1 = s0.Sample(30, 0, p => p.FirstOrder(60));

Each uniformly-sampled signal maintains a property that stores an
interpolation policy. This policy is used during signal re-sampling,
which happens, for instance, in binary operations involving uni-
form signals with different sampling periods.

5.2.1 Interpolation implementation
The Sample operator implements interpolation on grouped sig-

nals. For each group, the operator maintains a finite number of
observed samples, which serve as reference points for a given in-
terpolation function. Each stream event with an interval [a,b) gen-
erates a sequence of reference points: a start point at [a,a+1), an
end point at [b− 1,b), and all intermediate points at the sampling
beats from the interval (a,b).

A per-group interpolator state maintains most recent reference
points using a fixed-size circular buffer. The buffer consists of
at least two samples, which define the currently active interpola-
tion window; higher-order interpolators may buffer more samples.
Each interpolator state also encapsulates the interpolation function
that corresponds to the chosen interpolation policy. The Sample
operator interacts with each interpolator state independently of the
interpolation function using the following methods:

• AdvanceTime(long t) invalidates points in the buffer that
fall outside the interpolation window ending at time t.

• AddPoint(long t, T v) overwrites the oldest valid entry
in the interpolation buffer with a given reference point.

• CanInterpolate(long t) returns true if the interpolation
buffer is full and t is between the last two reference points.

• Interpolate(long t) invokes the interpolation function to
compute the value at time t.

As the global time moves forward with each stream event, the
Sample operator updates the state of each group to include new



Figure 5: Signal window

and invalidate too distant reference points. When the interpolation
buffer of one group is full, it interpolates events at the sampling
beats between the last two reference points. Note that the operator
interpolates events back in the past. To preserve the time order of
output events, the Sample operator delays emitting output events
by at most the size of the interpolation window.

5.3 Uniform-signal Operators
In binary operations with uniformly-sampled signals, we require

that both operands share the same sampling period and offset for
correctness. Resampling operations allow users to change these
properties to meet the requirement. Upsample(n) increases the
sampling rate (i.e., decreases the sampling period) of a signal by
an integer factor. The interpolation function computes the val-
ues of new intermediate samples. Downsample(n) decreases the
sampling rate (i.e., increases the sampling period) of a signal by
keeping every n-th sample and dropping the others. Resample()
changes the sampling period, offset, and interpolation function of a
signal. For instance, we can resample the uniform signal from Fig-
ure 4 to halve the sampling period, change the interpolation policy,
and double the interpolation window size.

var s2 = s1.Resample(30, 0, ps => ps.ZeroOrder(120))

Binary arithmetic operations involving uniformly-sampled sig-
nals use temporal joins for matching samples. For instance, sum-
ming two uniform signals, written as left.Plus(right), when
they share the same sampling period and offset is implemented as:

left.Join(right, (l, r) => l + r)

When these conditions are unmet, binary operators preprocess
one of the operands before joining them together: if the sampling
periods are the same but offsets are different, we shift one signal by
the offset difference; if the sampling periods are different, we re-
sample the signal with a larger sampling period to match the period
and offset of the other signal; finally, when one operand is a non-
uniform signal, we sample that signal with the sampling period and
offset of the other uniform operand to produce a uniform result.

Uniform-signal aggregates are built using the existing relational
operators. For instance, summing samples of a uniform signal s
using a hopping window of size W and hop size H samples, written
as s.Sum(W,H), is implemented as:

s.HoppingWindow(W * s.Period, H * s.Period, s.Offset)
.Aggregate(w => w.Sum(e => e))
.AlterEventDuration(1)

where the HoppingWindow macro creates hopping windows by al-
tering event lifetimes, the Sum aggregate adds values together, and
the AlterEventDuration operator restores the uniform-signal form
by emitting point events. Note that uniform-signal aggregates and
operators use sample-based windows instead of time-based win-
dows to match the expectation of DSP users. Uniform-signal ag-
gregates can also easily integrate any user-defined aggregate (not
just Sum, Count, etc.) created using an extensible aggregate frame-
work, which we support in a similar way to previous work [18].

5.4 Signal Windows
We represent uniformly-sampled signals as data streams built us-

ing a tempo-relational model. Numerical tools providing DSP al-
gorithms like MATLAB and R consider uniformly-sampled signals

SetMissingDataToZero () => bool
GetFeedForwardSize () => int
GetFeedBackwardSize () => int
Compute (TWindow<T>, TWindow<T>) => T

Figure 6: Interface for defining custom digital filters

as real- or complex-valued arrays, in which the array index is best
thought of as a measure of dimensionless time. To bridge the gap
between these two models, we introduce an abstraction that allows
DSP users to implement custom operators for offline and online
processing in a way that feels natural to them – by writing algo-
rithms against arrays without worrying about the temporal aspect
of the underlying data model. Exposing arrays to operator writ-
ers enables easy and quick integration of existing highly optimized
DSP algorithms, like those exploiting SIMD instructions.

We introduce a class called TWindow<T> that transforms sam-
ples of type T from the tempo-relational data model into the array
data model. In processing uniform signals using windows of data, a
signal window maintains an array of active samples of one uniform
signal and uses the sampling period and offset of the associated sig-
nal to compute the index position of a new sample. The signal win-
dow also keeps track of the latest timestamp in the array to detect
any missing value when adding a new sample; these missing val-
ues are either replaced with zeros or marked as invalid. Each signal
window is implemented as a fixed-size circular array to efficiently
support offline and online processing with overlapping windows.

Signal windows support incremental computation over hopping
windows. Each signal window can maintain a fixed-size history of
recently expired samples, as shown in Figure 5. The history size is
often the window hop size. The TWindow<T> class provides meth-
ods for accessing the whole array (Array), the old delta (Old), and
the new delta (New). Users can use these deltas to implement oper-
ator logic that incrementally updates its state on every hop event.

Signal windows notify registered observers when their arrays are
full. A signal window can fire up two types of events: 1) OnInit
event denotes the array is filled up for the first time, and the old
delta is invalid and the new delta is the whole array; 2) OnHop event
denotes a window hop when both deltas are valid, see Figure 5.

In TRILLDSP, we provide different implementations of signal
windows based on their specification. A window specification com-
prises three parameters: the window size (how many samples each
window lasts), the hop size (by how many samples each window
moves forward relative to the previous one), and the boolean indi-
cator on how to handle missing samples (if true replace them with
zeros; otherwise, mark them as invalid). Note that signal windows
containing invalid samples cannot fire up any event. The decision
on how to treat missing values is operator-dependent. For instance,
users might want to use complete arrays when using FFT but zero-
padded signals when using digital filters.

5.5 Digital Filters
Digital filters are a cornerstone of digital signal processing. Due

to their extraordinary efficiency, digital filters are widely used in
practice; for example, filters can separate a signal from noise or re-
store bad audio recordings [33]. Digital filters are often described
in terms of an equation that relates the output signal to the input
signal. For example, linear digital filters produce outputs by com-
bining a fixed-size window of inputs and a fixed-size window of
previously computed outputs.

y[n] =
N

∑
i=0

a[i]∗ x[n− i]+
M

∑
i=1

b[i]∗ y[n− i]



Here, x[i] and y[i] are sequences of values denoting the input and
output signals, a[i] are called feed-forward coefficients, and b[i] are
called feed-backward coefficients. The feed-forward window is of
size N +1, while the feed-backward window is of size M.

We provide a framework for defining custom digital filters that
use TWindow<T> instances for feed-forward and feed-backward win-
dows. The user needs to implement the interface from Figure 6 for
each class of digital filters, which involves specifying the sizes of
the feed-forward and feed-backward windows, deciding on how to
interpret missing values, and expressing the filtering functionality
as a lambda function with a feed-forward and a feed-backward sig-
nal windows as parameters.

The digital filter framework supports grouped signal processing.
A per-group state maintains two instances of TWindow<T>. The
framework invokes the Compute() method upon receiving OnInit
or OnHop events from the feed-forward window and updates the
feed-backward window with the result; upon the OnInit event, it
also resets the feed-backward window. Note that the framework
releases users from the burden of explicitly managing windows in
processing grouped signals and allows them to focus on the actual
implementation using array abstractions.

An example of a digital filter is a finite impulse response filter,
which uses only the feed-forward loop. For a given filter weights
a[i], each output is a weighted sum of the most recent inputs. Users
can implement such filters as follows:

SetMissingDataToZero: () => true
GetFeedForwardSize: () => a.Length
GetFeedBackwardSize: () => 0
Compute: (fw, bw) => DotProduct(a, fw.Array)

Signal windows expose array abstractions to users, which enables
them to use highly-optimized black-box implementations of DSP
algorithms. In this example, users can implement the DotProduct
method using SIMD instructions of modern processors.

TRILLDSP uses the digital filter framework to implement sev-
eral signal operators, like signal correlation, signal convolution,
and finite and infinite impulse response filters, to name a few.

5.6 User-defined Window Operators
DSP domain experts and practitioners exercise one fundamental

workflow when analyzing uniform signals. The workflow consists
of three steps [33]: (1) the first step splits the signal into smaller,
possibly overlapping components, (2) the second step transforms
each component using a sequence of operations, and (3) the third
step recombines the processed components into the final signal.

We support such workflows using the Window operator, presented
next using a shortened version of the query from Section 1.1 as our
running example. We assume s2 is a real-valued uniform signal.

var s3 = s2.Window(512, 256, true,
w => w.FFT().Select(a => f(a)).InverseFFT(), a => a.Sum()));

The first workflow step is about windowing the data. The Window
operator transforms samples from streams into arrays using signal
window instances of type TWindow<T>. To support grouped signal
processing, the operator internally maintains one such instance for
each group seen so far. Users can specify sample-based window
attributes using the Window operator. As before, the window spec-
ification includes the window size, the hop size, and the policy on
how to handle missing values (true: zero, false: NaN).

The second workflow step executes a sequence of transforma-
tions over fixed-size arrays. The Window operator expresses these
computations as a pipeline of operators. Each pipeline operator
transforms an input window of type TWindow<U> into an output
window of type TWindow<V>. In our example, the FFT operator

GetOutputWindowSize () => int
Update (TWindow<U>, TWindow<V>) => ()
Recompute (TWindow<U>, TWindow<V>) => ()

Figure 7: Interface for defining window pipeline operators

transforms a 512-sample window of type TWindow<double> into a
512-sample window of type TWindow<Complex> representing the
frequency spectrum of the input windowed signal. In general, in-
put and output windows can have different sizes; for instance, the
AutoCorrelation pipeline operator takes windows of size N and
outputs windows of size 2N + 1. The Window operator creates ex-
actly one pipeline per signal group, which amortizes the startup
overheads of pipeline operators; for instance, FFT and InverseFFT
initialize their spectrum coefficients only once.

Each pipeline operator implements the interface presented in Fig-
ure 7. The first interface method defines the output window size of
a pipeline operator, which the Window operator uses to pre-allocate
one output window per operator. The other two methods define
lambda functions for incremental computation and re-evaluation,
both changing the output window in-place to avoid memory allo-
cations. Note that operator writers can use black-box implementa-
tions for these operations. Also, it is their responsibility to enable
incremental computation by denoting the delta parts of the output,
if possible. Many signal operations, however, completely perturb
their outputs making re-evaluation the only option for the down-
stream pipeline operators. In our example, only FFT can incremen-
tally update its output; the remaining operators have to recompute
their results from scratch. InverseFFT produces results in the out-
put window of type TWindow<Complex>.

The final workflow step combines computed output windows
into the final signal. This step requires projecting output values
from arrays back on the stream time axis as stream events. The
Window operator projects N output values, which are generated at
hop time t, backwards in time such that consecutive stream events
are one sampling period apart from each other and the last event
has timestamp t. If the final output size is greater than the hop
size, then the projected stream events overlap. To preserve the sig-
nal form of the final stream, the Window operator allows users to
provide an aggregate function (e.g., Sum) for merging overlapping
output samples. When there are no overlapping events, we can
safely lay out stream events on the stream time axis and yet pre-
serve the signal form of the stream.

The last parameter of the Window operator is optional. If the
aggregate function is omitted, the operator skips the “unwindow-
ing” operation and outputs arrays as stream events defined at hop
time points. Omitting the aggregate function in our example would
create a signal of type UniformSignalStreamable<Complex[]>.
Similarly, when the final pipeline operator produces an output of
type T that is different than TWindow<_>, then the output signal is
of type UniformSignalStreamable<T>.

6. PERFORMANCE EVALUATION
We evaluate how TRILLDSP’s deep integration of signal and

relational processing compares against state-of-the-art numerical
frameworks specialized for DSP operations, data analytics engines
loosely coupled with such frameworks, and one tightly-integrated
system. Our experiments aim to answer two main questions:

1. What is the price of integrating signal processing operations
into a relational query processing system?

2. What is the benefit of having unified data and query models?



Our first set of experiments shows that a general-purpose query
engine with tightly-integrated signal operations can bring competi-
tive or even better performance than popular numerical frameworks
in pure signal processing tasks. These results come at no surprise as
TRILLDSP has relatively low system overheads (smaller than the
other tightly-coupled system we compared against) and exposes ar-
ray abstractions to operator writers for quick and easy adoption of
highly-optimized black-box implementations of DSP operations.

Our second set of experiments focuses on a particularly impor-
tant class of IoT applications that run the same query logic over a
large collection of sensor devices. Here, TRILLDSP shows its full
potential when processing large numbers of groups using queries
that combine relational and signal operations. TRILLDSP’s in-situ
execution model achieves from 3x to 146x better performance on
grouped signal processing than modern relational and array data
management systems with loose R integration.
Benchmarked systems We compare TRILLDSP against numeri-
cal frameworks that are widely used in practice by DSP experts and
practitioners for offline signal analysis.

• MATLAB R2015b – a numerical computing environment of-
fering a plethora of signal processing operations;

• Octave 4.0 – an open-source alternative to MATLAB;

• Microsoft R Open 3.2.3 (R for short) – an enhanced, open-
sourced distribution of R used for statistical data analysis.

For workloads combining relational and signal processing, we
compare TRILLDSP against the following loosely-coupled systems:

• Spark with R integration 1.5.2 (SPARKR) – an R package
providing access to Spark from R;

• SciDB with R integration 14.12 (SCIDB-R)2.

We also benchmark WAVESCOPE [25, 24], the system closest in
spirit to TRILLDSP that allows users to express signal processing
operations as declarative queries over streams of data. WAVESCOPE
compiles such queries into high-performance execution engines with
in-situ processing and direct calls to 3rd-party libraries. We com-
piled the latest version of the system available in the project repos-
itory [9] using PLT Scheme v4.1.1, and benchmarked with the rec-
ommended C backend (WSC2) and O3 optimization flag.

TRILLDSP uses a batch size of 80,000 tuples. Appendix B
shows the effect of different batch sizes on TRILLDSP’s perfor-
mance.
Experimental Setup We run our experiments on D14 Microsoft
Azure instances consisting of 2 Intel Xeon CPU E5-2673 v3 @
2.40GHz and 112GB of RAM. We use one instance with Ubuntu
12.04.5 LTS for running WAVESCOPE, Octave, R, SPARKR, and
SCIDB-R queries, and another instance with Windows Server 2012
R2 Datacenter for running TRILLDSP and MATLAB queries.

2The official integration of SciDB and R provides an R package
for accessing the SciDB backend from R, same as Spark. However,
this loosely-coupled approach suffers from huge overheads when
serializing large datasets. For instance, just sending our dataset
with 100 million events between SciDB and R without process-
ing them takes more time than any total running time among the
other compared systems. We conclude that the official SCIDB-R
integration is designed primarily for exchanging small aggregate
results between these two systems. In order to make the SCIDB-R
integration feasible on our datasets, we use a SciDB plugin [8] that
enables running R programs within SciDB queries. In contrast to
the official integration, here we write our queries as SciDB (not R)
programs and run them from the SciDB (not R) shell.

Query Workload Our query workload includes five queries in to-
tal, which we evaluate using seven different systems. Two queries
represent pure DSP tasks commonly used in practice, while the re-
maining three queries combine relational and signal operations on
grouped signals using Map-Reduce operators.
Data Workload Our datasets consist of 100 million randomly
generated stream events with double-precision values. For the pure
DSP tasks, these events represent real-valued uniform signals with
equally-spaced samples and the schema <Time,Value>. For the
grouped computation queries, stream events have the grouping key
(SensorId) and schema <SensorId,Time,Value>. TRILLDSP
never explicitly operates on the Time column as these values are
implicitly encoded in the data windows of events. The query work-
load is data independent (except the final filtering step in query3,
which takes negligible time in all the systems), so the reported per-
formance would have been identical if we had used real data.

6.1 Traditional DSP Tasks
We compare TRILLDSP with one streaming engine and three

numerical frameworks on tasks commonly used by DSP experts.
FFT over Tumbling Windows Our first query computes the Fast
Fourier Transform (FFT) over tumbling windows of different sizes.
In TRILLDSP, we write this query as:

var query1 = s0.Window(windowSize, windowSize, true,
w => w.FFT(), a => a.Sum())

The input s0 is a uniform signal; the output is a stream of complex
values representing the frequency spectrum of each window. The
streaming queries in TRILLDSP and WAVESCOPE consist of three
phases: windowing stream events, performing FFT, and unwindow-
ing outputs to obtain a stream of complex values. Appendix A
presents the cost of each phase. Both systems invoke the same FFT
function in the FFTW library [22].

The numerical tools, MATLAB, Octave, and R, perform only
offline computations using preallocated input and output arrays, ef-
fectively executing only the second query phase (FFT). We con-
sider two different versions of such offline programs: (1) The 2D
versions repack signal values into a matrix form and invoke a two-
dimensional FFT only once; the reshaping technique is common
among practitioners but obviously applicable only in offline analy-
sis of entire datasets fitting into main memory; (2) The 1D versions
invoke FFT repeatedly for each window, thus mimicking a stream-
ing environment but still executing only the second query phase.

Figure 8 shows the running times of these five systems when pro-
cessing our dataset. In an apple-to-apple comparison, TRILLDSP
outperforms WAVESCOPE in all cases by 43 to 60% overall, show-
ing better integration with the FFTW library but being 18% slower
on the window-unwindow operation (see Appendix A for more de-
tails). In TRILLDSP, windowing-unwindowing dominates by far,
from 86% to 89%, in the total execution time. These overheads are
missing in the offline tools, nevertheless TRILLDSP outperforms
both versions of R and manages to stay competitive with MATLAB
and Octave, often being faster than their ’streaming’ versions. The
running times of the 1D programs decline with larger window sizes
due to fewer FFT invocations. TRILLDSP spends on average 0.4s
on preparing and executing FFT (see Appendix A), much lower
than the numerical tools, which are interpreting their programs.
FIR Filtering Our next query uses a finite impulse response (FIR)
filter implemented via the digital filter framework from Section 5.5.
The filter convolutes the signal with random filter coefficients:

var query2 = s.FilterFIR(coeffs)

The query performs a sliding window computation where each out-
put value is a weighted sum of n recent values, where n is the length
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Figure 9: Digital filtering

of coeffs. Internally, TRILLDSP uses a TWindow<double> in-
stance of size n to buffer recent input values. WAVESCOPE per-
forms similarly3 although without checking for missing values, like
in TRILLDSP. The other systems use the built-in filter function.

Figure 9 compares the filtering performance of our systems. No-
tice the log y-axis. TRILLDSP’s SIMD implementation of dot
product outperforms the naïve loop implementation in WAVESCOPE
and R by a wide margin. TRILLDSP stays competitive with Octave
while being up to 1.8x slower than MATLAB. In contrast to the of-
fline tools, TRILLDSP incurs additional overheads from copying
stream events into arrays and checking for missing values.

These experiments demonstrate that TRILLDSP can easily in-
tegrate with 3rd-party libraries to deliver performance competitive
with or even better than the state-of-the-art tools used by practi-
tioners in offline analysis. But most importantly, TRILLDSP offers
true online support and a tight integration with relational operators,
which none of these numerical frameworks does.

6.2 Grouped Signal Processing
Next, we consider grouped computation where the same query

logic is executed for each group identified by the grouping key
(SensorId). We consider three sub-queries of growing complex-
ity combining signal and relational processing, and we vary the
number of groups while keeping the input signal size fixed. We
introduce two new systems, SPARKR and SCIDB-R, capable of
processing groups in parallel. As both of these are offline engines,
we minimize the overhead of their integration with R integration
by invoking R only once per group, whereas the amount of com-
municated data remains unchanged. Noteworthy, WAVESCOPE’s
built-in functions for grouped signal processing, deinterleave
and interleave, crash due to insufficient memory for our input
size; thus, we exclude this system from the discussion.
Grouped Signal Correlation Our next query attempts to corre-
late a given vector of values of size 32, denoted as a, with a uni-
form signal of each group identified by SensorId. The correlation
operation is a sliding window (i.e., the hop size is 1) computation
that evaluates a dot product between the window and vector a at
every sample point. In TRILLDSP, we express the query as:

var query3 =
s0.Map(s => s.Select(e => e.Temp), e => e.SensorId)
.Reduce(s => s.Correlation(a),
(k, p) => new Result { SensorId = k, Temp = p })

The Map operation selects the value column and tags each stream
event with its group identifier (SensorId), while the Reduce oper-
ation executes the sub-query on each group. TRILLDSP supports

3FIR filter inspired by apps/eeg/eeg_static.ws [9].

parallel execution of sub-queries using the specified level of paral-
lelism. Here, we evaluate its performance using 1 and 16 cores.

The other systems implement the grouping operation differently.
MATLAB and Octave partition the input signal via the accumarray
method and then sequentially process each group in a for loop.
Due to performance reasons, we partition the signal in R using
two methods, accumarray for groups of size 10 and split for
larger groups. SPARKR uses groupByKey to partition an input
RDD followed by a local sort of each partition to regain the time
order, as shown in the example from Table 1. SCIDB-R uses the
redimension operator to change the layout of array chunks based
on the grouping key, also followed by a local sort of each group.

Figure 10 shows the query performance of these systems with
different numbers of groups. TRILLDSP with 16 cores (TRILLDSP-
16) consistently outperforms all other systems due to its built-in
support for grouped processing inside the Correlation operator.
MATLAB, Octave, and R have no such features in offline mode, let
alone online mode, and have to deinterleave the input signal into
groups entirely before processing each group in turn. This parti-
tioning operation turns out to be the bottleneck in these systems,
incuring from 70% to 97% of the total execution cost and caus-
ing 1.9x, 2.1x, and 14.9x worse performance, respectively for each
system, than TRILLDSP-16 for 100,000 groups. SPARKR and
SCIDB-R pay a high price for their loose integration with R and are
3-20x slower than TRILLDSP-16, despite grouping and executing
sub-queries in parallel (interestingly, single-threaded groupByKey
in SPARK is faster than R’s partitioning operation, which reflects in
better performance in three cases). Both systems significantly de-
grade their performance when processing large numbers of groups.
Grouped signal interpolation and filtering Next, we consider
two uniformly-sampled signals s1 and s2 consisting of real-valued
samples from [0,1] and having different sampling periods, 20 and
5. For each group, we want to upsample the first signal to match
the sampling period of the second and report events at which both
group signals have simultaneously extreme values (close to 0 or 1).
TRILLDSP expresses the grouping of s1 as before (same for s2):

var u1 = s1.Map(s => s.Select(e => e.Temp), e => e.SensorId)

We write the query using a two-parameter Reduce operator as:

var query4 = u1.Reduce(u2, (l, r) =>
l.Sample(5, 0, p => p.FirstOrder(20)).Plus(r)
.Where(e => e < 0.0001 || e > 1.9999),
(k, p) => new Result { SensorId = k, Temp = p })

Figure 11 shows the running times of our systems normalized by
the running time of TRILLDSP with 16 cores over varying numbers
of groups. Note the log y-axis. The numerical tools spend most of
their time interpolating values inside the interp1 function, up to
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Figure 12: Grouped overlap-and-add method

88% in MATLAB, in contrast to the previous example where the
grouping cost was dominant. Octave incurs fairly large interpola-
tion overheads, which significantly degrades its performance as the
number of groups (i.e., interp1 calls) increases. We note that even
the single-threaded TRILLDSP program outperforms all the other
systems in all but one cases due to its group-aware interpolation
operator simultaneously processing multiple subsignals. Running
TRILLDSP using 16 cores accelerates the single-threaded perfor-
mance by up to 9.4 times, which leads to much better performance
overall, up to 146x faster than SPARKR and up to 67x faster than
SCIDB-R. Both of these systems behave poorly for large numbers
of groups, eventually crashing when processing one million groups.
Such bad performance was primarily caused by expensive reshuf-
fling operations, which in SPARKR also involve writing to disk.
Grouped overlap-and-add The final query expresses the overlap-
and-add method and serves as a blueprint for a large class of DSP
workloads. We modify the query from Section 5.6 to use the iden-
tity function in the Select operator in order to measure the query
performance independently of the user-defined function.

var query5 =
s0.Map(s => s.Select(e => e.Temp), e => e.SensorId)
.Reduce(s =>
s.Window(windowSize, hopSize, true, w =>
w.FFT().Select(w => w).InverseFFT(), a => a.Sum()),

(k, p) => new Result { SensorId = k, Temp = p })

Figure 12 shows the performance of our systems normalized
by the performance of TRILLDSP using 16 cores. We consider
a stream with 100 groups and hopping windows with 256 sam-
ples and different hop sizes. Note the log y-axis. The MATLAB,
Octave, and R programs are based on the code DSP practition-
ers in our organization use on a daily basis. Their strategy for
dealing with overlapping windows is to replicate them into matrix

form with no overlapping data, and then apply fast 2D-FFT. The
memory requirements of that approach grow as the hop size be-
comes smaller, which reflects in worse performance of these tools
in our experiments. Combined with their intrinsic grouping over-
head, the numerical tools show 37-124 times worse performance
than TRILLDSP for the smallest hop size. SPARKR and SCIDB-R
exhibit consistently bad performance mostly caused by inefficient
grouping and expensive communication with R. TRILLDSP inter-
nally uses circular arrays to effectively handle overlapping win-
dows of data and achieve low memory footprint. Since the win-
dowing operator handles 100 subsignals simultaneously, the cost
of windowing-unwindowing is more pronounced than in query1,
which processes only one group. Appendix A discusses these costs
in more detail.

7. CONCLUSION
In this paper, we advocate for a deep integration of domain-

specific tools and general-purpose query processors to support com-
plex data analysis. Our approach unifies the seemingly disparate
worlds of tempo-relational and array data and enables seamless in-
terleaving of relational and signal operators within one query lan-
guage, and yet provide experts from both relational and signal pro-
cessing worlds with their familiar abstractions. Our system, called
TRILLDSP, builds on top of a commercial streaming engine, na-
tively supports grouped signal processing in both online and offline
mode, and provides extensible frameworks for domain experts to
integrate new black-box operations. In workflows combining rela-
tional and signal processing, TRILLDSP achieves up to two orders
of magnitude better performance of grouped signal processing than
state-of-the-art numerical tools and data management systems with
loose R integration.

Regarding the applicability of our approach to other systems, one
could implement our signal ”walled garden” inside any system that
exposes streaming event-at-a-time API, for instance inside spouts
in Storm or Heron. Notice, however, that in our data model, each
event has an interval (lifetime) associated with it, while most other
systems regards events as single points in time. In that sense, our
interpolation operator has richer semantics than an equivalent op-
erator considering only point events. All other uniformly-sampled
operators from this paper consider only point events, so imple-
mentation of these operators in a general-purpose streaming sys-
tem would be relatively straightforward. While one could use our
language and model for signal processing in the context of existing
systems such as Storm and Spark Streaming, what is less clear is
whether our model would interoperate and compose well with the
semantics of the existing operators in these systems.
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APPENDIX
A. COST BREAKDOWN ANALYSIS

In this section, we breakdown execution costs of TRILLDSP and
WAVESCOPE to gain deeper understanding of their performance.
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Figure 13 compares the cost of TRILLDSP and WAVESCOPE
for executing query1 from our experiments, FFT with tumbling
windows of different sizes. Both systems use the same FFTW
library [22] although on different platforms, TRILLDSP on Win-
dows and WAVESCOPE on Ubuntu. The goal of this analysis is to
estimate the execution costs of the following three phases:

1. Win-Unwin refers to the windowing operation of stream events
into arrays followed by the unwindowing operation to restore the
input stream;

2. FFT prep denotes the time spent in preparing for FFT calls after
the windowing phase; this phase copies arrays into buffers;

3. FFT refers to the time spent inside the FFTW library.

Since measuring the exact running time of each phase is hard
in these streaming systems, we estimate their costs by running the
following three queries:

1. A query with a dummy windowing function. In TRILLDSP, we
write this query as:

var query1 = s0.Window(windowSize, windowSize, true,
w => w, a => a.Sum())

In WAVESCOPE, we call window() and dewindow() one after
the other. These running times form the basis of Figure 13.

2. A modified original query where the actual call to the FFT func-
tion (fftw_execute_dft_r2c) is commented. These running

times subtracted from the windowing-unwindowing times esti-
mate the cost of FFT preparation in each system.

3. The results of the original query are sufficient to estimate the
FFT execution times.

Figure 13 shows that TRILLDSP outperforms WAVESCOPE in
all cases by 43-60% overall. The Win-Unwin cost in TRILLDSP
is 18% higher than in WAVESCOPE due to mapping of timestamps
into array indices and checking for missing values, which is not
performed in WAVESCOPE. The overhead of preparing for FFT
is almost negligible in TRILLDSP, while it represents 30-35% in
WAVESCOPE. Finally, FFT on Windows is by up to 5x faster than
FFT on Ubuntu, despite using the same FFTW library. This experi-
ment shows that the window-unwindow operation in TRILLDSP is
the bottleneck, which explains fairly flat performance in Figure 8.

Our next analysis (Figure 14) considers query5 from our experi-
ments, the overlap and add method over a group of signals. We use
the same methodology as before to estimate the cost breakdown in
TRILLDSP running 1 and 16 cores. We consider a grouped signal
computation over 100 groups, and the window size is 256 samples.

For the single-threaded implementation, we have a similar cost
distribution as before for hopping windows with little overlap. As
the hop size decreases (overlapping increases), the running times
of FFT prep and FFT also increase as we perform more FFT calls.
The multi-threaded version exhibits from 6.4x to 8.2x better per-
formance, while almost completely attenuating FFT-related costs.

B. EFFECTS OF BATCH SIZES
Our next experiment measures the effect of different batch sizes

on TRILLDSP’s performance. Batching size is used as an internal
configuration parameter of our engine, and batching is completely
transparent to query writers.

Figure 15 shows the performance of query1 from our experi-
ments, FFT with tumbling windows, for different batch sizes. As
expected, small batch sizes create negative cache effects causing
bad performance. For batch sizes with more than 1,000 stream
events, TRILLDSP’s performance remains mostly flat with some
minor degradation for extremely large sizes. In all our experiments,
we used a batch size of 80,000 tuples.
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Figure 15: The effect of different batch sizes on the perfor-
mance of FFT with tumbling windows


