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We generalise the work of Lieb and Yngvason1 that models
thermodynamical systems in order to show existence of Entropy
based on almost self-evident axioms.
a
Lieb and Yngvason’s framework was tantamount to a category:

■ Objects: Thermodynamical states.
■ Morphisms: Existence of adiabatic processes.
■ Monoidal product: Compound thermodynamical systems.
■ Any system can be scaled by some factor (monoidal

endofunctor).
■ Any system can be split into parts and recombined (natural

transform).
■ A small enough system does not affect the adiabaticity of a

process (convergence functor).
1“The mathematical structure of the Second Law of Thermodynamics”,

2003
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We introduce LY′-categories to model distinct classes of
adiabatic processes (eg grouped by duration) rather than just
their existence. This places more restrictions on the convergence
functor:

■ It has to make sense in terms of topological convergence.
There are 3 axioms that a function has to satisfy in order for
it to correspond to convergence of sequences in a topological
space.

■ It has to cooperate with the rest of the categorical structure
(composition, identity, monoidal structure, scaling
endofunctors, splitting and recombination transform) in a
physically plausible way.

An LY′-category that is a strict symmetric strict monoidal
preorder over R≥0 where the λ endofunctors are strict recovers
Lieb and Yngvason’s category, which we call LY.
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■ All semirings are required to be commutative and cancellative
with addition a+ b and multiplication ab (partial functions:
subtraction a− b, division a

b
, integer exponents a±n)

■ A semifield is a semiring with inverses.
■ Semirings denoted Λ(additive unit,multiplicative unit)
■ Nice topologies: Sequential topologies where every

convergent sequence has a unique limit.
■ All topological semirings are required to be nice.
■ Topological semirings denoted (semiring, topology)
■ NiceTop is the category of nice topologies.
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A weakly linear category on a topological semiring (Λ(0, 1), τ) is
a symmetric monoidal category (C,⊕):

■ Equipped with a family of symmetric monoidal endofunctors
λ (with associated natural transforms Jλ) indexed by the
elements of Λ such that multiplication of elements of Λ
coincides with composition of functors.

■ Satisfying the splitting and recombination property: For
every X ∈ Ob(C) and every λ1, λ2 ∈ Λ there exists a natural
isomorphism cX,λ1,λ2

: (λ1 + λ2)X → λ1X ⊕ λ2X.

A primary sequence in a weakly linear category is a sequence of
objects of the form X ⊕ λ1Y,X ⊕ λ2Y, . . . with λi → 0.
a
A sequence category of a category C is a category whose objects
are infinite sequences in Ob(C) and whose morphisms are infinite
sequences in Mor(C), with composition defined pointwise.
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Let S be the set of infinite sequences on a set X and let
f : S → X be a partial function. Then f is the topological
convergence of some space on X if and only if the following hold:

■ f(x, x, . . .) = x

■ If f(s) = x and s′ is a subsequence of s then f(s′) = x

■ Either f(s) = x or there exists a subsequence s′ of s such
that for all subsequences s′′ of s′ either f(s′′) 6= x or f is
undefined on s′′.
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The primary sequence category of a weakly linear category C is
the sequence category of C whose objects are primary sequences
and pointwise monoidal products thereof.
a
The primary sequence category of a weakly linear category is
itself a weakly linear category over the same topological
semiring, with every operation defined pointwise.
a
In a sequence category, a subsequence endofunctor FI (where I

is an infinite list of strictly increasing positive integers) maps an
infinite sequence of morphisms to the infinite subsequence
specified by indices I.
a
In the primary sequence category of a weakly linear category, FI

are defined for all I.
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Given a category C, let S be a sequence category of C such that
subsequence endofunctors FI are defined for all I. A
convergence category (S′, conv) (with respect to S and C) is a
subcategory S′ of S (along with an injection i : S′ → S) that is
closed under all FI and is equipped with a functor
conv : S′ → C satisfying the following properties:

■ conv maps any constant sequence of morphisms to the sole
distinct element of the sequence.

■ The following triangle commutes: S′ F //

conv
  ❅

❅❅
❅❅

❅❅
❅ S′

conv

��
C

■ Let s be a morphism in S. If for every subsequence
endofunctor Fk there exists a subsequence endofunctor Fj

such that (Fj ◦ Fk)(s) is in the image of i, then s is also in
the image of i and conv((i−1 ◦ Fj ◦ Fk)(s)) = conv(i−1(s)).
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An LY′-category is a weakly linear category where the following
hold.
Let S be the primary sequence category of C. There exists a
monoidal subcategory S′ of S, called the stability category of C,
which is surjective on objects and closed under the λ

endofunctors, such that S′ has at least one morphism in each
homset that is nonempty in S and such that there exists a strict
symmetric monoidal functor conv : S′ → C, called the stability

functor of C, making the following square commute for each λ:

S′ conv //

λ
��

C

λ
��

S′ conv // C

Furthermore, (S′, conv) is a convergence category with respect
to S and C.
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Extended primary sequence category Q′: Objects (morphisms)
are concatenations QS of sequences where S is an object
(morphism) of the primary sequence category.
a
Extended stability category S′: Objects (morphisms) are
concatenations QS of sequences where S is an object
(morphism) of the stability category.
a
Kan extension S′ conv //

� _

��

C

Q′

conv

??⑦⑦⑦⑦⑦⑦⑦⑦



Categories of LY′-categories

Where it all started:
LY

′-categories

Background

Motivation

Preliminaries
Weakly linear
categories

Convergence in
sequential spaces

Subsequence
endofunctors
Convergence
categories

LY
′-categories

Kan extension
Categories of
LY

′-categories

Topological
properties

Where it all went:
Topological weak
semimodules

12 / 24

Let i : (Λ, τ) → (Λ′(0, 1), τ ′) be an inclusion of topological
semirings. Define an LY′-functor f : C → C′ between
LY′-categories as a strict monoidal functor such that the
following squares commute in Cat for all λ ∈ Λ

C

f
��

λ // C

f
��

S

f×f×···
��

conv // C

f
��

C′ iλ // C′ S′ conv′ // C′

where S and S′ are the respective stability categories of C and
C′, and conv and conv′ are the respective convergence functors.
a
Define LY′ as the category of LY′-categories and LY′-functors.
Define LY′

Λ
as its subcategory of LY′-categories over the

topological semiring Λ where i = idΛ.
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Let C be any category admitting a convergence category
(G, conv). Then it is always possible to define appropriate T1
topologies on Ob := Ob(C) and Mor := Mor(C) such that in
each the function conv maps each convergent sequence to its
limit and is undefined on divergent sequences.
a
In particular, given an LY′-category
(C,⊕, 0X, a, l, r, λ,Λ(0, 1), τ, {J}λ, s, c, conv)
(for some X ∈ Ob(C)), these are the finest topologies such that
the topology on Ob agrees with τ on the λ functors.
a
These topologies are nice.
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Introducing a categorification of semimodules constituting a
more elegant categorical object that generalises LY′-categories.
a
Preliminary definitions follow.
a
Semiring category: Given a semiring Λ(0, 1) we define the
category Λ to be the discrete category whose objects are the
semiring elements, equipped with a (primary) monoidal product
⊕ corresponding to the addition in Λ. We also define a
(secondary) monoidal structure ⊗ corresponding to
multiplication.



Introducing weak semimodules

Where it all started:
LY

′-categories

Where it all went:
Topological weak
semimodules

Preliminaries
Introducing weak
semimodules
A weak
semimodule over
SMC
Linear maps and
linear extensions
Topological weak
semimodules
Categories of
(topological) weak
semimodules
Topological weak
semimodules and
LY

′-categories

Physical application
(1)

Physical application
(2)

Physical application
(3)

16 / 24

Let (C be a symmetric monoidal category and let Λ be a
semiring category. A weak semimodule over Λ is (the codomain
of) a functor · : Λ×C → C such that for every f ∈ Mor(C) we
have ·(1, f) 7→ f , for every λ ∈ Ob(Λ) and every f ∈ Mor(C)
the functors ·(λ, ) : C → C and ·( , f) : Λ → C are symmetric
monoidal (wrt the primary monoidal product) and the following
diagram commutes in Cat:

Λ×Λ×C

idΛ×·

��

⊗×idC// Λ×C

·

��
Λ×C

· // C

If Λ is a ring then · is called a weak module. If Λ is a semifield
then · is called a weak semivector space. If Λ is a field then · is
called a weak vector space.
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Given any symmetric monoidal category C, one may construct a
weak semimodule of C as the semimodule over N where
·(n, f) = f ⊗ f ⊗ · · · ⊗ f

︸ ︷︷ ︸

n

, with 0 mapping every morphism to

the identity of the monoidal unit.
a
Example: Let (Mb,⊗, Jn) denote the following category:

■ The objects are positive integers k.
■ The morphisms are bk × bk matrices.
■ Composition is matrix multiplication.
■ The monoidal product ⊗ is the Kronecker product.
■ There is a family of monoidal endofunctors n with natural

transforms Jn, indexed by the natural numbers, acting as
Kronecker powers.
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A linear map f : (·1 : Λ×C1 → C1) → (·2 : Λ×C2 → C2)
between weak semimodules over Λ is defined to be a strict
monoidal functor f : C1 → C2 that makes the following
diagram commute in Cat: Λ×C1

·1 //

idΛ×f

��

C1

f

��
Λ×C2

·2 // C2

Let i : Λ(0, 1) → Λ′(0, 1) be a semiring inclusion. A linear

extension f : (·1 : Λ×C1 → C1) → (·2 : Λ
′ ×C2 → C2)

between weak semimodules over Λ and Λ′ respectively is defined
to be a strict monoidal functor f : C1 → C2 that makes the
following diagram commute in Cat: Λ×C1

·1 //

i×f
��

C1

f

��
Λ′ ×C2

·2 // C2
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Let Λ be a topological semiring category. A topological weak

semimodule over Λ is a weak semimodule on a topological
category, where the monoidal product, the symmetry and the
structural functors defining the weak semimodule are continuous
with respect to the topologies involved (presuming the product
topology on the product).
a
Example: Let (M′

b
,⊗, Jn, | · |) denote the category defined as

Mb but where each matrix M is assigned a norm |M |. The
category M′

b
is a topological weak semimodule over

(N, discrete) where τ ′
Ob

is the discrete topology and τMor is
defined by the norm (i.e. within each homset the norm defines a
distance d(M1,M2) = |M1 −M2| that in turn yields a metric
space on the homset).
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■ (Topological) weak semimodules over Λ and (topological)
linear maps

■ (Topological) weak semimodules and (topological) linear
extensions

■ (Topological) 2-semimodules over Λ and (topological) linear
maps

■ (Topological) 2-semimodules and (topological) linear
extensions

Conjecture: These are all complete and cocomplete.
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A weak semimodule is precisely a weakly linear category.
a
A topological category is precisely a category with a convergence
category.
a
The relation between topological weak semimodules and
LY′-categories is more nuanced: For a semifield Λ satisfying
certain conditions (call Λ well-behaved), the category of
LY′-categories over (Λ, τ) is a coreflective subcategory of the
category of topological weak semivector spaces over (Λ, τ)
(where τ can be any topology).
a
All fields are well-behaved. The semifields Q≥0 and R≥0 are also
well-behaved. This makes the above statement relevant for many
physical applications.
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Consider a homogeneous thermal system with only two degrees
of freedom, its mass M and its temperature T , which can only
undergo adiabatic processes (of duration t); specifically, a
substance in a rigid adiabatic container fitted with a stirrer, on
which we can only do dissipative work. We can describe this
system by a traced LY′-category over R≥0.

■ Objects are pairs (M,T ) of positive real numbers.
■ Hom((M,T,E), (M ′, T ′, E′)) 6= ∅ if and only if M = M ′

T ≤ T ′. Each morphism ft is characterised by an index
t ∈ R≥0 and the index 0 is reserved for identities.

■ Composition: Let Hom(A,B) = {f}t, Hom(B,C) = {g}t
and Hom(A,C) = {h}t. Then gt2 ◦ ft1 = ht1+t2 .
Composition physically corresponds to performing one
process after the other.
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■ Strict symmetric strict monoidal product ⊕:

◆ For nonempty objects, A⊕B = (MA +MB , TA⊕B),
where TA⊕B is defined to be the solution to a specific
equation. This monoidal product physically corresponds
to a merge of systems A and B.

◆ For nonempty objects, for morphisms ftA : A → A′ and
gtB : B → B′, set
ftA ⊕ gtB = htA+tB : A⊕B → A′ ⊕B′.

◆ Empty systems (0, T ) with arbitrary T are all units;
furthermore, we identify them all to be the same object
O.

■ Strict monoidal endofunctors
λ ∈ R≥0 : (M,T ) 7→ (λM, T ), ft 7→ gλt. Physically, these
functors correspond to scaling the systems by some factor
without changing the average power of the heating process.
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■ Let {fti : X ⊕ λiX
′ → Y ⊕ λiY

′}i be a sequence of
morphisms where λi → 0. If the corresponding sequence ti
converges to t, then let conv({fti}) = ft : X → Y .
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