
GraphTinker: Outlier Rejection and Inlier Injection for Pose Graph
SLAM

Linhai Xie1, Sen Wang2, Andrew Markham1 and Niki Trigoni1

Abstract— In pose graph Simultaneous Localization and
Mapping (SLAM) systems, incorrect loop closures can seri-
ously hinder optimizers from converging to correct solutions,
significantly degrading both localization accuracy and map
consistency. Therefore, it is crucial to enhance their robust-
ness in the presence of numerous false-positive loop closures.
Existing approaches tend to fail when working with very
unreliable front-end systems, where the majority of inferred
loop closures are incorrect. In this paper, we propose a novel
middle layer, seamlessly embedded between front and back
ends, to boost the robustness of the whole SLAM system.
The main contributions of this paper are two-fold: 1) the
proposed middle layer offers a new mechanism to reliably
detect and remove false-positive loop closures, even if they
form the overwhelming majority; 2) artificial loop closures are
automatically reconstructed and injected into pose graphs in
the framework of an Extended Rauch-Tung-Striebel smoother,
reinforcing reliable loop closures. The proposed algorithm alters
the graph generated by the front-end and can then be optimized
by any back-end system. Extensive experiments are conducted
to demonstrate significantly improved accuracy and robustness
compared with state-of-the-art methods and various back-ends,
verifying the effectiveness of the proposed algorithm.

I. INTRODUCTION

Pose graph Simultaneous Localization and Mapping
(SLAM), as one of the most popular and effective techniques
for robot localization, has attracted significant interest over
the past decade. A pose graph is built by sensor front-
ends with edges indicating constraints (e.g. odometry ob-
servations, typically subject to long-term drift) and nodes
representing robot poses or landmarks. Loop closures oc-
cur when revisiting an area, are represented by inserting
additional edges or (constraints) into the graph. Pose graph
SLAM back-ends, then, derive optimal robot locations by
minimizing the errors of the pose graph.

In typical robotic applications, platforms are equipped
with highly capable sensors e.g. LIDAR and vision, which
can detect loop closures with a high degree of accu-
racy. However, in some emerging applications using less-
informative sensors, e.g. the Earth’s geomagnetic field for
smartphone based localization, the number of ambiguous
loop closures can be disproportionately higher than the true
loop closures. Existing back-end optimizers are tolerant of a
small proportion of incorrect loop closures, however, if the
number of false-positive loop closures are excessively high
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Fig. 1: RRR [8] and the proposed method GraphTinker (GTk) as
a middle layer for pose graph SLAM. Red lines show ground truth
(GT). (a)-(b) Results on Intel Research dataset with 1790 (200%)
additional outliers based on Switchable Constraints (SC) [2] back-
end. (c)-(d) Results on city10000 dataset with 21376 (200%) extra
false-positive loop closures based on Dynamic Covariance Scaling
(DCS) [3] back-end.

(e.g. >50%) then the graph optimization can perform poorly
or fail entirely.

In recent years, significant effort has been made to improve
the reliability of pose graph SLAM systems by enhancing
the robustness of back-ends to false-positive loop closures.
Existing algorithms [1]–[12] mostly focus on how to de-
tect false-positive loop closures and further mitigate their
impacts. Although these approaches have made significant
strides, it is still very challenging for them to operate in the
presence of numerous false-positive loop closures.

Since no algorithm can always remove all false-positive
loop closures, the key to make pose graph SLAM systems
more robust, in essence, is to greatly enlarge the proportion
of inliers, namely correct loop closures, to outliers (false-
positive loop closures) in pose graphs. To this end, we can
not only reject false-positive loop closures, but also inject
true-positive loop closures by reinforcing loop closures that
are highly consistent with one another. In this paper, we
demonstrate how this novel combination of approaches can
yield significant benefits in the face of high proportions of
erroneous loop closures like the example in Fig.1.

More specifically, our contributions are:
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Fig. 2: System architectures without (top) and with (bottom) the proposed GTk middle layer. In GTk, inconsistent loop closures of a
pose graph are first detected and eliminated by the outlier rejection module. Then, a set of artificial loop closures are reconstructed and
inserted through the inlier injection module, generating an augmented graph for back-end. Three pose graphs at bottom give an example
on the MIT-Killian-Court dataset. Red and light green lines represent false-positive and injected loop closures, respectively.

• A spatial consistency testing algorithm is proposed to
measure the consistency between a pair of loop closures
and select a subset of consistent ones, removing false-
positive loop closures even if they form an overwhelm-
ing majority.

• A novel approach is developed to boost the robustness
of pose graph SLAM by automatically reconstruct-
ing and injecting trustworthy artificial loop closures
in the framework of an Extended Rauch-Tung-Striebel
smoother.

• We construct a universal middle layer, named Graph-
Tinker(GTk), from the above two approaches, which can
be used in conjunction with any front-end and back-end
systems to further improve their performance.

• We demonstrate the performance of GTk in comparison
with the state-of-the-art technique RRR [8], showing
great improvements in graph reconstruction.

Please note that the proposed GTk as a middle layer is a
complement to back-ends, operating in tandem with them.

We first discuss related work in Sec. II, followed by
the overview of the proposed system in Sec. III. The key
technique to reject and reconstruct loop closures is detailed
in Sec. IV. Experimental results are given in Sec. V before
drawing conclusions in Sec. VI.

II. RELATED WORK

Over the last few years, several robust back-end algorithms
have been proposed to tackle problems with accuracy caused
by false-positive loop closures. They can be roughly divided
into two types: approaches based on augmented models, and
approaches based on graph consistency.

A. Approaches based on Augmented Models

Augmented model based methods focus on how to model
pose graph SLAM problem by taking false-positive loop

closures into consideration and reject outliers during graph
optimization.

Sünderhauf and Protzel [1], [2] indicate that the topology
of a factor graph can be partially unfixed and present the idea
of Switchable Constraints (SC) where a switchable variable
is given to each loop closure constraint. A constraint is turned
off during optimization once it is considered as an outlier.
Based on this work, Agarwal et al. [3] introduce Dynamic
Covariance Scaling (DCS) which replaces the quadratic cost
metric with an m-estimator and reaches a faster convergence.

Olson and Agarwal [5], [6] create a mixture model by
merging two different Gaussian models. Their main insight
is to use a max operator between models rather than a sum
operator as it can largely simplify the solution of posterior
maximum likelihood.

Lee et al. [7] model the robust back-end problem as a
Bayesian network and apply a Classification Expectation
Maximization algorithm to solve it. An additional variable is
assigned as the weight of each loop closure constraint and
finally the weights of outliers are decreased to mitigate the
influence of outliers during optimization.

Although the augmented model based method can achieve
superior performance with a reasonable number of false-
positive loop closures, there are some drawbacks. For ex-
ample, as reported in [3], DCS tends to be less effective for
randomly distributed outliers. Furthermore, they all heavily
rely on parameter tuning.

B. Approaches based on Graph Consistency

Graph consistency based approaches aim at selecting a
subset of loop closures for pose optimization based on
consistency checks. The Realizing, Reversing, Recovering
(RRR) algorithm [4], [8] first divides all the loop closures
into several clusters according to timestamps and then applies
a number of χ2 tests to check both intra- and inter- cluster
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Fig. 3: Example showing loop closures. Loop closures L1 and
L2 are true-positive, while L3 is a false-positive one arising from
sensor noise in the front-end. L1 and L2 reflect correct relative poses
between their terminal nodes while L3 does not.

consistency. Individual loop closures in a cluster, or an entire
cluster, with high χ2 values are rejected.

More recently [9] and [10] also focus on graph consis-
tency. However, unlike RRR, they search for the largest
consistent subset of the constraints.

This type of approach is most related to the proposed GTk
method since they work in a middle-layer and complement
back-end optimization approaches. However, the consistency
test proposed in [8] requires classification of loop closures
into different clusters (involving a parameter to decide the
number of clusters) and then measures the consistency within
or between clusters. In contrast, the proposed method checks
consistency in the context of a pair of loop closures, and
thus does not require any knowledge about the underlying
distribution.

There are some further works which do not belong in
the above two categories. Segal et al. [11] proposes a new
optimization approach which applies hybrid inference on
the Bayes tree. It combines non-linear least squares with
discrete inference and use discrete states to enable or disable
measurements. Fourie et al. [12] propose a non-parametric
method and obtain a more general solution to the Bayes Tree.

III. SYSTEM OVERVIEW

The architectures of two systems with and without the
GTk middle layer are shown in Fig. 2. The proposed middle
layer lies between the front and back ends with pose graphs
as input and output. Therefore, the proposed method can be
directly used in conjunction with any kind of front and back
end generating and optimizing pose graphs, respectively.

A. Front-End

Since we are building a universal middle layer that only
needs a pose graph from the front-end, any front-end system
that produces a pose graph should be compatible with the
proposed GTk middle layer.

B. Middle Layer

There are two main steps in the proposed GTk middle
layer. After a noisy pose graph is built by the front-end, the
GTk middle layer first detects and removes false-positive
loop closures through the outlier rejection module, retaining
consistent loop closures. A subset of these is then selected to
reconstruct artificial loop closures and create an augmented
graph based on the inlier injection module. Recovering
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Fig. 4: Spatial consistency check of a pair of loop closures. Left:
the pair of loop closures L1 and L2 passes the spatial consistency
test since they almost return back to the initial pose after traversing
the circle. Right: loop closures L1 and L3 are inconsistent with one
another due to the incorrect relative pose in L3.

correct but undetected loop closures is of importance since
existing loop closure detection algorithms cannot ensure a
100% recall with high precision.

C. Back-End

Given the augmented pose graph, the SLAM back-end can
calculate optimal robot poses through optimization. For our
experiments, we utilize g2o [13] as it is one of the most
popular back-end frameworks for graph SLAM. Please refer
to [14] and [15] for more details on graph SLAM and its
back-end.

IV. GTK MIDDLE LAYER FOR LOOP CLOSURE
SELECTION AND RECONSTRUCTION

The GTk middle layer aims at solving two problems. One
is to search for reliable loop closures and filter out false-
positive ones. The other is to reinforce correct loop closures
by establishing additional loop closures in their vicinity.

Fig. 3 illustrates an example where a robot passes through
same place twice with trajectory segments T1 and T2, re-
spectively. Assume that the front end discovers three loop
closures - L1, L2 and L3 that link nodes in the two trajectories.
A loop closure typically contains information about the
connectivity of two nodes, relative pose between them and
corresponding covariance. Suppose only loop closures L1 and
L2 are true-positives, i.e., their relative poses are correct,
whereas loop closure L3 is a false-positive, i.e. one having an
incorrect relative transformation. In the next subsection, we
explain how to apply spatial consistency checks to estimate
whether a loop closure is correct or not.

A. Detection and Selection of Consistent Loop Closures

1) Spatial Consistency Test for a Pair of Loop Closures:
The key idea is to apply a spatial consistency test to each pair



of loop closures in the constructed graph. Fig. 4 demonstrates
this for two example pairs, namely (L1,L2) and (L1, L3). The
intuition is that the relative poses encapsulated in the loop
closure pair should be consistent with the odometry infor-
mation of the outbound and inbound trajectory segments.
Two loop closures and the trajectories between them form a
closed chain, or circle in the graph, as shown in Fig. 4. The
key assumption that we make is that odometry edges only
suffer from limited cumulative drift, and don’t experience
large abrupt odometry errors. Under this assumption, the
consistency of the loop closure pair can be tested based
on the combination of a probability propagation by dead-
reckoning and a χ2 test.

More specifically, we draw inspiration from the statistics
method in [16] to measure the consistency between two loop
closures. For simplicity, let us start at the initial point of
trajectory T1 with an initial pose vector and a zero covariance
matrix. With the relative pose information provided by both
odometry edges and loop closure edges, the probability
distribution of final pose after traversing the circle can be
calculated through dead reckoning. Note that we need to
recalculate the relative pose and covariance matrix of the
odometry edges in the inbound trajectory T2 and loop closure
L1 in a reverse direction to form a unidirectional circle.
Then, we can assume that the mean of the distribution of
the final pose should be close to the initial pose if these two
loop closures are highly consistent with each other. This is
because the error provided by odometry drift should be small
in comparison to the length of the loop. Thus, we have our
null hypothesis of a distribution where the mean is a zero
vector (the same as initial pose) and the covariance is equal to
the calculated final pose. Lastly, a χ2 test is applied to check
whether the final pose is accepted as the null hypothesis.

As shown in Fig. 4, since the loop closures L1 and L2
are correct and their relative poses recorded by the front-end
system is correct, the probability of returning back to the near
neighbor of the initial pose after traversing the outbound and
inbound trajectories is relatively high. In contrast, this is not
applicable to L1 and L3 due to the erroneous relative pose
between two nodes from the false-positive loop closure L3.

Based on the pose nodes, odometry edges and loop clo-
sure edges, it is straightforward to calculate the probability
distribution of a final pose matching with its initial pose.
Let pTi

0 , pTi
1 , ..., pTi

ni be the poses of trajectory Ti, and
N (uTi

1 ,S
Ti
1 ), ..., N (uTi

ni ,S
Ti
ni
) the normal distributions of the

corresponding odometry edges. Taking loop closures L1 and
L2 as an example, let the two loop closure edges follow
distributions N (l1,Sl

1) and N (l2,Sl
2), respectively. Note

that the above data are all available directly in the constructed
pose graph. The relative poses and covariance matrices in
the inbound trajectory segment T 2 and loop closure L1 need
to be reversed to form the unidirectional circle. Define the
probability distribution p0 of the initial pose as

p0 ∼N (m0,S0), m0 = (x0,y0,θ0)
T , S0 = 0 (1)

where 0 is a 3×3 zero matrix. Therefore, the distribution of
the final pose p f in ∼N (m f in,S f in) can be derived with the

following chaining equations:

mk = f (mk−1, ik),k ∈ 1,2, ...,n1 +n2 +2,

ik ∈ {uT1
1 , ...,uT1

n1
, l1,uT2

1 , ...,uT2
n2
, l2},

Sk = Sk−1 +JkSkJT
k +Vk,

Jk =
∂ f
∂ ik

, Vk ∈ {ST1
1 , ...,ST1

n1
,Sl

1,S
T2
1 , ...,ST2

n2
,Sl

2}

(2)

where mk and Sk are the mean and covariance of the dead
reckoning at time k, ik and Vk are mean and covariance of the
control variable at time k, and f (·) is robot’s motion model.
With p f in = pn1+n2+2 indicating the probability distribution
of the final pose, a χ2 test is applied to decide whether
the calculated distribution should be accepted as the null
hypothesis where the final pose is a zero mean distribution.
If mT

f inS f inm f in < χ2(α) we accept the null hypothesis and
consider that this pair of loop closures is consistent with a
confidence of 1−α . χ2(α) is the inverse function of chi-
square cdf and α is set to be 0.1 as default.

Measuring the spatial consistency on each pair of loop
closures is undesirable since long trajectory segments suffer
from large accumulative drifts on odometry, leading to an
inaccurate result of spatial consistency test. Another reason
is that computational overhead grows quadratically w.r.t the
number of loop closures. Thus, in our implementation we
set a limitation on the maximum distance of two trajectory
segments between loop closures.

2) Loop Closure Selection: When all spatial consistency
tests are finished, each loop closure L may pass np tests and
fail in n f tests. Now we can define a ratio between np and
np +n f which is named as pass rate.

After calculating the pass rate of each loop closure, we
use k-means clustering to classify all loop closure into two
groups according to the pass rate. Based on k-means, each
group will have a centre value. Therefore the one with a
higher centre value of pass rate will be regarded as the
group containing true positives and is called the inlier group
while the other one is call outlier group. Then, the loop
closures in the outlier group is rejected as false-positives.
In the inlier group, loop closures with the pass rate greater
than the group centre value is further classified into a class
of strongly consistent loop closures used for artificial loop
closure construction.

Therefore, after the above loop closure detection and selec-
tion, a consistent subgraph where, at least, the majority of the
loop closures are true-positive is produced. It is worth noting
that it is not necessary to eliminate out all false-positives at
this stage because in the subsequent reconstruction steps,
artificial loop closures will be constructed and injected to
further reinforce true-positive loop closures of this subgraph.

B. Loop Closure Reconstruction

In this section, we explain how artificial loop closures are
reconstructed and then introduced into a subgraph previously
generated with selected consistent loop closures.
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Fig. 5: Formulating graphical model for all potential artificial loop
closures. L̂0, L̂1, ..., L̂n are potential loop closures from the two
trajectory segments T1 and T2. L0 is directly regarded as the initial
artificial loop closure L̂0 and Ln is modeled as the observation of
the last artificial loop closure L̂n.

1) Searching Neighbor: Each consistent loop closure is
first assigned with a consistent neighbor loop closure, which
is discovered by a shortest path algorithm among loop
closures. More specifically, by starting at one terminal of the
selected loop closure, a Dijkstra’s shortest path algorithm is
employed to find another loop closure that is on the shortest
path between two terminals of the selected loop closure and
is consistent with it. The search result is accepted if and
only if a unique loop closure exists on this shortest path and
the length of the shortest path is under a maximum distance
threshold.

The reason for only constructing artificial loop closures
between a loop closure and its consistent neighbor rather
than all consistent loop closures is that a spatial consistency
test is more reliable when the distance traversed on the circle
is shorter due to odometry drifts.

2) Calculating Relative Pose between Trajectory Seg-
ments: For each selected loop closure that has a strongly
consistent neighbor, artificial loop closures are constructed
on the two trajectory segments between them. To this end,
two kinds of information are required. One is connectivity
indicating which two pose nodes should be connected by an
artificial edge. The other is a relative transformation between
the two pose nodes and its covariance matrix. To calculate
them correctly, knowing the relative transformation between
two trajectory segments properly is of importance.

Since the relative transformation between the two trajec-
tory segments can be defined by either the selected loop
closure or its consistent neighbor loop closure, the one
having passed more spatial consistency tests, which indicates
a stronger consistency, is used. If the two loop closures coin-
cidentally have equal consistencies, one is randomly chosen.
Then, one of the trajectory segments can be transformed to
have a roughly correct relative pose w.r.t another trajectory
segment according to the relative transformation of the two
poses of the chosen loop closure.

3) Establishing Connectivity of Potential Loop Closures:
Once the relative transformation between two trajectory

segments are known and one trajectory segment is rotated
to have correct relative pose w.r.t the other, the next step is
to construct connectivity of artificial loop closures. Dynamic
Time Warping (DTW) [17] is utilized to match poses of
the two trajectories. Since DTW only allows associating
trajectories traversed in the same direction, one trajectory
segment would be reversed if the directions of two trajectory
segments are different. All matches of poses between the two
trajectory segments are the potential artificial loop closures,
which, however, only contain connectivity without transfor-
mation and covariance information needed for a loop closure.
The subsequent subsections focus on how to compute this
information.

4) Formulating Model for Potential Artificial Loop Clo-
sures: To calculate relative transformation, including trans-
lation and rotation, and corresponding covariance of each
potential artificial loop closure, we formulate a graphical
model as in Fig. 5. In the upper part, there are two trajectory
segments T1 and T2 which contain pose nodes (green and red
nodes) and odometry edges (black arrows). The selected loop
closure and its consistent neighbor are L0 and Ln respectively
(magenta arrows). Since the connectivity of all the potential
artificial loop closures are established in the last step, they
are represented by L̂0, L̂1, ..., L̂n (yellow arrows) in the figure.

The basic idea is that once the odometry information of
the trajectory segments between any two loop closures is
available, the distribution of one loop closure can be deduced
from the distribution of the other one through probability
propagation by dead reckoning. Therefore, by considering
the selected loop closure L0 as the initial loop closure and
its consistent neighbor Ln as the observation of the last loop
closure L̂n, we can obtain a loop closure chain as shown in
the bottom part of the figure. All loop closures, including
artificial ones and two real ones, are modeled into nodes
(magenta and yellow nodes) in the model whose relative pose
and covariance will be calculated next.

5) Calculating Relative Pose and Covariance: The distri-
bution of all the artificial loop closures can be calculated by
dead reckoning where each loop closure rather than a pose
is taken as the state variable. The probability is propagated
from the initial loop closure through an Extended Rauch-
Tung-Striebel (ERTS) smoother and the propagated mean
and variance are constrained by the observation of the last
artificial loop closures to avoid divergence. Note that all
the artificial loop closure mentioned above are still potential
ones.

Assume L̂k ∼ N (x̂k, Ŝ
l
k),(k = 0,1,2, ...,n) are potential

artificial loop closures where x̂k and Ŝl
k are the state variable

and covariance we intend to calculate, except for the initial
one which is the same as the selected loop closure, i.e.,
L̂0 = L0 ∼N (l0,Sl

0). While Ln ∼N (ln,Sl
n), which actually

is the consistent neighbor, is regarded as an observation of
the last potential artificial loop closure L̂n in the model. Note
that all x̂k, x0 and xn are vectors indicating relative poses in
the loop closures while Ŝl

k, Sl
0 and Sl

n are covariance matrices.
Furthermore, the odometry edges of trajectory segments T1



and T2 between two potential artificial loop closures are
represented by oT1

i ∼N (uT1
i ,QT1

i ),(i = 1,2, ...,n1) and oT2
i ∼

N (uT2
j ,Q

T2
j ),( j = 1,2, ...,n2) respectively. Due to the DTW

algorithm utilized in our implementation, there will be no
more than one odometry edge from each trajectory segment
between one potential artificial loop closure and its successor.
Because of the limited length of paper, we only describe the
case with two odometry edges between two loop closures
which is more complicated than the other cases.

Since a standard ERTS smoother mentioned in [18] is
applied, we only address the transition model and the ob-
servation model used in the smoother. The former solves the
propagation from a potential artificial loop closure L̂k−1 to
the successor L̂k with odometry edges oT1

i and oT2
j as follows:

x̂k = g(x̂k−1,u
T2
j ,u

T1
i )

= M(∆θ
T1
i )[ f ( f (0, x̂k−1),u

T2
j )− f (0,uT1

i )]
(3a)

Ŝl
k = Jx̂k−1Sl

k−1JT
x̂k−1

+J
uT2

j
ST2

j JT
uT2

j
+J

uT1
i

ST1
i JT

uT1
i

(3b)

Jx̂k−1 =
∂g

∂ x̂k−1
, J

uT2
j
=

∂g

∂uT2
j

, J
uT1

i
=

∂g

∂uT1
i

(3c)

where (3a) is the transition from L̂k−1 to L̂k. Its non-
linearity is the reason why we choose ERTS rather than
RTS smoother. Matrix M is a rotation matrix and ∆θ

T1
i is

orientation of uT1
i , representing the relative rotation in this

odometry edge. f () is the robot motion model. And 0 is
a zero vector. (3b) shows how to propagate the covariance
matrix where J denotes the Jacobian matrix of function g()
w.r.t to each input vector.

The above equations propagate distributions in the forward
process when there is no observation of the potential artificial
loop closure. For the last loop closure L̂n which has an
observation Ln, we use the following observation model to
execute an update step.

ŷn = Hx̂n + rn, rn ∼N (0,Sl
n) (4)

where matrix H is a 3×3 identity matrix, it sums up the
mean value of the last potential artificial loop closure L̂n with
a zero-mean Gaussian noise whose covariance function is the
same as the one of its neighbor, the consistent neighbor loop
closure Ln. Due to the linearity, the calculation of partial
derivation is avoided for the observation model.

6) Choosing Potential Loop Closures to Inject: Among
all potential artificial loop closures, only 10% of them that
have the smallest uncertainties are injected into the graph,
producing an augmented pose graph for back-ends.

V. EXPERIMENTAL RESULTS

The proposed GTk algorithm is implemented in Matlab
and tested on eight public datasets. In terms of competing
approach, we consider RRR [8] as another middle layer, and
back-ends (DCS [3], SC [1] and Cauchy robust kernel [19]),
and directly use the open-source implementations.

TABLE I: Public datasets used in experiments

Dataset Poses Original loops Max additional outliers
Bicocca 43116 767 1534

Bovisa04 11393 197 394
Bovisa06 10744 219 483
city10000 10000 10688 21376

M3500Olson 3500 2099 4198
ringCity 2361 901 1802

Intel 943 895 1790
MIT 808 20 40

A. Datasets

To fairly assess our approach and compare it with
others, we use 8 different public datasets for exper-
iments. Bicocca, Bovisa04 and Bovisa06 datasets are
from [8]. Manhattan3500Olson (M3500Olson), ringCity,
city10000 and intel datasets are available in the open
source package of vertigo [2] (https://openslam.
org/vertigo). MIT-Killian-Court(MIT) dataset is also
from open source (http://www.lucacarlone.com/
index.php/resources/datasets).

In each dataset, varying numbers of additional outliers
are randomly generated according to the number of original
loop closures in the graph (25%, 50%, 100%, 200%). Thus
for each dataset, we create four additional sets. Note that
high proportions of false positive loop closures truly exist
under some circumstances, e.g. when applying geo-magnetic
information for loop closure detection as in [20] and the
threshold is not tuned well, or when utilizing [21] where
the testing data is largely different from training data. The
relative pose in each outlier is sampled from a uniform
distribution in Special Euclidean Group SE(2) while the
information matrix is set to the average value of information
matrices of original loop closures in a graph.

B. With and Without GTk Middle Layer

In this section, we validate the enhanced robustness of the
whole system when only the outlier rejection (OR) algorithm
or the entire GTk algorithm is employed as a middle layer
between the front and back-ends. This gives insight into
the relative contribution of each component. Three robust
back-end algorithms, Cauchy robust kernel (Cauchy) [19],
DCS [3] and SC [1], implemented in g2o and vertigo are
adopted to use in conjunction with the proposed middle
layer. We compare the performance of these back-ends when
they are combined with and without OR/GTk on all datasets
with a growing number of outliers. Although we have done
experiments on all datasets with several numbers of outliers,
due to limited space, only results from M3500Olson, ringCity
and MIT datasets with 50%, 100% and 200% outliers are
illustrated in Table II and Fig. 6.

In Table II, the root-mean-square error (RMSE) of opti-
mized pose graphs are shown. As we can see, when using the
proposed outlier rejection(OR) algorithm alone, the system
becomes much more robust to false positive loop closures.
And when GTk is applied, the robustness of the system is
further enhanced, generally increasing accuracy. Although
there are few cases in which the error actually increases

https://openslam.org/vertigo
https://openslam.org/vertigo
http://www.lucacarlone.com/index.php/resources/datasets
http://www.lucacarlone.com/index.php/resources/datasets


TABLE II: Results of different back-ends combined with no middle layer, Outlier Rejection (OR) only or GTk (outlier
rejection and inlier insertion) on 4 datasets

Dataset ringCity M3500Olson Intel MIT-Killian-Court
Back-end Cauchy DCS SC Cauchy DCS SC Cauchy DCS SC Cauchy DCS SC

Outliers Middle layer RMSE(m)
None 10.88 0.72 0.66 23.87 9.11 0.27 0.04 0.06 0.12 12.61 16.37 13.71

50% OR 0.95 0.48 1.12 1.98 0.23 0.37 0.05 0.06 0.06 1.87 9.78 1.84
GTk 0.68 0.83 1.12 0.19 0.09 0.09 0.07 0.06 0.06 1.90 2.28 2.09
None 31.03 4.78 5.23 24.60 8.15 0.01 0.05 0.06 0.08 16.87 52.51 19.99

100% OR 2.25 0.66 0.70 16.87 0.12 0.13 0.05 0.06 0.06 2.32 13.61 8.25
GTk 1.82 0.68 0.63 6.68 0.07 0.08 0.07 0.06 0.06 1.27 10.61 8.25
None 51.63 13.42 23.42 25.43 8.03 0.02 0.09 0.06 0.20 53.18 58.22 127.14

200% OR 3.74 0.64 22.21 23.48 2.75 0.25 0.06 0.06 0.06 36.22 72.46 64.14
GTk 1.44 1.08 0.91 16.35 0.20 0.20 0.07 0.06 0.06 36.25 26.04 64.11
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Fig. 6: Some typical results of different back-ends on two datasets with 200% additional outliers. We show the impact of no middle
layer, using only our outlier rejection (OR) approach or the entire GraphTinker (GTk) system. The red trace shows the ground truth. (a)
- (c) Results of DCS, OR-DCS and GTk-DCS respectively on Manhattan3500Olson dataset, using DCS. (d) - (f) SC without any middle
layer, with OR, and with GTk on ringCity dataset.

slightly when GTk is applied, we mostly observe dramatic
improvements in the robustness of the whole system, en-
abling back-ends to converge to correct results.

The specific influence brought by different parts of middle
layers is more clearly demonstrated in Fig.6 with the Ma-
hattan3500Olson and ringCity datasets. It can be seen that
the optimization result is largely improved by our outlier
rejection(OR) algorithm because it effectively removes most
of the false-positive loop closures. However, since a number
of true-positives are also rejected, the graph loses some
essential constraints, and does not converge globally to the
ground-truth. But when the entire GTk is applied, these
discarded constraints are artificially constructed by our inlier
injection algorithm which enables the back-end to converge
to an accurate reconstruction. In general, it can be seen
that the combination of outlier rejection and inlier insertion
together can make existing SLAM approaches significantly
more robust, without extensive parameter tuning.

C. Comparison with RRR

For existing robust graph SLAM algorithms and back-
ends, RRR is the most similar to the proposed GTk with
open-source resources. Therefore, it is chosen as a compar-
ison. The combinations of RRR and GTk as a middle layer
with DCS and SC back-ends are tested with all datasets.
Some of the results are shown in Fig. 7 and Fig. 8. It is worth
noting that we keep using the default parameters values in
both RRR and GTk in all the experiments as we believe
a robust middle layer should not rely on manually tuned
parameters.

Fig. 7 illustrates the RMSE of the results. Each subgraph

TABLE III: Runtime of GTk on 8 datasets.

Dataset Number of loop closures Running time (s)
Bicocca 767 14.18

Bovisa04 197 3.22
Bovisa06 219 7.34
city10000 10688 809.69

M3500Olson 2099 315.06
ringCity 901 88.18

Intel 895 311.39
MIT 20 0.25

represents the experiments on a dataset where the x axis
indicates the ratio between the number of additional false-
positives and original loop closures. In Fig. 7a, although GTk
tends to have a worse performance when combined with SC,
the RMSE is extensively reduced when DCS is applied as the
robust back-end on the Bovisa04 dataset. In all these cases,
GTk outperforms RRR, especially on the M3500Olson and
ringCity datasets. For more detailed results and comparison
with RRR, please refer to the supplementary file.

D. Runtime Analysis

Although we only implement GTk with Matlab rather than
C or C++, the runtime of GTk is still reasonable. The detailed
runtime of GTk on the eight datasets is given in Table.
III. Furthermore, by continuously increasing the number of
loop closures in Manhattan3500Olson dataset, we find that
the runtime of our algorithm has a linear growth w.r.t the
increasing number of loop closures.

The most time consuming part in GTk is executing spatial
consistency tests while searching for a consistent subset of
loop closures in the graph. We avoid the quadratic time
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Fig. 7: Comparison between applying RRR and GTk as the middle layer on several datasets, combined with two different robust back-ends
(DCS and SC). In each dataset, a growing percentage of additional random false-positives are generated. Red and blue boxes (first two
in each cluster) represent results from RRR while green and orange boxes (last two in each cluster) are for GTk.
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Fig. 8: Some results on three datasets for the comparison of utilizing RRR or GTk as middle layer, combined with DCS and SC as
robust back-ends. Red line is the ground truth. (a) - (b) RRR and GTk results on Bovisa04 datasets with 200% outliers when DCS as
back-end. (c) - (d) RRR and GTk results on M3500Olson dataset with 200% extra false-positives when SC as back-end. (e) - (f) RRR
and GTk results on ringCity dataset with 200% additional outliers with SC as back-end.

increase w.r.t the number of loop closures by restricting the
traversal distance of the circle in the test with a threshold
which significantly reduces the number of loop closures
that need to be compared. Hence, this threshold determines
runtime to some extent. The default value is set to 300
steps to achieve a suitable balance between runtime and
performance.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel algorithm for boosting the
robustness of a pose graph SLAM system to false-positive
loop closures. We suggest that this robustness could be
achieved by not only removing unreliable loop closures but
also reconstructing additional loop closures in the graph.
Extensive experiments verify that the proposed algorithm
can successfully handle very noisy pose graphs where the
majority of loop closures are false-positives, achieving more
accurate results than back-ends only and competing algo-
rithms. As future work, we will implement GTk with C++
to speed it up and will explore an extension for 3D datasets.
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